CY7C1370DV25-167BZI [ROCHESTER]

512KX36 ZBT SRAM, 3.4ns, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165;
CY7C1370DV25-167BZI
型号: CY7C1370DV25-167BZI
厂家: Rochester Electronics    Rochester Electronics
描述:

512KX36 ZBT SRAM, 3.4ns, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165

静态存储器 内存集成电路
文件: 总30页 (文件大小:1595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1370DV25  
CY7C1372DV25  
18-Mbit (512 K × 36/1 M × 18)  
Pipelined SRAM with NoBL™ Architecture  
18-Mbit (512  
K × 36/1 M × 18) Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
The CY7C1370DV25 and CY7C1372DV25 are 2.5 V, 512 K × 36  
Pin-compatible and functionally equivalent to ZBT™  
and 1-Mbit × 18 synchronous pipelined burst SRAMs with No  
Bus Latency™ (NoBL logic, respectively. They are designed  
to support unlimited true back-to-back read/write operations with  
no wait states. The CY7C1370DV25 and CY7C1372DV25 are  
equipped with the advanced NoBL logic required to enable  
consecutive read/write operations with data being transferred on  
every clock cycle. This feature dramatically improves the  
throughput of data in systems that require frequent write/read  
transitions. The CY7C1370DV25 and CY7C1372DV25 are  
pin-compatible and functionally equivalent to ZBT devices.  
Supports 250-MHz bus operations with zero wait states  
Available speed grades are 250, 200 and 167 MHz  
Internally self-timed output buffer control to eliminate the need  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte write capability  
Single 2.5 V core power supply (VDD  
)
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the clock enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
2.5 V I/O power supply (VDDQ  
)
Fast clock-to-output times  
2.6 ns (for 250-MHz device)  
Clock enable (CEN) pin to suspend operation  
Synchronous self-timed writes  
Write operations are controlled by the byte write selects  
(BWa–BWd for CY7C1370DV25 and BWa–BWb for  
CY7C1372DV25) and a write enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Available in JEDEC-standard Pb-free 100-pin TQFP, Pb-free  
and non-Pb-free 119-ball BGA and 165-ball FBGA packages  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
Burst capability—linear or interleaved burst order  
“ZZ” sleep mode option and stop clock option  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
Logic Block Diagram - CY7C1370DV25 (512 K × 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
Document Number: 38-05558 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 21, 2010  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Logic Block Diagram - CY7C1372DV25 (1 M × 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
DQs  
U
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
F
F
E
R
S
DQP  
DQP  
a
b
S
T
E
R
S
b
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document Number: 38-05558 Rev. *F  
Page 2 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Contents  
Selection Guide ................................................................4  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................7  
Introduction .......................................................................8  
Functional Overview ....................................................8  
Sleep Mode .................................................................9  
Interleaved Burst Address Table  
Scan Register Sizes .......................................................15  
Identification Register Definitions ................................15  
Identification Codes .......................................................16  
119-ball BGA Boundary Scan Order .............................16  
165-ball FBGA Boundary Scan Order ...........................17  
Maximum Ratings ...........................................................18  
Operating Range .............................................................18  
Electrical Characteristics ...............................................18  
Capacitance ....................................................................19  
Thermal Resistance ........................................................19  
Switching Waveforms ....................................................21  
Read/Write/Timing .....................................................21  
NOP,STALL and DESELECT Cycles ........................22  
ZZ Mode Timing ........................................................22  
Ordering Information ......................................................23  
Ordering Code Definitions .........................................23  
Package Diagrams ..........................................................24  
Acronyms ........................................................................27  
Document Conventions .................................................27  
Units of Measure .......................................................27  
Document History Page .................................................28  
Sales, Solutions, and Legal Information ......................29  
Worldwide Sales and Design Support .......................29  
Products ....................................................................29  
PSoC Solutions .........................................................29  
(MODE = Floating or VDD) ...............................................9  
Linear Burst Address Table (MODE = GND) ..................9  
ZZ Mode Electrical Characteristics .................................9  
Truth Table ......................................................................10  
Partial Write Cycle Description .....................................10  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................11  
Disabling the JTAG Feature ......................................11  
TAP Controller State Diagram ......................................11  
Test Access Port (TAP) .............................................11  
TAP Controller Block Diagram ......................................12  
PERFORMING A TAP RESET ..................................12  
TAP REGISTERS ......................................................12  
TAP Instruction Set ...................................................12  
TAP Timing ......................................................................13  
TAP AC Switching Characteristics ...............................14  
2.5 V TAP AC Test Conditions .......................................15  
2.5 V TAP AC Output Load Equivalent .........................15  
TAP DC Electrical Characteristics And  
Operating Conditions .....................................................15  
Document Number: 38-05558 Rev. *F  
Page 3 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Selection Guide  
250 MHz  
2.6  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum access time  
Maximum operating current  
Maximum CMOS standby current  
350  
300  
275  
mA  
mA  
70  
70  
70  
Pin Configurations  
100-pin TQFP Pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
V
ZZ  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
CY7C1370DV25  
(512K × 36)  
SS  
V
V
DD  
NC  
DD  
CY7C1372DV25  
(1M × 18)  
NC  
NC  
V
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQa  
DQa  
DQd  
DQb  
DDQ  
V
V
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document Number: 38-05558 Rev. *F  
Page 4 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Pin Configurations (continued)  
119-ball BGA  
Pinout  
CY7C1370DV25 (512 K × 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
A
VDDQ  
A
NC/576M  
NC/1G  
DQc  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
B
C
D
DQPc  
VSS  
NC  
VSS  
DQPb  
DQb  
DQc  
VDDQ  
DQc  
DQc  
DQc  
DQc  
DQc  
VDD  
VSS  
VSS  
CE1  
VSS  
VSS  
DQb  
DQb  
DQb  
DQb  
VDD  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
E
F
OE  
A
G
H
J
BWc  
VSS  
NC  
BWb  
VSS  
NC  
DQc  
WE  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
K
L
M
N
P
CEN  
A1  
VSS  
VSS  
MODE  
A
A0  
NC/144M  
NC  
A
VDD  
A
A
NC/288M  
ZZ  
R
T
NC  
A
NC/72M  
TMS  
NC/36M  
NC  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1372DV25 (1 M x 18)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
A
VDDQ  
A
B
C
D
E
F
NC/576M  
NC/1G  
DQb  
CE2  
A
A
A
NC  
NC  
CE3  
A
ADV/LD  
VDD  
A
A
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
NC  
NC  
DQa  
VDDQ  
CE1  
VDDQ  
DQa  
OE  
A
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
NC  
VSS  
NC  
NC  
DQa  
VDD  
DQa  
NC  
VDDQ  
G
H
J
BWb  
VSS  
NC  
WE  
VDD  
NC  
DQb  
DQb  
NC  
VSS  
NC  
CLK  
NC  
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
NC  
K
L
BWa  
VSS  
VDDQ  
DQb  
DQb  
NC  
VSS  
VSS  
VSS  
MODE  
A
VDDQ  
NC  
M
N
P
R
T
CEN  
A1  
VSS  
VSS  
NC  
A
NC  
DQPb  
A
A0  
DQa  
NC/144M  
NC/72M  
VDDQ  
VDD  
NC/36M  
TCK  
NC/288M  
ZZ  
A
A
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document Number: 38-05558 Rev. *F  
Page 5 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Pin Configurations (continued)  
165-ball FBGA Pinout  
CY7C1370DV25 (512 K × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQc  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQPb  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
DQPd  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1372DV25 (1 M × 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
A
NC  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
M
N
P
DQPb  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document Number: 38-05558 Rev. *F  
Page 6 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Pin Definitions  
Pin Name  
I/O Type  
Input-  
synchronous the CLK.  
Pin Description  
A0  
A1  
A
Address inputs used to select one of the address locations. Sampled at the rising edge of  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
synchronous Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd.  
WE  
Input-  
Write enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
synchronous signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance/load input used to advance the on-chip address counter or load a new address.  
synchronous When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
synchronous CE2 and CE3 to select/deselect the device.  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
synchronous with CE1 and CE3 to select/deselect the device.  
Input-  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
synchronous CE1 and CE2 to select/deselect the device.  
Input-  
Output enable, active LOW. Combined with the synchronous logic block inside the device to  
asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
CEN  
DQS  
Input-  
Clock enable input, active LOW. When asserted LOW the clock signal is recognized by the  
synchronous SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
synchronous by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a three-state condition. The outputs are  
automatically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.  
DQPX  
MODE  
TDO  
TDI  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQs. During write  
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc,  
and DQPd is controlled by BWd.  
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
output  
synchronous  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK.  
input  
synchronous  
TMS  
TCK  
Test mode This pin controls the Test access port state machine. Sampled on the rising edge of TCK.  
select  
synchronous  
JTAG-clock Clock input to the JTAG circuitry.  
Document Number: 38-05558 Rev. *F  
Page 7 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Pin Definitions (continued)  
Pin Name  
VDD  
I/O Type  
Pin Description  
Power supply Power supply inputs to the core of the device.  
VDDQ  
I/O power Power supply for the I/O circuitry.  
supply  
VSS  
NC  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects. This pin is not connected to the die.  
NC/(36M,72M,  
144M, 288M,  
576M, 1G)  
These pins are not connected. They will be used for expansion to the 36M, 72M, 144M, 288M,  
576M, and 1G densities.  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep”  
asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
control logic. OE must be driven LOW in order for the device to  
drive out the requested data. During the second clock, a  
Introduction  
subsequent operation (read/write/deselect) can be initiated.  
Deselecting the device is also pipelined. Therefore, when the  
SRAM is deselected at clock rise by one of the chip enable  
signals, its output will three-state following the next clock rise.  
Functional Overview  
The  
CY7C1370DV25  
and  
CY7C1372DV25  
are  
synchronous-pipelined Burst NoBL SRAMs designed  
specifically to eliminate wait states during write/read transitions.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
clock enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data outputs  
pass through output registers controlled by the rising edge of the  
clock. Maximum access delay from the clock rise (tCO) is 2.6 ns  
(250-MHz device).  
Burst Read Accesses  
The CY7C1370DV25 and CY7C1372DV25 have an on-chip  
burst counter that allows the user the ability to supply a single  
address and conduct up to four reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load a  
new address into the SRAM, as described in the Single Read  
Accesses section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved burst  
sequence. Both burst counters use A0 and A1 in the burst  
sequence, and will wrap around when incremented sufficiently.  
A HIGH input on ADV/LD will increment the internal burst counter  
regardless of the state of chip enables inputs or WE. WE is  
latched at the beginning of a burst cycle. Therefore, the type of  
access (read or write) is maintained throughout the burst  
sequence.  
Accesses can be initiated by asserting all three chip enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If clock  
enable (CEN) is active LOW and ADV/LD is asserted LOW, the  
address presented to the device will be latched. The access can  
either be a read or write operation, depending on the status of  
the write enable (WE). BWX can be used to conduct byte write  
operations.  
Write operations are qualified by the write enable (WE). All writes  
are simplified with on-chip synchronous self-timed write circuitry.  
Single Write Accesses  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
should be driven LOW once the device has been deselected in  
order to load a new address for the next operation.  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, and (3) the write signal WE is  
asserted LOW. The address presented is loaded into the  
address register. The write signals are latched into the control  
logic block.  
Single Read Accesses  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b for  
CY7C1372DV25). In addition, the address for the subsequent  
access (read/write/deselect) is latched into the address register  
(provided the appropriate control signals are asserted).  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, (3) the write enable input signal  
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
address register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
requested data is allowed to propagate through the output  
register and onto the data bus within 2.6 ns (250-MHz device)  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 & DQa,b/DQPa,b for  
CY7C1372DV25) (or a subset for byte write operations, see  
Write Cycle Description table for details) inputs is latched into the  
device and the write is complete.  
Document Number: 38-05558 Rev. *F  
Page 8 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
The data written during the write operation is controlled by BW  
(BWa,b,c,d for CY7C1370DV25 and BWa,b for CY7C1372DV25)  
signals. The CY7C1370DV25/CY7C1372DV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the write enable input (WE) with the selected  
byte write select (BW) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
will remain unaltered.  
A
synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Byte write capability has been included in order to greatly simplify  
read/modify/write sequences, which can be reduced to simple  
byte write operations.  
Interleaved Burst Address Table  
(MODE = Floating or V )  
Because the CY7C1370DV25 and CY7C1372DV25 are  
common I/O devices, data should not be driven into the device  
while the outputs are active. The output enable (OE) can be  
deasserted HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b for  
CY7C1372DV25) inputs. Doing so will three-state the output  
DD  
First  
Address  
Second  
Third  
Fourth  
Address  
Address  
Address  
A1, A0  
00  
A1, A0  
01  
A1, A0  
10  
A1, A0  
11  
drivers. As  
a
safety precaution, DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b for  
CY7C1372DV25) are automatically three-stated during the data  
portion of a write cycle, regardless of the state of OE.  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Write Accesses  
The CY7C1370DV25/CY7C1372DV25 has an on-chip burst  
counter that allows the user the ability to supply a single address  
and conduct up to four write operations without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load the  
initial address, as described in the Single Write Accesses section  
above. When ADV/LD is driven HIGH on the subsequent clock  
rise, the chip enables (CE1, CE2, and CE3) and WE inputs are  
ignored and the burst counter is incremented. The correct BW  
(BWa,b,c,d for CY7C1370DV25 and BWa,b for CY7C1372DV25)  
inputs must be driven in each cycle of the burst write in order to  
write the correct bytes of data.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1, A0  
00  
A1, A0  
01  
A1, A0  
10  
A1, A0  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
Unit  
mA  
ns  
ZZ VDD 0.2 V  
80  
2tCYC  
tZZS  
ZZ VDD 0.2 V  
2tCYC  
tZZREC  
tZZI  
ZZ 0.2 V  
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
0
ns  
Document Number: 38-05558 Rev. *F  
Page 9 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Truth Table[1, 2, 3, 4, 5, 6, 7]  
Address  
Used  
Operation  
CE  
ZZ  
ADV/LD WE BWx  
OE  
CEN CLK  
DQ  
Deselect cycle  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
L
L
L
L
L
L
L
L
L
L
H
X
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
X
Tri-state  
Tri-state  
Data out (Q)  
Data out (Q)  
Tri-state  
Tri-state  
Data in (D)  
Data in (D)  
Tri-state  
Tri-state  
Continue deselect cycle  
Read cycle (begin burst)  
Read cycle (continue burst)  
NOP/dummy read (begin burst)  
Dummy read (continue burst)  
Write cycle (begin burst)  
Write cycle (continue burst)  
NOP/write abort (begin burst)  
Write abort (continue burst)  
Ignore clock edge (stall)  
Sleep mode  
None  
X
L
External  
Next  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
X
L
H
L
External  
Next  
X
L
H
L
X
L
L
None  
H
H
X
X
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-state  
[1, 2, 3, 8]  
Partial Write Cycle Description  
Function (CY7C1370DV25)  
Read  
WE  
BWd  
X
H
H
H
H
H
H
H
H
L
BWc  
X
H
H
H
H
L
BWb  
BWa  
X
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
H
L
Write – No bytes written  
Write byte a – (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write bytes b, a  
H
L
L
Write byte c – (DQc and DQPc)  
Write bytes c, a  
H
H
L
H
L
L
Write bytes c, b  
L
H
L
Write bytes c, b, a  
L
L
Write byte d – (DQd and DQPd)  
Write bytes d, a  
H
H
H
H
L
H
H
L
H
L
L
Write bytes d, b  
L
H
L
Write bytes d, b, a  
L
L
Write bytes d, c  
L
H
H
L
H
L
Write bytes d, c, a  
L
L
Write bytes d, c, b  
L
L
H
L
Write all bytes  
L
L
L
Notes  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one Byte Write Select is active, BW = Valid  
x
signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQ and DQP = Three-state when  
s
X
OE is inactive or when the device is deselected, and DQ = data when OE is active.  
s
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05558 Rev. *F  
Page 10 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Function (CY7C1372DV25)  
WE  
H
L
BWb  
BWa  
x
Read  
x
H
H
L
Write – No bytes Written  
Write byte a – (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write both bytes  
H
L
L
L
H
L
L
L
Test Access Port (TAP)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Test Clock (TCK)  
The CY7C1370DV25/CY7C1372DV25 incorporates a serial  
boundary scan test access port (TAP).This part is fully compliant  
with 1149.1. The TAP operates using JEDEC-standard 3.3 V or  
2.5 V I/O logic levels.  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
The CY7C1370DV25/CY7C1372DV25 contains  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
a
TAP  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the operation  
of the device.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see TAP Controller State  
Diagram. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See TAP Controller Block  
Diagram on page 12.)  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
Test Data-Out (TDO)  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See TAP Controller State Diagram.)  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Document Number: 38-05558 Rev. *F  
Page 11 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
TAP Controller Block Diagram  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
x
.
.
.
.
. 2 1  
Identification (ID) Register  
Boundary Scan Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions  
table.  
TCK  
TMS  
TAP CONTROLLER  
TAP Instruction Set  
Performing a TAP Reset  
Overview  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
EXTEST  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the shift-DR controller state.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram.  
Upon power-up, the instruction register is loaded with the  
IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a high Z state.  
)
Boundary Scan Register  
SAMPLE/PRELOAD  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
Document Number: 38-05558 Rev. *F  
Page 12 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-fBGA package). When  
this scan cell, called the “extest output bus tri-state,” is latched  
into the preload register during the “Update-DR” state in the TAP  
controller, it will directly control the state of the output (Q-bus)  
pins, when the EXTEST is entered as the current instruction.  
When HIGH, it will enable the output buffers to drive the output  
bus. When LOW, this bit will place the output bus into a high Z  
condition.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or slow)  
the clock during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and simply  
ignore the value of the CK and CK captured in the boundary scan  
register.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that cell,  
during the “Shift-DR” state. During “Update-DR,” the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is preset  
HIGH to enable the output when the device is powered-up, and  
also when the TAP controller is in the “Test-Logic-Reset” state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required—that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05558 Rev. *F  
Page 13 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min  
Max  
Unit  
TCK clock cycle time  
TCK clock frequency  
TCK clock HIGH time  
TCK clock LOW time  
50  
20  
ns  
MHz  
ns  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK clock LOW to TDO valid  
tTDOX TCK clock LOW to TDO invalid  
Set-up Times  
tTMSS TMS set-up to TCK clock rise  
tTDIS  
0
10  
ns  
ns  
5
5
5
ns  
ns  
ns  
TDI set-up to TCK clock rise  
Capture set-up to TCK rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK clock rise  
TDI hold after clock rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after clock rise  
Notes  
9.  
t
and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 38-05558 Rev. *F  
Page 14 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
2.5 V TAP AC Test Conditions  
2.5 V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels................................................VSS to 2.5 V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels........................................ 1.25 V  
Output reference levels ............................................... 1.25 V  
Test load termination supply voltage ........................... 1.25 V  
50  
TDO  
ZO= 50  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0 °C < TA < +70 °C; VDD = 2.5 V ± 0.125 V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
Min  
2.0  
2.1  
Max  
Unit  
V
Output HIGH voltage IOH = –1.0 mA, VDDQ = 2.5 V  
Output HIGH voltage IOH = –100 µA, VDDQ = 2.5 V  
Output LOW voltage IOL = 8.0 mA, VDDQ = 2.5 V  
VOH2  
VOL1  
VOL2  
VIH  
V
0.4  
0.2  
V
Output LOW voltage IOL = 100 µA  
Input HIGH voltage  
VDDQ = 2.5 V  
V
VDDQ = 2.5 V  
VDDQ = 2.5 V  
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
Input LOW voltage  
0.7  
5
V
IX  
Input load current  
GND < VIN < VDDQ  
µA  
Scan Register Sizes  
Bit Size (x18)  
Register Name  
Bit Size (x36)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
85  
89  
32  
85  
89  
Boundary scan order (119-ball BGA package)  
Boundary scan order (165-ball FBGA package)  
Identification Register Definitions  
Instruction Field  
Revision number (31:29)  
Cypress device ID (28:12)  
Cypress JEDEC ID (11:1)  
CY7C1372DV25  
CY7C1370DV25  
Description  
Reserved for version number.  
000  
000  
01011001000100101  
00000110100  
01011001000010101 Reserved for future use.  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID register presence (0)  
1
1
Indicate the presence of an ID  
register.  
Note  
11.All voltages referenced to V (GND).  
SS  
Document Number: 38-05558 Rev. *F  
Page 15 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to high Z state.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-ball BGA Boundary Scan Order [12, 13]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes  
12. Balls which are NC (No Connect) are pre-set LOW.  
13. Bit# 85 is pre-set HIGH.  
Document Number: 38-05558 Rev. *F  
Page 16 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
165-ball FBGA Boundary Scan Order [14, 15]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Notes  
14. Balls which are NC (No Connect) are pre-set LOW.  
15. Bit# 89 is pre-set HIGH.  
Document Number: 38-05558 Rev. *F  
Page 17 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
DC input voltage.................................. –0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user  
guidelines, not tested.)  
Static discharge voltage.......................................... > 2001 V  
(per MIL-STD-883, method 3015)  
Storage temperature ................................ –65 °C to +150 °C  
Latch-up current .................................................... > 200 mA  
Ambient temperature with  
power applied ........................................... –55 °C to +125 °C  
Operating Range  
Supply voltage on VDD relative to GND........–0.5 V to +3.6 V  
Supply voltage on VDDQ relative to GND....... –0.5 V to +VDD  
DC to outputs in tri-state....................–0.5 V to VDDQ + 0.5 V  
Ambient  
VDD/VDDQ  
Range  
Temperature  
Commercial  
Industrial  
0 °C to +70 °C  
2.5 V ± 5%  
–40 °C to +85 °C  
Electrical Characteristics  
Over the Operating Range[16, 17]  
Parameter  
VDD  
Description  
Power supply voltage  
I/O supply voltage  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage[18] for 2.5 V I/O  
Input LOW voltage[18] for 2.5 V I/O  
Test Conditions  
Min  
Max  
Unit  
V
2.375  
2.375  
2.0  
2.625  
VDDQ  
VOH  
VOL  
VIH  
VIL  
for 2.5 V I/O  
VDD  
V
for 2.5 V I/O, IOH = 1.0 mA  
V
for 2.5 V I/O, IOL= 1.0 mA  
0.4  
V
1.7  
VDD + 0.3 V  
V
–0.3  
–5  
0.7  
5
V
IX  
Input leakage current  
except ZZ and MODE  
GND VI VDDQ  
A  
Input current of MODE Input = VSS  
Input = VDD  
–30  
A  
A  
5
Input current of ZZ  
Input = VSS  
Input = VDD  
–5  
A  
30  
A  
IOZ  
IDD  
Output leakage current GND VI VDD, output disabled  
–5  
5
A  
VDD operating supply  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speed grades  
350  
300  
275  
160  
150  
140  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
power-down  
current—TTL inputs  
Max. VDD, device deselected,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
power-down  
current—CMOS inputs f = 0  
Max. VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V,  
ISB3  
Automatic CE  
power-down  
current—CMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, device deselected,  
VIN 0.3V or VIN > VDDQ 0.3 V,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speed grades  
135  
130  
125  
80  
mA  
mA  
mA  
mA  
ISB4  
Automatic CE  
power-down  
current—TTL Inputs  
Max. VDD, device deselected,  
VIN VIH or VIN VIL, f = 0  
Notes  
16. Overshoot: V (AC) < V +1.5 V (Pulse width less than t  
/2), undershoot: V (AC) > –2 V (Pulse width less than t  
/2).  
CYC  
IH  
DD  
CYC  
IL  
17. T  
: Assumes a linear ramp from 0V to V (min) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
18. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05558 Rev. *F  
Page 18 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Capacitance[19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Unit  
Parameter  
Description  
Test Conditions  
Package  
CIN  
Input capacitance  
TA = 25 C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
pF  
pF  
pF  
V
DD = 2.5 V,  
DDQ = 2.5 V  
CCLK  
CI/O  
Clock input capacitance  
Input/output capacitance  
V
Thermal Resistance[19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
28.66  
23.8  
20.7  
C/W  
JC  
Thermal resistance  
(junction to case)  
4.08  
6.2  
4.0  
C/W  
impedance, per EIA/JESD51.  
AC Test Loads and Waveforms  
2.5 V I/O Test Load  
R = 1667  
2.5 V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
R = 50   
90%  
10%  
Z = 50   
0
10%  
L
5 pF  
R = 1538   
1 ns  
1 ns  
V = 1.25 V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
19. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05558 Rev. *F  
Page 19 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Switching Characteristics  
[20, 21]  
Over the Operating Range  
–250  
–200  
–167  
Unit  
Parameter  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
[22]  
tPower  
Clock  
tCYC  
VCC (typical) to the first access read or write  
1
1
1
ms  
Clock cycle time  
Maximum operating frequency  
Clock HIGH  
4.0  
250  
5
200  
6
167  
ns  
MHz  
ns  
FMAX  
tCH  
1.7  
1.7  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data output valid after CLK rise  
OE LOW to output valid  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data output hold after CLK rise  
Clock to high Z[23, 24, 25]  
Clock to low Z[23, 24, 25]  
OE HIGH to output high Z[23, 24, 25]  
OE LOW to output low Z[23, 24, 25]  
1.0  
1.3  
1.3  
tCHZ  
2.6  
3.0  
3.4  
tCLZ  
1.0  
1.3  
1.3  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
2.6  
3.0  
3.4  
0
0
0
Address set-up before CLK rise  
Data input set-up before CLK rise  
CEN set-up before CLK rise  
WE, BWx set-up before CLK rise  
ADV/LD set-up before CLK rise  
Chip select set-up  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
Data input hold after CLK rise  
CEN hold after CLK rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx hold after CLK rise  
ADV/LD hold after CLK rise  
Chip select hold after CLK rise  
tALH  
tCEH  
Notes  
20. Timing reference 1.25 V when V  
= 2.5 V.  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
22. This part has a voltage regulator internally; t  
is the time power needs to be supplied above V minimum initially, before a read or write operation can be  
Power  
DD  
initiated.  
23. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
EOHZ  
CHZ CLZ EOLZ  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
EOHZ  
EOLZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve high Z prior to low Z under the same system conditions.  
25. This parameter is sampled and not 100% tested.  
Document Number: 38-05558 Rev. *F  
Page 20 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Switching Waveforms  
Read/Write/Timing[26, 27, 28]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
26. For this waveform ZZ is tied LOW.  
27. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
28. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document Number: 38-05558 Rev. *F  
Page 21 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Switching Waveforms (continued)  
NOP,STALL and DESELECT Cycles[29, 30, 31]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
ZZ Mode Timing[32, 33]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
29. For this waveform ZZ is tied LOW.  
30. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
31. The Ignore Clock Edge or Stall cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
32. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
33. I/Os are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05558 Rev. *F  
Page 22 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Ordering Information  
Cypress offers other versions of this type of product in different configurations and features. The following table contains only  
the list of parts that are currently available.  
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/products, or contact your local sales representative.  
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the  
office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167  
CY7C1370DV25-167AXC  
CY7C1372DV25-167AXC  
CY7C1370DV25-167BZC  
CY7C1370DV25-167AXI  
CY7C1370DV25-167BZI  
CY7C1370DV25-200BZC  
CY7C1370DV25-250AXC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
Commercial  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
Industrial  
200  
250  
Commercial  
Commercial  
Ordering Code Definitions  
CY7C 137X V25 - XXX XX  
D
X
Temperature Range: X = C or I (C = Commercial; I = Industrial)  
Package Type: XX = AX or BZ  
AX = 100-pin TQFP (Pb-free)  
BZ = 165-ball FPBGA  
Speed Grade: XXX = 167 MHz / 200 MHz / 250 MHz  
2.5 Volt  
Process Technology 90nm  
137X  
1370 = PL, 512 Kb x 36 (18 Mb)  
1372 = PL, 1 Mb x 18 (18 Mb)  
CY7C = Cypress SRAMs  
Document Number: 38-05558 Rev. *F  
Page 23 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
51-85050 *C  
Document Number: 38-05558 Rev. *F  
Page 24 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Package Diagrams (continued)  
119-ball BGA (14 x 22 x 2.4 mm), 51-85115  
51-85115 *C  
Document Number: 38-05558 Rev. *F  
Page 25 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Package Diagrams (continued)  
165-ball FPBGA (13 x 15 x 1.4 mm), 51-85180  
51-85180 *C  
Document Number: 38-05558 Rev. *F  
Page 26 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
CE  
Description  
chip enable  
clock enable  
Symbol  
ns  
Unit of Measure  
CEN  
FPBGA  
JTAG  
NoBL  
OE  
nano seconds  
Volts  
fine-pitch ball grid array  
Joint Test Action Group  
No Bus Latency  
output enable  
V
µA  
mA  
ms  
MHz  
pF  
W
micro Amperes  
milli Amperes  
milli seconds  
Mega Hertz  
pico Farad  
Watts  
SEL  
single event latch-up  
test clock  
TCK  
TDI  
test data input  
TMS  
TDO  
TQFP  
WE  
test mode select  
test data output  
thin quad flat pack  
write enable  
°C  
degree Celcius  
Document Number: 38-05558 Rev. *F  
Page 27 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Document History Page  
Document Title: CY7C1370DV25/CY7C1372DV25 18-Mbit (512 K × 36/1 M × 18)  
Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05558  
Orig. of  
Change  
REV.  
ECN No. Issue Date  
Description of Change  
**  
254509  
288531  
See ECN  
See ECN  
RKF  
New data sheet  
*A  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 225 Mhz Speed Bin  
Added lead-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
package  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
*B  
326078  
See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed JA and JC for TQFP Package from 31 and 6 C/W to 28.66 and  
4.08 C/W respectively  
Changed JA and JC for BGA Packagefrom 45 and 7 C/W to 23.8 and 6.2  
C/W respectively  
Changed JA and JC for FBGA Package from 46 and 3 C/W to 20.7 and  
4.0 C/W respectively  
Modified VOL, VOH test conditions  
Removed comment of ‘Lead-free BG packages availability’ below the  
Ordering Information  
Updated Ordering Information Table  
*C  
418125  
See ECN  
NXR  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage  
Current on page# 18  
Changed the IX current values of MODE on page # 18 from –5 A and 30 A  
to –30 A and 5 A  
Changed the IX current values of ZZ on page # 18 from –30 A and 5 A  
to –5 A and 30 A  
Changed VIH < VDD to VIH < VDDon page # 18  
Updated Ordering Information Table  
*D  
475677  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
*E  
*F  
2897278 03/22/2010  
3031731 09/16/2010  
NJY  
NJY  
Removed obsolete part numbers from Ordering Information table and  
updated package diagrams.  
Updated Ordering Information and added Ordering Code Definitions  
Added Acronyms and Units of Measure  
Minor edits and updated in new template  
Document Number: 38-05558 Rev. *F  
Page 28 of 29  
[+] Feedback  
CY7C1370DV25  
CY7C1372DV25  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2006-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-05558 Rev. *F  
Revised September 21, 2010  
Page 29 of 29  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1370DV25-167BZIT

ZBT SRAM, 512KX36, 3.4ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1370DV25-167BZXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-167BZXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200AXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200AXCT

ZBT SRAM, 512KX36, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1370DV25-200AXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS
CYPRESS

CY7C1370DV25-200BGI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS