EPC1064VTC32 [ROCHESTER]

64KX1 CONFIGURATION MEMORY, PQFP32, PLASTIC, TQFP-32;
EPC1064VTC32
型号: EPC1064VTC32
厂家: Rochester Electronics    Rochester Electronics
描述:

64KX1 CONFIGURATION MEMORY, PQFP32, PLASTIC, TQFP-32

内存集成电路
文件: 总40页 (文件大小:1289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Configuration Devices for  
SRAM-Based LUT Devices  
®
February 2002, ver. 12.1  
DataSheet  
Serial device family for configuring APEXTM II, APEX 20K (including  
APEX 20K, APEX 20KC, and APEX 20KE), MercuryTM, ACEX® 1K,  
and FLEX® (FLEX 6000, FLEX 10KE, and FLEX 10KA) devices  
Easy-to-use 4-pin interface to APEX II, APEX 20K, Mercury, ACEX,  
and FLEX devices  
Features  
Low current during configuration and near-zero standby current  
5.0-V and 3.3-V operation  
Software design support with the Altera® Quartus® II and  
MAX+PLUS® II development systems for Windows-based PCs as  
well as Sun SPARCstation, and HP 9000 Series 700/800  
Programming support with Altera’s Master Programming Unit  
(MPU) and programming hardware from Data I/O,  
BP Microsystems, and other manufacturers  
Available in compact plastic packages (see Figures 1 and 2)  
8-pin plastic dual in-line package (PDIP)  
20-pin plastic J-lead chip carrier (PLCC) package  
32-pin plastic thin quad flat pack (TQFP) package  
100-pin plastic thin quad flat pack (TQPF) package  
88-pin Ultra FineLine BGATM package  
EPC2 device has reprogrammable Flash configuration memory  
5.0-V and 3.3-V in-system programmability (ISP) through the  
built-in IEEE Std. 1149.1 Joint Test Action Group (JTAG)  
interface  
Built-in JTAG boundary-scan test (BST) circuitry compliant with  
IEEE Std. 1149.1  
ISP circuitry is compatible with IEEE Std. 1532 for EPC2  
configuration device  
Supports programming through Serial Vector Format Files  
(.svf), JamTM Standard Test and Programming Language  
(STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), and the  
MAX+PLUS II software via the MasterBlasterTM  
,
ByteBlasterMVTM, or BitBlasterTM download cable  
nINIT_CONFpin allows a JTAG instruction to initiate device  
configuration  
Can be programmed with Programmer Object Files (.pof) for  
EPC1 and EPC1441 devices  
Available in 20-pin PLCC and 32-pin TQFP packages  
Altera Corporation  
1
DS-EPROM-12.1  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
EPC4, EPC8, and EPC16 configuration devices have reprogrammable  
Flash configuration memory with density up to 16,000,000 or  
32,000,000 bits with compression feature in these devices.  
For detailed information on configuration devices, refer to the Enhanced  
Configuration Devices (EPC4, EPC8, & EPC16) Data Sheet.  
f
Figure 1. EPC1, EPC1441, EPC1213, EPC1064, & EPC1064V Package Pin-Out Diagrams  
Note (1)  
32 31 30 29 28 27 26 25  
24  
N.C.  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
N.C.  
DCLK  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
23  
22  
21  
20  
19  
18  
17  
3
2
1
20 19  
18  
DCLK  
N.C.  
4
5
6
7
8
VCC  
N.C.  
17  
16  
15  
14  
DATA  
DCLK  
OE  
1
2
3
4
8
7
6
5
VCC  
N.C.  
N.C.  
VCC  
nCASC(2)  
GND  
N.C.  
OE  
N.C.  
N.C.  
nCS  
N.C.  
9
10 11 12 13 14 15 16  
9
10 11 12 13  
2()  
32-Pin TQFP  
20-Pin PLCC  
8-Pin PDIP  
EPC1441  
EPC1064  
EPC1064V  
EPC1  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
Notes to Figure 1:  
(1) EPC1, EPC1441, EPC1213, and EPC1064 devices are one-time programmable devices. ISP programming is not  
available in these devices because they do not have JTAG pins.  
(2) The nCASCpin is available on EPC1 and EPC1213 devices. On the EPC1064, EPC1064V, and EPC1441 devices, it is  
a reserved pin and should not be connected.  
2
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Figure 2. EPC2 Package Pin-Out Diagrams  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
N.C.  
DCLK  
VCCSEL  
N.C.  
24  
23  
22  
21  
20  
19  
18  
N.C.  
VPP  
N.C.  
N.C.  
3
2
1
20 19  
18  
DCLK  
VCCSEL  
N.C.  
4
5
6
7
8
VPP  
N.C.  
N.C.  
17  
16  
15  
14  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
N.C.  
VPPSEL  
VPPSEL  
8
17  
16  
N.C.  
OE  
9
10 11 12 13 14 15  
9
10 11 12 13  
32-Pin TQFP  
20-Pin PLCC  
With SRAM-based devices, configuration data must be reloaded each  
time the system initializes, or when new configuration data is needed.  
Altera configuration devices store configuration data for SRAM-based  
APEX II, APEX 20K, Mercury, ACEX, and FLEX devices. Table 1 lists  
Altera configuration devices.  
Functional  
Description  
Table 1. Configuration Devices  
Device  
Description  
EPC16  
16,000,000 × 1 bit with 3.3-V operation  
EPC8  
8,000,000 × 1 bit with 3.3-V operation  
EPC4  
4,000,000 × 1-bit device with 3.3-V operation  
1,695,680 × 1-bit device with 5.0-V or 3.3-V operation  
1,046,496 × 1-bit device with 5.0-V or 3.3-V operation  
440,800 × 1-bit device with 5.0-V or 3.3-V operation  
212,942 × 1-bit device with 5.0-V operation  
65,536 × 1-bit device with 5.0-V operation  
65,536 × 1-bit device with 3.3-V operation  
EPC2  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
Altera Corporation  
3
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 2 lists the configuration device used with each APEX II, APEX 20K,  
Mercury, ACEX 1K, and FLEX device.  
Table 2. Configuration Devices Used for Each APEX II, APEX 20K, Mercury, ACEX & FLEX Device  
(Part 1 of 2)  
Family  
Device  
Data Size EPC1064 EPC1213 EPC1441 EPC1 EPC2 EPC4 EPC8 EPC16  
(bits)  
EPC1064V  
APEX II  
EP2A15  
4,714,000  
6,276,000  
9,612,000  
17,390,000  
1,297,000  
4,383,000  
1,964,000  
3,901,000  
5,564,000  
8,938,000  
347,000  
3
4
6
11  
1
3
2
3
4
6
1
1
1
1
2
2
3
4
6
8
1
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(1.5 V)  
EP2A25  
EP2A40  
EP2A70  
EP1M120  
EP1M350  
Mercury  
(1.8 V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
APEX 20KC EP20K200C  
1
1
(1.8 V)  
EP20K400C  
EP20K600C  
EP20K1000C  
APEX 20KE EP20K30E  
1
1
1
1
1
1
1
1
1
1
1
(2.5 V)  
EP20K60E  
641,000  
EP20K100E  
EP20K160E  
EP20K200E  
EP20K300E  
EP20K400E  
EP20K600E  
EP20K1000E  
1,009,000  
1,523,000  
1,964,000  
2,733,000  
3,901,000  
5,564,000  
8,938,000  
EP20K1500E 12,011,000  
APEX 20K  
(2.5 V)  
EP20K100  
EP20K200  
EP20K400  
EP1K10  
985,000  
1,950,000  
3,878,000  
178,000  
1
1
1
1
1
1
1
1
ACEX 1K  
(2.5 V)  
1
1
1
1
1
EP1K30  
470,000  
EP1K50  
785,000  
EP1K100  
1,337,000  
4
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 2. Configuration Devices Used for Each APEX II, APEX 20K, Mercury, ACEX & FLEX Device  
(Part 2 of 2)  
Family  
Device  
Data Size EPC1064 EPC1213 EPC1441 EPC1 EPC2 EPC4 EPC8 EPC16  
(bits)  
EPC1064V  
FLEX 10KE EPF10K30E  
470,000  
785,000  
785,000  
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(2.5 V)  
EPF10K50E  
EPF10K50S  
EPF10K100B 1,2000,000  
EPF10K100E  
EPF10K130E  
EPF10K200E  
EPF10K200S  
1,336,000  
1,840,000  
2,757,000  
2,757,000  
120,000  
402,000  
621,000  
1,200,000  
1,582,000  
3,292,000  
118,000  
231,000  
376,000  
498,000  
621,000  
893,000  
1,200,000  
260,000  
260,000  
FLEX 10KA EPF10K10A  
1
1
1
1
1
1
1
1
1
1
(3.3 V)  
EPF10K30A  
EPF10K50V  
EPF10K100A  
EPF10K130V  
EPF10K250A  
EPF10K10  
EPF10K20  
EPF10K30  
EPF10K40  
EPF10K50  
EPF10K70  
EPF10K100  
EPF6010A  
FLEX 10K  
(5.0 V)  
1
1
1
1
1
1
1
1
1
FLEX  
1
1
1
1
6000/A  
(3.3 V)  
EPF6016  
(5.0 V) /  
EPF6016A  
EPF6024A  
398,000  
40,000  
1
1
1
1
FLEX  
EPF8282A /  
EPF8282AV  
(3.3 V)  
1
1
1
8000A  
(5.0 V)  
EPF8452A  
EPF8636A  
EPF8820A  
EPF81188A  
EPF1500A  
64,000  
96,000  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
128,000  
192,000  
250,000  
Altera Corporation  
5
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Figure 3 shows the configuration device block diagram.  
Figure 3. Configuration Device Block Diagram  
(1)  
PLD (except FLEX 8000) Configuration Using an EPC2, EPC1, or EPC1441  
DCLK  
Address  
Counter  
CLK  
ENA  
Oscillator  
nRESET  
Oscillator  
Control  
Address  
Decode  
Logic  
nCS  
nCASC (2)  
Error  
Detection  
Circuitry  
EPROM  
Array  
OE(3)  
DATA  
Shift  
Register  
DATA  
FLEX 8000 Device Configuration Using an EPC1, EPC1441, EPC1213, EPC1064, or EPC1064V  
Address  
Counter  
CLK  
ENA  
DCLK  
nRESET  
Address  
Decode  
Logic  
nCASC (2)  
nCS  
OE  
EPROM  
Array  
DATA  
Shift  
Register  
DATA  
Notes to Figure 3:  
(1) Do not use EPC2 devices to configure FLEX 6000 devices.  
(2) The EPC1441, EPC1064, and EPC1064V devices do not support data cascading. The EPC2, EPC1, and EPC1213  
devices support data cascading.  
(3) The OEpin is a bidirectional open-drain pin.  
6
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
The control signals for configuration devices—nCS, OE, and DCLK—  
interface directly with APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX  
device control signals. All APEX II, APEX 20K, Mercury, ACEX 1K, and  
FLEX devices can be configured by a configuration device without  
requiring an external intelligent controller.  
Device  
Configuration  
The configuration device’s OEand nCSpins control the tri-state buffer on  
the DATAoutput pin, and enable the address counter (and the oscillator in  
EPC4, EPC 8, EPC16, EPC2, EPC1, and EPC1441 devices). When OEis  
driven low, the configuration device resets the address counter and tri-  
states its DATApin. The nCSpin controls the output of the configuration  
device. If nCSis held high after the OEreset pulse, the counter is disabled  
and the DATAoutput pin is tri-stated. When nCSis driven low, the counter  
and DATAoutput pin are enabled. When OEis driven low again, the  
address counter is reset and the DATAoutput pin is tri-stated, regardless  
of the state of nCS.  
1
The EPC4, EPC8, EPC16, EPC2, EPC1, and EPC1441 devices  
determine the operation mode and whether the APEX 20K,  
Mercury, ACEX 1K, FLEX 10K, FLEX 8000, or FLEX 6000  
protocols should be used when OEis driven high.  
When the configuration device has driven out all of its data and has  
driven nCASClow, the device tri-states the DATApin to avoid contention  
with other configuration devices.  
The EPC2 device allows the user to initiate configuration of the PLD via  
an additional pin, nINIT_CONF, that can be tied to the nCONFIGpin of the  
PLD(s) to be configured. A JTAG instruction causes the EPC4, EPC8,  
EPC16, and EPC2 device to drive nINIT_CONFlow, which in turn pulls  
nCONFIGlow. The EPC4, EPC8, EPC16, and EPC2 device then drives  
nINIT_CONFhigh to start configuration. When the JTAG state machine  
exits this state, nINIT_CONFreleases nCONFIGand configuration is  
initiated.  
1
An EPC4, EPC8, EPC16, and EPC2 device can be programmed  
with a POF generated for an EPC1 or EPC1441 device, however,  
an EPC2 device cannot configure FLEX 6000 or FLEX 8000  
devices. An EPC1 device can be programmed using a POF  
generated for an EPC1441 device.  
Altera Corporation  
7
Configuration Devices for SRAM-based LUT Devices Data Sheet  
APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K & FLEX 6000  
Device Configuration  
APEX 20K, Mercury, ACEX 1K, and FLEX devices can be configured with  
EPC4, EPC8, EPC16, EPC2, EPC1, or EPC1441 devices. FLEX 6000 devices  
can be configured with EPC1 or EPC1441 devices. APEX II devices can be  
configured with EPC2, EPC4, EPC8, and EPC16 devices. The EPC4, EPC8,  
EPC16, EPC2, EPC1, or EPC1441 device stores configuration data in its  
EPROM array and serially clocks data out with an internal oscillator. The  
OE, nCS, and DCLKpins supply the control signals for the address counter  
and the output tri-state buffer. The configuration device sends a serial  
bitstream of configuration data to its DATApin, which is routed to the  
DATA0or DATAinput pin on the LUT-based PLD device. Figure 4 shows  
an LUT-based PLD configured with a single EPC2, EPC1, or EPC1441  
device.  
8
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Figure 4. ACEX 1K, APEX 20K, APEX II, FLEX 10K, FLEX 6000, or Mercury Device Configured with an EPC2,  
EPC1, or EPC1441 Configuration Device  
Note (1)  
APEX II, ACEX 1K, Mercury, APEX 20KC,  
APEX 20K & FLEX 10K Devices  
V
V
V
CC  
CC  
CC  
Configuration  
Device  
(2)  
(2)  
(2)  
LUT-Based PLD (3)  
DCLK  
DATA  
DCLK  
DATA0  
OE  
nCS  
nINIT_CONF (4)  
nSTATUS  
CONF_DONE  
nCONFIG  
nCEO  
(5)  
MSEL0  
nCE  
MSEL1  
GND  
GND  
(6)  
V
V
V
CC  
CC  
CCINT  
APEX 20KE Devices  
Configuration  
Device  
(2)  
(2)  
(2)  
APEX 20KE PLD (7)  
DCLK  
DATA  
DCLK  
DATA0  
OE  
nCS  
nINIT_CONF (4)  
nSTATUS  
CONF_DONE  
nCONFIG  
(8)  
(5)  
nCEO  
MSEL0  
MSEL1  
nCE  
GND  
GND  
Notes to Figure 4:  
(1) Do not use EPC2 devices to configure FLEX 6000 devices.  
(2) The pull-up resistor should be connected to the same supply voltage as the configuration device. All pull-up  
resistors are 1 k. APEX 20KE pull up resistors are 10 k. The OE, nCS, and nINIT_CONFpins on EPC2, EPC4,  
EPC8, and EPC16 devices have internal, user-configurable 1-kpull-up resistors. If internal pull-up resistors are  
used, external pull-up resistors should not be used on these pins. The Quartus II software uses the internal pull-up  
resistors by default. To turn off the internal pull-up resistors, check the Disable nCS and OE pull-ups on configuration  
device option when generating programming files.  
(3) The diagram shows an APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX device, which has MSEL0and MSEL1  
tied to ground. For FLEX 6000 devices, MSELis tied to ground, and the DATA0pin is named DATA. EPC4, EPC8,  
EPC16, and EPC2 configuration devices cannot be used with FLEX 6000 devices. All other connections are the same  
for APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX devices.  
(4) The nINIT_CONFpin is only available on EPC2, EPC4, EPC8, and EPC16 devices and has an internal pull up of 1 kΩ  
that is always active. If nINIT_CONFis not available or not used, nCONFIGmust be pulled to VCC either directly or  
through a 1-kresistor.  
(5) The nCEOpin is left unconnected.  
(6) To ensure successful configuration between APEX 20KE and configuration devices in all possible power-up  
sequences, pull up nCONFIGto VCCINT  
.
(7) This diagram is for APEX 20KE devices only.  
(8) To isolate the 1.8-V and 3.3-V power supplies when configuration APEX 20KE devices, add a diode between the  
APEX 20KE device’s nCONFIGpin and the configuration device’s nINIT_CONFpin. Select a diode with a threshold  
voltage (VT) less than or equal to 0.7 V. The diode will make the nINIT_CONFpin an open-drain pin; the pin will  
only be able to drive low or tri-state.  
Altera Corporation  
9
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 3 describes EPC2, EPC1, and EPC1441 pin functions during  
APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX device configuration.  
For information on EPC4, EPC8, and EPC16 devices, refer to Enhanced  
Configuration Devices (EPC4, EPC8, & EPC16) Data Sheet.  
Table 3. EPC2, EPC1, & EPC1441 Pin Functions During APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K  
& FLEX 6000 Configuration (Part 1 of 3)  
Notes (1), (2)  
Pin Name  
Pin Number  
Pin  
Type  
Description  
8-Pin  
20-Pin 32-Pin  
PDIP (3) PLCC TQFP (4)  
DATA  
1
2
31  
Output Serial data output. The DATApin is tri-stated before  
configuration when the nCSpin is high, and after the  
configuration device finishes sending its configuration  
data. This operation is independent of the device’s  
position in the cascade chain.  
DCLK  
2
4
2
I/O  
DCLKis a clock output when configuring with a single  
configuration device or when the configuration device is  
the first device in a configuration device chain. DCLKis  
a clock input for subsequent configuration devices in a  
configuration device chain. Rising edges on DCLK  
increment the internal address counter and present the  
next bit of data to the DATApin. The counter is  
incremented only if the OEinput is held high, the nCS  
input is held low, and all configuration data has not  
been transferred to the target device. When configuring  
with the first EPC2 or EPC1 device in a configuration  
device chain or with a single EPC1441 device, the  
DCLKpin drives low after configuration is complete or  
when OEis low.  
OE(5)  
3
4
8
9
7
Open- Output enable (active high) and reset (active low). A  
Drain  
I/O  
low logic level resets the address counter. A high logic  
level enables DATAand permits the address counter to  
count. If this pin is low (reset) during configuration, the  
internal oscillator becomes inactive and DCLKdrives  
low. See “Error Detection Circuitry” on page 23.  
nCS(5)  
10  
Input  
Chip select input (active low). A low input allows DCLK  
to increment the address counter and enables DATAto  
drive out. If the EPC1 or EPC2 is reset with nCSlow, the  
device initializes as the first device in a configuration  
chain. If the EPC1 or EPC2 device is reset with nCS  
high, the device initializes as the subsequent device in  
the chain.  
10  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 3. EPC2, EPC1, & EPC1441 Pin Functions During APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K  
& FLEX 6000 Configuration (Part 2 of 3)  
Notes (1), (2)  
Pin Name  
Pin Number  
Pin  
Type  
Description  
8-Pin  
20-Pin 32-Pin  
PDIP (3) PLCC TQFP (4)  
nCASC(6)  
6
12  
15  
Output Cascade select output (active low). This output goes  
low when the address counter has reached its  
maximum value. In a chain of EPC1 or EPC2 devices,  
the nCASCpin of one device is connected to the nCSpin  
of the next device, which permits DCLKto clock data  
from the next EPC1 or EPC2 device in the chain.  
nINIT_CONF  
13  
16  
Open- Allows the INIT_CONF JTAG instruction to initiate  
(5), (7)  
Drain  
configuration. This pin is connected to the nCONFIGpin  
Output of the LUT device to initiate configuration from the  
EPC2 via a JTAG instruction. If multiple EPC2 devices  
are used to configure an ACEX, APEX, FLEX or  
Mercury device, only the first EPC2 has its  
nINIT_CONFpin tied to the device’s nCONFIGpin.  
TDI(7)  
11  
1
13  
28  
25  
32  
3
Input  
JTAG data input pin. Connect this pin to VCC if the  
JTAG circuitry is not used.  
TDO(7)  
Output JTAG data output pin. Do not connect this pin if the  
JTAG circuitry is not used.  
TMS(7)  
19  
3
Input  
Input  
Input  
JTAG mode select pin. Connect this pin to VCC if the  
JTAG circuitry is not used.  
TCK(7)  
JTAG clock pin. Connect this pin to ground if the JTAG  
circuitry is not used.  
VCCSEL (7)  
5
Mode select for VCC supply. VCCSELmust be  
connected to ground if the device uses a 5.0-V power  
supply (i.e., VCC = 5.0 V). VCCSELmust be connected  
to VCC if the device uses a 3.3-V power supply (i.e.,  
VCC = 3.3 V).  
VPPSEL (7)  
VPP (7)  
14  
18  
17  
23  
Input  
Mode select for VPP. VPPSELmust be connected to  
ground if VPPuses a 5.0-V power supply  
(i.e., VPP= 5.0 V). VPPSELmust be connected to VCC  
if VPPuses a 3.3-V power supply (i.e, VPP= 3.3 V).  
Power Programming power pin. For the EPC2 device, this pin  
is normally tied to VCC. If the EPC2 VCC is 3.3 V, VPP  
can be tied to 5.0 V to improve in-system programming  
times. For EPC1 and EPC1441 devices, VPPmust be  
tied to VCC  
.
Altera Corporation  
11  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 3. EPC2, EPC1, & EPC1441 Pin Functions During APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K  
& FLEX 6000 Configuration (Part 3 of 3)  
Notes (1), (2)  
Pin Name  
Pin Number  
Pin  
Type  
Description  
8-Pin  
20-Pin 32-Pin  
PDIP (3) PLCC TQFP (4)  
VCC  
GND  
7, 8  
5
20  
10  
27  
12  
Power Power pin.  
Ground Ground pin. A 0.2-µF decoupling capacitor must be  
placed between the VCCand GNDpins.  
Notes to Table 3:  
(1) Do not use EPC2 devices to configure FLEX 6000 devices.  
(2) Pin-out information for EPC8 and EPC16 configuration devices, please refer to each respective data sheet.  
(3) This package is available for EPC1 and EPC1441 devices only.  
(4) This package is available for EPC2 and EPC1441 devices only.  
(5) The OE, nCS, and nINIT_CONFpins on EPC2 devices have internal, user-configurable 1-kpull-up resistors. If  
internal pull-up resistors are used, external pull-up resistors should not be used on these pins.  
(6) The EPC1441 device does not support data cascading. EPC2 and EPC1 devices support data cascading.  
(7) This pin applies to the EPC2 device only.  
APEX II, APEX 20K, Merucry, ACEX 1K, FLEX 10K & FLEX 6000  
Device Configuration with Multiple EPC2 or EPC1 Configuration  
Devices  
When configuration data for APEX II, APEX 20K, Mercury, ACEX 1K,  
and FLEX devices exceeds the capacity of a single EPC2 or EPC1  
configuration device, multiple EPC2 or EPC1 devices can be cascaded  
together. If multiple EPC2 or EPC1 devices are required, the nCASCand  
nCSpins provide handshaking between the devices.  
1
EPC8 and EPC16 configuration devices cannot be cascaded  
together. The EPC1441 device does not support data cascading.  
12  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
When configuring APEX II, APEX 20K, Mercury, ACEX 1K, and  
FLEX 10K devices with cascaded EPC2 or EPC1 devices, the position of  
the EPC2 or EPC1 device in the chain determines its operation. Similarly,  
when configuring FLEX 6000 devices with cascaded EPC1 devices, the  
position of the EPC1 device in the chain determines its operation. When  
the first or master device in a configuration device chain is powered-up or  
reset and the nCSpin is driven low, the master device controls  
configuration. The master device supplies all clock pulses to one or more  
LUT-based PLDs and to any subsequent slave devices during  
configuration. The master EPC2 or EPC1 device also provides the first  
stream of data to the LUT-based PLD during multi-device configuration.  
After the master EPC2 or EPC1 device finishes sending configuration  
data, the master EPC2 or EPC1 device drives its nCASCpin low, which  
drives the nCSpin of the first slave EPC2 or EPC1 device low. This action  
causes the slave EPC2 or EPC1 device to send configuration data to the  
LUT-based PLDs.  
The master EPC2 or EPC1 device clocks all subsequent slave devices until  
configuration is complete. Once all configuration data is transferred and  
the nCSpin on the master EPC2 or EPC1 device is driven high by the LUT-  
based PLD’s CONF_DONEpin, the master EPC2 or EPC1 device clocks 16  
additional cycles to initialize the LUT-based PLD(s). The master EPC2 or  
EPC1 device then goes into zero-power (idle) state. If nCSon the master  
EPC2 or EPC1 device is driven high before all configuration data is  
transferred, or if nCSis not driven high after all configuration data is  
transferred, the master EPC2 or EPC1 device drives the APEX 20K,  
Mercury, ACEX 1K, and FLEX device’s nSTATUSpin low, indicating a  
configuration error.  
Configuration automatically restarts if the project is compiled with the  
Auto-Restart Configuration on Frame Error option turned on in the  
MAX+PLUS II software’s Global Project Device Options dialog box  
(Assign menu).  
Figure 5 shows an APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K, or  
FLEX 6000 device configured with two EPC2 or EPC1 devices. Additional  
EPC2 or EPC1 devices can be added by connecting nCASCto nCSof the  
subsequent slave EPC2 or EPC1 device in the chain and connecting DCLK,  
DATA, and OEin parallel.  
1
A mixture of APEX 20K, Mercury, ACEX 1K, FLEX 10K, and  
FLEX 6000 devices can be configured in the same chain. A  
mixture of FLEX 10K, FLEX 10KA, FLEX 10KE, and 5.0-V and  
3.3-V FLEX 6000 devices can be configured in the same chain. See  
“Configuration Chain with Multiple Voltage Levels” on page 25.  
Altera Corporation  
13  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Figure 5. APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K, or FLEX 6000 Device Configured with Two EPC2  
or EPC1 Configuration Devices  
Note (1)  
V
CC  
V
CC  
(2, 3)  
Configuration  
Device 1  
Configuration  
Device 2  
(2, 3)  
LUT-Based PLD (4)  
DCLK  
DATA0  
nSTATUS  
CONF_DONE  
nCONFIG  
DCLK  
DATA  
OE  
nCS  
nINIT_CONF  
DCLK  
DATA  
nCS  
nCASC(5)  
(6)  
OE  
MSEL0  
nCE  
MSEL1  
GND  
GND  
Notes to Figure 5:  
(1) Do not use EPC2 devices to configure FLEX 6000 devices.  
(2) The pull-up resistor should be connected to the same supply voltage as the configuration device.  
(3) All pull-up resistors are 1 k(APEX 20KE pull-resistors are 10 k). The OEand nCSpins on EPC2 devices have  
internal, user-configurable 1-kpull-up resistors. If internal pull-up resistors are used, external pull-up resistors  
should not be used on these pins.  
(4) The diagram shows an APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX device, which has MSEL0and MSEL1  
tied to ground. For FLEX 6000 devices, MSELis tied to ground, and the DATA0pin is named DATA. EPC8, EPC16,  
and EPC2 devices cannot be used with FLEX 6000 devices. All other connections are the same for FLEX 6000  
devices. The Quartus II software uses the internal pull-up resistors by default. To turn off the internal pull-up  
resistors, check the Disable nCS and OE pull-ups on configuration device option when generating programming files.  
(5) EPC4, EPC8, and EPC16 devices cannot be cascaded.  
(6) The nINIT_CONFpin is only available on EPC2 devices and has an internal pull up of 1 kthat is always active. If  
nINIT_CONFis not available or not used, nCONFIGmust be pulled to VCC either directly or through a 1-kresistor.  
14  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Figure 6 shows two APEX II, APEX 20K, Mercury, ACEX 1K, and FLEX  
devices configured with two EPC2 or EPC1 devices.  
Figure 6. Two ACEX 1K, APEX 20K, APEX II, FLEX 10K, FLEX 6000, or Mercury Devices Configured with Two  
EPC2 or EPC1 Configuration Devices  
Note (1)  
V
V
V
CC  
CC  
CC  
APEX II, ACEX 1K, Mercury, APEX 20KC,  
APEX 20K, FLEX 10K, & FLEX 6000 Devices  
(2)  
(2)  
(2)  
Configuration  
Device 1  
Configuration  
Device 2  
LUT-Based PLD (3)  
DCLK  
LUT-Based PLD (3)  
DCLK  
DATA  
OE  
nCS nCASC (4)  
nINIT_CONF (5)  
DCLK  
DATA0  
nSTATUS  
MSEL0  
MSEL1  
MSEL0  
DCLK  
DATA0  
DATA  
nCS  
OE  
MSEL1  
nSTATUS  
CONF_DONE  
nCONFIG  
CONF_DONE  
nCONFIG  
GND  
GND  
nCEO  
nCE  
nCE  
GND  
V
V
CC  
CC  
APEX 20KE Devices  
V
(6)  
CCINT  
(2)  
(2)  
(2)  
Configuration  
Device 1  
Configuration  
Device 2  
APEX 20KE PLD (7)  
APEX 20KE PLD (7)  
DCLK  
DCLK  
DATA  
OE  
nCS nCASC (4)  
nINIT_CONF (5)  
DCLK  
DATA0  
nSTATUS  
MSEL0  
MSEL0  
MSEL1  
DCLK  
DATA0  
nSTATUS  
MSEL1  
DATA  
nCS  
OE  
CONF_DONE  
nCONFIG  
CONF_DONE  
nCONFIG  
GND  
GND  
(8)  
nCEO  
nCE  
nCE  
GND  
Altera Corporation  
15  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Notes to Figure 6:  
(1) Do not use EPC2 devices to configure FLEX 6000 devices.  
(2) The pull-up resistor should be connected to the same supply voltage as the configuration device. All pull-up  
resistors are 1 k(APEX 20KE pull-resistors are 10 k). The OEand nCSpins on EPC2 devices have internal, user-  
configurable 1-kpull-up resistors. If internal pull-up resistors are used, external pull-up resistors should not be  
used on these pins. The Quartus II software uses the internal pull-up resistors by default. To turn off the internal  
pull-up resistors, check the Disable nCS and OE pull-ups on configuration device option when generating programming  
files.  
(3) The diagram shows an APEX II, APEX 20K, Mercury, ACEX 1K, or FLEX 10K device, which has MSEL0and MSEL1  
tied to ground. For FLEX 6000 devices, MSELis tied to ground, and the DATA0pin is named DATA. EPC2 cannot be  
used with FLEX 6000 devices. All other connections are the same for FLEX 6000 devices.  
(4) EPC4, EPC8, and EPC16 devices cannot be cascaded.  
(5) The nINIT_CONFpin is only available on EPC2 devices and has an internal pull up of 1 kthat is always active. If  
nINIT_CONFis not available or not used, nCONFIGmust be pulled to VCC either directly or through a 1-kresistor.  
(6) To ensure successful configuration between APEX 20KE and configuration devices in all possible power-up  
sequences, pull up nCONFIGto VCCINT  
.
(7) This diagram is for APEX 20KE devices only.  
(8) To isolate the 1.8-V and 3.3-V power supplies when configuration APEX 20KE devices, add a diode between the  
APEX 20KE device’s nCONFIGpin and the configuration device’s nINIT_CONFpin. Select a diode with a threshold  
voltage (VT) less than or queal to 0.7 V. The diode will make the nINIT_CONFpin an open-drain pin; the pin will  
only be able to drive low or tri-state.  
For more information on APEX 20K, ACEX 1K, FLEX 10K, or FLEX 6000  
device configuration, see Application Note 116 (Configuring ACEX 1K,  
APEX 20K, FLEX 10K & FLEX 6000 Devices).  
f
Figure 7 shows the timing waveform for the configuration device scheme.  
Figure 7. Configuration Device Scheme Timing Waveform  
nINIT_CONF or VCC/nCONFIG  
tPOR  
OE/nSTATUS  
nCS/CONF_DONE  
tCH  
tDSU  
tCL  
DCLK  
DATA  
tOEZX  
tDH  
D2  
D0  
tCO  
Tri-State  
D1  
D3  
Dn  
(1)  
User I/O  
User Mode  
Tri-State  
INIT_DONE  
(2)  
Notes to Figure 7:  
(1) The configuration devivce will drive DATA low after configuration.  
(2) APEX II and APEX 20K devices (except EP2A70 devices) enter user mode 40 clock cycles after CONF_DONEgoes  
high. EP2A70 devices enter user mode 72 clock cycles after CONF_DONEgoes high. FLEX 10K and FLEX 6000 devices  
enter user mode 10 clock cycles after CONF_DONEgoes high. Mercury devices enter user mode 136 clock cycles after  
CONF_DONEgoes high.  
16  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 4 defines the APEX 20K, FLEX 10K, and FLEX 6000 timing  
parameters when using EPC2 devices at 3.3 V.  
Table 4. APEX 20K, FLEX 10K & FLEX 6000 Timing Parameters using EPC2  
Devices at 3.3 V  
Note (1)  
Symbol  
Parameter  
Min  
Max  
Units  
tPOR  
tOEZX  
tCH  
POR delay (2)  
200  
80  
ms  
ns  
ns  
ns  
ns  
OEhigh to DATAoutput enabled  
DCLKhigh time  
40  
40  
30  
100  
100  
tCL  
DCLKlow time  
tDSU  
Data setup time before rising edge on  
DCLK  
tDH  
Data hold time after rising edge on DCLK  
DCLKto DATAout  
0
ns  
ns  
ns  
tCO  
30  
tOEW  
OElow pulse width to guarantee counter  
reset  
100  
5
fCLK  
DCLKfrequency  
12.5  
MHz  
Notes to Table 4:  
(1) For more information regarding EPC4, EPC8, or EPC16 configuration device timing  
parameters, see the Enhanced Configuration Device (EPC4, EPC8 & EPC16) Data Sheet.  
(2) The configuration device imposes a POR delay upon initial power-up to allow the  
voltage supply to stabilize. Subsequent reconfigurations do not incur this delay.  
Altera Corporation  
17  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 5 defines the APEX 20K, FLEX 10K, and FLEX 6000 timing  
parameters when using EPC1 and EPC1441 devices at 3.3 V.  
Table 5. APEX 20K, FLEX 10K & FLEX 6000 Timing Parameters using EPC1 &  
EPC1441 Devices at 3.3 V  
Note (1)  
Symbol  
Parameter  
Min  
Max  
Units  
tPOR  
tOEZX  
tCH  
POR delay (2)  
200  
80  
ms  
ns  
ns  
ns  
ns  
OEhigh to DATAoutput enabled  
DCLKhigh time  
50  
50  
30  
250  
250  
tCL  
DCLKlow time  
tDSU  
Data setup time before rising edge on  
DCLK  
tDH  
Data hold time after rising edge on DCLK  
DCLKto DATAout  
0
ns  
ns  
ns  
tCO  
30  
10  
tOEW  
OElow pulse width to guarantee counter  
reset  
100  
2
fCLK  
DCLKfrequency  
MHz  
Notes to Table 5:  
(1) For more information regarding EPC4, EPC8, or EPC16 configuration device timing  
parameters, see the Enhanced Configuration Device (EPC4, EPC8 & EPC16) Data Sheet.  
(2) The configuration device imposes a POR delay upon initial power-up to allow the  
voltage supply to stabilize. Subsequent reconfigurations do not incur this delay.  
18  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 6 defines the APEX 20K, FLEX 10K, and FLEX 6000 timing  
parameters when using EPC2, EPC1, and EPC1441 devices at 5.0 V.  
Table 6. APEX 20K, FLEX 10K & FLEX 6000 Timing Parameters using EPC2,  
EPC1 & EPC1441 Devices at 5.0 V  
Notes (1), (2)  
Symbol  
tPOR  
tOEZX  
tCH  
Parameter  
Min  
Max  
Units  
POR delay (3)  
200  
50  
ms  
ns  
ns  
ns  
ns  
OEhigh to DATAoutput enabled  
DCLKhigh time  
30  
30  
30  
75  
tCL  
DCLKlow time  
75  
tDSU  
Data setup time before rising edge on  
DCLK  
tDH  
Data hold time after rising edge on DCLK  
DCLKto DATAout  
0
ns  
ns  
ns  
tCO  
30  
tOEW  
OElow pulse width to guarantee counter  
reset  
100  
6.7  
fCLK  
DCLKfrequency  
16.7  
MHz  
Notes to Table 6:  
(1) Do not use EPC16, EPC8, EPC4, or EPC2 devices to configure FLEX 6000 devices.  
(2) For more information regarding EPC4, EPC8, or EPC16 configuration device timing  
parameters, see the Enhanced Configuration Device (EPC4, EPC8 & EPC16) Data Sheet.  
(3) The configuration device imposes a POR delay upon initial power-up to allow the  
voltage supply to stabilize. Subsequent reconfigurations do not incur this delay.  
FLEX 8000 Device Configuration  
FLEX 8000 devices differ from ACEX 1K, APEX 20K, APEX II, FLEX 10K,  
and FLEX 6000 devices in that they have internal oscillators that can  
provide a DCLKsignal to the configuration device. The configuration  
device sends configuration data out as a serial bitstream on the DATA  
output pin. This data is routed into the FLEX 8000 device via the DATA0  
input pin. The EPC1, EPC1441, EPC1213, EPC1064, and EPC1064V  
configuration devices support this type of configuration.  
Altera Corporation  
19  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
EPC1 and EPC1441 devices can replace the EPC1213, EPC1064, and  
EPC1064V configuration devices. The EPC1 or EPC1441 device  
automatically emulates the EPC1213, EPC1064, or EPC1064V when it is  
programmed with the appropriate POF. When the EPC1 or EPC1441  
device is programmed with an EPC1213, EPC1064, or EPC1064V POF, the  
FLEX 8000 device drives the EPC1 or EPC1441 device’s OEpin high and  
clocks the EPC1 or EPC1441 device. One EPC1 device can store more  
configuration data than the EPC1064, EPC1064V, EPC1213, or EPC1441  
device. Therefore, designers can use one type of configuration device for  
all FLEX devices. In addition, a single EPC1 or EPC1441 device can  
configure any FLEX 8000 device.  
For multi-device configuration of FLEX 8000 devices, the nCASCand nCS  
pins provide handshaking between multiple configuration devices,  
allowing several cascaded EPC1 or EPC1213 devices to serially configure  
multiple FLEX 8000 devices. The EPC1441, EPC1064, and EPC1064V do  
not support data cascading. Figure 8 shows a FLEX 8000 device  
configured with a single EPC1, EPC1441, EPC1213, EPC1064, or  
EPC1064V configuration device.  
Figure 8. FLEX 8000 Device Configured with an EPC1, EPC1441, EPC1213,  
EPC1064, or EPC1064V Configuration Device  
VCC(1)  
VCC(1)  
VCC (1)  
(2)  
(2)  
Configuration  
Device  
FLEX 8000 Device  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
DCLK  
nCS  
OE  
DCLK  
"0"  
"0"  
"0"  
DATA  
DATA0  
nCONFIG  
Notes to Figure 8:  
(1) The pull-up resistor should be connected to the same supply voltage as the  
configuration device.  
(2) All pull-up resistors are 1 k.  
Figure 9 shows three FLEX 8000 devices configured with two EPC1 or  
EPC1213 configuration devices.  
20  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Figure 9. FLEX 8000 Multi-Device Configuration with Two EPC1 or EPC1213 Configuration Devices  
VCC  
VCC  
VCC (1)  
(1)  
(1)  
(2)  
(2)  
VCC  
VCC  
(1)  
(1)  
Configuration  
Device 2  
Configuration  
Device 1  
(2)  
(2)  
FLEX 8000 Device 1  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
DCLK  
nCASC  
DATA  
"0"  
"0"  
"0"  
DATA  
nCS  
OE  
nCS  
OE  
DCLK  
DCLK  
DATA0  
nCONFIG  
VCC (1)  
(2)  
FLEX 8000 Device 2  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
"0"  
"1"  
"0"  
DCLK  
DATA0  
nCONFIG  
VCC (1)  
(2)  
FLEX 8000 Device 3  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
"0"  
"1"  
"0"  
DCLK  
DATA0  
nCONFIG  
Notes to Figure 9:  
(1) The pull-resistor should be connected to the same supply voltage as the confiuration device.  
(2) All pull-up resistors are 1 k.  
Altera Corporation  
21  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 7 describes the pin functions of all configuration devices during  
FLEX 8000 device configuration.  
Table 7. Configuration Device Pin Functions During FLEX 8000 Device Configuration  
Pin Name  
Pin Number  
Pin  
Type  
Description  
8-Pin  
20-Pin 32-Pin  
PDIP (1) PLCC TQFP (2)  
DATA  
1
2
Output  
Input  
31  
Serial data output. The DATApin is tri-stated before  
configuration when the nCSpin is high and after the  
configuration device finishes sending its configuration  
data. This operation is independent of the device’s  
position in the cascade chain.  
DCLK  
2
4
DCLKis a clock input when using EPC1, EPC1213,  
EPC1064, and EPC1064V configuration devices. Rising  
edges on DCLKincrement the internal address counter  
and present the next bit of data to the DATApin. The  
counter is incremented only if the OEinput is held high,  
the nCSinput is held low, and all configuration data has  
not been transferred to the target device.  
2
OE  
3
8
Open-  
Drain  
I/O  
7
Output enable (active high) and reset (active low). A low  
logic level resets the address counter. A high logic level  
enables DATAand permits the address counter to count.  
nCS(3)  
4
6
9
10  
Input  
Chip-select input (active low). A low input allows DCLKto  
increment the address counter and enables DATA.  
nCASC  
12  
15  
Output Cascade-select output (active low). This output goes low  
when the address counter has reached its maximum  
value. The nCASCoutput is usually connected to the nCS  
input of the next device in a configuration chain, so the  
next DCLKclocks data out of the next device.  
VCC  
GND  
7, 8  
5
20  
10  
27  
12  
Power Power pin.  
Ground Ground pin. A 0.2-µF decoupling capacitor must be  
placed between the VCCand GNDpins.  
Notes: to Table 7  
(1) This package is available for EPC1, EPC1441, EPC1213, EPC1064, and EPC1064V devices only.  
(2) This package is available for EPC1441, EPC1064, and EPC1064V devices only.  
(3) The EPC1441, EPC1064, and EPC1064V devices do not support data cascading. The EPC1 and EPC1213 devices  
support data cascading for FLEX 8000 devices.  
For more information on FLEX 8000 device configuration, see the  
following documents:  
f
Application Note 33 (Configuring FLEX 8000 Devices)  
Application Note 38 (Configuring Multiple FLEX 8000 Devices)  
22  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
This section describes Power-On Reset (POR) delay, error detection, and  
3.3-V and 5.0-V operation of Altera configuration devices.  
Power &  
Operation  
Power-On Reset  
During initial power-up, a POR delay occurs to permit voltage levels to  
stabilize. When configuring an APEX II, APEX 20K, Mercury, ACEX 1K,  
FLEX 10K, or FLEX 6000 device with an EPC4, EPC8, EPC16, EPC2, EPC1,  
or EPC1441 device, the POR delay occurs inside the configuration device,  
and the POR delay is a maximum of 200 ms. When configuring a  
FLEX 8000 device with an EPC1213, EPC1064, or EPC1064V device, the  
POR delay occurs inside the FLEX 8000 device, and the POR delay is  
typically 100 ms, with a maximum of 200 ms.  
Error Detection Circuitry  
The EPC4, EPC8, EPC16, EPC2, EPC1, and EPC1441 configuration devices  
have built-in error detection circuitry for configuring APEX II, APEX 20K,  
Mercury, ACEX 1K, FLEX 10K, or FLEX 6000 devices only.  
Built-in error-detection circuitry uses the nCSpin of the configuration  
device, which monitors the CONF_DONEpin on the APEX II, APEX 20K,  
Mercury, ACEX 1K, FLEX 10K, or FLEX 6000 device. An error condition  
occurs if the CONF_DONEpin does not go high after all the configuration  
data has been sent, or if the CONF_DONEpin goes high before the  
configuration device has completed sending configuration data. When an  
error condition occurs, the configuration device drives its OEpin low,  
which drives the APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K, or  
FLEX 6000 device’s nSTATUSpin low, indicating an error. After an error,  
configuration automatically restarts if the Auto-Restart Configuration on  
Frame Error option is turned on in the Global Project Device Options  
dialog box (Assign menu) in the MAX+PLUS II software. For APEX 20K,  
APEX II, and Mercury devices, the Quartus II software provides a similar  
option.  
In addition, if the APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K, or  
FLEX 6000 device detects a cyclic redundancy code (CRC) error in the  
received data, it may also flag the error by driving nSTATUSlow. This low  
signal on nSTATUSresets the configuration device, allowing  
reconfiguration. CRC checking is performed when configuring all  
APEX II, APEX 20K, Mercury, ACEX 1K, FLEX 10K, or FLEX 6000  
devices.  
Altera Corporation  
23  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
3.3-V or 5.0-V Operation  
EPC2, EPC1, and EPC1441 devices can configure 5.0-V, 3.3-V, or 2.5-V  
devices. For each configuration device, an option must be set for 5.0-V or  
3.3-V operation (EPC4, EPC8, and EPC16 devices are 3.3 V). For EPC1 and  
EPC1441 configuration devices, the Use Low-Voltage Configuration EPROM  
option in the Global Project Device Options dialog box (Assign menu) in  
the MAX+PLUS II software sets this parameter. (For APEX 20K, APEX II,  
and Mercury devices, the Quartus II software provides a similar option.)  
For EPC2 devices, this option is set externally by the VCCSELpin. In  
addition, the EPC2 device has an externally controlled option, set by the  
VPPSELpin, to adjust the programming voltage to 5.0 V or 3.3 V.  
The functions of the VCCSELand VPPSELpins are described below.  
VCCSELpin—For EPC2 configuration devices, 5.0-V or 3.3-V  
operation is controlled by the VCCSELoption pin. The device  
functions in 5.0-V mode when VCCSELis connected to GND; the  
device functions in 3.3-V mode when VCCSELis connected to V  
.
CC  
VPPSELpin—The EPC2 VPPprogramming power pin is normally  
tied to V . For EPC2 devices operating with a 3.3-V supply, it is  
CC  
possible to improve EPC2 in-system programming times by  
providing VPPwith a 5.0-V supply. For all other devices, VPPmust be  
tied to V . The EPC2 device’s VPPSELpin must be set in accordance  
CC  
with the EPC2 VPPpin. If the VPPpin is supplied by a 5.0-V supply,  
VPPSELmust be connected to GND; if the VPPpin is supplied by a  
3.3-V power supply, VPPSELmust be connected to V  
.
CC  
Table 8 describes the relationship between the V and V voltage levels  
CC  
PP  
and the required logic level for VCCSELand VPPSEL(i.e., high or low  
logic level).  
Table 8. VCCSEL & VPPSEL Pin Functions on the EPC2  
V
Voltage Level V Voltage Level VCCSEL Pin Logic VPPSEL Pin Logic  
PP  
CC  
(V)  
(V)  
Level  
Level  
3.3  
3.3  
5.0  
3.3  
5.0  
5.0  
High  
High  
Low  
High  
Low  
Low  
24  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
For EPC1 and EPC1441 configuration devices, 3.3-V or 5.0-V operation is  
controlled by a programming bit in the POF. The programming bit value  
is determined by the core supply voltage of the targeted device during  
design compilation with the MAX+PLUS II software. For example, EPC1  
devices are programmed automatically to operate in 3.3-V mode when  
configuring FLEX 10KA devices, which have a V voltage of 3.3 V. In this  
CC  
example, the EPC1 device’s VCCpin is connected to a 3.3-V power supply.  
Designers may choose to set the configuration device for low voltage  
when using the MultiVoltTM feature, which allows an ACEX, APEX,  
APEX II, FLEX, or Mercury device to bridge between systems operating  
with different voltages. When compiling for 3.3-V FLEX 6000 devices, set  
the configuration device for low-voltage operation. To set the EPC1 and  
EPC1441 configuration devices for low-voltage operation, turn on the  
Low-Voltage I/O option in the Global Project Device Options dialog box  
(Assign menu) in the MAX+PLUS II software.  
Configuration Chain with Multiple Voltage Levels  
An EPC2 or EPC1 device can configure a device chain with multiple  
voltage levels. All 3.3-V and 2.5-V ACEX, APEX, APEX II, FLEX, and  
Mercury devices can be driven by higher-voltage signals.  
When configuring a mixed-voltage device chain, the APEX II, APEX 20K,  
Mercury, ACEX 1K, or FLEX devices’ VCCINTand VCCIOpins may be  
connected to 2.5 V, 3.3 V, or 5.0 V, depending upon the device. The  
configuration device may be powered at 3.3 V or 5.0 V. If an EPC1,  
EPC1441, EPC1213, EPC1064, or EPC1064V configuration device is  
powered at 3.3 V, the nSTATUSand CONF_DONEpull-up resistors must be  
connected to 3.3 V. If these configuration devices are powered at 5.0 V, the  
nSTATUSand CONF_DONEpull-up resistors must be connected to 3.3 V or  
5.0 V.  
Altera Corporation  
25  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
At 3.3-V operation, all EPC2 inputs are 5.0-V tolerant, except DATA, DCLK,  
and nCASC. The DATA, DCLK, and nCEOpins are used only to interface  
between the EPC2 configuration device and the APEX II, APEX 20K,  
Mercury, ACEX 1K, or FLEX 10K device it is configuring. The voltage  
tolerances of all EPC2 pins at 5.0 V and 3.3 V are listed in Table 9.  
Table 9. EPC2 Input & Bidirectional Pin Voltage Tolerance  
Pin  
5.0-V Operation  
3.3-V Operation  
5.0-V  
Tolerant  
3.3-V  
Tolerant  
5.0-V  
Tolerant  
3.3-V  
Tolerant  
DATA  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
DCLK  
nCASC  
OE  
v
v
v
v
v
v
v
v
nCS  
VCCSEL  
VPPSEL  
nINIT_CONF  
TDI  
TMS  
TCK  
For more information on APEX II, APEX 20K, Mercury, ACEX 1K,  
FLEX 10K, or FLEX 6000 devices, see the following documents:  
f
ACEX 1K Programmable Logic Device Family Data Sheet  
APEX 20K Programmable Logic Device Family Data Sheet  
APEX II Programmable Logic Device Family Data Sheet  
FLEX 10K Embedded Programmable Logic Family Data Sheet  
FLEX 10KE Embedded Programmable Logic Family Data Sheet  
FLEX 8000 Programmable Logic Device Family Data Sheet  
FLEX 6000 Programmable Logic Device Family Data Sheet  
Mercury Programmable Logic Device Family Data Sheet  
26  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
The Quartus II and MAX+PLUS II development systems provide  
programming support for Altera configuration devices. The Quartus II  
and MAX+PLUS II software automatically generates a POF to program  
each configuration device in a project. In a multi-device project, the  
software can combine the programming files for multiple ACEX, APEX,  
APEX II, FLEX, or Mercury devices into one or more configuration  
devices. The software allows you to select the appropriate configuration  
device to most efficiently store the data for each APEX II, APEX 20K,  
Mercury, ACEX 1K, or FLEX device. Moreover, when compiling for  
ACEX 1K, FLEX 10KA, FLEX 10KE, or Mercury devices, the  
Programming  
&Configuration  
File Support  
MAX+PLUS II software automatically defaults to generate the EPC1 or  
EPC1441 POF with the programming bit set for 3.3-V operation.  
All Altera configuration devices are programmable using Altera  
programming hardware in conjunction with the Quartus II or  
MAX+PLUS II software. In addition, many manufacturers offer  
programming hardware that supports other Altera configuration devices.  
EPC4, EPC8, EPC16, and EPC2 configuration devices can be programmed  
in-system through its industry-standard 4-pin JTAG interface. ISP  
capability in the EPC2, EPC4, EPC8, and EPC16 devices provides ease in  
prototyping and updating APEX II, APEX 20K, Mercury, ACEX 1K, or  
FLEX device functionality. The EPC8 and EPC16 devices can be  
programmed in-system via test equipment using SVF Files, Jam STAPL  
Files (.jam), or Jam STAPL Byte-Code Files (.jbc), embedded processors  
using the Jam programming and test language, and the MAX+PLUS II or  
Quartus II software via the MasterBlaster or ByteBlasterMV download  
cables. When programming multiple EPC2 devices in a JTAG chain, the  
Quartus II and MAX+PLUS II software and other programming methods  
employ concurrent programming to simultaneously program multiple  
devices and reduce programming time. EPC2, EPC4, EPC8, and EPC16  
devices can be programmed and erased up to 100 times.  
After programming an EPC2, EPC4, EPC8, or EPC16 device in-system,  
APEX II, APEX 20K, Mercury, ACEX 1K, or FLEX device configuration  
can be initiated by including the EPC2 JTAG configuration instruction.  
See Table 10 on page 28.  
For more information on programming and configuration support, see the  
following documents:  
f
Altera Programming Hardware Data Sheet  
Programming Hardware Manufacturers  
MasterBlaster Serial/USB Communications Cable Data Sheet  
ByteBlasterMV Parallel Port Download Cable Data Sheet  
ByteBlaster Parallel Port Download Cable Data Sheet  
BitBlaster Serial Download Cable Data Sheet  
Altera Corporation  
27  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
The EPC2 provides JTAG BST circuitry that complies with the IEEE Std.  
IEEE Std.  
1149.1-1990 specification. JTAG boundary-scan testing can be performed  
before or after configuration, but not during configuration. The EPC2  
device supports the JTAG instructions shown in Table 10.  
1149.1 (JTAG)  
Boundary-Scan  
Testing  
The ISP circuitry in EPC2, EPC4, EPC8, and EPC16 devices is compatible  
with tools that support the IEEE Std. 1532. The IEEE Std. 1532 is a standard  
developed to allow concurrent ISP between multiple PLD vendors.  
For EPC4, EPC8, and EPC16 JTAG instruction, refer to the Enhanced  
Configuration Devices (EPC4, EPC8, & EPC16) Data Sheet.  
f
Table 10. EPC2 JTAG Instructions  
JTAG Instruction  
Description  
SAMPLE/PRELOAD  
Allows a snapshot of a signal at the device pins to be captured and examined during  
normal device operation, and permits an initial data pattern output at the device pins.  
EXTEST  
Allows the external circuitry and board-level interconnections to be tested by forcing a  
test pattern at the output pins and capturing results at the input pins.  
BYPASS  
Places the 1-bit bypass register between the TDIand TDOpins, which allows the BST  
data to pass synchronously through a selected device to adjacent devices during  
normal device operation.  
IDCODE  
Selects the device IDCODE register and places it between TDIand TDO, allowing the  
device IDCODE to be serially shifted out of TDO. The device IDCODE for the EPC2  
configuration device is shown below:  
0000 0001000000000010 00001101110 1  
USERCODE  
Selects the USERCODE register and places it between TDIand TDO, allowing the  
USERCODE to be serially shifted out of TDO. The 32-bit USERCODE is a  
programmable user-defined pattern.  
ISP Instructions  
These instructions are used when programming an EPC2 device via JTAG ports with  
a MasterBlaster, ByteBlaster MV, ByteBlaster, or BitBlaster download cable, or using  
a Jam STAPL File (.jam), Jam STAPL Byte-Code File (.jbc), or SVF File via an  
embedded processor.  
INIT_CONF  
This function allows the user to initiate the APEX or FLEX configuration process by  
tying nINIT_CONFto the APEX or FLEX device(s) nCONFIGpin(s). After this  
instruction is updated, the nINIT_CONFpin is driven low. When the Initiate  
Configuration instruction is cleared, nINIT_CONFis released, which starts the APEX  
or FLEX device configuration. This instruction is used by the MAX+PLUS II software,  
Jam STAPL Files, and JBC Files.  
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)  
Boundary-Scan Testing in Altera Devices).  
f
Figure 10 shows the timing requirements for the JTAG signals.  
28  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Figure 10. EPC2 JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
tJCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPZX  
tJPXZ  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSZX  
tJSCO  
tJSXZ  
Signal  
to Be  
Driven  
Table 11 shows the timing parameters and values for configuration  
devices.  
Table 11. JTAG Timing Parameters & Values  
Symbol  
Parameter  
Min Max Unit  
tJCP  
TCKclock period  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCH  
TCKclock high time  
TCKclock low time  
JTAG port setup time  
JTAG port hold time  
tJCL  
50  
tJPSU  
tJPH  
20  
45  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output  
25  
25  
25  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
20  
45  
Capture register hold time  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
25  
25  
25  
Update register high-impedance to valid output  
Update register valid output to high impedance  
Tables 12 through 19 provide information on absolute maximum ratings,  
recommended operating conditions, DC operating conditions, and  
capacitance for configuration devices.  
Operating  
Conditions  
Altera Corporation  
29  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
For EPC4, EPC8, and EPC16 device operating conditions, refer to the  
Enhanced Configuration Devices (EPC4, EPC8, & EPC16) Data Sheet.  
f
Table 12. Absolute Maximum Ratings  
Note (1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
VI  
Supply voltage  
With respect to ground (2)  
With respect to ground (2)  
–2.0  
–2.0  
7.0  
7.0  
50  
V
DC input voltage  
V
IMAX  
IOUT  
PD  
DC VCC or ground current  
DC output current, per pin  
Power dissipation  
mA  
mA  
mW  
° C  
° C  
° C  
–25  
25  
250  
150  
135  
135  
TSTG  
TAMB  
TJ  
Storage temperature  
Ambient temperature  
Junction temperature  
No bias  
–65  
–65  
Under bias  
Under bias  
Table 13. Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
Supply voltage for 5.0-V operation  
Supply voltage for 3.3-V operation  
Input voltage  
(3), (4)  
(3), (4)  
4.75 (4.50) 5.25 (5.50)  
V
V
V
3.0 (3.0)  
–0.3  
3.6 (3.6)  
VI  
With respect to ground  
VCC + 0.3  
(5)  
VO  
TA  
Output voltage  
0
0
VCC  
70  
V
Operating temperature  
For commercial use  
For industrial use  
° C  
° C  
ns  
–40  
85  
tR  
tF  
Input rise time  
Input fall time  
20  
20  
ns  
Table 14. DC Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
High-level input voltage  
2.0  
VCC + 0.3  
V
(5)  
VIL  
Low-level input voltage  
5.0-V mode high-level TTL output voltage IOH = –4 mA DC (6)  
–0.3  
2.4  
0.8  
V
V
V
VOH  
3.3-V mode high-level CMOS output  
voltage  
IOH = –0.1 mA DC (6)  
VCC – 0.2  
VOL  
II  
Low-level output voltage  
Input leakage current  
IOL = 4 mA DC (6)  
VI = VCC or ground  
VO = VCC or ground  
0.4  
10  
10  
V
–10  
–10  
µA  
µA  
IOZ  
Tri-state output off-state current  
30  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 15. EPC1213, EPC1064 & EPC1064V Device I Supply Current Values  
CC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
100  
10  
200  
50  
µA  
VCC supply current  
mA  
(during configuration)  
Table 16. EPC2 Device I Supply Current Values  
CC  
Symbol  
Parameter  
Conditions  
Min  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
VCC = 5.0 V or 3.3 V  
50  
18  
100  
50  
µA  
VCC supply current (during configuration) VCC = 5.0 V or 3.3 V  
mA  
Table 17. EPC1 Device I Supply Current Values  
CC  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
50  
30  
10  
100  
50  
µA  
mA  
mA  
VCC supply current (during configuration) VCC = 5.0 V  
VCC = 3.3 V  
16.5  
Table 18. EPC1441 Device I Supply Current Values  
CC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
ICC1  
VCC supply current (standby)  
30  
15  
5
60  
30  
10  
µA  
mA  
mA  
VCC supply current (during configuration) VCC = 5.0 V  
VCC supply current (during configuration) VCC = 3.3 V  
Table 19. Capacitance  
Note (7)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
CIN  
Input pin capacitance  
Output pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
10  
10  
pF  
pF  
COUT  
Notes to Tables 12 19:  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for  
input currents less than 100 mA and periods shorter than 20 ns under no-load conditions.  
(3) Numbers in parentheses are for industrial-temperature-range devices.  
(4) Maximum VCC rise time is 100 ms.  
(5) Certain EPC2 pins may be driven to 5.75 V when operated with a 3.3-V VCC. See Table 9 on page 26.  
(6) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL or  
CMOS output current.  
(7) Capacitance is sample-tested only.  
Altera Corporation  
31  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Tables 20 through 24 show the device configuration parameters for  
APEX II, APEX 20K, Mercury, ACEX 1K, or FLEX devices.  
Table 20. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC2 Devices at 5.0-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
200  
50  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
20  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
30  
30  
50  
50  
10  
75  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
75  
ns  
fCK  
Clock frequency  
6.7  
30  
30  
16.7  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
20  
10  
20  
20  
25  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Table 21. ACEX 1K, APEX 20K, APEX II, FLEX 10K & Mercury Device Configuration Parameters Using EPC2  
Devices at 3.3-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
300  
80  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
30  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
40  
40  
65  
65  
100  
tMCL  
DCLKlow time for the first device in the  
100  
ns  
configuration chain  
fCK  
Clock frequency  
5
7.7  
12.5  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
40  
40  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
25  
15  
30  
30  
30  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
32  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Table 22. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC1 &  
EPC1441 Devices at 5.0-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
200  
50  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
20  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
30  
30  
50  
50  
10  
75  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
75  
ns  
fCK  
Clock frequency  
6.7  
30  
30  
16.7  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
20  
10  
20  
20  
25  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Table 23. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC1 &  
EPC1441 Devices at 3.3-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
300  
80  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
30  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
50  
50  
125  
125  
4
250  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
250  
10  
ns  
fCK  
Clock frequency  
2
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
50  
50  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
25  
15  
30  
30  
30  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Altera Corporation  
33  
Configuration Devices for SRAM-based LUT Devices Data Sheet  
Table 24. FLEX 8000 Device Configuration Parameters Using EPC1, EPC1441, EPC1213, EPC1064 &  
EPC1064V Devices  
Symbol  
Parameter  
Conditions  
EPC1064V EPC1064 EPC1  
EPC1213 EPC1441  
Unit  
Min Max Min Max Min Max  
tOEZX  
tCSZX  
tCSXZ  
tCSS  
tCSH  
tDSU  
tDH  
OEhigh to DATAoutput enabled  
nCSlow to DATAoutput enabled  
nCShigh to DATAoutput disabled  
nCSlow setup time to first DCLKrising edge  
nCSlow hold time after DCLKrising edge  
Data setup time before rising edge on DCLK  
Data hold time after rising edge on DCLK  
DCLKto DATAout delay  
75  
75  
75  
50  
50  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
150  
0
100  
0
50  
0
75  
0
50  
0
50  
0
tCO  
100  
4
75  
6
75  
8
tCK  
Clock period  
240  
160  
100  
fCK  
Clock frequency  
tCL  
DCLKlow time  
120  
120  
80  
80  
50  
50  
tCH  
DCLKhigh time  
tXZ  
OElow or nCShigh to DATAoutput disabled  
OEpulse width to guarantee counter reset  
Last DCLK+ 1 to nCASClow delay  
Last DCLK+ 1 to DATAtri-state delay  
nCShigh to nCASChigh delay  
75  
50  
50  
tOEW  
tCASC  
tCKXZ  
tCEOUT  
150  
100  
100  
90  
75  
60  
50  
50  
50  
150  
100  
100  
The information contained in the Configuration Devices for SRAM-Based  
LUT Devices Data Sheet version 12.1 supersedes information published in  
pervious versions. The following changes were made to the Configuration  
Devices for SRAM-Based LUT Devices Data Sheet version 12.1:  
Revision  
History  
Updated Table 2.  
Updated notes to Figures 4, 5, and 6.  
Added APEX 20KE device diagrams to Figures 4 and 6.  
34  
Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
Notes:  
Altera Corporation  
35  
Configuration Devices for SRAM-Based LUT Devices Data Sheet  
®
101 Innovation Drive  
Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the  
San Jose, CA 95134  
(408) 544-7000  
http://www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
Customer Marketing:  
(408) 544-7104  
Literature Services:  
lit_req@altera.com  
stylized Altera logo, specific device designations, and all other words and logos that are identified as  
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera  
Corporation in the U.S. and other countries. All other product or service names are the property of their  
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending  
applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products  
to current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes  
to any products and services at any time without notice. Altera assumes no responsibility or  
liability arising out of the application or use of any information, product, or service described  
herein except as expressly agreed to in writing by Altera Corporation. Altera customers are  
advised to obtain the latest version of device specifications before relying on any published  
information and before placing orders for products or services.  
36  
Altera Corporation  
GO  
Advanced Help  
Results for: EPC  
33 part numbers found and 4 obsolete part numbers found  
Configuration Device Family  
Configuration Device Datasheet  
Part Number Format  
Configuration Device Literature  
Buying Altera Devices  
Part Number  
Device  
Pins & Package Temperature Speeds Options  
EPC1LC20  
EPC1  
Pinout is in  
datasheet  
20 pin PLCC  
20 pin PLCC  
8 pin PDIP  
Commercial  
( 0 to 85°C)  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
EPC1LI20  
EPC1PC8  
EPC1PI8  
EPC1  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1  
Pinout is in  
datasheet  
8 pin PDIP  
Industrial  
( -40 to 100°C)  
EPC2LC20  
EPC2LI20  
EPC2TC32  
EPC2TI32  
EPC2  
Pinout is in  
datasheet  
20 pin PLCC  
20 pin PLCC  
32 pin TQFP  
32 pin TQFP  
Commercial  
( 0 to 85°C)  
EPC2  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC2  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC2  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1064VLC20 EPC1064V 20 pin PLCC  
Commercial  
( 0 to 85°C)  
Pinout is in  
datasheet  
EPC1064VPC8 EPC1064V 8 pin PDIP  
Commercial  
( 0 to 85°C)  
Pinout is in  
datasheet  
EPC1064VTC32 EPC1064V 32 pin TQFP  
Commercial  
( 0 to 85°C)  
Pinout is in  
datasheet  
EPC1064LC20  
EPC1064LI20  
EPC1064 20 pin PLCC  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1064 20 pin PLCC  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1064PC8  
EPC1064PI8  
EPC1064TC32  
EPC1213LC20  
EPC1213LI20  
EPC1213PC8  
EPC1213PI8  
EPC1441LC20  
EPC1441LI20  
EPC1441PC8  
EPC1441PI8  
EPC1441TC32  
EPC1441TI32  
EPC1064 8 pin PDIP  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
EPC1064 8 pin PDIP  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1064 32 pin TQFP  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1213 20 pin PLCC  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1213 20 pin PLCC  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1213 8 pin PDIP  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1213 8 pin PDIP  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1441 20 pin PLCC  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1441 20 pin PLCC  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1441 8 pin PDIP  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1441 8 pin PDIP  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
EPC1441 32 pin TQFP  
Pinout is in  
datasheet  
Commercial  
( 0 to 85°C)  
EPC1441 32 pin TQFP  
Pinout is in  
datasheet  
Industrial  
( -40 to 100°C)  
Enhanced Configuration Device Family  
Enhanced Configuration Device Datasheet Configuration Device Literature  
Part Number Format Buying Altera Devices  
Part Number Device Pins & Package Temperature Speeds Options  
EPC4QC100  
EPC4QI100  
EPC8QC100  
EPC4 100 pin PQFP  
Pinout  
Commercial  
( 0 to 85°C)  
None  
None  
None  
None  
None  
None  
EPC4 100 pin PQFP  
Pinout  
Industrial  
( -40 to 100°C)  
EPC8 100 pin PQFP  
Pinout  
Commercial  
( 0 to 85°C)  
EPC8QI100  
EPC8 100 pin PQFP  
Pinout  
Industrial  
( -40 to 100°C)  
None  
None  
None  
None  
None  
None  
None  
None  
EPC16QC100 EPC16 100 pin PQFP  
Pinout  
Commercial  
( 0 to 85°C)  
EPC16QI100 EPC16 100 pin PQFP  
Pinout  
Industrial  
( -40 to 100°C)  
EPC16UC88 EPC16 88 pin UBGA  
Pinout  
Commercial  
( 0 to 85°C)  
Your search for EPC found 4 obsolete part numbers.  
Obsolete Part Numbers  
Part Number Format  
Buying Altera Devices  
Last Order  
Date  
Last Ship  
Date  
Part Number  
Replacement  
Notes  
EP22V10EPC-10  
6/28/96  
6/28/96  
10/31/96  
9/30/96  
9/30/96  
12/31/96  
No direct  
replacement  
PDN 9516  
EP22V10EPC-15  
No direct  
replacement  
PDN 9516  
EPC1213DM883B  
(5962-9474501MPA)  
No direct  
replacement  
"PDN 9513  
PDN 9517"  
EPC1213DM8  
10/31/96  
12/31/96  
No direct  
replacement  
"PDN 9513  
PDN 9517 "  
search  
EPC  
Contact Us  
webmaster@altera.com  
Advanced Help  
Please Give Us Feedback  
Sign Up for E-mail Updates  
Home | Products | Support | System Solutions | Education & Events | Buy On-Line | Corporate  
Devices | Design Software | Intellectual Property | Design Services | Dev. Kits/Cables | Literature  
Copyright © 1995 - 2002 Altera Corporation, 101 Innovation Drive, San Jose, California 95134, USA.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY