LM4050BEM3-10/NOPB [ROCHESTER]

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 10V, PDSO3, 3 X 1.30 MM, PLASTIC, TO-236-AB, SOT-23, 3 PIN;
LM4050BEM3-10/NOPB
型号: LM4050BEM3-10/NOPB
厂家: Rochester Electronics    Rochester Electronics
描述:

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 10V, PDSO3, 3 X 1.30 MM, PLASTIC, TO-236-AB, SOT-23, 3 PIN

光电二极管 输出元件
文件: 总16页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2004  
LM4050  
Precision Micropower Shunt Voltage Reference  
n Tolerates capacitive loads  
n Fixed reverse breakdown voltages of 2.048V, 2.500V,  
4.096V, 5.000V, 8.192V, and 10.000V  
General Description  
Ideal for space critical applications, the LM4050 precision  
voltage reference is available in the sub-miniature (3 mm x  
1.3 mm) SOT-23 surface-mount package. The LM4050’s de-  
sign eliminates the need for an external stabilizing capacitor  
while ensuring stability with any capacitive load, thus making  
the LM4050 easy to use. Further reducing design effort is the  
availability of several fixed reverse breakdown voltages:  
2.048V, 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V. The  
minimum operating current increases from 60 µA for the  
LM4050-2.0 to 100 µA for the LM4050-10.0. All versions  
have a maximum operating current of 15 mA.  
Key Specifications (LM4050-2.5)  
j
Output voltage tolerance  
(A grade, 25˚C)  
0.1% (max)  
j
Low output noise  
(10 Hz to 10 kHz)  
41 µVrms(typ)  
60 µA to 15 mA  
−40˚C to +85˚C  
−40˚C to +125˚C  
50 ppm/˚C (max)  
j
j
j
j
Wide operating current range  
Industrial temperature range  
Extended temperature range  
Low temperature coefficient  
The LM4050 utilizes fuse and zener-zap reverse breakdown  
voltage trim during wafer sort to ensure that the prime parts  
have an accuracy of better than 0.1% (A grade) at 25˚C.  
Bandgap reference temperature drift curvature correction  
and low dynamic impedance ensure stable reverse break-  
down voltage accuracy over a wide range of operating tem-  
peratures and currents.  
Applications  
n Portable, Battery-Powered Equipment  
n Data Acquisition Systems  
n Instrumentation  
All grades and voltage options of the LM4050 are available  
in both an industrial temperature range (−40˚C and +85˚C)  
and an extended temperature range (−40˚C and +125˚C).  
n Process Control  
n Energy Management  
n Product Testing  
n Automotive  
Features  
n Small packages: SOT-23  
n No output capacitor required  
n Precision Audio Components  
Connection Diagram  
SOT-23  
10104501  
*This pin must be left floating or connected to pin 2.  
Top View  
See NS Package Number MF03A  
© 2004 National Semiconductor Corporation  
DS101045  
www.national.com  
Ordering Information  
Industrial Temperature Range (−40˚C to +85˚C)  
Reverse Breakdown  
Voltage Tolerance at 25˚C and Average  
Reverse Breakdown  
LM4050 Supplied as 1000 Units,  
Tape and Reel  
LM4050 Supplied as 3000 Units,  
Tape and Reel  
Voltage Temperature Coefficient  
LM4050AIM3-2.0  
LM4050AIM3-2.5  
LM4050AIM3-4.1  
LM4050AIM3-5.0  
LM4050AIM3-8.2  
LM4050AIM3-10  
LM4050BIM3-2.0  
LM4050BIM3-2.5  
LM4050BIM3-4.1  
LM4050BIM3-5.0  
LM4050BIM3-8.2  
LM4050BIM3-10  
LM4050CIM3-2.0  
LM4050CIM3-2.5  
LM4050CIM3-4.1  
LM4050CIM3-5.0  
LM4050CIM3-8.2  
LM4050CIM3-10  
LM4050AIM3X-2.0  
LM4050AIM3X-2.5  
LM4050AIM3X-4.1  
LM4050AIM3X-5.0  
LM4050AIM3X-8.2  
LM4050AIM3X-10  
LM4050BIM3X-2.0  
LM4050BIM3X-2.5  
LM4050BIM3X-4.1  
LM4050BIM3X-5.0  
LM4050BIM3X-8.2  
LM4050BIM3X-10  
LM4050CIM3X-2.0  
LM4050CIM3X-2.5  
LM4050CIM3X-4.1  
LM4050CIM3X-5.0  
LM4050CIM3X-8.2  
LM4050CIM3X-10  
0.1%, 50 ppm/˚C max (A grade)  
0.2%, 50 ppm/˚C max (B grade)  
0.5%, 50 ppm/˚C max (C grade)  
Extended Temperature Range (−40˚C to +125˚C)  
Reverse Breakdown  
Voltage Tolerance at 25˚C and Average  
Reverse Breakdown  
LM4050 Supplied as 1000 Units,  
Tape and Reel  
LM4050 Supplied as 3000 Units,  
Tape and Reel  
Voltage Temperature Coefficient  
LM4050AEM3-2.0  
LM4050AEM3-2.5  
LM4050AEM3-4.1  
LM4050AEM3-5.0  
LM4050AEM3-8.2  
LM4050AEM3-10  
LM4050BEM3-2.0  
LM4050BEM3-2.5  
LM4050BEM3-4.1  
LM4050BEM3-5.0  
LM4050BEM3-8.2  
LM4050BEM3-10  
LM4050CEM3-2.0  
LM4050CEM3-2.5  
LM4050CEM3-4.1  
LM4050CEM3-5.0  
LM4050CEM3-8.2  
LM4050CEM3-10  
LM4050AEM3X-2.0  
LM4050AEM3X-2.5  
LM4050AEM3X-4.1  
LM4050AEM3X-5.0  
LM4050AEM3X-8.2  
LM4050AEM3X-10  
LM4050BEM3X-2.0  
LM4050BEM3X-2.5  
LM4050BEM3X-4.1  
LM4050BEM3X-5.0  
LM4050BEM3X-8.2  
LM4050BEM3X-10  
LM4050CEM3X-2.0  
LM4050CEM3X-2.5  
LM4050CEM3X-4.1  
LM4050CEM3X-5.0  
LM4050CEM3X-8.2  
LM4050CEM3X-10  
0.1%, 50 ppm/˚C max (A grade)  
0.2%, 50 ppm/˚C max (B grade)  
0.5%, 50 ppm/˚C max (C grade)  
www.national.com  
2
SOT-23 Package Marking Information  
Only three fields of marking are possible on the SOT-23’s small surface. This table gives the meaning of the three fields.  
Part Marking  
RCA  
RDA  
REA  
Field Definition  
First Field:  
R = Reference  
Second Field:  
RFA  
N = 2.048V Voltage Option  
C = 2.500V Voltage Option  
D = 4.096V Voltage Option  
E = 5.000V Voltage Option  
F = 8.192V Voltage Option  
G = 10.000V Voltage Option  
RGA  
RNA  
RCB  
RDB  
REB  
RFB  
RGB  
RNB  
RCC  
RDC  
REC  
RFC  
Third Field:  
A–C = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance  
A = 0.1%, B = 0.2%, C = +0.5%,  
RGC  
RNC  
3
www.national.com  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Temperature Range  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
(Tmin TA Tmax)  
Industrial Temperature  
Range  
Extended temperature  
−40˚C TA +85˚C  
−40˚C TA +125˚C  
Reverse Current  
20 mA  
10 mA  
Forward Current  
Range  
Power Dissipation (TA = 25˚C) (Note 2)  
M3 Package  
Reverse Current  
LM4050-2.0  
LM4050-2.5  
LM4050-4.1  
LM4050-5.0  
LM4050-8.2  
LM4050-10.0  
280 mW  
60 µA to 15 mA  
60 µA to 15 mA  
68 µA to 15 mA  
74 µA to 15 mA  
91 µA to 15 mA  
100 µA to 15 mA  
Storage Temperature  
Lead Temperature  
−65˚C to +150˚C  
M3 Package  
Vapor phase (60 seconds)  
Infrared (15 seconds)  
ESD Susceptibility  
+215˚C  
+220˚C  
Human Body Model (Note 3)  
Machine Model (Note 3)  
2 kV  
200V  
See AN-450 “Surface Mounting Methods and Their Effect  
on Product Reliability” for other methods of soldering  
surface mount devices.  
LM4050-2.0  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1%, 0.2%, and 0.5% respectively.  
LM4050AIM3  
LM4050BIM3  
LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
(Note 5)  
Limits  
(Note 5)  
Limits  
(Note 5)  
Reverse Breakdown Voltage  
IR = 100 µA  
2.048  
41  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 100 µA  
2.048  
9.0112  
12.288  
4.096  
10.24  
Industrial Temp. Range  
Extended Temp. Range  
11.4688  
14.7456  
14.7456  
17.2032  
IRMIN  
Minimum Operating Current  
60  
60  
60  
µA (max)  
µA (max)  
ppm/˚C  
ppm/˚C  
ppm/˚C (max)  
mV  
65  
65  
65  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature  
IR = 10 mA  
20  
15  
IR = 1 mA  
Coefficient (Note 6)  
IR = 100 µA  
IRMIN IR 1 mA  
15  
50  
50  
50  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
0.3  
0.8  
0.8  
0.8  
mV (max)  
mV (max)  
mV  
1.2  
1.2  
1.2  
1 mA IR 15 mA  
2.3  
6.0  
6.0  
6.0  
mV (max)  
mV (max)  
8.0  
8.0  
8.0  
ZR  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1 mA, f = 120 Hz, IAC  
= 0.1 IR  
0.3  
34  
eN  
IR = 100 µA  
µVrms  
10 Hz f 10 kHz  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000 hrs  
T = 25˚C 0.1˚C  
IR = 100 µA  
120  
0.7  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
www.national.com  
4
LM4050-2.5  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1%, 0.2%, and 0.5% respectively.  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Breakdown Voltage  
IR = 100 µA  
2.500  
41  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 100 µA  
2.5  
11  
15  
5.0  
14  
18  
13  
21  
25  
Industrial Temp. Range  
Extended Temp. Range  
IRMIN  
Minimum Operating Current  
60  
60  
60  
µA (max)  
µA (max)  
ppm/˚C  
ppm/˚C  
ppm/˚C (max)  
mV  
65  
65  
65  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature Coefficient  
(Note 6)  
IR = 10 mA  
20  
15  
IR = 1 mA  
IR = 100 µA  
IRMIN IR 1 mA  
15  
50  
50  
50  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
0.3  
0.8  
0.8  
0.8  
mV (max)  
mV (max)  
mV  
1.2  
1.2  
1.2  
1 mA IR 15 mA  
2.3  
6.0  
6.0  
6.0  
mV (max)  
mV (max)  
8.0  
8.0  
8.0  
ZR  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1 mA, f = 120 Hz, IAC  
= 0.1 IR  
0.3  
41  
eN  
IR = 100 µA  
µVrms  
10 Hz f 10 kHz  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000 hrs  
T = 25˚C 0.1˚C  
IR = 100 µA  
120  
0.7  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
LM4050-4.1  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1%, 0.2%, and 0.5% respectively.  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Breakdown Voltage  
IR = 100 µA  
4.096  
52  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 100 µA  
4.1  
18  
25  
8.2  
22  
29  
21  
34  
41  
Industrial Temp. Range  
Extended Temp. Range  
IRMIN  
Minimum Operating Current  
68  
73  
78  
68  
73  
78  
68  
73  
78  
µA (max)  
µA (max)  
µA (max)  
ppm/˚C  
Industrial Temp. Range  
Extended Temp. Range  
IR = 10 mA  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature Coefficient  
(Note 6)  
30  
20  
IR = 1 mA  
ppm/˚C  
IR = 100 µA  
20  
50  
50  
50  
ppm/˚C (max)  
mV  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
IRMIN IR 1 mA  
0.2  
0.9  
0.9  
0.9  
mV (max)  
mV (max)  
mV  
1.2  
1.2  
1.2  
1 mA IR 15 mA  
2.0  
7.0  
7.0  
7.0  
mV (max)  
mV (max)  
10.0  
10.0  
10.0  
5
www.national.com  
LM4050-4.1  
Electrical Characteristics (Continued)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1%, 0.2%, and 0.5% respectively.  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
ZR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Dynamic Impedance  
IR = 1 mA, f = 120 Hz,  
IAC = 0.1 IR  
0.5  
93  
eN  
Wideband Noise  
IR = 100 µA  
µVrms  
10 Hz f 10 kHz  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000 hrs  
T = 25˚C 0.1˚C  
IR = 100 µA  
120  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
1.148  
LM4050-5.0  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1%, 0.2% and 0.5% respectively.  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Breakdown Voltage  
IR = 100 µA  
5.000  
56  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 100 µA  
5.0  
22  
30  
10  
27  
35  
25  
42  
50  
Industrial Temp. Range  
Extended Temp. Range  
IRMIN  
Minimum Operating Current  
74  
80  
90  
74  
80  
90  
74  
80  
90  
µA (max)  
µA (max)  
µA (max)  
ppm/˚C  
ppm/˚C  
ppm/˚C (max)  
mV  
Industrial Temp. Range  
Extended Temp. Range  
IR = 10 mA  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature Coefficient  
(Note 6)  
30  
20  
IR = 1 mA  
IR = 100 µA  
20  
50  
50  
50  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
IRMIN IR 1 mA  
0.2  
1.0  
1.0  
1.0  
mV (max)  
mV (max)  
mV  
1.4  
1.4  
1.4  
1 mA IR 15 mA  
2.0  
8.0  
8.0  
8.0  
mV (max)  
mV (max)  
12.0  
12.0  
12.0  
ZR  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1 mA, f = 120 Hz,  
IAC = 0.1 IR  
0.5  
93  
(max)  
µVrms  
eN  
IR = 100 µA  
10 Hz f 10 kHz  
t = 1000 hrs  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
T = 25˚C 0.1˚C  
IR = 100 µA  
120  
1.4  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
www.national.com  
6
LM4050-8.2  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1% and 0.2% and 0.5% respectively.  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
Typical  
(Note 4)  
LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Breakdown Voltage  
IR = 150 µA  
8.192  
74  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 150 µA  
8.2  
35  
49  
16  
43  
57  
41  
68  
82  
Industrial Temp. Range  
Extended Temp. Range  
IRMIN  
Minimum Operating Current  
91  
95  
91  
95  
91  
95  
µA (max)  
µA (max)  
µA (max)  
ppm/˚C  
ppm/˚C  
ppm/˚C (max)  
mV  
Industrial Temp. Range  
Extended Temp. Range  
IR = 10 mA  
100  
100  
100  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature Coefficient  
(Note 6)  
40  
20  
IR = 1 mA  
IR = 150 µA  
20  
50  
50  
50  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
IRMIN IR 1 mA  
0.6  
1.3  
1.3  
1.3  
mV (max)  
mV (max)  
mV  
2.5  
2.5  
2.5  
1 mA IR 15 mA  
7.0  
10.0  
10.0  
10.0  
mV (max)  
mV (max)  
18.0  
18.0  
18.0  
ZR  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1 mA, f = 120 Hz,  
IAC = 0.1 IR  
0.6  
eN  
IR = 150 µA  
150  
µVrms  
10 Hz f 10 kHz  
t = 1000 hrs  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
T = 25˚C 0.1˚C  
IR = 150 µA  
120  
2.3  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
7
www.national.com  
LM4050-10.0  
Electrical Characteristics  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A, B and C designate initial  
Reverse Breakdown Voltage tolerances of 0.1% and 0.2% and 0.5% respectively.  
Typical  
LM4050AIM3 LM4050BIM3 LM4050CIM3  
(Note 4) LM4050AEM3 LM4050BEM3 LM4050CEM3  
Units  
(Limit)  
Symbol  
VR  
Parameter  
Conditions  
Limits  
Limits  
(Note 5)  
Limits  
(Note 5)  
(Note 5)  
Reverse Breakdown Voltage  
IR = 150 µA  
10.00  
80  
V
mV (max)  
mV (max)  
mV (max)  
µA  
Reverse Breakdown Voltage  
Tolerance (Note 6)  
IR = 150 µA  
10  
43  
60  
20  
53  
70  
50  
83  
Industrial Temp. Range  
Extended Temp. Range  
100  
IRMIN  
Minimum Operating Current  
100  
103  
110  
100  
103  
110  
100  
103  
110  
µA (max)  
µA (max)  
µA (max)  
ppm/˚C  
ppm/˚C  
ppm/˚C (max)  
mV  
Industrial Temp. Range  
Extended Temp. Range  
IR = 10 mA  
VR/T  
VR/IR  
Average Reverse Breakdown  
Voltage Temperature Coefficient  
(Note 6)  
40  
20  
IR = 1 mA  
IR = 150 µA  
20  
50  
50  
50  
Reverse Breakdown Voltage  
Change with Operating Current  
Change (Note 7)  
IRMIN IR 1 mA  
0.8  
1.5  
1.5  
1.5  
mV (max)  
mV (max)  
mV  
3.5  
3.5  
3.5  
1 mA IR 15 mA  
8.0  
12.0  
12.0  
12.0  
mV (max)  
mV (max)  
23.0  
23.0  
23.0  
ZR  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1 mA, f = 120 Hz,  
IAC = 0.1 IR  
0.7  
eN  
IR = 150 µA  
150  
µVrms  
10 Hz f 10 kHz  
t = 1000 hrs  
VR  
Reverse Breakdown Voltage  
Long Term Stability  
T = 25˚C 0.1˚C  
IR = 150 µA  
120  
2.8  
ppm  
mV  
VHYST  
Thermal Hysteresis  
(Note 8)  
T = −40˚C to 125˚C  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed  
specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test  
conditions.  
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T  
(maximum junction temperature), θ (junction to  
JA  
Jmax  
ambient thermal resistance), and T (ambient temperature). The maximum allowable power dissipation at any temperature is PD  
= (T − T )/θ or the  
Jmax A JA  
A
max  
number given in the Absolute Maximum Ratings, whichever is lower. For the LM4050, T  
is 326˚C/W for the SOT-23 package.  
= 125˚C, and the typical thermal resistance (θ ), when board mounted,  
Jmax  
JA  
Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin. The machine model is a 200 pF capacitor discharged  
directly into each pin.  
Note 4: Typicals are at T = 25˚C and represent most likely parametric norm.  
J
Note 5: Limits are 100% production tested at 25˚C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods.  
The limits are used to calculate National’s AOQL.  
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance  
[(V /T)(maxT)(V )]. Where, V /T is the V temperature coefficient, maxT is the maximum difference in temperature from the reference point of 25˚C to  
R
R
R
R
T
or T  
, and V is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where  
MIN  
MAX R  
maxT = 65˚C is shown below:  
A-grade: 0.425% = 0.1% 50 ppm/˚C x 65˚C  
B-grade: 0.525% = 0.2% 50 ppm/˚C x 65˚C  
C-grade: 0.825% = 0.5% 50 ppm/˚C x 65˚C  
Therefore, as an example, the A-grade LM4050-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of 2.5V x 0.425% = 11 mV.  
Note 7: Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into  
account separately.  
Note 8: Thermal hysteresis is defined as the difference in voltage measured at +25˚C after cycling to temperature -40˚C and the 25˚C measurement after cycling  
to temperature +125˚C.  
www.national.com  
8
Typical Performance Characteristics  
Output Impedance vs Frequency  
Output Impedance vs Frequency  
10104510  
10104511  
Reverse Characteristics and  
Minimum Operating Current  
Noise Voltage vs Frequency  
10104512  
10104513  
Thermal Hysteresis  
10104529  
9
www.national.com  
Start-Up Characteristics  
LM4050-10.0  
RS = 30k  
10104505  
LM4050-2.5  
RS = 30k  
10104509  
10104507  
LM4050-5.0  
RS = 30k  
10104508  
www.national.com  
10  
Functional Block Diagram  
10104514  
temperature +125˚C and again measured at 25˚C. The re-  
sulting VOUT delta shift between the 25˚C measurements is  
thermal hysteresis. Thermal hysteresis is common in preci-  
sion references and is induced by thermal-mechanical pack-  
age stress. Changes in environmental storage temperature,  
operating temperature and board mounting temperature are  
all factors that can contribute to thermal hysteresis.  
Applications Information  
The LM4050 is a precision micro-power curvature-corrected  
bandgap shunt voltage reference. For space critical applica-  
tions, the LM4050 is available in the sub-miniature SOT-23  
surface-mount package. The LM4050 has been designed for  
stable operation without the need of an external capacitor  
connected between the “+” pin and the “−” pin. If, however, a  
bypass capacitor is used, the LM4050 remains stable. Re-  
ducing design effort is the availability of several fixed reverse  
breakdown voltages: 2.048V, 2.500V, 4.096V, 5.000V,  
8.192V, and 10.000V. The minimum operating current in-  
creases from 60 µA for the LM4050-2.0 to 100 µA for the  
LM4050-10.0. All versions have a maximum operating cur-  
rent of 15 mA.  
In a conventional shunt regulator application (Figure 1) , an  
external series resistor (RS) is connected between the sup-  
ply voltage and the LM4050. RS determines the current that  
flows through the load (IL) and the LM4050 (IQ). Since load  
current and supply voltage may vary, RS should be small  
enough to supply at least the maximum guaranteed IRMIN  
(spec. table) to the LM4050 even when the supply voltage is  
at its minimum and the load current is at its maximum value.  
When the supply voltage is at its maximum and IL is at its  
minimum, RS should be large enough so that the current  
flowing through the LM4050 is less than 15 mA.  
LM4050s in the SOT-23 packages have a parasitic Schottky  
diode between pin 2 (−) and pin 3 (Die attach interface  
contact). Therefore, pin 3 of the SOT-23 package must be  
left floating or connected to pin 2.  
RS is determined by the supply voltage, (VS), the load and  
operating current, (IL and IQ), and the LM4050’s reverse  
breakdown voltage, VR.  
The 4.096V version allows single +5V 12-bit ADCs or DACs  
to operate with an LSB equal to 1 mV. For 12-bit ADCs or  
DACs that operate on supplies of 10V or greater, the 8.192V  
version gives 2 mV per LSB.  
The typical thermal hysteresis specification is defined as the  
change in +25˚C voltage measured after thermal cycling.  
The device is thermal cycled to temperature -40˚C and then  
measured at 25˚C. Next the device is thermal cycled to  
Typical Applications  
10104515  
FIGURE 1. Shunt Regulator  
11  
www.national.com  
Typical Applications (Continued)  
10104516  
*
* Ceramic monolithic  
*Tantalum  
FIGURE 2. LM4050-4.1’s Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB  
www.national.com  
12  
Typical Applications (Continued)  
10104517  
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage.  
Nominal clamping voltage is 11.5V (LM4050’s reverse breakdown voltage +2 diode VF).  
10104518  
FIGURE 4. Protecting Op Amp input. The bounding voltage is 4V with the LM4050-2.5  
(LM4050’s reverse breakdown voltage + 3 diode VF).  
13  
www.national.com  
Typical Applications (Continued)  
10104519  
FIGURE 5. Precision 4.096V Reference  
10104521  
10104522  
FIGURE 6. Precision 1 µA to 1 mA Current Sources  
www.national.com  
14  
Physical Dimensions inches (millimeters) unless otherwise noted  
Plastic Surface Mount Package (M3)  
NS Package Number MF03A  
(JEDEC Registration TO-236AB)  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification  
(CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY