ADR392ART-REEL7 [ROCHESTER]

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, MO-178AA, SOT-23, 5 PIN;
ADR392ART-REEL7
型号: ADR392ART-REEL7
厂家: Rochester Electronics    Rochester Electronics
描述:

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, MO-178AA, SOT-23, 5 PIN

光电二极管 输出元件
文件: 总18页 (文件大小:1100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Drift 2.048 V/2.5 V/4.096 V/  
5.0 V SOT-23 Reference with Shutdown  
a
ADR390/ADR391/ADR392/ADR395  
P IN CO NFIGURATIO N  
5-Lead SO T-23  
FEATURES  
Initial Accuracy: ؎6 mV Max  
Low TCVO: 25 ppm/؇C Max  
Load Regulation: 60 ppm/mA  
Line Regulation: 25 ppm/V  
Low Supply Headroom: 0.3 V  
Wide Operating Range: (VOUT + 0.3 V) to 15 V  
Low Power: 120 A Max  
(RT Suffix)  
1
2
3
5
4
GND  
SHDN  
ADR390/  
ADR391/  
ADR392/  
V
IN  
ADR395  
V
OUT (SENSE)  
V
(Not to Scale)  
OUT (FORCE)  
Shutdown to Less Than 3 A Max  
Output Current: 5 mA  
Wide Temperature Range:  
–40؇C to +85؇C for ADR390, ADR391  
–40؇C to +125؇C for ADR392, ADR395  
Tiny 5-Lead SOT-23 Package  
Table I. AD R39x P roducts  
Nom inal O utput Voltage (V)  
P ar t Num ber  
ADR390  
ADR391  
ADR392  
ADR395  
2.048  
2.500  
4.096  
5.000  
APPLICATIONS  
Battery-Powered Instrumentation  
Portable Medical Instruments  
Data Acquisition Systems  
Industrial Process Control Systems  
Fault Protection Critical Systems  
Automotive  
GENERAL D ESCRIP TIO N  
T he ADR390, ADR391, ADR392, and ADR395 are precision  
2.048 V, 2.5 V, 4.096 V, and 5 V band gap voltage references  
featuring high accuracy and stability and low power consump-  
tion in a tiny footprint. Patented temperature drift curvature  
correction techniques minimize nonlinearity of the voltage change  
with temperature. T he wide operating range and low power  
consumption with additional shutdown capability make them  
ideal for battery-powered applications. T he VOUT Sense Pin  
enables greater accuracy by supporting full Kelvin operation in  
PCBs employing thin or long traces.  
The ADR390, ADR391, ADR392, and ADR395 are micropower,  
low dropout voltage (LDV) devices that provide a stable output  
voltage from supplies as low as 300 mV above the output voltage.  
ADR390 and ADR391 are specified over the industrial range  
(–40C to +85C), while ADR392 and ADR395 are specified  
over the extended industrial range (–40C to +125C). Each is  
available in the tiny 5-lead SOT -23 package.  
T he combination of VOUT sense and shutdown functions also  
enables a number of unique applications combining precision  
reference/regulation with fault decision and overcurrent protec-  
tion. Details are provided in the Applications section.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
ADR390/ADR391/ADR392/ADR395  
ADR390 SPECIFICATIONS  
(@ V = 5.0 V to 15 V, T = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Unit  
Initial Accuracy  
Initial Accuracy Error  
T emperature Coefficient  
VO  
VOERR  
T CVO  
2.042  
0.29  
2.048  
2.054  
0.29  
25  
V
%
–40C < T A < +85C  
5
ppm/C  
mV  
Minimum Supply Voltage Headroom VIN – VO  
300  
Line Regulation  
Load Regulation  
Quiescent Current  
VO/VIN  
VIN = 2.5 V to 15 V  
–40C < T A < +85C  
10  
100  
25  
ppm/V  
VO/ILOAD VIN = 3 V, ILOAD = 0 mA to 5 mA  
–40C < T A < +85C  
ISY  
60  
120  
140  
ppm/mA  
A  
A  
V p-p  
No Load  
–40C < T A < +85C  
0.1 Hz to 10 Hz  
Voltage Noise  
eN  
5
T urn-On Settling T ime  
Long-T erm Stability*  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
tR  
20  
50  
40  
85  
25  
30  
s  
VO  
VO_HYS  
RRR  
ISC  
ppm/1000 hrs  
ppm  
dB  
mA  
mA  
A  
nA  
V
fIN = 60 Hz  
VIN = 5.0 V  
VIN = 15.0 V  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
Shutdown Logic High  
VINH  
2.4  
V
*T he long-term stability specification is noncumulative. T he drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Specifications subject to change without notice.  
ADR391 SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (@ V = 5.0 V to 15 V, T = 25؇C, unless otherwise noted.)  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Unit  
Initial Accuracy  
Initial Accuracy Error  
T emperature Coefficient  
VO  
VOERR  
T CVO  
2.494  
0.24  
2.5  
2.506  
0.24  
25  
V
%
–40C < T A < +85C  
5
ppm/C  
mV  
Minimum Supply Voltage Headroom VIN – VO  
300  
Line Regulation  
Load Regulation  
VO/VIN  
VIN = 2.8 V to 15 V  
–40C < T A < +85C  
VSY = 3.5 V,  
10  
25  
ppm/V  
VO/ILOAD  
ILOAD = 0 mA to 5 mA  
–40C < T A < +85C  
No Load  
–40C < T A < +85C  
0.1 Hz to 10 Hz  
60  
120  
140  
ppm/mA  
A  
A  
V p-p  
Quiescent Current  
ISY  
100  
Voltage Noise  
eN  
5
T urn-On Settling T ime  
Long-T erm Stability*  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
tR  
20  
50  
75  
85  
25  
30  
s  
VO  
VO_HYS  
RRR  
ISC  
ppm/1000 hrs  
ppm  
dB  
mA  
mA  
A  
nA  
V
fIN = 60 Hz  
VIN = 5.0 V  
VIN = 15.0 V  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
3
500  
0.8  
ILOGIC  
VINL  
Shutdown Logic High  
VINH  
2.4  
V
*T he long-term stability specification is noncumulative. T he drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Specifications subject to change without notice.  
–2–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
ADR392 SPECIFICATIONS  
(@ V = 5.0 V to 15 V, T = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Unit  
Initial Accuracy  
VO  
4.090 4.096 4.912  
V
Initial Accuracy Error  
T emperature Coefficient  
Minimum Supply Voltage Headroom VS – VO  
VOERR  
T CVO  
0.15  
300  
0.15  
25  
%
–40C < T A < +125C  
5
ppm/C  
mV  
Line Regulation  
Load Regulation  
VO/VIN  
VIN = 4.4 V to 15 V  
–40C < T A < +125C  
VSY = 5 V,  
10  
25  
ppm/V  
VO/ILOAD  
ILOAD = 0 mA to 5 mA  
–40C < T A < +125C  
No Load  
–40C < T A < +125C  
0.1 Hz to 10 Hz  
140  
120  
140  
ppm/mA  
A  
A  
V p-p  
Quiescent Current  
ISY  
100  
Voltage Noise  
eN  
5
T urn-On Settling T ime  
Long-T erm Stability*  
Output Voltage Hysteresis  
Ripple Rejection  
tR  
20  
50  
75  
85  
25  
30  
s  
VO  
VO_HYS  
RRR  
ISC  
ppm/1000 hrs  
ppm  
dB  
mA  
mA  
A  
nA  
V
fIN = 60 Hz  
VIN = 5.0 V  
VIN = 15.0 V  
Short Circuit to GND  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
3
500  
0.8  
ILOGIC  
VINL  
Shutdown Logic High  
VINH  
2.4  
V
*T he long-term stability specification is noncumulative. T he drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Specifications subject to change without notice.  
ADR395 SPECIFICATIONS  
(@ V = 6.0 V to 15 V, T = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Unit  
Initial Accuracy  
Initial Accuracy Error  
T emperature Coefficient  
VO  
VOERR  
T CVO  
4.994  
0.12  
5.000  
5.006  
0.12  
25  
V
%
–40C < T A < +125C  
5
ppm/C  
mV  
Minimum Supply Voltage Headroom VS – VO  
300  
Line Regulation  
Load Regulation  
VO/VIN  
VIN = 5.3 V to 15 V  
–40C < T A < +125C  
VSY = 6 V,  
10  
30  
ppm/V  
VO/ILOAD  
ILOAD = 0 mA to 5 mA  
–40C < T A < +125C  
No Load  
–40C < T A < +125C  
0.1 Hz to 10 Hz  
140  
120  
140  
ppm/mA  
A  
A  
V p-p  
Quiescent Current  
ISY  
100  
Voltage Noise  
eN  
5
T urn-On Settling T ime  
Long-T erm Stability*  
Output Voltage Hysteresis  
Ripple Rejection  
tR  
20  
50  
75  
85  
25  
30  
s  
VO  
VO_HYS  
RRR  
ISC  
ppm/1000 hrs  
ppm  
dB  
mA  
mA  
A  
nA  
V
fIN = 60 Hz  
VIN = 5.0 V  
VIN = 15.0 V  
Short Circuit to GND  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
3
500  
0.8  
ILOGIC  
VINL  
Shutdown Logic High  
VINH  
2.4  
V
*T he long-term stability specification is noncumulative. T he drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Specifications subject to change without notice.  
–3–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
ABSO LUTE MAXIMUM RATINGS 1, 2  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Output Short-Circuit Duration  
P ackage Type  
Unit  
JA  
JC  
5-Lead SOT -23 (RT )  
230  
C/W  
to GND . . . . . . . . . . . . . . . . . . . . . Observe Derating Curves  
Storage T emperature Range  
RT Package . . . . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Operating T emperature Range  
ADR390/ADR391 . . . . . . . . . . . . . . . . . . . –40C to +85C  
ADR392/ADR395 . . . . . . . . . . . . . . . . . . –40C to +125C  
Junction T emperature Range  
NOT ES  
1 Absolute Maximum Ratings apply at 25C, unless otherwise noted.  
2 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
RT Package . . . . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Lead T emperature Range (Soldering, 60 Sec) . . . . . . . . 300C  
O RD ERING GUID E  
Tem per atur e  
Range  
P ackage  
D escr iption  
P ackage  
O ption  
Top  
Mar k  
O utput  
Voltage  
Num ber of  
P ar ts P er Reel  
Model  
ADR390ART –RL7  
ADR390ART –RL  
ADR391ART -RL7  
ADR391ART -RL  
ADR392ART -RL7  
ADR392ART -RL  
ADR395ART -RL7  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
5-Lead SOT -23  
5-Lead SOT -23  
5-Lead SOT -23  
5-Lead SOT -23  
5-Lead SOT -23  
5-Lead SOT -23  
5-Lead SOT -23  
RT -5  
RT -5  
RT -5  
RT -5  
RT -5  
RT -5  
RT -5  
R0A  
R0A  
R1A  
R1A  
RCA  
RCA  
RDA  
2.048  
2.048  
2.500  
2.500  
4.096  
4.096  
5.000  
3,000  
10,000  
3,000  
10,000  
3,000  
10,000  
3,000  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADR390/ADR391/ADR392/ADR395 features proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges. T herefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
P ARAMETER D EFINITIO N  
Tem per atur e Coefficient (TCVO )  
T he change of output voltage over the operating temperature  
change and normalized by the output voltage at 25C, expressed  
in ppm/C. T he equation follows:  
response can be improved with an additional 1 mF to 10 mF  
output capacitor in parallel. A capacitor here will act as a source  
of stored energy for a sudden increase in load current. T he only  
parameter that will degrade, by adding an output capacitor, is  
turn-on time and it depends on the size of the capacitor chosen.  
Long-Ter m Stability  
VO T2 -VO T1  
(
)
(
)
TCVO ppm C =  
¥106  
T ypical shift in output voltage over 1000 hours at a controlled  
temperature. Figure 1 shows a sample of parts measured at differ-  
ent intervals in a controlled environment of 50C for 1000 hours.  
]
[
VO 25C ¥ T2 -T1  
(
)
(
)
where:  
VO(25C) = VO at 25C  
DVO =VO  
t
-V t  
( ) O ( 1 )  
0
VO(T1) = VO at temperature1  
VO(T2) = VO at temperature2  
VO  
t
-V t  
( ) O ( 1 )  
0
DVO ppm =  
¥106  
[
]
VO  
t
( )  
0
Line Regulation (VO /VIN  
)
T he change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in either percent per volt, parts per million per volt, or  
microvolts per volt change in input voltage.  
where:  
VO(t0) = VO at time 0  
VO(t1) = VO after 1000 hours operation at a controlled  
temperature  
Load Regulation (VO /ILO AD  
)
T he change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load regulation is  
expressed in either microvolts per milliampere, parts per million  
per milliampere, or W of dc output resistance.  
Ther m al H yster esis (VO _H YS  
)
T he change of output voltage after the device is cycled through  
temperature from +25C to –40C to +85C and back to  
+25C. T his is a typical value from a sample of parts put  
through such a cycle.  
Input Capacitor  
Input capacitors are not required on the ADR39x. T here is no  
limit for the value of the capacitor used on the input, but a 1 mF  
to 10 mF capacitor on the input will improve transient response  
in applications where the supply suddenly changes. An additional  
0.1 mF in parallel will also help in reducing noise from the supply.  
VO  
=VO 25C -V  
(
)
_ HYS  
O
_TC  
VO 25C -V  
(
)
O
_TC  
VO  
ppm =  
¥ 106  
[
]
_ HYS  
VO 25C  
(
)
O utput Capacitor  
where:  
The ADR39x does not need output capacitors for stability under  
any load condition. An output capacitor, typically 0.1 mF, will  
filter out any low level noise voltage and will not affect the  
operation of the part. On the other hand, the load transient  
VO(25C) = VO at 25C  
VO_TC = VO at 25C after temperature cycle at +25C to  
–40C to +85C and back to +25C  
200  
DATA TAKEN IN CONTROLLED  
ENVIRONMENT @ 50؇C ؎ 1؇C  
150  
100  
50  
0
؊50  
؊100  
؊150  
0
86  
176  
250  
324  
440  
640  
840  
1040  
TIME – Hours  
Figure 1. ADR391 Typical Long-Term Drift over 1000 Hours  
REV. C  
–5–  
Typical Performance Characteristics  
ADR390/ADR391/ADR392/ADR395  
2.054  
5.006  
SAMPLE 1  
2.052  
2.050  
5.004  
SAMPLE 3  
5.002  
SAMPLE 2  
5.000  
2.048  
2.046  
2.044  
2.042  
SAMPLE 2  
SAMPLE 1  
4.998  
SAMPLE 3  
4.996  
4.994  
–40  
؊40  
؊15  
10  
35  
60  
85  
–5  
30  
65  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 1. ADR390 Output Voltage vs. Temperature  
TPC 4. ADR395 Output Voltage vs. Temperature  
140  
2.506  
2.504  
120  
SAMPLE 1  
+85؇C  
2.502  
100  
+25؇C  
SAMPLE 2  
2.500  
؊40؇C  
80  
2.498  
SAMPLE 3  
60  
2.496  
2.494  
40  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
؊40  
؊15  
10  
35  
60  
85  
INPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 2. ADR391 Output Voltage vs. Temperature  
TPC 5. ADR390 Supply Current vs. Input Voltage  
4.100  
140  
4.098  
120  
SAMPLE 3  
4.096  
+85؇C  
SAMPLE 2  
100  
+25؇C  
4.094  
SAMPLE 1  
؊40؇C  
80  
4.092  
4.090  
4.088  
60  
40  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
–40  
0
40  
80  
125  
INPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 3. ADR392 Output Voltage vs. Temperature  
TPC 6. ADR391 Supply Current vs. Input Voltage  
–6–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
140  
120  
100  
80  
40  
I = 0mA TO 5mA  
L
+125؇C  
35  
30  
25  
20  
15  
10  
V
= 3.5V  
= 5.0V  
IN  
+25؇C  
–40؇C  
V
IN  
60  
40  
؊40  
؊15  
10  
35  
60  
85  
5
7
9
11  
13  
15  
TEMPERATURE – ؇C  
INPUTVOLTAGE V  
TPC 7. ADR392 Supply Current vs. Input Voltage  
TPC 10. ADR391 Load Regulation vs. Temperature  
140  
90  
80  
+125؇C  
120  
V
= 7.5V  
V
IN  
+25؇C  
–40؇C  
100  
80  
70  
60  
50  
40  
= 5V  
IN  
60  
40  
5.5  
7.0  
8.5  
10.0  
11.5  
13.0  
14.5  
–40  
–5  
30  
65  
100  
125  
INPUTVOLTAGE V  
TEMPERATURE – ؇C  
TPC 8. ADR395 Supply Current vs. Input Voltage  
TPC 11. ADR392 Load Regulation vs. Temperature  
80  
70  
40  
I = 0mA TO 5mA  
L
35  
30  
25  
20  
15  
10  
V
= 7.5V  
IN  
V
= 5V  
IN  
V
= 3.0V  
= 5.0V  
60  
50  
40  
30  
IN  
V
IN  
؊40  
؊15  
10  
35  
60  
85  
–40  
–5  
30  
65  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 9. ADR390 Load Regulation vs. Temperature  
TPC 12. ADR395 Load Regulation vs. Temperature  
–7–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
14  
12  
10  
8
5
V
= 2.5V TO 15V  
IN  
4
3
2
V
= 5.3VTO 15V  
IN  
6
4
1
0
2
0
–40  
؊40  
؊15  
10  
35  
60  
85  
–5  
30  
65  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 13. ADR390 Line Regulation vs. Temperature  
TPC 16. ADR395 Line Regulation vs. Temperature  
2.848  
5
V
= 2.8V TO 15V  
IN  
4
3
2
2.648  
؊40؇C  
2.448  
+85؇C  
+25؇C  
2.248  
1
0
2.048  
0
1
2
3
4
5
؊40  
؊15  
10  
35  
60  
85  
LOAD CURRENT – mA  
TEMPERATURE – ؇C  
TPC 17. ADR390 Minimum Input Voltage vs.  
Load Current  
TPC 14. ADR391 Line Regulation vs. Temperature  
14  
12  
10  
8
3.30  
3.10  
+85؇C  
+25؇C  
2.90  
V
= 4.4VTO 15V  
IN  
6
4
2
0
؊40؇C  
2.70  
2.50  
0
1
2
3
4
5
–40  
–5  
30  
65  
100  
125  
LOAD CURRENT – mA  
TEMPERATURE – ؇C  
TPC 15. ADR392 Line Regulation vs. Temperature  
TPC 18. ADR391 Minimum Input Voltage vs. Load Current  
–8–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
70  
TEMPERATURE: +25؇C  
؊40؇C  
+85؇C  
+25؇C  
60  
50  
40  
30  
20  
10  
0
+125؇C  
+25؇C  
–40؇C  
؊0.56  
؊0.41  
؊0.26  
؊0.11  
0.04  
0.19  
0.34  
0
1
2
3
4
5
V
DEVIATION – mV  
LOAD CURRENT – mA  
OUT  
TPC 22. ADR391 VOUT Hysteresis Distribution  
TPC 19. ADR392 Minimum Input Voltage vs. Load Current  
6.0  
5.8  
1k  
V
= 5V  
IN  
+125؇C  
5.6  
+25؇C  
5.4  
ADR391  
ADR390  
–40؇C  
5.2  
5.0  
4.8  
4.6  
100  
10  
100  
FREQUENCY – Hz  
1k  
10k  
0
1
2
3
4
5
LOAD CURRENT – mA  
TPC 20. ADR395 Minimum Input Voltage vs. Load Current  
TPC 23. Voltage Noise Density vs. Frequency  
60  
0
0
0
0
0
0
0
0
TEMPERATURE: +25؇C  
؊40؇C  
+85؇C  
+25؇C  
50  
40  
30  
20  
10  
0
0
؊0.24 ؊0.18 ؊0.12 ؊0.06  
0
0.06 0.12 0.18 0.24 0.30  
V
DEVIATION – mV  
TIME – 1 Sec/DIV  
OUT  
TPC 21. ADR390 VOUT Hysteresis Distribution  
TPC 24. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz  
REV. C  
–9–  
ADR390/ADR391/ADR392/ADR395  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
= 0nF  
L
V
OUT  
V
ON  
LOAD OFF  
LOAD  
0
TIME – 10ms/DIV  
TIME – 200s/DIV  
TPC 28. ADR391 Load Transient Response  
TPC 25. ADR391 Voltage Noise 10 Hz to 10 kHz  
0
0
0
0
0
0
0
0
0
0
C
= 1nF  
C
= 0F  
L
BYPASS  
V
0
0
0
0
OUT  
LINE  
INTERRUPTION  
0.5V/DIV  
LOAD OFF  
V
ON  
LOAD  
V
OUT  
1V/DIV  
0
0
0
TIME – 10s/DIV  
TIME – 200s/DIV  
TPC 29. ADR391 Load Transient Response  
TPC 26. ADR391 Line Transient Response  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
= 100nF  
C
= 0.1F  
L
BYPASS  
V
OUT  
0.5V/DIV  
LINE  
INTERRUPTION  
LOAD OFF  
V
ON  
LOAD  
V
OUT  
1V/DIV  
TIME – 200s/DIV  
TIME – 10s/DIV  
TPC 27. ADR391 Line Transient Response  
TPC 30. ADR391 Load Transient Response  
–10–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
0
0
0
0
0
0
0
0
0
0
R
= 500⍀  
V
= 15V  
L
IN  
0
0
0
0
0
0
0
0
5V/DIV  
2V/DIV  
V
OUT  
V
IN  
2V/DIV  
V
5V/DIV  
OUT  
V
IN  
TIME – 200s/DIV  
TIME – 20s/DIV  
TPC 34. ADR391 Turn-On/Turn-Off Response at 5 V  
TPC 31. ADR391 Turn-On Response Time at 15 V  
0
0
V
= 15V  
IN  
R
C
= 500⍀  
= 100nF  
L
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V
5V/DIV  
IN  
2V/DIV  
5V/DIV  
V
OUT  
V
2V/DIV  
OUT  
V
IN  
TIME – 200s/DIV  
TIME – 40s/DIV  
TPC 32. ADR391 Turn-Off Response at 15 V  
TPC 35. ADR391 Turn-On/Turn-Off Response at 5 V  
0
0
0
0
0
0
0
0
0
80  
60  
40  
C
= 0.1F  
BYPASS  
2V/DIV  
5V/DIV  
20  
0
V
OUT  
؊20  
؊40  
V
IN  
؊60  
؊80  
؊100  
؊120  
10  
100  
1k  
10k  
100k  
1M  
TIME – 200s/DIV  
FREQUENCY – Hz  
TPC 36. Ripple Rejection vs. Frequency  
TPC 33. ADR391 Turn-On/Turn-Off Response at 5 V  
–11–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
Device Power Dissipation Considerations  
100  
The ADR390/ADR391/ADR392/ADR395 is capable of deliver-  
ing load currents to 5 mA with an input voltage that ranges from  
2.8 V (ADR391 only) to 15 V. When this device is used in applica-  
tions with large input voltages, care should be taken to avoid  
exceeding the specified maximum power dissipation or junction  
temperature that could result in premature device failure. The  
following formula should be used to calculate a device’s maxi-  
mum junction temperature or dissipation:  
90  
80  
70  
60  
C
= 0F  
L
50  
40  
30  
20  
10  
0
TJ TA  
PD =  
C
= 0.1F  
L
C
= 1F  
L
θJA  
In this equation, TJ and TA are, respectively, the junction and  
ambient temperatures, PD is the device power dissipation, and  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
JA is the device package thermal resistance.  
TPC 37. Output Impedance vs. Frequency  
THEORY OF OPERATION  
Shutdown Mode Operation  
The ADR390/ADR391/ADR392/ADR395 includes a shutdown  
feature that is TTL/CMOS level compatible. A logic LOW or a  
zero volt condition on the SHDN Pin is required to turn the device  
off. During shutdown, the output of the reference becomes a  
high impedance state where its potential would then be deter-  
mined by external circuitry. If the shutdown feature is not used,  
the SHDN Pin should be connected to VIN (Pin 2).  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications, and  
the ADR390/ADR391/ADR392/ADR395 is no exception. The  
uniqueness of this product lies in its architecture. By observing  
Figure 2, the ideal zero TC band gap voltage is referenced to the  
output, not to ground. Therefore, if noise exists on the ground  
line, it will be greatly attenuated on VOUT. The band gap cell  
consists of the pnp pair Q51 and Q52, running at unequal cur-  
rent densities. The difference in VBE results in a voltage with a  
APPLICATIONS  
BASIC VOLTAGE REFERENCE CONNECTION  
The circuit in Figure 3 illustrates the basic configuration for the  
ADR39x family. Decoupling capacitors are not required for circuit  
stability. The ADR39x family is capable of driving capacitive  
loads from 0 µF to 10 µF. However, a 0.1 µF ceramic output  
capacitor is recommended to absorb and deliver the charge as is  
required by a dynamic load.  
R58  
R54  
2 ×  
positive TC, which is amplified by the ratio of  
. This  
PTAT voltage, combined with VBEs of Q51 and Q52, produces  
the stable band gap voltage.  
Reduction in the band gap curvature is performed by the ratio of  
the resistors R44 and R59, one of which is linearly temperature  
dependent. Precision laser trimming and other patented circuit  
techniques are used to further enhance the drift performance.  
SHUTDOWN  
GND  
SHDN  
ADR39x  
IN  
INPUT  
V
*
V
IN  
0.1F  
C
B
V
V
OUT(F)  
OUT(S)  
Q1  
V
OUT (FORCE)  
V
OUT (SENSE)  
OUTPUT  
0.1F  
*
R59  
R44  
R58  
C
B
* NOT REQUIRED  
Figure 3. Basic Configuration for the ADR39x Family  
R49  
R54  
Q51  
Stacking Reference ICs for Arbitrary Outputs  
Some applications may require two reference voltage sources,  
which are a combined sum of standard outputs. Figure 4  
circuit shows how this “stacked output” reference can be  
implemented:  
SHDN  
R53  
Q52  
R48  
R60  
R61  
GND  
Figure 2. Simplified Schematic  
–12–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
+V  
DD  
OUTPUTTABLE  
U1/U2  
V
(V)  
V
(V)  
OUT1  
OUT2  
2
ADR390/ADR390  
ADR391/ADR391  
ADR392/ADR392  
ADR395/ADR395  
2.048  
2.5  
4.096  
5
4.096  
5.0  
8.192  
10  
V
IN  
4
3
V
OUT(F)  
1
V
SHDN  
OUT(S)  
V
IN  
2
U2  
V
IN  
GND  
5
1
4
V
V
OUT2  
SHDN  
C2  
OUT(F)  
–V  
REF  
0.1F  
A1  
3
V
OUT(S)  
GND  
5
–V  
DD  
Figure 5. Negative Reference  
General-Purpose Current Source  
2
U1  
V
IN  
Many times in low power applications, the need arises for a preci-  
sion current source that can operate on low supply voltages. As  
shown in Figure 6, the ADR390/ADR391/ADR392/ADR395  
can be configured as a precision current source. The circuit  
configuration illustrated is a floating current source with a  
grounded load. The reference’s output voltage is bootstrapped  
across RSET, which sets the output current into the load. With  
this configuration, circuit precision is maintained for load cur-  
rents in the range from the reference’s supply current, typically  
90 µA to approximately 5 mA.  
1
4
3
V
V
SHDN  
V
OUT1  
C2  
0.1F  
OUT(F)  
OUT(S)  
GND  
5
Figure 4. Stacking Voltage References with the  
ADR390/ADR391/ADR392/ADR395  
Two reference ICs are used, fed from an unregulated input, VIN.  
The outputs of the individual ICs are simply connected in series,  
which provides two output voltages VOUT1 and VOUT2. VOUT1 is  
the terminal voltage of U1, while VOUT2 is the sum of this voltage  
and the terminal voltage of U2. U1 and U2 are simply chosen for  
the two voltages that supply the required outputs (see Output  
Table). For example, if both U1 and U2 are ADR391s, VOUT1  
is 2.5 V and VOUT2 is 5.0 V.  
V
IN  
SHDN  
V
OUT  
ADR39x  
I
V
OUT  
SET  
V
IN  
While this concept is simple, a precaution is in order. Since the  
lower reference circuit must sink a small bias current from U2,  
plus the base current from the series PNP output transistor in  
U2, either the external load of U1 or R1 must provide a path for  
this current. If the U1 minimum load is not well defined, the  
resistor R1 should be used, set to a value that will conservatively  
pass 600 µA of current with the applicable VOUT1 across it. Note  
that the two U1 and U2 reference circuits are locally treated as  
macrocells, each having its own bypasses at input and output for  
best stability. Both U1 and U2 in this circuit can source dc  
currents up to their full rating. The minimum input voltage, VIN,  
is determined by the sum of the outputs, VOUT2, plus the drop-  
out voltage of U2.  
R1  
R1  
P1  
0.1F  
GND  
R
SET  
I
SY  
}
ADJUST  
I
(I )  
SY SET  
I
= I  
+ I (I )  
SY SET  
OUT  
SET  
R
L
Figure 6. A General-Purpose Current Source  
High Power Performance with Current Limit  
In some cases, the user may want higher output current delivered  
to a load and still achieve better than 0.5% accuracy out of the  
ADR39x. The accuracy for a reference is normally specified on  
the data sheet with no load. However, the output voltage changes  
with load current.  
A Negative Precision Reference without Precision Resistors  
A negative reference can be easily generated by adding an op amp,  
A1, and configured as shown in Figure 5. VOUTF and VOUTS are  
at virtual ground and therefore the negative reference can be  
taken directly from the output of the op amp. The op amp must  
be dual supply, low offset, and rail-to-rail if the negative supply  
voltage is close to the reference output.  
The circuit in Figure 7 provides high current without compro-  
mising the accuracy of the ADR39x. The series pass transistor  
Q1 provides up to 1 A load current. The ADR39x delivers only  
the base drive to Q1 through the force pin. The sense pin of the  
ADR39x is a regulated output and is connected to the load.  
The transistor Q2 protects Q1 during short circuit limit faults by  
robbing its base drive. The maximum current is ILMAX 0.6 V/RS.  
REV. C  
–13–  
ADR390/ADR391/ADR392/ADR395  
R1  
4.7k⍀  
R1  
4.7k⍀  
U1  
U1  
V
V
IN  
IN  
GND  
GND  
SHDN  
SHDN  
V
V
IN  
Q2N2222  
IN  
V
Q1  
Q2N4921  
V
Q1  
OUT (FORCE)  
OUT (FORCE)  
Q2  
V
V
OUT (SENSE)  
OUT (SENSE)  
Q2  
Q2N2222  
Q2N4921  
R
S
R
S
ADR39x  
ADR39x  
I
R
R
L
L
L
Figure 8. ADR39x High Output Current with  
Darlington Drive Configuration  
Figure 7. ADR39x for High Power Performance  
with Current Limit  
A similar circuit function can also be achieved with the Darlington  
transistor configuration (see Figure 8).  
–14–  
REV. C  
ADR390/ADR391/ADR392/ADR395  
O UTLINE D IMENSIO NS  
5-Lead P lastic Sur face-Mount P ackage [SO T-23]  
(RT-5)  
D imensions shown in millimeters  
2.90  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
10؇  
0؇  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
0.22  
0.08  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
REV. C  
–15–  
ADR390/ADR391/ADR392/ADR395  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. B to REV. C.  
Add parts ADR392 and ADR395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Additions to Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
New Figures 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Deleted A Negative Precision Reference without Precision Resistors section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to General-Purpose Current Source section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5/02—Data Sheet changed from REV. A to REV. B.  
Change to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
–16–  
REV. C  
ADI Site Navigation  
ADI Home  
ADR392  
Package/Price Info  
Description  
For detailed packaging information, please select the Data Sheets button. Price and Availability Section  
Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing.  
Data Sheets  
Selection Tables  
Technical Library  
Packages  
Package  
Description  
Pin Temperature  
Price*  
(100-499)  
Model  
Status  
Count  
Range  
Package/Price Information  
Order Samples  
Purchase  
5 ld SOT-23  
ADR392ART-R2  
Production  
5
5
5
Industrial  
-
-
5 ld SOT-23  
5 ld SOT-23  
ADR392ART-REEL  
PRODUCTION  
INDUSTRIAL  
ADR392ART-REEL7 PRODUCTION  
ADR392AUJZ-R2 Pre-Release  
ADR392AUJZ-REEL7 Pre-Release  
ADR392BUJZ-R2 Pre-Release  
ADR392BUJZ-REEL7 Pre-Release  
INDUSTRIAL  
Industrial  
Industrial  
Industrial  
Industrial  
-
-
-
-
-
All Design Resources  
TSOT-23 5, 6, 8 lead 5  
TSOT-23 5, 6, 8 lead 5  
TSOT-23 5, 6, 8 lead 5  
TSOT-23 5, 6, 8 lead 5  
Select a resource...  
Pricing is not available for pre-release parts, please contact: /salesdir/>Sales and Distributors  
Privacy | About This Site | Contact ADI | Site Map | Registration  
© 1995-2004 Analog Devices, Inc. All Rights Reserved.  

相关型号:

ADR392ART-RL

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392ART-RL7

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392AUJZ-R2

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392AUJZ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, LEAD FREE, MO-193AB, TSOT-23, 5 PIN
ROCHESTER

ADR392AUJZ-R21

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392AUJZ-REEL7

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392AUJZ-REEL71

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392B

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392BUJZ-R2

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392BUJZ-R21

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392BUJZ-REEL7

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, LEAD FREE, MO-193AB, TSOT-23, 5 PIN
ROCHESTER