ADN2848ACPZ-32 [ROCHESTER]

SPECIALTY INTERFACE CIRCUIT, QCC32, 5 X 5 MM, MO-220-VHHD-2, LFCSP-32;
ADN2848ACPZ-32
型号: ADN2848ACPZ-32
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY INTERFACE CIRCUIT, QCC32, 5 X 5 MM, MO-220-VHHD-2, LFCSP-32

文件: 总13页 (文件大小:1173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 V Dual-Loop 50 Mbps to 1.25 Gbps  
Laser Diode Driver  
Data Sheet  
ADN2848  
FEATURES  
GENERAL DESCRIPTION  
50 Mbps to 1.25 Gbps operation  
Single 3.3 V operation  
Bias current range: 2 to 100 mA  
Modulation current range: 5 to 80 mA  
Monitor photo diode current: 50 μA to 1200 μA  
50 mA supply current at 3.3 V  
The ADN2848 uses a unique control algorithm to control both  
the average power and the extinction ratio of the laser diode  
(LD) after initial factory setup. External component count and  
PCB area are low because both power and extinction ratio  
control are fully integrated. Programmable alarms are provided  
for laser fail (end of life) and laser degrade (impending fail).  
Closed-loop control of power and extinction ratio  
Full current parameter monitoring  
Laser fail and laser degrade alarms  
Automatic laser shutdown (ALS)  
Optional clocked data  
Supports FEC rates  
32-lead, 5 mm × 5 mm LFCSP_VQ package  
APPLICATIONS  
SONET OC-1/3/12/24  
SDH STM-0/1/4  
Fibre Channel  
Gigabit Ethernet  
FUNCTIONAL BLOCK DIAGRAM  
V
CC  
V
CC  
IMODN  
LD  
V
CC  
IMODP  
MPD  
IMPD  
DATAP  
DATAN  
CLKP  
I
I
MOD  
V
CC  
CLKN  
CONTROL  
R
Z
PSET  
I
BIAS  
BIAS  
ASET  
GND  
GND  
GND  
ERSET  
ADN2848  
ERCAP  
PAVCAP  
LBWSET  
GND  
GND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADN2848  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Alarms.............................................................................................7  
Monitor Currents ..........................................................................8  
Data and Clock Inputs..................................................................8  
CCBIAS...........................................................................................8  
IBIAS...................................................................................................8  
Automatic Laser Shutdown..........................................................8  
Alarm Interfaces............................................................................8  
Power Consumption .....................................................................9  
Laser Diode Interfacing................................................................9  
Optical Supervisor.........................................................................9  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Theory of Operation ........................................................................ 7  
Control........................................................................................... 7  
Loop Bandwidth Selection .......................................................... 7  
REVISION HISTORY  
2/13—Rev. A to Rev. B  
Added EPAD Notation..................................................................... 6  
Changes to Endnote ......................................................................... 8  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
8/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Figure 1.......................................................................... 1  
Changes to Specifications ................................................................ 3  
Changes to Figure 8........................................................................ 10  
Changes to Figure 9 to Figure11................................................... 11  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
1/03—Revision 0: Initial Version  
Rev. B | Page 2 of 12  
 
Data Sheet  
ADN2848  
SPECIFICATIONS  
VCC = 3.0 V to 3.6 V. All specifications TMIN to TMAX, unless otherwise noted.1 Typical values are specified at 25°C.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
LASER BIAS Current (IBIAS, ALS)  
Output Current IBIAS  
Compliance Voltage  
IBIAS  
2
1.2  
100  
VCC  
0.1  
5
mA  
V
mA  
μs  
V
IBIAS  
When ALS asserted  
IBIAS < 10% of nominal  
ALS Response Time  
CCBIAS Compliance Voltage  
MODULATION CURRENT (IMODP, IMODN)  
Output Current IMOD  
Compliance Voltage  
IMOD  
1.2  
VCC  
5
1.5  
80  
mA  
V
VCC  
0.1  
170  
170  
1.5  
mA  
ps  
ps  
ps  
ps  
When ALS asserted  
Rise Time2  
80  
80  
1
Fall Time2  
Random Jitter2  
RMS  
IMOD = 40 mA  
Pulse Width Distortion2  
MONITOR PD (MPD)  
Current  
15  
50  
1200  
1.65  
μA  
V
Average current  
Average current  
Compliance Voltage  
POWER SET INPUT (PSET)  
Capacitance  
Monitor Photodiode Current into RPSET Resistor  
Voltage  
80  
1200  
1.3  
pF  
μA  
V
50  
1.1  
1.2  
1.2  
EXTINCTION RATIO SET INPUT (ERSET)  
Allowable Resistance Range  
Voltage  
1.2  
1.1  
25  
1.3  
kΩ  
V
ALARM SET (ASET)  
Allowable Resistance Range  
Voltage  
1.2  
1.1  
25  
1.3  
kΩ  
V
%
1.2  
5
Hysteresis  
CONTROL LOOP  
Time Constant  
Low loop bandwidth selection  
LBWSET = GND  
LBWSET = VCC  
0.22  
2.25  
sec  
sec  
DATA INPUTS (DATAP, DATAN, CLKP, CLKN)3  
V p-p (Single-Ended, Peak-to-Peak)  
Input Impedance (Single-Ended)  
100  
500  
mV  
Ω
ps  
ps  
Data and clock inputs are  
ac-coupled  
See Figure 2  
50  
4
tSETUP  
50  
100  
4
tHOLD  
See Figure 2  
LOGIC INPUTS (ALS, LBWSET, CLKSEL)  
VIH  
VIL  
2.4  
2.4  
V
V
0.8  
0.8  
ALARM OUTPUTS (FAIL, DEGRADE)  
VOH  
VOL  
Internal 30 kΩ pull-up  
V
V
IBMON, IMMON, IMPDMON  
IMMON Division Ratio  
IMPDMON  
100  
1
A/A  
A/A  
V
Compliance Voltage  
0
VCC − 1.2  
Rev. B | Page 3 of 12  
 
ADN2848  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
SUPPLY  
5
ICC  
50  
3.3  
mA  
V
IBIAS = IMOD = 0  
6
VCC  
3.0  
3.6  
1 Temperature range is −40°C to +85°C.  
2 Measured into a 25 Ω load using a 0-1 pattern at 622 Mbps.  
3 When the voltage on DATAP is greater than the voltage on DATAN, the modulation current flows in the IMODP pin.  
4 Guaranteed by design and characterization. Not production tested.  
5 ICCMIN for power calculation on Page 9 is the typical ICC given.  
6 All VCC pins should be shorted together.  
SETUP  
tS  
HOLD  
tH  
DATAP/DATAN  
CLKP  
Figure 2. Setup and Hold Time  
Rev. B | Page 4 of 12  
 
 
Data Sheet  
ADN2848  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC to GND  
4.2 V  
Digital Inputs  
(ALS, LBWSET, CLKSEL)  
IMODN, IMODP  
−0.3 V to VCC + 0.3 V  
VCC + 1.2 V  
Operating Temperature Range  
Industrial  
−40°C to +85°C  
−65°C to +150°C  
150°C  
Storage Temperature Range  
Junction Temperature (TJ Max)  
32-Lead LFCSP_VQ Package  
Power Dissipation1  
θJA Thermal Impedance2  
(TJ Max – TA)/θJA W  
32°C/W  
Lead Temperature (Soldering for 10 sec) 300°C  
1 Power consumption formulas are provided on Page 9.  
2 θJA is defined when device is soldered in a 4-layer board.  
ESD CAUTION  
Rev. B | Page 5 of 12  
 
 
 
ADN2848  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
LBWSET 1  
ASET 2  
ERSET 3  
PSET 4  
IMPD 5  
IMPDMON 6  
GND4 7  
24 IBMON  
23 IMMON  
22 GND3  
PIN 1  
INDICATOR  
ADN2848  
21 V  
3
CC  
TOP VIEW  
20 ALS  
19 FAIL  
18 DEGRADE  
17 CLKSEL  
(Not to Scale)  
V
4 8  
CC  
NOTES  
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE  
MUST BE CONNECTED TO THE DEVICE GND.  
Figure 3. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
LBWSET  
ASET  
Description  
1
2
Loop Bandwidth Select.  
Alarm Threshold Set Pin.  
3
4
ERSET  
PSET  
Extinction Ratio Set Pin.  
Average Optical Power Set Pin.  
5
IMPD  
Monitor Photodiode Input.  
6
7
8
IMPDMON  
GND4  
VCC4  
Mirrored Current from Monitor Photodiode—Current Source.  
Supply Ground.  
Supply Voltage.  
9
ERCAP  
PAVCAP  
VCC1  
DATAN  
DATAP  
GND1  
CLKP  
Extinction Ratio Loop Capacitor.  
Average Power Loop Capacitor.  
Supply Voltage.  
Data Negative Differential Terminal.  
Data Positive Differential Terminal.  
Supply Ground.  
Data Clock Positive Differential Terminal. This pin is used if CLKSEL = VCC.  
Data Clock Negative Differential Terminal. This pin is used if CLKSEL = VCC.  
Clock Select (Active = VCC). This pin is used if data is clocked into chip.  
DEGRADE Alarm Output.  
FAIL Alarm Output.  
Automatic Laser Shutdown.  
Supply Voltage.  
Supply Ground.  
Modulation Current Mirror Output—Current Source.  
Bias Current Mirror Output—Current Source.  
Supply Voltage.  
Modulation Current Negative Output. Connect this pin via a matching resistor to VCC.  
Supply Ground.  
Modulation Current Positive Output. Connect this pin to the laser diode.  
Supply Ground.  
Laser Diode Bias Current—Current Sink.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29, 30  
31  
32  
CLKN  
CLKSEL  
DEGRADE  
FAIL  
ALS  
VCC3  
GND3  
IMMON  
IBMON  
VCC2  
IMODN  
GND2  
IMODP  
GND2  
IBIAS  
CCBIAS  
Connected to Vcc When DC-Coupled to Laser Diode; Connected to IBIAS When AC-Coupled to Laser  
Diode—Current Sink.  
EP  
EPAD  
Exposed Pad. The exposed pad on the bottom of the package must be connected to the device GND.  
Rev. B | Page 6 of 12  
 
Data Sheet  
ADN2848  
THEORY OF OPERATION  
A laser diode (LD) has current-in to light-out transfer functions, as  
shown in Figure 4. Two key characteristics of this transfer function  
are the threshold current, ITH, and slope in the linear region beyond  
the threshold current, referred to as slope efficiency, or LI.  
where:  
AV is the average MPD current.  
CW is the dc optical power specified on the laser data sheet.  
MPD_CW is the MPD current at that specified PCW  
I
P
P1  
ER =  
P0  
I
.
P1 + P0  
2
P
=
AV  
P1  
P
AV is the average power required.  
ER is the desired extinction ratio (ER = P1/P0).  
ΔP  
P
AV  
P0  
ΔP  
ΔI  
LI =  
ΔI  
Note that IERSET and IPSET change from device to device; however,  
the control loops determine the actual values. It is not required  
to know the exact values for LI or MPD optical coupling.  
I
CURRENT  
TH  
LOOP BANDWIDTH SELECTION  
Figure 4. Laser Transfer Function  
For continuous operation, the user hardwires the LBWSET pin  
high and uses 1 μF capacitors to set the actual loop bandwidth.  
These capacitors are placed between the PAVCAP and ERCAP pins  
and ground. It is important that these capacitors are low leakage  
multilayer ceramics with an insulation resistance greater than  
100 GΩ or a time constant of 1000 seconds, whichever is less.  
CONTROL  
A monitor photodiode, MPD, is required to control the LD. The  
MPD current is fed into the ADN2848 to control the power and  
extinction ratio, continuously adjusting the bias current and  
modulation current in response to the lasers changing  
threshold current and light-to-current slope efficiency.  
Setting LBSET low and using 47 nF capacitors results in a  
shorter loop time constant (a 10× reduction over using 1 μF  
capacitors and keeping LBWSET high).  
The ADN2848 uses automatic power control, APC, to maintain  
a constant average power over time and temperature.  
Table 4.  
Operation  
Mode  
The ADN2848 uses closed-loop extinction ratio control to  
allow optimum setting of extinction ratio for every device.  
Thus, SONET/SDH interface standards can be met over device  
variation, temperature, and laser aging. Closed-loop  
modulation control eliminates the need to either overmodulate  
the LD or include external components for temperature  
compensation. This reduces research and development time  
and second sourcing issues caused by characterizing LDs.  
Recommended Recommended  
LBWSET PAVCAP  
ERCAP  
Continuous  
50 Mbps to  
1.25 Gbps  
Optimized for  
1.25 Gbps  
High  
1 μF  
1 μF  
Low  
47 nF  
47 nF  
ALARMS  
Average power and extinction ratio are set using the PSET and  
ERSET pins, respectively. Potentiometers are connected  
between these pins and ground. The potentiometer RPSET is used  
to change the average power. The potentiometer RERSET is used  
to adjust the extinction ratio. Both PSET and ERSET are kept  
1.2 V above GND.  
The ADN2848 is designed to allow interface compliance to  
ITU-T-G958 (11/94), section 10.3.1.1.2 (transmitter fail) and  
section 10.3.1.1.3 (transmitter degrade). The ADN2848 has two  
active high alarms, DEGRADE and FAIL. A resistor between  
ground and the ASET pin is used to set the current at which  
these alarms are raised. The current through the ASET resistor  
is a ratio of 100:1 to the FAIL alarm threshold. The DEGRADE  
alarm is raised at 90% of this level.  
For an initial setup, RPSET and RERSET potentiometers can be  
calculated using the following formulas:  
1.2 V  
RPSET  
=
()  
IAV  
1.2 V  
RERSET  
=
( )  
IMPD _ CW  
ER 1  
×
× PAV  
P
ER + 1  
CW  
Rev. B | Page 7 of 12  
 
 
 
 
 
ADN2848  
Data Sheet  
Example:  
ADN2848  
DATAP  
DATAN  
IFAIL = 50 mA so IDEGRADE = 45 mA  
TO FLIP-FLOPS  
50 mA  
100  
IFAIL  
100  
IASET  
=
=
= 500 μA  
50Ω 50Ω  
V
REG  
1.2 V  
1.2  
R
RASET * =  
=
= 2.4 kΩ  
IASET 500 μA  
R = 2.5kΩ, DATA  
R = 3kΩ, CLK  
*The smallest valid value for RASET is 1.2 kΩ, because this corresponds to the  
maximum IBIAS of 100 mA.  
400µA TYP  
The laser degrade alarm, DEGRADE, is provided to give a  
warning of imminent laser failure if the laser diode degrades  
further or if environmental conditions such as increasing  
temperature continue to stress the LD.  
Figure 5. AC Coupling of Data Inputs  
For input signals that exceed 500 mV p-p single-ended, it is  
necessary to insert an attenuation circuit as shown in Figure 6.  
The laser fail alarm, FAIL, is activated when the transmitter can  
no longer be guaranteed to be SONET/SDH compliant. This  
occurs when one of the following conditions arise:  
ADN2848  
R1  
R2  
DATAP/CLKP  
DATAN/CLKN  
R
R3  
IN  
The ASET threshold is reached.  
The ALS pin is set high. This shuts off the modulation  
and bias currents to the LD, resulting in the MPD  
current dropping to zero. This gives closed-loop  
feedback to the system that ALS has been enabled.  
NOTE THAT R = 100Ω = THE DIFFERENTIAL  
IN  
INPUT IMPEDANCE OF THE ADN2848.  
Figure 6. Attenuation Circuit  
CCBIAS  
DEGRADE is raised only when the bias current exceeds 90% of  
ASET current.  
When the laser is used in ac-coupled mode, the CCBIAS pin  
and the IBIAS pin are tied together (see Figure 9). In dc-coupled  
mode, CCBIAS is tied to VCC  
.
MONITOR CURRENTS  
IBMON, IMMON, and IMPDMON are current controlled  
current sources from VCC. They mirror the bias, modulation,  
and MPD current for increased monitoring functionality. An  
external resistor to GND gives a voltage proportional to the  
current monitored.  
IBIAS  
To achieve optimum optical eye quality, a pull-up resistor RZ, as  
shown in Figure 8 and Figure 9, is required. The recommended  
RZ value is approximately 200 Ω ~ 500 Ω.  
AUTOMATIC LASER SHUTDOWN  
If the monitoring function IMPDMON is not required, the  
IMPD pin must be grounded and the monitor photodiode  
output must be connected directly to the PSET pin.  
The ADN2848 ALS allows compliance to ITU-T-G958 (11/94),  
section 9.7. When ALS is logic high, both the bias and the  
modulation currents are turned off. Correct operation of ALS is  
confirmed by the FAIL alarm being raised when ALS is  
asserted. Note that this is the only time that DEGRADE is low  
while FAIL is high.  
DATA AND CLOCK INPUTS  
Data and clock inputs are ac-coupled (10 nF capacitors  
recommended) and terminated via a 100 Ω internal resistor  
between DATAP and DATAN and also between the CLKP and  
CLKN pins. There is a high impedance circuit to set the  
common-mode voltage, which is designed to allow for  
maximum input voltage headroom over temperature. It is  
necessary that ac coupling be used to eliminate the need for  
matching between common-mode voltages.  
ALARM INTERFACES  
The FAIL and DEGRADE outputs have an internal 30 kΩ pull-  
up resistor that is used to pull the digital high value to VCC  
However, the alarm output can be overdriven with an external  
resistor, allowing alarm interfacing to non-VCC levels. Non-VCC  
alarm output levels must be below the VCC used for the  
ADN2848.  
.
Rev. B | Page 8 of 12  
 
 
 
 
 
 
 
Data Sheet  
ADN2848  
Caution must be used when choosing component values for  
POWER CONSUMPTION  
ac coupling to ensure that the time constants (L/R and RC, see  
Figure 9) are sufficiently long for the data rate and the expected  
number of CIDs (consecutive identical digits). Failure to do this  
could lead to pattern dependent jitter and vertical eye closure.  
For designs with low series resistance, or where external  
components become impractical, the ADN2848 supports direct  
connection to the laser diode (see Figure 8). In this case, care  
must be taken to ensure that the voltage drop across the laser  
diode does not violate the minimum compliance voltage on the  
IMODP pin.  
The ADN2848 die temperature must be kept below 125°C. The  
LFCSP_VQ package has an exposed paddle. The exposed  
paddle should be connected in such a manner that it is at the  
same potential as the ADN2848 ground pins. The θJA for the  
package is shown under the Absolute Maximum Ratings. Power  
consumption can be calculated using  
ICC = ICCMIN + 0.3 IMOD  
P = VCC × ICC + (IBIAS × VBIAS_PIN) + IMOD (VMODP_PIN + VMODN_PIN)/2  
TDIE = TAMBIENT + θJA × P  
OPTICAL SUPERVISOR  
The PSET and ERSET potentiometers can be replaced with a  
dual digital potentiometer, the ADN2850 (see Figure 7). The  
ADN2850 provides an accurate digital control for the average  
optical power and extinction ratio and ensures excellent  
stability over temperature.  
Thus, the maximum combination of IBIAS + IMOD must be  
calculated  
where:  
I
I
CCMIN = 50 mA, the typical value of ICC provided on Page 3 with  
BIAS = IMOD = 0.  
V
CC  
TDIE = die temperature.  
V
CC  
IMPD  
V
CC  
T
AMBIENT = ambient temperature.  
ADN2848  
ADN2850  
SDI  
V
V
V
BIAS_PIN = voltage at IBIAS pin.  
IMODP  
Tx  
Rx  
SDO  
I
BIAS  
DAC1  
DAC2  
PSET  
MODP_PIN = average voltage at IMODP pin.  
MODN_PIN = average voltage at IMODN pin.  
ERSET  
CLK  
CS  
CLK  
CS  
LASER DIODE INTERFACING  
Many laser diodes designed for 1.25 Gbps operation are  
packaged with an internal resistor to bring the effective  
impedance up to 25 Ω in order to minimize transmission line  
effects. In high current applications, the voltage drop across this  
resistor, combined with the laser diode forward voltage, makes  
direct connection between the laser and the driver impractical  
in a 3 V system. AC coupling the driver to the laser diode  
removes this headroom constraint.  
DATAP  
DATAN  
IDTONE  
Figure 7. Application Using the ADN2850 Dual 10-Bit Digital Potentiometer  
with Extremely Low Temperature Coefficient as an Optical Supervisor  
Rev. B | Page 9 of 12  
 
 
 
 
ADN2848  
Data Sheet  
ALS  
1kΩ  
FAIL  
DEGRADE  
1.5kΩ  
15kΩ  
24  
17  
10nF  
25  
16  
V
CC  
V
V
2
CLKN  
CLKP  
CLKN  
CLKP  
CC  
CC  
IMODN  
GND2  
*
10nF  
10nF  
GND1  
MPD  
LD  
IMODP  
GND2  
DATAP  
DATAN  
DATAP  
DATAN  
V
*
*
CC  
ADN2848  
*
R
10nF  
Z
V
1
GND2  
CC  
1µF  
I
PAVCAP  
ERCAP  
BIAS  
10µH  
CCBIAS  
32  
9
1µF  
V
CC  
EACH V  
SHOULD HAVE BYPASS CAPACITORS AS CLOSE  
CC  
AS POSSIBLE TO THE ACTUAL SUPPLY PINS ON THE  
ADN2848 AND THE LASER DIODE USED.  
1
8
CONSERVATIVE DECOUPLING WOULD INCLUDE 100pF  
CAPACITORS IN PARALLEL WITH 10nF CAPACITORS.  
**  
**  
1.5kΩ  
V
CC  
LD = LASER DIODE  
MPD = MONITOR PHOTODIODE  
+
10nF  
10nF  
GND  
10nF  
10nF  
10µF  
NOTES  
DESIGNATES COMPONENTS THAT NEED TO BE OPTIMIZED FOR THE TYPE OF LASER USED.  
FOR DIGITAL PROGRAMMING. THE ADN2850 OR THE ADN2860 OPTICAL SUPERVISOR CAN BE USED.  
*
**  
Figure 8. DC-Coupled 50 Mbps to 1.25 Gbps Test Circuit, Data Not Clocked  
Rev. B | Page 10 of 12  
 
Data Sheet  
ADN2848  
FAIL  
ALS  
1kΩ  
DEGRADE  
V
CC  
*
*
*
1.5kΩ  
15kΩ  
*
*
*
24  
17  
10nF  
25  
16  
V
CC  
V
V
2
CLKN  
CLKP  
CLKN  
CLKP  
CC  
CC  
IMODN  
GND2  
10nF  
10nF  
GND1  
MPD  
LD  
IMODP  
GND2  
DATAP  
DATAN  
DATAP  
DATAN  
*
ADN2848  
*
*
10nF  
V
1
GND2  
CC  
1µF  
I
PAVCAP  
ERCAP  
BIAS  
10µH  
CCBIAS  
32  
9
1µF  
R
Z
V
CC  
EACH V  
SHOULD HAVE BYPASS CAPACITORS AS CLOSE  
CC  
AS POSSIBLE TO THE ACTUAL SUPPLY PINS ON THE  
ADN2848 AND THE LASER DIODE USED.  
1
8
CONSERVATIVE DECOUPLING WOULD INCLUDE 100pF  
CAPACITORS IN PARALLEL WITH 10nF CAPACITORS.  
**  
**  
1.5kΩ  
V
CC  
LD = LASER DIODE  
MPD = MONITOR PHOTODIODE  
+
10nF  
10nF  
GND  
10nF  
10nF  
10µF  
NOTES  
DESIGNATES COMPONENTS THAT NEED TO BE OPTIMIZED FOR THE TYPE OF LASER USED.  
FOR DIGITAL PROGRAMMING. THE ADN2850 OR THE ADN2860 OPTICAL SUPERVISOR CAN BE USED.  
*
**  
Figure 9. AC-Coupled 50 Mbps to 1.25 Gbps Test Circuit, Data Not Clocked  
Figure 10. A 1.244 Mbps Optical Eye. Temperature at 25°C.  
Average Power = 0 dBm, Extinction Ratio = 10 dB, PRBS 31 Pattern,  
1 Gb Ethernet Mask. Eye Obtained Using a DFB Laser.  
Figure 11. A 1.244 Mbps Optical Eye. Temperature at 85°C.  
Average Power = 0 dBm, Extinction Ratio = 10 dBm, PRBS 31 Pattern,  
1 Gb Ethernet Mask. Eye Obtained Using a DFB Laser.  
Rev. B | Page 11 of 12  
 
ADN2848  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 12. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADN2848ACPZ-32  
ADN2848ACPZ-32-RL  
ADN2848ACPZ-32-RL7  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
Package Option  
CP-32-7  
CP-32-7  
CP-32-7  
–40°C to +85°C  
1 Z = RoHS Compliant Part.  
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02746-0-2/13(B)  
Rev. B | Page 12 of 12  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY