MAX1835EUT-T [ROCHESTER]

1 A SWITCHING REGULATOR, PDSO6, MO-178AB, SOT-23, 6 PIN;
MAX1835EUT-T
型号: MAX1835EUT-T
厂家: Rochester Electronics    Rochester Electronics
描述:

1 A SWITCHING REGULATOR, PDSO6, MO-178AB, SOT-23, 6 PIN

信息通信管理 开关 光电二极管
文件: 总15页 (文件大小:1141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1802; Rev 2; 4/05  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
General Description  
Features  
The MAX1832–MAX1835 are high-efficiency step-up  
converters with complete reverse battery protection that  
protects the device and the load when the battery is  
reversed. They feature a built-in synchronous rectifier,  
which allows for over 90% efficiency and reduces size  
and cost by eliminating the need for an external  
Schottky diode.  
Reverse Battery Protection for DC-DC Converter  
and Load  
Up to 90% Efficiency  
No External Diode or FETs Needed  
Internal Synchronous Rectifier  
4µA Quiescent Current  
These step-up converters operate from a +1.5V to +5.5V  
input voltage range and deliver up to 150mA of load cur-  
rent. The MAX1833EUT/MAX1835EUT (SOT devices)  
have a fixed 3.3V output voltage. The MAX1833ETT30  
(TDFN device) has a fixed 3.0V output voltage. The  
MAX1832/MAX1834 have adjustable outputs from +2V to  
+5.5V. In shutdown, the MAX1832/MAX1833 connect the  
battery input to the voltage output, allowing the input bat-  
tery to be used as a backup or real-time clock supply  
when the converter is off (see Selector Guide).  
<1µA Shutdown Supply Current  
+1.5V to +5.5V Input Voltage Range  
Accurate SHDN Threshold for Low-Battery Cutoff  
BATT Connected to OUT in Shutdown for Backup  
Power (MAX1832/MAX1833)  
RST Output (MAX1833/MAX1835)  
Fixed 3.3V/3.0V Output Voltage  
MAX183_EUT devices are available in a miniature 6-pin  
SOT23 package. The MAX1833ETT30 is available in a  
3mm 3mm thin DFN package. The MAX1832EVKIT is  
available to speed designs.  
Adjustable Output Voltage (MAX1832/MAX1834)  
Up to 150mA Output Current  
Tiny 6-Pin SOT23 Package  
Tiny 6-Pin Thin QFN Package (MAX1833ETT30)  
________________________Applications  
Ordering Information  
Medical Diagnostic Equipment  
Pagers  
Hand-Held Instruments  
Remote Wireless Transmitters  
Digital Cameras  
Cordless Phones  
Battery Backup  
PC Cards  
Local 3.3V or 5V Supply  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX1832EUT-T  
MAX1833EUT-T  
-40°C to +85°C  
-40°C to +85°C  
6 SOT23-6  
6 SOT23-6  
AAOT  
AAOU  
6 TDFN-6  
(T633-1)  
MAX1833ETT30-T  
-40°C to +85°C  
ABX  
MAX1834EUT-T  
MAX1835EUT-T  
-40°C to +85°C  
-40°C to +85°C  
6 SOT23-6  
6 SOT23-6  
AAOV  
AAOW  
Pin Configurations  
Selector Guide  
TOP VIEW  
OUTPUT  
VOLTAGE  
OUTPUT VOLTAGE  
IN SHUTDOWN  
PART  
4
6
5
SHDN  
BATT  
GND  
1
2
3
6
5
4
FB (RST)  
OUT  
MAX1832EUT-T  
MAX1833EUT-T  
MAX1833ETT30-T  
MAX1834EUT-T  
MAX1835EUT-T  
Adjustable  
Fixed 3.3V  
Fixed 3.0V  
Adjustable  
Fixed 3.3V  
V
V
V
BATT  
BATT  
BATT  
MAX1832  
MAX1834  
(MAX1833EUT)  
(MAX1835)  
MAX1833ETT  
V
V
- 0.7V  
- 0.7V  
BATT  
BATT  
LX  
2
1
3
SOT23  
TDFN  
3mm 3mm  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
ABSOLUTE MAXIMUM RATINGS  
BATT, LX to GND.........................................................-6V to +6V  
LX to OUT....................................................................-6V to +1V  
SHDN to GND..............................................-6V to (V  
OUT, FB, RST TO GND ............................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
+ 0.3V)  
OUT  
LX Current................................................................................1A  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 9.1mW/°C above +70°C) ...........727mW  
6-Pin 3mm 3mm TDFN (derate 18.2mW/°C  
above +70°C) .........................................................1454.5mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +1.5V, V  
= +3.3V, V = +2V, GND = 0, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise  
BATT A A  
SHDN  
OUT  
noted.) (Note 1)  
PARAMETER  
Output Range  
SYMBOL  
CONDITIONS  
MAX1832/MAX1834  
MIN  
2.0  
TYP  
MAX  
5.5  
UNITS  
V
V
V
OUT  
Battery Input Range  
V
1.5  
5.5  
BATT  
T = +25°C  
1.22  
1.24  
1.5  
A
Startup Battery Input Voltage  
V
R
LOAD  
= 2.6kΩ  
V
SU  
T
A
= -40°C to +85°C  
T = +25°C  
3.225  
3.208  
2.94  
3.290  
3.355  
3.372  
3.06  
A
MAX1833EUT/  
MAX1835EUT  
T
A
= -40°C to +85°C  
Output Voltage  
V
OUT  
V
T = +25°C  
A
3.0  
MAX1833ETT30  
T
A
= -40°C to +85°C  
2.925  
1.208  
1.204  
3.075  
1.248  
1.252  
20  
T = +25°C  
A
1.228  
MAX1832/  
MAX1834  
FB Trip Voltage  
V
V
FB  
T
A
= -40°C to +85°C  
MAX1832/  
MAX1834,  
T = +25°C  
A
3.5  
4.0  
0.4  
FB Input Bias Current  
I
nA  
FB  
T = -40°C to +85°C  
A
V
= +1.3V  
FB  
T = +25°C  
A
1.2  
1.5  
1.3  
1.6  
V
= +3.3V  
OUT  
N-Channel On-Resistance  
P-Channel On-Resistance  
P-Channel Catch-Diode Voltage  
R
R
V
NCH  
I
LX  
= 100mA  
T = -40°C to +85°C  
A
T = +25°C  
A
0.5  
V
= +3.3V  
OUT  
PCH  
I
LX  
= 100mA  
T = -40°C to +85°C  
A
I
= 100mA, PCH off, V  
= +3.5V,  
LX  
OUT  
0.73  
525  
V
V
= +1.3V  
FB  
T = +25°C  
435  
400  
3.5  
2
615  
650  
6.5  
34  
A
N-Channel Switch Current Limit  
Switch Maximum On-Time  
I
= +3.3V  
mA  
µs  
MAX  
OUT  
T
A
= -40°C to +85°C  
t
5
ON  
T = +25°C  
17  
A
Synchronous Rectifier Zero-  
Crossing Current  
V
= +3.3V  
= +3.5V,  
mA  
OUT  
OUT  
T
A
= -40°C to +85°C  
0
39  
T = +25°C  
A
2.5  
7.0  
8.0  
1
Quiescent Current into OUT  
(Note 2)  
V
V
µA  
µA  
= +1.3V  
FB  
T = -40°C to +85°C  
A
Shutdown Current into OUT  
V
= +3.5V, V  
= V = 0V  
0.05  
OUT  
SHDN  
FB  
2
_______________________________________________________________________________________  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1.5V, V  
= +3.3V, V = +2V, GND = 0, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise  
BATT A A  
SHDN  
OUT  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= V = V = -3V  
MIN  
TYP  
0
MAX  
UNITS  
Reverse Battery Current into  
OUT  
V
= 0, V  
10  
µA  
OUT  
OUT  
BATT  
SHDN  
LX  
T = +25°C  
A
1.8  
5.0  
6.0  
1
V
V
= +3.5V,  
= +1.3V  
Quiescent Current into BATT  
Shutdown Current into BATT  
µA  
µA  
µA  
V
FB  
T = -40°C to +85°C  
A
V
V
V
= +3.5V, V  
= +2V, V = 0  
SHDN  
0.001  
0.002  
OUT  
BATT  
Reverse Battery Current into  
BATT  
= 0, V  
= V = V = -3V  
SHDN LX  
10  
OUT  
BATT  
SHDN Logic Low  
= +1.5V to +5.5V  
0.3  
BATT  
T = +25°C  
1.185  
1.170  
1.228  
1.271  
1.286  
A
A
SHDN Threshold  
Rising edge  
V
T
= -40°C to +85°C  
SHDN Threshold Hysteresis  
SHDN Input Bias Current  
0.02  
13  
V
V
V
= +5.5V, V  
= +5.5V, T = +25°C  
100  
150  
nA  
µA  
OUT  
OUT  
SHDN  
A
SHDN Reverse Battery Current  
= 0, V  
= V  
= V = -3V  
52  
BATT  
SHDN  
LX  
MAX1833EUT/  
MAX1835EUT,  
falling edge  
T = +25°C  
2.830  
2.800  
2.980  
2.717  
3.110  
3.140  
A
T
A
= -40°C to +85°C  
RST Threshold  
V
T = +25°C  
A
2.580  
2.553  
2.836  
2.863  
0.2  
MAX1833ETT30  
T
= -40°C to +85°C  
A
RST Voltage Low  
I
= 1mA, V  
= +2.5V  
OUT  
V
RST  
T = +25°C  
0.1  
1
100  
A
RST Leakage Current  
V
V
= +5.5V  
nA  
RST  
T = -40°C to +85°C  
A
T = +25°C  
A
1
100  
10  
LX Leakage Current  
= +5.5V  
nA  
LX  
T = -40°C to +85°C  
A
100  
0.001  
150  
90  
LX Reverse Battery Current  
Maximum Load Current  
Efficiency  
V
V
V
= 0, V  
= V  
= V = -3V  
µA  
mA  
%
OUT  
BATT  
SHDN  
LX  
I
= +2V, V  
= +3.3V  
LOAD  
BATT  
BATT  
OUT  
OUT  
= +2V, V  
= +3.3V, I  
= 40mA  
LOAD  
Note 1: All units are 100% production tested at T =+25°C. Limits over the operating temperature range are guaranteed by design  
A
and not production tested.  
Note 2: Supply current into OUT. This current correlates directly to the actual battery-supply current, but is reduced in value accord-  
ing to the step-up ratio and efficiency.  
_______________________________________________________________________________________  
3
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
Typical Operating Characteristics  
(V  
= +3.3V, V  
= +2V, unless otherwise noted.) (Figure 1)  
OUT  
BATT  
EFFICIENCY vs. LOAD CURRENT  
(V = 5.0V)  
EFFICIENCY vs. LOAD CURRENT  
(V = 3.3V)  
EFFICIENCY vs. LOAD CURRENT  
(V = 2.5V)  
OUT  
OUT  
OUT  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
85  
80  
V = +2.0V  
BATT  
V
= +3.3V  
BATT  
V
= +2.7V  
BATT  
V
= +2.0V  
BATT  
V
= +2.7V  
BATT  
V
= +1.5V  
BATT  
V
= V  
BATT  
SHDN  
V
BATT  
= +1.5V  
75  
70  
R1 = 100kΩ  
V
= V  
BATT  
SHDN  
R2 = 100kΩ  
R1 = 309Ω  
R2 = 100kΩ  
MAX1834  
V
= +1.5V  
BATT  
C
C
= 20µF  
= 20µF  
IN  
OUT  
V
= V  
BATT  
SHDN  
MAX1835  
MAX1834  
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
10  
100  
I
I
LOAD  
LOAD  
I
(mA)  
LOAD  
INPUT CURRENT AND OUTPUT VOLTAGE  
vs. BATTERY VOLTAGE (SHUTDOWN, NO LOAD)  
MAXIMUM OUTPUT CURRENT  
vs. BATTERY VOLTAGE  
STARTUP BATTERY VOLTAGE  
vs. LOAD RESISTANCE  
MAX1832/35 toc06  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
250  
200  
150  
100  
50  
6
5
4
V
= V  
V
R
= 0  
= ∞  
SHDN  
BATT  
SHDN  
LOAD  
V
OUT  
= +2.5V  
MAX1833  
V
= +3.3V  
= +5.0V  
OUT  
V
OUT  
V
OUT  
= +5.0V  
3
2
1
V
OUT  
I
BATT  
V
OUT  
= +3.3V  
0
V
OUT  
= +2.5V  
-1  
0
-0.2  
1.2  
1
2
3
4
5
6
10  
100  
1k  
10k  
-6 -5 -4 -3 -2 -1  
V
0
1
(V)  
2
3
4
5
6
V
(V)  
R
()  
BATT  
LOAD  
BATT  
INPUT CURRENT AND OUTPUT VOLTAGE  
vs. BATTERY VOLTAGE (SHUTDOWN, LOADED)  
INPUT CURRENT AND OUTPUT VOLTAGE  
INPUT CURRENT AND OUTPUT VOLTAGE  
vs. BATTERY VOLTAGE (ON, NO LOAD)  
vs. BATTERY VOLTAGE (ON, LOADED)  
MAX1832/35 toc07  
MAX1832/35 toc08  
MAX1832/35 toc09  
300  
6
5
4
140  
120  
100  
80  
4.0  
3.5  
3.0  
400  
350  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
R
= 0  
= 22Ω  
R
= ∞  
SHDN  
LOAD  
R
= 22Ω  
LOAD  
LOAD  
V
OUT  
V
OUT  
250  
200  
150  
100  
50  
MAX1833  
300  
250  
200  
150  
2.5  
2.0  
1.5  
V
OUT  
3
2
1
60  
40  
I
BATT  
1.0  
0.5  
0
20  
I
100  
50  
0
BATT  
0
I
0
0
BATT  
-20  
0
-0.5  
-1  
-0.5  
-50  
-40  
-50  
-6 -5 -4 -3 -2 -1  
V
0
1
(V)  
2
3
4
5
6
-6 -5 -4 -3 -2 -1  
V
0
1
2
3
4
5
6
-6 -5 -4 -3 -2 -1  
V
0
1
2
3
4
5
6
(V)  
(V)  
BATT  
BATT  
BATT  
4
_______________________________________________________________________________________  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection in a SOT23-6  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, V  
= +2V, unless otherwise noted.) (Figure 1)  
OUT  
BATT  
ON/OFF RESPONSE  
LOAD TRANSIENT  
MAX1832/35 toc10  
MAX1832/35 toc11  
V
V
BATT  
OUT  
1V/div  
100mV/div  
V
I
OUT  
LOAD  
1V/div  
100mA/div  
0
2ms/div  
40µs/div  
V
= V  
= 2.0V, R  
= 22,  
R
V
= 22TO 200,  
SHDN  
BATT  
LOAD  
LOAD  
V
= 3.3V  
= +3.3V, V  
= +2.0V  
OUT  
OUT  
BATT  
SHUTDOWN RESPONSE  
LINE TRANSIENT  
MAX1832/35 toc13  
MAX1832/35 toc12  
V
V
SHDN  
BATT  
1V/div  
500mV/div  
0
V
OUT  
1V/div  
V
OUT  
50mV/div  
0
MAX1833  
40µs/div  
40µs/div  
= +3.3V,  
R
= 22, V  
= 3.3V, V  
= 2.0V  
BATT  
I
= 100mA, V  
LOAD  
BATT  
OUT  
OUT  
V
= +2.0V TO +2.5V  
BATT  
SWITCHING WAVEFORMS  
MAX1832/35 toc14  
V
LX  
500mA/div  
V
OUT  
100mV/div  
V
LX  
2V/div  
10µs/div  
= +3.3V, V  
I
= 40mA, V  
= +2.0V  
OUT  
OUT  
BATT  
_______________________________________________________________________________________  
5
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1832  
MAX1834  
MAX1833  
MAX1835  
Shutdown. A high logic level turns on the device. When SHD N is low the part is off,  
and the current into BATT is typically 0.1µA. For the MAX1832/MAX1833, the  
battery is connected to OUT through an internal PFET and the external inductor  
when SHD N is low. SHD N can be used for low-battery cutoff (1.228V threshold).  
See Low-Battery Cutoff. SHD N has reverse battery protection.  
1
1
SHDN  
2
3
2
3
BATT  
GND  
Battery Voltage Connection. BATT has reverse battery protection.  
Ground  
Inductor Connection. N-channel MOSFET switch drain and synchronous  
rectifier P-channel switch drain. LX has reverse battery protection.  
4
5
6
4
5
LX  
OUT  
FB  
Output Voltage. Bootstrapped supply for the device. Output sense point for  
MAX1833/MAX1835.  
MAX1832/MAX1834 Feedback Input. Set the output voltage through a  
resistor-divider network. See Setting the Output Voltage.  
MAX1833/MAX1835 Power-On Reset Open-Drain Output. RST pulls low when  
the output is 10% below the regulation point. If not used, connect to GND.  
6
RST  
RST is high impedance in shutdown.  
+1.5V TO +3.3V  
BATTERY  
+1.5V TO +5.0V  
BATTERY  
10µF  
10µH  
10µF  
10µH  
BATT  
OUTPUT  
+3.3V  
BATT  
OUTPUT  
+5.0V  
LX  
OUT  
RST  
LX  
OUT  
FB  
10µF  
R4  
220kΩ  
100kΩ  
R4  
220kΩ  
R2  
309kΩ  
MAX1833  
MAX1835  
MAX1832  
MAX1834  
POWER-ON  
RESET  
SHDN  
SHDN  
C1  
10nF  
C1  
R3  
1MΩ  
R3  
10nF  
R1  
100kΩ  
1MΩ  
GND  
GND  
Figure 1b. MAX1832/MAX1834 Typical Operating Circuit  
Figure 1a. MAX1833/MAX1835 Typical Operating Circuit  
6
_______________________________________________________________________________________  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
protecting the device and load (Figures 2 and 3).  
Detailed Description  
Previously, this level of protection required additional  
The MAX1832–MAX1835 compact, high-efficiency  
circuitry and reduced efficiency due to added compo-  
nents in the battery current path.  
step-up converters feature 4µA quiescent supply cur-  
rent to ensure the highest possible efficiency over a  
wide load range. With a minimum +1.5V input voltage,  
these devices are well suited for applications with two  
alkaline cells, two nickel-metal-hydride (NiMH) cells, or  
one lithium ion (Li+) cell. For the MAX1832 and  
MAX1833, the battery is connected to OUT through the  
inductor and an internal PFET when SHDN is low. This  
allows the input battery to be used as a backup or real-  
time clock supply when the converter is off by eliminat-  
ing the voltage drop across the PFET body diode.  
Applications Information  
Shutdown  
When SHDN is low, the device is off and no current is  
drawn from the battery. When SHDN is high, the device  
is on. If SHDN is driven from a logic-level output, the  
logic high (on) level should be referenced to VOUT to  
avoid intermittent turn on. If SHDN is not used at all,  
connect it to OUT. With SHDN connected to OUT, the  
MAX1834/MAX1835 startup voltage (1.65V) is slightly  
higher, due to the voltage across the PFET body diode.  
The SHDN pin has reverse battery protection.  
The MAX1832–MAX1835 are ideal for low-power appli-  
cations where ultra-small size is critical. These devices  
feature built-in synchronous rectification that signifi-  
cantly improves efficiency and reduces size and cost  
by eliminating the need for an external Schottky diode.  
Furthermore, these devices are the industry’s first boost  
regulators to offer complete reverse battery protection.  
This proprietary design protects the battery, IC, and the  
circuitry powered by the IC in the event the input bat-  
teries are connected backwards.  
In shutdown, the MAX1832/MAX1833 connect the bat-  
tery input to the output through the inductor and the  
internal synchronous rectifier PFET. This allows the input  
battery (rather than a separate backup battery) to pro-  
vide backup power for devices such as an idled micro-  
controller, SRAM, or real-time clock, without the usual  
diode forward drop. If the output has a residual voltage  
during shutdown, a small amount of energy will be  
transfered from the output back to the input immediately  
after shutdown. This energy transfer may cause a slight  
momemntary “bump” in the input voltage. The magni-  
tude and duration of the input bump are related to the  
ratio of CIN and COUT and the ability of the input to sink  
current. With battery input sources, the bump will be  
negligible, but with power-supply inputs (that typically  
cannot sink current), the bump may be 100s of mV.  
Control Scheme  
A current-limited control scheme is a key feature of the  
MAX1832–MAX1835. This scheme provides ultra-low  
quiescent current and high efficiency over a wide out-  
put current range. There is no oscillator. The inductor  
current is limited by the 0.5A N-channel current limit or  
by the 5µs switch maximum on-time. Following each  
on-cycle, the inductor current must ramp to zero before  
another cycle may start. When the error comparator  
senses that the output has fallen below the regulation  
threshold, another cycle begins.  
In shutdown, the MAX1834/MAX1835 do not turn on the  
internal PFET and thus do not have an output-to-input  
current path in shutdown. This allows a separate back-  
up battery, such as a Li+ cell, to be diode-connected at  
the output, without leakage current flowing to the input.  
The MAX1834/MAX1835 still have the typical input-to-  
output current path from the battery to the output,  
through the PFET body diode, in shutdown.  
An internal synchronous rectifier eliminates the need for  
an external Schottky diode reducing cost and board  
space. While the inductor discharges, the P-channel  
MOSFET turns on and shunts the MOSFET body diode.  
As a result, the rectifier voltage drop is significantly  
reduced, improving efficiency without adding external  
components.  
Low-Battery Cutoff  
The SHDN trip threshold of the MAX1832–MAX1835  
can be used as a voltage detector, with a resistor-  
divider, to power down the IC when the battery voltage  
falls to a set level (Figure 1). The SHDN trip threshold is  
1.228V. To use a resistor-divider to set the shutdown  
voltage, select a value for R3 in the 100kto 1MΩ  
range to minimize battery drain. Calcuate R4 as follows:  
Reverse Battery Protection  
The MAX1832–MAX1835 have a unique proprietary  
design that protects the battery, IC, and circuitry pow-  
ered by the IC in the event that the input batteries are  
connected backwards. When the batteries are connect-  
ed correctly, the reverse battery protection N-channel  
MOSFET is on and the device operates normally.  
When the batteries are connected backwards, the  
reverse battery protection N-channel MOSFET opens,  
R4 = R3 (V  
/ V  
- 1)  
SHDN  
OFF  
V
is the battery voltage at which the part will shut  
OFF  
down and V  
= 1.228V. Note that input ripple can  
SHDN  
_______________________________________________________________________________________  
7
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
OUT  
ZERO-  
CROSSING  
DETECTOR  
MAX1832  
MAX1834  
STARTUP  
CIRCUITRY  
P
SHDN  
FB  
CONTROL  
LOGIC  
LX  
DRIVER  
N
ERROR  
COMPARATOR  
BATT  
REVERSE BATTERY  
PROTECTION MOSFET  
N
CURRENT  
LIMIT  
1.228V  
GND  
Figure 2. MAX1832/MAX1834 Simplified Functional Diagram  
OUT  
ZERO-  
CROSSING  
DETECTOR  
MAX1833  
MAX1835  
STARTUP  
CIRCUITRY  
P
CONTROL  
LOGIC  
LX  
DRIVER  
ERROR  
COMPARATOR  
N
1.228V  
BATT  
REVERSE BATTERY  
PROTECTION MOSFET  
N
RST  
CURRENT  
LIMIT  
RESET  
N
GND  
1.1V  
SHDN  
Figure 3. MAX1833/MAX1835 Simplified Functional Diagram  
8
_______________________________________________________________________________________  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
sometimes cause false shutdowns. To minimize the effect  
Table 1. Suggested Inductors and  
Suppliers  
of ripple, connect a low-value capacitor (C1) from SHDN  
to GND to filter out input noise. Select a C1 value such  
that the R4 C1 time constant is above 2ms.  
MANUFACTURER  
INDUCTOR  
PHONE  
Power-On Reset  
The MAX1833/MAX1835 provide a power-on reset out-  
put (RST). A 100kto 1Mpullup resistor from RST to  
OUT provides a logic control signal. This open-drain  
output pulls low when the output is 10% below its regu-  
lation point. If not used, connect it to GND. RST is high  
impedance in shutdown.  
DS1608C-103  
DO1606T-103  
Coilcraft  
847-639-6400  
CDRH4D18-100  
CR43-100  
Sumida  
Murata  
847-956-0666  
814-237-1431  
LQH4N100K  
Setting the Output Voltage  
The output voltage of the MAX1832/MAX1834 is  
adjustable from +2V to +5.5V, using external resistors  
R1 and R2 (Figure 1b). Since FB leakage is 20nA  
(max), select feedback resistor R1 to be 100kto  
1M. Calculate R2 as follows:  
Table 2. Suggested Surface-Mount  
Capacitors and Manufacturers  
VALUE  
(µF)  
MANU-  
FACTURER  
DESCRIPTION  
PHONE  
594/595 D-  
series tantalum  
V
V
OUT  
Sprague  
AVX  
603-224-1961  
803-946-0690  
847-390-4373  
408-573-4150  
R2 = R1  
1  
4.7 to  
47  
FB  
TAJ, TPS-  
series tantalum  
where V = 1.228V.  
FB  
Inductor Selection  
4.7 to  
10  
X7R ceramic  
X7R ceramic  
TDK  
The control scheme of the MAX1832–MAX1835 permits  
flexibility in choosing an inductor. A 10µH inductor per-  
forms well for most applications, but values from 4.7µH to  
100µH may also be used. Small inductance values typi-  
cally offer smaller physical size. Large inductance values  
minimize output ripple but reduce output power. Output  
power is reduced when the inductance is large enough to  
prevent the maximum current limit (525mA) from being  
reached before the maximum on-time (5µs) expires.  
4.7 to  
22  
Taiyo Yuden  
capacitor is a good starting value. The input capacitor  
reduces the peak current drawn from the battery and  
can be the same value as the output capacitor. A larger  
input capacitor can be used to further reduce ripple and  
improve efficiency.  
For maximum output current, choose L such that:  
V
1µs  
V
5µs  
(
)
(
)
PC Board Layout and Grounding  
Careful printed circuit layout is important for minimizing  
ground bounce and noise. Keep the IC’s GND pin and  
the ground leads of the input and output filter capaci-  
tors less than 0.2in (5mm) apart. In addition, keep all  
connections to the FB and LX pins as short as possible.  
In particular, when using external feedback resistors,  
locate them as close to FB as possible. To maximize  
output power and efficiency and minimize output ripple  
voltage, use a ground plane and solder the IC’s GND  
directly to the ground plane.  
BATT(MAX)  
BATT(MIN)  
< L <  
0.525A  
0.525A  
0.525A  
V
R
+R  
(
)
BATT(MIN)  
NCH IND  
2
0.525A  
I
×
OUT(MAX) =  
V
OUT  
2
where R  
is the R  
is the inductor series resistance, and R  
NCH  
IND  
DS(ON)  
of the N-channel MOSFET (0.4typ).  
Capacitor Selection  
Choose an output capacitor to achieve the desired out-  
put ripple percentage.  
Chip Information  
2
TRANSISTOR COUNT: 953  
0.5 × L × 0.525A  
C
>
OUT  
2
PROCESS: BiCMOS  
r% × V  
OUT  
where r is the desired output ripple in %. A 10µF ceramic  
_______________________________________________________________________________________  
9
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, SOT 6L BODY  
1
21-0058  
G
1
10 ______________________________________________________________________________________  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
______________________________________________________________________________________ 11  
High-Efficiency Step-Up Converters with  
Reverse Battery Protection  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENG LIS H ? ? ? ? ? ? ? ? ? ?  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ERS  
M a x i m > P r o d u c t s > P o w e r a n d B a t t e r y M a n a g e m e n t  
M A X 1 8 3 2 , M A X 1 8 3 3 , M A X 1 8 3 4 , M A X 1 8 3 5  
H
i
g
h
-
E
f
f
i
c
i
e
n
c
y
S
t
e
p
-
U
p
C
o
n
v
e
r
t
e
r
s
w
i
t
h
R
e
v
e
r
s
e
B
a
t
t
e
r
y
P
r
o
t
e
c
t
i
o
n
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O
r
d
e
r
i
n
g
I
n
f
o
M o r e I n f o r m a t i o n  
A l l  
O r d e r i n g I n f o r m a t i o n  
N o t e s :  
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
3 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e F u l l D a t a  
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t u s e s .  
D e v i c e s : 1 - 1 6 o f 1 6  
M A X 1 8 3 2  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 1 8 3 2 E U T # G 1 6  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
M A X 1 8 3 2 E U T # T G 1 6  
M A X 1 8 3 2 E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 2 E U T - T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 3  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 1 8 3 3 E U T # T G 1 6  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
M A X 1 8 3 3 E U T # G 1 6  
M A X 1 8 3 3 E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 3 E U T - T  
M A X 1 8 3 3 E T T 3 0  
M A X 1 8 3 3 E T T 3 0 - T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 - 2 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 - 2 *  
M A X 1 8 3 4  
F r e e  
B
u
y
T
e
m
p
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P
a
c
k
a
g
e
:
T
Y
P
E
P
I
N
S
F
O
O
T
P
R
I
N
T
S
a
m
p
l
e
D
R
A
W
I
N
G
C
O
D
E
/
V
A
R
*
M
A
X
1
8
3
4
E
U
T
#
G
1
6
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
H
-
6
*
M A X 1 8 3 4 E U T # T G 1 6  
M A X 1 8 3 4 E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e d  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 4 E U T - T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 5  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 1 8 3 5 E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 1 8 3 5 E U T - T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
D e s c r i p t i o n  
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 1 8 0 2 ; R e v 2 ; 2 0 0 5 - 0 7 - 0 4  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 6 - 1 4  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX1835EVKIT

Evaluation Kit for the MAX1832/MAX1833/MAX1834/MAX1835
MAXIM

MAX1836

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836-MAX1837

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836ETT33+T

Switching Regulator, 0.45A, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEA, TDFN-6
MAXIM

MAX1836ETT50-T

Switching Regulator, 0.45A, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEA, TDFN-6
MAXIM

MAX1836EUT33

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT33#G16

Switching Regulator/Controller, 0.125A, BICMOS, PDSO6,
MAXIM

MAX1836EUT33#TG16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT33-T

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT50

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT50#G16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT50#TG16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM