AD9721BR [ROCHESTER]

PARALLEL, WORD INPUT LOADING, 0.0045us SETTLING TIME, 10-BIT DAC, PDSO28, PLASTIC, SOIC-28;
AD9721BR
型号: AD9721BR
厂家: Rochester Electronics    Rochester Electronics
描述:

PARALLEL, WORD INPUT LOADING, 0.0045us SETTLING TIME, 10-BIT DAC, PDSO28, PLASTIC, SOIC-28

输入元件 光电二极管 转换器
文件: 总9页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 400 MSPS  
D/A Converters  
a
AD9720/AD9721  
FEATURES  
lated bipolar process. T he AD9720 is ECL compatible, and will  
update up to 400 MSPS; the AD9721 is T T L compatible and  
will update up to 100 MSPS.  
400 MSPS (ECL)/ 100 MSPS (TTL) Update Rate  
Low Glitch Im pulse: 1.5 pV-s  
Fast Settling: 4.5 ns to 1/ 2 LSB  
Low Pow er: 1.1 W  
On-Board Quadrature Logic for DDS Applications  
Differential Clock (ECL)  
Designed for direct digital synthesis (DDS), waveform recon-  
struction, and high resolution video applications, both devices  
feature low glitch impulse of 1.5 pV-s and fast settling times of  
4.5 ns to 1/2 LSB.  
APPLICATIONS  
Both converters are characterized for dynamic performance, and  
have excellent harmonic suppression and spectral purity in  
waveform generation applications.  
Direct Digital Synthesis  
Arbitrary Waveform Synthesis  
Waveform Reconstruction  
High Speed Im aging  
T he units are available in 28-pin DIPs, LCCs and SOICs.  
Industrial temperature range devices are packaged in plastic for  
operation from –25°C to +25°C; extended temperature range  
devices for operation from –55°C to +125°C are in hermetic  
ceramic packages. Contact the factory for information about the  
availability of MIL-ST D-883 devices.  
GENERAL D ESCRIP TIO N  
T he AD9720 and AD9721 D/A converters are 10-bit, high  
speed digital-to-analog converters constructed in an oxide iso-  
FUNCTIO NAL BLO CK D IAGRAM  
ANALOG  
RETURN  
D
D
1
I
OUT  
2
10  
TTL  
OR  
I
OUT  
ECL  
DRIVE  
LOGIC  
D
10  
INVERT  
CLOCK  
CLOCK  
REFERENCE  
IN  
+
0.1µF  
CONTROL  
AMP  
CONTROL  
AMP OUT  
INTERNAL  
VOLTAGE  
REFERENCE  
R
SET  
REFERENCE  
OUT  
CONTROL  
AMP IN  
DIGITAL  
–V  
DIGITAL  
+V  
ANALOG  
–V  
S
S
S
BYP.  
BYP.  
BYP.  
–5.2V  
+5V  
–5.2V  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD9720/AD9721–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (R–V = –5.2 V; +V = +5 V (AD9721 only); Reference Voltage = –1.25 V;  
S
S
SET = 1,960 , unless otherwise noted)  
Test  
AD 9720BN/BR  
AD 9720TE/TQ  
AD 9721BN/BR  
AD 9721TE/TQ  
Min Typ Max Units  
P aram eter (Conditions)  
Tem p Level Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
RESOLUT ION  
10  
10  
10  
10  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
0.25  
0.5  
0 75  
1.0  
1.0  
0.6  
0.7  
1.0  
1.5  
1.5  
2.0  
0.25  
0.5  
0.75  
1.0  
1.0  
0.6  
0.7  
1.0  
1.5  
1.5  
2.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
(“Best Fit” Straight Line)  
VI  
1.5  
1.5  
INIT IAL OFFSET ERROR  
Zero-Scale Offset Error  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
16  
20  
2
60  
75  
15  
15  
16  
20  
2
60  
75  
15  
15  
16  
20  
2
60  
75  
15  
15  
16  
20  
2
60  
75  
15  
15  
µA  
µA  
%
%
µA/°C  
Full-Scale Gain Error1  
Offset Drift Coefficient  
+25°C  
0.04  
0.04  
0.04  
0.04  
REFERENCE/CONT ROL AMP  
Internal Reference Voltage  
+25°C  
Full  
Full  
Full  
+25°C  
+25°C  
I
–1.15 –1.25 –1.35 –1.15 –1.25  
–1.35 –1.15 –1.25 –1.35 –1.15 –1.25 –1.35  
V
V
µV/°C  
VI  
V
IV  
V
V
–1.15  
–1.35 –1.15  
–1.35 –1.15  
–1.35 –1.15  
–1.35  
Internal Reference Voltage Drift  
Internal Reference Output Current  
Amplifier Input Impedance  
Amplifier Bandwidth  
100  
100  
100  
100  
–50  
+500 –50  
+500  
–50  
+500 –50  
+500 µA  
kΩ  
50  
1
50  
1
50  
1
50  
1
MHz  
REFERENCE INPUT 2  
Reference Input Impedance  
+25°C  
+25°C  
V
V
4.6  
75  
4.6  
75  
4.6  
75  
4.6  
75  
kΩ  
MHz  
Reference Multiplying Bandwidth3  
OUT PUT PERFORMANCE  
Full-Scale Output Current2, 4  
Output Compliance Range  
Output Resistance  
+25°C  
+25°C IV  
V
20.48  
20.48  
20.48  
20.48  
mA  
V
pF  
MSPS  
ns  
–1.5  
+3  
–1.5  
+3  
–1.5  
+3  
–1.5  
+3  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
V
V
V
V
V
210  
6
400  
4.5  
4.0  
1.5  
1,000  
675  
470  
210  
6
400  
4.5  
4.0  
1.5  
1,000  
675  
470  
210  
6
100  
4.5  
4.5  
1.5  
1,000  
675  
470  
210  
6
100  
4.5  
4.5  
1.5  
1,000  
675  
470  
Output Capacitance  
Output Update Rate  
Voltage Settling T ime (1/2 LSB)5  
6
Propagation Delay (tPD  
)
ns  
Glitch Impulse7  
pV-s  
V/µs  
ps  
Output Slew Rate8  
Output Rise T ime8  
Output Fall T ime8  
ps  
DIGIT AL INPUT S  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Input Setup T ime (tS)9  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
V
–1.0  
–0.9  
2.0  
2.0  
V
V
–1.5  
50  
2
–1.6  
50  
2
0.8  
400  
700  
0.8  
400  
700  
µA  
µA  
pF  
ns  
ns  
ns  
ns  
ns  
ns  
+25°C  
3
0.4  
3
0.4  
3
0.5  
3
0.5  
+25°C IV  
Full IV  
+25°C IV  
Full IV  
+25°C IV  
+25°C IV  
1.0  
1.2  
1.6  
2.8  
1.1  
1.4  
1.0  
1.2  
1.6  
2.8  
1.1  
1.4  
1.0  
1.2  
2.0  
2.3  
1.0  
1.1  
1.0  
1.2  
2.0  
2.3  
1.0  
1.1  
10  
Input Hold T ime (tH  
)
1.2  
1.2  
1.25  
1.25  
Clock Pulse Width (Low)  
Clock Pulse Width (High)  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
DYNAMIC PERFORMANCE  
Spurious-Free Dynamic Range (SFDR)11  
2.02 MHz; 100 MSPS; 2 MHz Span  
25.01 MHz; 100 MSPS; 2 MHz Span  
10.02 MHz; 250 MSPS; 5 MHz Span  
62.54 MHz; 250 MSPS; 5 MHz Span  
70 MHz; 220 MSPS; 10 MHz Span  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
V
75  
66  
70  
55  
70  
75  
66  
70  
55  
70  
75  
66  
N/A  
N/A  
N/A  
75  
66  
N/A  
N/A  
N/A  
dBc  
dBc  
dBc  
dBc  
dBc  
POWER SUPPLY12  
Negative Supply Current (–5.2 V)13  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
V
210  
280  
290  
210  
280  
290  
218  
14  
290  
300  
30  
218 290  
300  
mA  
mA  
mA  
mA  
W
Positive Supply Current (+5.0 V)  
Nominal Power Dissipation  
N/A  
N/A  
1.1  
N/A  
N/A  
1.1  
14  
30  
30  
30  
+25°C  
1.2  
50  
1.2  
50  
Power Supply Rejection Ratio (PSRR)14 +25°C  
50  
50  
µA/V  
–2–  
REV. A  
AD9720/AD9721  
NOT ES  
11Measured as error in ratio of full-scale current to current through R SET (640 µA nominal); ratio is nominally 32. DAC load is virtual ground.  
12Full-scale current variations among devices are higher when driving REFERENCE IN directly.  
13Frequency at which a 3 dB change in output of DAC is observed, R L = 50 ; 100 mV modulation at midscale.  
14Based on IFS = 32 (CONT ROL AMP IN/RSET) when using internal control amplifier. DAC load is virtual ground.  
15Measured as voltage settling at midscale transition to ±0.1%; RL = 50 .  
16Measured from 50% point of rising edge of CLOCK signal to 1/2 LSB change in output signal.  
17Peak glitch impulse is measured as the largest area under a single positive or negative transient.  
18Measured with RL = 50 and DAC operating in latched mode.  
19Data must remain stable for specified time prior to rising edge of CLOCK.  
10Data must remain stable for specified time after rising edge of CLOCK.  
11SFDR is defined as the difference in signal energy between the fundamental and worst case spurious frequencies in the output spectrum window, which is centered at  
the fundamental frequency and covers the indicated span.  
12Supply voltages should remain stable within ±5% for normal operation.  
13190 mA typ on Digital –VS, 30 mA typ on Analog –VS.  
14Measured at ±5% of +VS (AD9721 only) and –VS (AD9720 or AD9721) using external reference.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS1  
EXP LANATIO N O F TEST LEVELS  
Positive Supply Voltage (+VS) (AD9721 Only) . . . . . . . . +6 V  
T est Level  
Negative Supply Voltage (–VS)  
I
– 100% production tested.  
(AD9720 and AD9721) . . . . . . . . . . . . . . . . . . . . . . . . –7 V  
Digital Input Voltages (D1D10, CLOCK, CLOCK)  
AD9720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to –VS  
AD9721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +VS  
Internal Reference Output Current . . . . . . . . . . . . . . . 500 µA  
Control Amplifier Input Voltage Range . . . . . . . . . 0 V to –4 V  
Control Amplifier Output Current . . . . . . . . . . . . . . . ±2.5 mA  
Reference Input Voltage Range (VREF) . . . . . . . . . . . 0 V to –VS  
Analog Output Current . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating T emperature Range  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
V
– Parameter is a typical value only.  
VI – All devices are 100% tested at +25°C. 100% production  
tested at temperature extremes for extended temperature  
devices; sample tested at temperature extremes for com-  
mercial/industrial devices.  
AD9720/AD9721BN/BR . . . . . . . . . . . . . . –25°C to +85°C  
AD9720/AD9721T E/T Q . . . . . . . . . . . . . –55°C to +125°C  
Maximum Junction T emperature2  
AD9720/AD9721BN/BR . . . . . . . . . . . . . . . . . . . . +150°C  
AD9720/AD9721T E/T Q . . . . . . . . . . . . . . . . . . . . +175°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
D IE LAYO UT AND MECH ANICAL INFO RMATIO N  
Die Dimensions . . . . . . . . . . . . . . . 199 ϫ 165 ϫ 15 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ϫ 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
NOT ES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2T ypical thermal impedances:  
28-pin plastic DIP: θJA = 37°C/W, θJC = 10°C/W;  
28-pin LCC:  
28-pin SOIC:  
Cerdip:  
θJA = 41°C/W, θJC = 13°C/W;  
θJA = 46°C/W, θJC = 10°C/W;  
θJA = 35°C/W, θJC = 10°C/W.  
Soldered to board; no air flow.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
AD9720BN  
AD9720BR  
AD9720T E  
AD9720T Q  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
28-Pin Plastic DIP  
28-Pin SOIC  
28-Pin LCC  
N-28  
R-28  
E-28A  
Q-28  
28-Pin Cerdip  
AD9721BN  
AD9721BR  
AD9721T E  
AD9721T Q  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
28-Pin Plastic DIP  
28-Pin SOIC  
28-Pin LCC  
N-28  
R-28  
E-28A  
Q-28  
28-Pin Cerdip  
REV. A  
–3–  
AD9720/AD9721  
P IN D ESCRIP TIO NS  
D IP  
P in # Nam e  
Function  
1
D1 (MSB)  
D2D9  
Most Significant Bit (MSB) of digital input word.  
2-9  
Eight of 10 digital input bits. Digital inputs are 10K ECL compatible for AD9720; T T L compatible  
for AD9721. See coding table elsewhere.  
10  
D10 (LSB)  
Least Significant Bit (LSB) of digital input word.  
Input Coding vs. Current O utput  
IOUT  
Input Code D1D10 IOUT (mA)  
(mA)  
1111111111  
0000000000  
–20.48  
0
0
–20.48  
11  
CLOCK  
Edge-triggered latch enable signal for on-board registers. 10K ECL compatible for AD9720. T T L  
compatible for AD9721. Register loads data on rising edge of CLOCK signal; must be driven in con-  
junction with CLOCK.  
12  
13  
CLOCK/NC  
Complementary edge-triggered latch enable signal for on-board registers. 10K ECL compatible for  
AD9720; not connected (NC) for AD9721.  
INVERT  
Normally connected to logic LOW; inverters are transparent in this mode. Logic High inverts the 9  
LSBs (D2D10) when the MSB is LOW. No internal pull-down resistor.  
14  
15  
16  
17  
DIGIT AL –VS/+VS  
GROUND  
One of three digital supply pins; nominally –5.2 V for AD9720; +5 V for AD9721.  
Converter ground return.  
DIGIT AL –VS  
RSET  
One of three negative digital supply pins; nominally –5.2 V.  
Connection for external resistance reference; nominally 1,960 . Full-scale current out = 32 ϫ  
(CONT ROL AMP IN/RSET) when using internal amplifier. DAC load is virtual ground.  
18  
19  
GROUND  
Converter ground return.  
ANALOG RET URN  
Analog current return. T his point and the reference side of the DAC load resistors should be con-  
nected to the same potential (nominally ground).  
20  
IOUT  
Analog current output; full-scale output occurs with digital inputs at all “1.” With external load resis-  
tor, output voltage IOUT ϫ (RLOAD || RINT ERNAL). RINT ERNAL is nominally 210 .  
21  
22  
23  
IOUT  
Complementary analog current output; zero-scale output occurs with digital inputs at all “1.”  
Negative analog supply; nominally –5.2 V.  
ANALOG –VS  
REFERENCE IN  
Normally connected to CONT ROL AMP OUT (Pin 24). Direct line to DAC current source network.  
Voltage changes (noise) at this point have a direct effect on the full-scale output current of DAC.  
Full-scale current output = 32 ϫ (CONT ROL AMP IN/RSET ) when using internal amplifier. DAC  
load is virtual ground.  
24  
CONT ROL AMP OUT Normally connected to REFERENCE INPUT (Pin 23). Output of internal control amplifier, which  
provides a reference for the current switch network.  
25  
26  
27  
28  
REFERENCE OUT  
CONT ROL AMP IN  
DIGIT AL –VS  
Normally connected to CONT ROL AMP IN (Pin 26). Internal voltage reference, nominally –1.25 V.  
Normally connected to REFERENCE OUT (Pin 25) if not connected to external reference.  
One of three negative digital supply pins; nominally –5.2 V.  
GROUND  
Converter ground return.  
P IN CO NFIGURATIO NS  
D IP & SO IC P ackages  
LCC P ackage  
D
(MSB)  
1
2
3
4
5
6
GROUND  
28  
27  
26  
25  
1
DIGITAL –V  
D
2
S
D
3
CONTROL AMP IN  
REFERENCE OUT  
4
3
2
1
28 27 26  
D
4
5
D
D
25 REFERENCE OUT  
AD9720/  
AD9721  
5
D
5
24 CONTROL AMP OUT  
24  
23  
22  
21  
20  
6
7
8
9
CONTROL AMP OUT  
REFERENCE IN  
6
D
6
23  
22  
21  
20  
19  
18  
17  
REFERENCE IN  
AD9720/AD9721  
LCC  
D
7
8
9
DIP  
ANALOG –V  
S
D
7
7
8
9
D
D
ANALOG –V  
S
TOP VIEW  
(Not to Scale)  
D
8
I
OUT  
TOP VIEW  
(Not to Scale)  
I
OUT  
D
9
I
OUT  
10  
11  
D
(LSB)  
I
10  
OUT  
ANALOG RETURN  
GROUND  
D
(LSB) 10  
10  
ANALOG RETURN  
CLOCK  
19  
CLOCK 11  
12 13 14 15 16 17 18  
R
12  
CLOCK (NC)  
SET  
INVERT 13  
DIGITAL –V (+V  
14  
16 DIGITAL –V  
S
)
S
15  
GROUND  
S
REV. A  
–4–  
AD9720/AD9721  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
ERROR  
BAND  
tS tH  
OUTPUT  
ERROR  
DATA INPUTS  
CODE 1  
VALID DATA  
CODE 2  
VALID DATA  
D
– D  
10  
1
tPD  
tST  
CODE 2  
tS  
INPUT SETUP TIME  
INPUT HOLD TIME  
tPD  
OUTPUT  
CODE 1  
tH  
tST  
OUTPUT SETTLING TIME  
OUTPUT PROPAGATION DELAY  
tPD  
AD9720/AD9721 Tim ing Diagram  
TH EO RY AND AP P LICATIO NS  
When using the internal reference, REFERENCE OUT (Pin  
25) should be connected to CONT ROL AMP IN (Pin 26).  
CONT ROL AMP OUT (Pin 24) should be connected to REF-  
ERENCE IN (Pin 23). A 0.1 µF ceramic capacitor from Pin 23  
to ANALOG –VS (Pin 22) improves settling by decoupling  
switching noise from the current sink base line. A reference  
current cell provides feedback to the control amp by sinking  
current through RSET (Pin 17).  
T he AD9720/AD9721 high speed digital-to-analog converters  
utilize Most Significant Bit (MSB) decoding and segmentation  
techniques to reduce glitch impulse and maintain 10-bit linear-  
ity without trimming.  
As shown in the functional block diagram, the design is based  
on four main subsections: the Decoder/Driver circuits, the Edge  
T riggered Data Register, the Switch Network, and the Control  
Amplifier. An internal bandgap reference is also included to al-  
low operation with a minimum of external components. T he  
block labeled “Inverters” is transparent in normal operation, but  
can be used to minimize the external components requirements  
in DDS applications using the AD9950, a 300 MSPS phase ac-  
cumulator (see AD9950 data sheet).  
Full-scale output current is determined by CONT ROL AMP IN  
and RSET according to the equation:  
IOUT (FS) = (CONTROL AMP IN/RSET) ϫ 32  
T he internal reference is nominally –1.25 V with a tolerance of  
±8% and typical drift over temperature of 100 ppm/°C. If  
greater accuracy or better temperature stability is required, an  
external reference can be utilized. T he AD589 reference features  
±10 ppm/°C drift over temperatures from 0°C to +70°C.  
D igital Inputs/Tim ing  
T he AD9720 employs single-ended ECL-compatible inputs for  
data inputs D1D10 and the differential clock signals CLOCK  
and CLOCK. T he internal ECL midpoint reference is designed  
to match 10K ECL device thresholds. On the AD9721, a T T L  
translator is added at each input and the clock becomes single  
ended; with these exceptions, the AD9720 and AD9721 are  
identical. (NOT E: Pin 14 is +VS on AD9721; –VS on AD9720.)  
T wo modes of multiplying operation are possible with the  
AD9720/AD9721. Signals with bandwidths up to 1 MHz and  
input swings from –0.6 V to –1.2 V can be applied to the CON-  
T ROL AMP input as shown in Figure 1. Because the control  
amplifier is internally compensated, the 0.1 µF capacitor dis-  
cussed above can be reduced to maximize the multiplying band-  
width. However, it should be noted that settling time for  
changes to the digital inputs will be degraded.  
In the Decoder/Driver section, the four MSBs (D1D4) are de-  
coded to 15 “thermometer code” lines. An equalizing delay is  
included for the six Least Significant Bits (LSBs) and the clock  
signals. T his delay minimizes data skew and data setup and hold  
times at the register inputs.  
AD9720/AD9721  
R
SET  
T he on-board register is rising-edge-triggered and should be  
used to synchronize data to the current switches by applying a  
pulse with proper data set-up and hold times as shown in the  
timing diagram.  
R
17  
26  
SET  
CONTROL  
AMP IN  
–0.6V TO –1.2V  
400 kHz MAX  
Although the AD9720/AD9721 chip is designed to provide iso-  
lation from digital inputs to the outputs, some coupling of digi-  
tal transitions is inevitable, especially with T T L or CMOS  
inputs applied to the AD9721. Digital feedthrough can be re-  
duced by forming a low-pass filter using a resistor in series with  
the capacitance of each digital input; this rolls off the slew rate  
of the digital inputs.  
R
T
CONTROL  
AMP OUT  
24  
23  
REFERENCE  
IN  
Refer ences  
0.1µF  
ANALOG – V  
As shown in the functional block diagram, the internal band-gap  
reference, control amplifier, and reference input are pinned out  
for maximum user flexibility when setting the reference.  
S
Figure 1. Low Frequency Multiplying Circuit  
REV. A  
–5–  
AD9720/AD9721  
10k  
T he REFERENCE IN pin can also be driven directly for wider  
bandwidth multiplying operation. T he analog signal for this  
mode of operation must have a signal swing in the range of  
–3.3 V to –4.25 V. T his can be implemented by capacitively  
coupling into REFERENCE IN a signal with a dc bias of –3.3 V  
(IOUT ~ 22.5 mA) to –4.25 V (IOUT ~ 3 mA), as shown in Figure  
2, or by driving REFERENCE IN with a low impedance op  
amp whose signal swing is limited to the stated range.  
+
10k  
1/2  
AD708  
200  
1/2  
AD708  
R
1
+
100  
IOS  
R
2
25  
26  
400  
RFB  
REF CONTROL  
OUT  
AMP IN  
IOUT  
IFS  
25  
AD9720/AD9721  
20  
21  
VOUT  
RFF  
AD9617  
+
AD9720/  
AD9721  
25  
RL  
±2.048 V  
REFERENCE  
IN  
IOUT  
23  
–3.8V  
Figure 3. I/V Conversion Using Current Feedback Am p  
–V  
S
–V  
S
D D S Applications  
T he performance characteristics of the AD9720/AD9721 make  
it ideally suited for direct digital synthesis (DDS) and other  
waveform generation applications. Since the aliased distortion of  
the DAC collects around the fundamental when generating fre-  
quencies which are nearly integer fractions of the clock rate,  
these are often considered worst case conditions.  
Figure 2. Wideband Multiplying Circuit  
O utputs  
T he Switch Network provides complementary current outputs  
IOUT  
IOUT and  
statistical current source matching which provides 10-bit linear-  
IOUT  
. T he design of the AD9720/AD9721 is based on  
Please contact the factory for information concerning the avail-  
ability of an evaluation board or for additional characterization  
data.  
ity without trim. Current is steered to either IOUT or  
in  
proportion to the digital input code. T he sum of the two cur-  
rents is always equal to the full-scale output current minus one  
LSB.  
SETTLING TIME 4.5ns  
NET GLITCH = 1.34pV-s  
PEAK GLITCH = 1.36pV-s  
T he current output can be converted to a voltage by resistive  
IOUT  
loading as shown in the block diagram. Both IOUT and  
should be loaded equally for best overall performance. T he volt-  
age which is developed is the product of the output current and  
the value of the load resistor.  
An operational amplifier can also be used to perform the I to V  
conversion of the DAC output. Figure 3 shows an example of a  
circuit which uses the AD9617, a high speed, current feedback  
amplifier. T he resistor values in Figure 3 provide a 4.096 V  
swing, centered at ground, at the output of the AD9617  
amplifier.  
AD9720  
100 MHz  
I
OUT  
LPF  
50Ω  
TEST CIRCUIT  
5 ns/DIVISION  
Figure 4. AD9720 Glitch Im pulse  
REV. A  
–6–  
AD9720/AD9721  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
AD9720 UPDATED  
AT 220 MSPS  
AD9720 UPDATED  
AT 250 MSPS  
AD9720 UPDATED  
AT 250 MSPS  
dB  
dB  
dB  
66  
68  
70  
72  
74  
60  
61  
62  
63  
64  
65  
8
9
10  
11  
12  
MHz  
MHz  
MHz  
Figure 5. Typical Output Spectrum  
Figure 7. Typical Output Spectrum  
Figure 6. Typical Output Spectrum  
0
0
0
AD9720 UPDATED  
–10  
AD9720 UPDATED  
–10  
AD9720 UPDATED  
–10  
AT 100 MSPS  
AT 250 MSPS  
AT 100 MSPS  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–50  
–60  
–70  
–80  
–40  
–50  
–60  
–70  
–80  
dB  
dB  
–40  
–50  
–60  
–70  
–80  
dB  
1.2  
1.6  
2.0  
MHz  
2.4  
2.8  
81  
82  
83  
MHz  
84  
85  
24.2  
24.6  
25.0  
MHz  
25.4  
25.8  
Figure 8. Typical Output Spectrum  
Figure 10. Typical Output Spectrum  
Figure 9. Typical Output Spectrum  
EXTERNAL  
+5V  
POWER  
TTL CLOCK  
REFERENCE  
GENERATOR  
CLOCK  
CIRCUIT  
POWER  
SUPPLY  
INTERFACE  
SUPPLY  
–5.2V  
AD9713B  
STANDARD PRINTER CABLE  
AD9955  
100MHz  
CMOS DDS  
OR  
AD9721  
DAC  
INTERFACE  
LOGIC  
50Ω  
CABLE  
AD9955 DDS EVALUATION BOARD  
SOFTWARE  
PROVIDED  
IBM-COMPATIBLE PC  
SPECTRUM ANALYZER  
Figure 11. Direct Digital Synthesis System Diagram  
REV. A  
–7–  
AD9720/AD9721  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-P in P lastic D IP (Suffix N)  
28-P in SO IC (Suffix R)  
28  
1
15  
14  
28  
15  
0.550 (13.97)  
0.530 (13.46)  
0.300 (7.60)  
0.292 (7.40)  
0.419 (10.65)  
0.319 (10.00)  
0.625 (15.8)  
1.565 (39.70)  
1.380 (35.10)  
0.060 (1.52)  
0.015 (0.38)  
0.600 (15.24)  
1
14  
0.250 (6.35)  
MAX  
0.140  
(3.56)  
MIN  
0.712 (18.08)  
0.700 (17.78)  
0.015 (0.381)  
0.008 (0.204)  
0.104 (2.65)  
0.093 (2.35)  
0.70 (1.77)  
MAX  
0.022 (0.558) 0.100 (2.54)  
BSC  
0.014 (0.356)  
0.04 (1.02)  
0.050 (1.27) BSC  
0.019 (0.49)  
0.014 (0.35)  
0.013 (0.32)  
0.009 (0.23)  
0.012 (0.3)  
0.004 (0.1)  
0.024 (0.61)  
28-P in Leadless Chip Car r ier (Suffix E)  
28-P in Cer dip (Suffix Q )  
0.100 (2.54) 1  
0.064 (1.63)  
1.490 (37.84) MAX  
0.055 (1.40)  
0.045 (1.14)  
1.91  
0.75  
REF  
15  
28  
0.610 (15.49)  
0.500 (12.70)  
1
14  
0.620 (15.74)  
0.590 (14.93)  
0.028 (0.71)  
0.022 (0.56)  
GLASS SEALANT  
28  
0.22  
(5.59)  
MAX  
NO. 1 PIN INDEX  
0.050 ± (1.27)  
0.018 (0.45)  
0.008 (0.20)  
0.005 ± (0.13)  
15  
0
BOTTOM VIEW  
0.110 (2.79)  
0.026 (0.660)  
0.07 (1.78)  
0.03 (0.76)  
0.125  
(3.175)  
MIN  
0.014 (0.356) 0.098 (2.45)  
0.040 x 45°  
(1.02 x 45°)  
REF 3 PLCS  
0.020 x 45°  
(0.51 x 45°) REF  
0.458 (11.63) 2  
0.442 (11.23)  
NOTES  
1. THIS DIMENSION CONTROLS THE OVERALL PACKAGE THICKNESS.  
2. APPLIES TO ALL FOUR SIDES.  
3. ALL TERMINALS ARE GOLD PLATED.  
REV. A  
–8–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY