MAX3741HETE#G16 [ROCHESTER]

SPECIALTY INTERFACE CIRCUIT, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WEED-2, TQFN-16;
MAX3741HETE#G16
型号: MAX3741HETE#G16
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY INTERFACE CIRCUIT, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WEED-2, TQFN-16

接口集成电路
文件: 总12页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2597; Rev 2; 8/06  
3.2Gbps Compact SFP VCSEL Driver  
General Description  
Features  
The MAX3741 is a high-speed VCSEL driver for small-  
form-factor (SFF) and small-form-factor pluggable (SFP)  
fiber-optic LAN transmitters. It contains a bias generator,  
laser modulator, and peaking current option to improve  
VCSEL edge speed. The driver accommodates common  
cathode and differential configurations.  
2mA to 15mA Modulation Current  
1mA to 15mA Bias Current  
Optional Peaking Current to Improve VCSEL Edge  
Speed  
Supports Common Cathode and Differential  
The MAX3741 operates up to 3.2Gbps. It can switch up  
to 15mA of laser modulation current and source up to  
15mA of bias current. The MAX3741 is designed to inter-  
face with a digital potentiometer and control circuitry.  
The MAX3741 accommodates various VCSEL packages,  
including low-cost TO-46 headers.  
Configuration  
3mm × 3mm 16-Pin Thin QFN Package  
The MAX3741 is available in a compact 3mm x 3mm  
16-pin thin QFN package and operates over a tempera-  
ture range of -40°C to +85°C.  
Applications  
Ordering Information  
Multirate (1Gbps to 3.2Gbps) SFP/SFF Modules  
Gigabit Ethernet Optical Transmitters  
Fibre Channel Optical Transmitters  
TEMP  
RANGE  
PIN-  
PACKAGE  
PKG.  
CODE  
PART  
MAX3741ETE  
-40°C to +85°C  
-40°C to +85°C  
16 Thin QFN T1633F-3  
16 Thin QFN T1633F-3  
MAX3741HETE*  
*Hybrid lead-free package. See the Hybrid Lead-Free Package  
section.  
Pin Configuration  
Typical Application Circuit  
+3.3V  
0.01µF  
TOP VIEW  
V
CC  
16  
15  
14  
13  
BIAS  
0.1µF  
0.1µF  
L1*  
TX_DISABLE  
BIASMON  
OUT+  
1
2
3
4
12  
11  
10  
9
IN+  
IN-  
0.01µF  
0.01µF  
IN+  
IN-  
OUT+  
MAX3741  
MAX3741  
3mm x 3mm  
OUT-  
OUT-  
50  
N.C.  
V
CC  
BIASMON  
TX_DISABLE  
BIASSET  
MODSET GND PEAKSET  
5
6
7
8
R
R
R
R
MON  
PEAKSET  
BIASSET  
MODSET  
THIN QFN  
EXPOSED PAD IS CONNECTED TO GND.  
THIS SYMBOL REPRESENTS A TRANSMISSION LINE OF  
CHARACTERISTIC IMPEDANCE Zo = 50.  
* FERRITE BEAD, MURATA BLM18HD102SN1B  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3.2Gbps Compact SFP VCSEL Driver  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ) ............................................-0.5V to +5.0V  
Voltage at TX_DISABLE, IN+, IN-, MODSET,  
Continuous Power Dissipation (T = +85°C)  
A
CC  
16-Lead Thin QFN (derate 25mW/°C above +85°C) ..........2W  
Operating Temperature Range .......................... -40°C to +85°C  
Storage Temperature Range.............................-55°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
PEAKSET, BIASSET, BIAS, BIASMON .......-0.5V to (V + 0.5V)  
CC  
Voltage at OUT+, OUT-.........................(V  
- 2V) to (V  
+ 2V)  
CC  
CC  
Current into OUT+, OUT-....................................................60mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TX_DISABLE set low,  
peaking is not used  
(Note 1)  
I
= 2mA  
41  
MOD  
MOD  
P-P  
I
= 15mA  
51  
65  
P-P  
I
CC  
Supply Current  
mA  
Additional current when peaking is used  
(Note 2)  
14  
20  
1
I
Total current when TX_DISABLE is high  
0.15  
CC-SHDW  
TX_DISABLE INPUT  
Input Impedance  
Input High Voltage  
Input Low Voltage  
80  
2
105  
0.2  
k  
V
V
IH  
V
0.8  
3
V
IL  
Time from rising edge of TX_DISABLE to  
= I and I = I  
(Note 3)  
I
t_off  
t_on  
BIAS  
BIAS_OFF  
MOD  
MOD_OFF  
TX_DISABLE Time  
µs  
Time from falling edge of TX_DISABLE to  
111  
25  
I
= 15mA and I = 15mA  
P-P  
BIAS  
MOD  
Input Leakage  
V
= 0V and V  
= 3.3V  
40  
1
µA  
CC  
TX_DISABLE  
BIAS GENERATOR (Note 4)  
Min  
Bias Current  
I
mA  
%
BIAS  
Max  
15  
-8  
Accuracy of Programmed Bias  
Current  
I  
BIAS  
+8  
Bias Current During Disable  
BIASMON Gain  
I
TX_DISABLE high  
10  
µA  
BIAS_OFF  
0.095  
250  
0.115  
63  
0.135  
mA/mA  
LASER MODULATOR (Note 5)  
Data Input Voltage Swing  
Output Resistance  
V
Total differential signal  
2200  
80  
mV  
ID  
P-P  
R
Single-ended resistance at OUT+, OUT-  
OUT  
Min  
2
Modulation Current  
I
mA  
MOD  
P-P  
Max  
15  
2
_______________________________________________________________________________________  
3.2Gbps Compact SFP VCSEL Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.2  
2
MAX  
UNITS  
mA  
ps  
Min  
Programmable Peaking Current  
Peaking Current Duration  
I
PEAK  
Max  
80  
Tolerance of Programmed  
Modulation Current  
-10  
+10  
%
Modulation Transition Time  
Deterministic Jitter  
t , t  
R
5mA  
5mA  
I  
I  
15mA  
15mA  
(Note 3)  
65  
13  
1
95  
25  
4
ps  
F
P-P  
P-P  
MOD  
P-P  
P-P  
DJ  
RJ  
(Notes 3, 6)  
ps  
P-P  
MOD  
Random Jitter  
(Note 3)  
Differential input voltage at 2200mV  
ps  
RMS  
Laser Modulation During Disable  
Differential Input Resistance  
I
15  
100  
50  
115  
µA  
P-P  
MOD_OFF  
P-P  
85  
V
0.3  
-
CC  
Input Bias Voltage  
V
V
IN  
Note 1: Measured with R  
= 1.87k(I  
15mA). Supply current excludes I  
.
BIASSET  
BIAS  
BIAS  
Note 2: Tested with R  
= 1.18k.  
PEAK  
Note 3: Guaranteed by design and characterization.  
Note 4: V is less than V - 0.7V.  
BIAS  
CC  
Note 5: Measured electrically with a 50load AC-coupled to OUT+.  
Note 6: Deterministic jitter is the peak-to-peak deviation from the ideal time crossings measured with a K28.5 bit pattern at 3.2Gbps  
(00111110101100000101).  
Typical Operating Characteristics  
(V  
= +3.3V, T = 25°C, measured electrically with a 50load AC-coupled to OUT+, unless otherwise noted.)  
A
CC  
ELECTRICAL EYE  
ELECTRICAL EYE WITH PEAKING  
ELECTRICAL EYE WITH PEAKING  
MAX3741 toc03  
MAX3741 toc01  
MAX3741 toc02  
3.2Gbps, K28.5, 10mA  
MODULATION, NO PEAKING  
3.2Gbps, K28.5, 10mA  
MODULATION, R = 2.4k  
3.2Gbps, K28.5, 10mA  
MODULATION, R = 500Ω  
PEAKSET  
PEAKSET  
87mV/div  
87mV/div  
87mV/div  
50ps/div  
50ps/div  
50ps/div  
_______________________________________________________________________________________  
3
3.2Gbps Compact SFP VCSEL Driver  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = 25°C, measured electrically with a 50load AC-coupled to OUT+, unless otherwise noted.)  
A
CC  
OPTICAL EYE  
AT 2.125Gbps  
OPTICAL EYE  
DETERMINISTIC JITTER vs. I  
MOD  
MAX3741 toc04  
MAX3741 toc05  
28  
24  
20  
16  
12  
8
(E = 8.8dB, 1.063Gbps, K28.5, 850nm VCSEL, WITH  
R
2.3GHz O-TO-E CONVERTER)  
(E = 8.8dB, K28.5, 850nm VCSEL, WITH  
R
2.3GHz O-TO-E CONVERTER)  
4
0
68ps/div  
135ps/div  
0
5
10  
15  
MODULATION CURRENT (mA  
)
P-P  
BIAS CURRENT vs. R  
BIASSET  
I
vs. R  
RANDOM JITTER vs. I  
MOD  
MOD  
MODSET  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
0
2
4
6
8
10  
12  
0
5
10  
15  
R
(k)  
R
(k)  
MODSET  
MODULATION CURRENT (mA  
)
BIASSET  
P-P  
I
vs. BIAS CURRENT  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
BIASMON  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
-5  
0
-2  
DIFFERENTIAL  
MEASUREMENT  
-4  
-10  
-15  
-20  
-25  
-30  
-35  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
0
4
8
12  
16  
100M  
1G  
FREQUENCY (Hz)  
10G  
100M  
1G  
10G  
BIAS CURRENT (mA)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
3.2Gbps Compact SFP VCSEL Driver  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = 25°C, measured electrically with a 50load AC-coupled to OUT+, unless otherwise noted.)  
A
CC  
TRANSITION TIME vs. I  
SUPPLY CURRENT vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
MOD  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
-2  
V  
V  
I
= 2mA  
P-P  
PSR = 20log  
OUT  
CC  
MEASURED FROM  
20% TO 80%  
MOD  
-4  
RISE TIME  
-6  
FALL TIME  
-8  
-10  
-12  
2
4
6
8
10  
12  
14  
16  
-40  
-15  
10  
35  
60  
85  
100  
1k  
10k  
100k  
1M  
10M 100M  
I
(mA)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
MOD  
Pin Description  
PIN  
NAME  
FUNCTION  
Transmit Disable. Driver output is disabled when TX_DISABLE is high or left unconnected. The driver  
output is enabled when the pin is asserted low.  
1
TX_DISABLE  
2
3
4
IN+  
IN-  
Noninverted Data Input  
Inverted Data Input  
No Connection  
N.C.  
5, 9, 15  
V
+3.3V Supply Voltage  
CC  
Modulation Set. A resistor connected from MODSET to ground (R  
modulation current amplitude.  
) programs the desired  
MODSET  
6
MODSET  
PEAKSET  
Peaking Current Set. A resistor connected between PEAKSET and ground (R  
peaking current amplitude. To disable peaking, leave PEAKSET open.  
) programs the  
PEAKSET  
7
8, 16  
10  
GND  
OUT-  
OUT+  
Ground  
Inverted Modulation-Current Output  
Noninverted Modulation-Current Output  
11  
Bias Current Monitor. The output of BIASMON is a sourced current proportional to the bias current. A  
12  
BIASMON resistor connected between BIASMON and ground (R ) can be used to form a ground  
BIASMON  
referenced bias monitor.  
13  
14  
BIAS  
Bias Current Output  
Bias Current Set. A resistor connected between BIASSET and ground (R  
VCSEL bias current.  
) programs the  
BIASSET  
BIASSET  
Exposed  
Pad  
Ground. This must be soldered to the circuit board ground for proper thermal and electrical  
performance. See the Layout Considerations section.  
EP  
_______________________________________________________________________________________  
5
3.2Gbps Compact SFP VCSEL Driver  
Input Termination  
Functional Diagram  
The MAX3741 data inputs are SFP MSA compatible.  
On-chip 100differential input impedance is provided  
for optimal termination (Figure 4). The MAX3741 inputs  
self-bias to the proper operating point to accommodate  
AC-coupling.  
BIASSET  
BIASMON  
ENABLE  
BIAS  
GENERATOR  
BIAS  
TX_DISABLE  
Applications Information  
V
CC  
VCSEL Selection  
Select a communications-grade VCSEL with a rise time  
of 260ps or better for 1.25Gbps or 130ps or better for  
2.5Gbps applications.  
LASER  
MODULATOR  
MAX3741  
R
R
OUT  
OUT  
OUT-  
OUT+  
Use a high-efficiency VCSEL that requires low modula-  
tion current and generates a low voltage swing. Trim the  
leads to reduce VCSEL package inductance. The typical  
package leads have inductance of 25nH per inch  
(1nH/mm). This inductance causes a large voltage swing  
across the VCSEL. A compensation filter network can be  
used to reduce ringing, edge speed, and voltage swing.  
See the Designing the Laser-Compensation Filter  
Network section for more information.  
IN+  
IN-  
PEAKING  
CONTROL  
100  
MODULATION-CURRENT  
GENERATOR  
ENABLE  
MODSET  
PEAKSET  
Layout Considerations  
To minimize inductance, keep the connections between  
the MAX3741 output pins and VCSEL as close as pos-  
sible. Use good high-frequency layout techniques and  
multiple-layer boards with uninterrupted ground planes  
to minimize EMI and crosstalk.  
Detailed Description  
The MAX3741 contains a bias generator and a laser  
modulator with optional peaking compensation.  
Bias Generator  
Figure 1 shows the bias generator circuitry that con-  
tains a bandgap voltage reference, current mirror, and  
bias monitor. The bias current output to the laser is  
CURRENT  
AMPLIFIER  
controlled with the R  
resistor. For appropriate  
BIASSET  
ENABLE  
R
values, see the Bias Current vs. R  
graph in the Typical Operating Characteristics.  
BIASSET  
BIASSET  
I
BIAS  
40  
MAX3741  
BIAS  
The BIASMON output provides a current proportional to  
the laser bias current given by:  
FERRITE  
BEAD  
BIASMON  
I
= I  
/ 9  
BIAS  
BIASMON  
I
BIAS  
9
0.8V  
Modulation Circuit  
The modulation circuitry consists of an input buffer, a cur-  
rent mirror, and a high-speed current switch (Figure 2).  
The modulators drive up to 15mA of modulation into a  
50VCSEL load.  
200  
R
BIAS GENERATOR  
BIASMON  
BIASSET  
The amplitude of the modulation current is set with resis-  
R
BIASSET  
tor at MODSET (R  
). For appropriate R  
MODSET  
MODSET  
values, see the I  
vs. R  
graph in the Typical  
MOD  
MODSET  
Operating Characteristics. Figure 3 shows a simplified  
diagram of the MAX3741 output stage.  
Figure 1. Bias Generator  
6
_______________________________________________________________________________________  
3.2Gbps Compact SFP VCSEL Driver  
Designing the Compensation  
V
CC  
Filter Network  
VCSEL package inductance causes the VCSEL imped-  
ance to increase at high frequencies, leading to ring-  
ing, overshoot, and degradation of the VCSEL output. A  
VCSEL compensation filter network can be used to  
reduce the VCSEL impedance at high frequencies,  
thereby reducing output ringing and overshoot.  
MAX3741  
R
OUT  
R
OUT  
OUT+  
OUT-  
CURRENT  
SWITCH  
INPUT  
BUFFER  
IN+  
IN-  
PEAKING  
100  
CONTROL  
The compensation components (R and C ) are most  
F
F
PEAKSET  
R
easily determined by experimentation. Begin with R =  
F
50and C = 1pF. Increase C until the desired trans-  
F
F
MODULATION  
CURRENT  
GENERATION  
CURRENT AMPLIFIER  
34x  
PEAKSET  
mitter response is obtained (Figure 5). Refer to  
Application Note HFAN-2.0: Interfacing Maxim Laser  
Drivers with Laser Diodes for more information.  
ENABLE  
Exposed-Pad (EP) Package  
The exposed pad on the 16-pin thin QFN provides a  
very low thermal resistance path for heat removal from  
the IC. The pad is electrical ground on the MAX3741  
and must be soldered to the circuit board ground for  
proper thermal and electrical performance. Refer to  
Maxim Application Note HFAN-08.1: Thermal  
Considerations for QFN and Other Exposed Pad  
Packages, for additional information.  
1.0V  
MODSET  
R
MODSET  
Figure 2. Modulation Circuit  
V
CC  
MAX3741  
V
CC  
PACKAGE  
R
R
OUT  
OUT  
16kΩ  
1nH  
0.5pF  
OUT-  
OUT+  
V
V
CC  
PACKAGE  
1nH  
0.5pF  
IN+  
1nH  
50Ω  
50Ω  
0.5pF  
CC  
1nH  
0.5pF  
IN-  
24kΩ  
MAX3741  
Figure 4. Simplified Input Structure  
Figure 3. Simplified Output Structure  
_______________________________________________________________________________________  
7
3.2Gbps Compact SFP VCSEL Driver  
Laser Safety and IEC 825  
The International Electrotechnical Commission (IEC)  
UNCOMPENSATED  
determines standards for hazardous light emissions  
from fiber-optic transmitters. IEC 825 defines the maxi-  
mum light output for various hazard levels. Using this  
laser driver alone does not ensure that a transmitter  
design is compliant with IEC 825. The entire transmitter  
circuit and component selections must be considered.  
Customers must determine the level of fault tolerance  
required by their applications, recognizing that Maxim  
products are not designed or authorized for use as  
components in systems intended for surgical implant  
into the body, for applications intended to support or  
sustain life, or for any other application where the fail-  
ure of a Maxim product could create a situation where  
personal injury or death may occur.  
CORRECTLY COMPENSATED  
OVERCOMPENSATED  
TIME  
Figure 5. Laser Compensation  
Hybrid Lead-Free Package  
The MAX3741HETE is a MAX3741 in a hybrid lead-free  
package. It is a hybrid part that contains high-lead  
bumps inside a lead-free thin QFN package. The part is  
not 100% lead free; however, the high-lead solder in  
the internal portion of the part does meet the RoHS  
exemption for high-lead solders. For more information,  
visit www.maxim-ic.com/emmi.  
Chip Information  
TRANSISTOR COUNT: 1597  
PROCESS: SiGe bipolar  
8
_______________________________________________________________________________________  
3.2Gbps Compact SFP VCSEL Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
(NE - 1)  
X e  
MARKING  
E
E/2  
D2/2  
(ND - 1)  
X e  
D/2  
AAAA  
e
C
D2  
D
L
k
b
0.10 M  
C
A
B
C
L
E2/2  
L
E2  
C
C
L
L
0.10  
C
0.08 C  
A
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
1
21-0136  
G
2
_______________________________________________________________________________________  
9
3.2Gbps Compact SFP VCSEL Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PKG  
8L 3x3  
12L 3x3  
16L 3x3  
EXPOSED PAD VARIATIONS  
REF. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
DOWN  
BONDS  
ALLOWED  
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
A
b
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30  
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
MIN. NOM. MAX. MIN. NOM. MAX.  
TQ833-1  
T1233-1  
T1233-3  
T1233-4  
T1633-1  
T1633-2  
T1633F-3  
0.25  
0.95  
0.95  
0.95  
0.95  
0.95  
0.65  
0.70 1.25  
1.10 1.25  
1.10 1.25  
0.25  
0.95  
0.95  
0.95  
0.95  
0.95  
0.65  
0.65  
0.95  
0.70 1.25  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
WEEC  
NO  
NO  
D
1.10  
1.10  
1.25  
1.25  
WEED-1  
WEED-1  
WEED-1  
WEED-2  
WEED-2  
E
e
YES  
YES  
NO  
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
1.25  
1.25  
1.10  
1.10  
1.10 1.25  
L
N
0.35 0.55 0.75 0.45 0.55 0.65 0.30 0.40 0.50  
1.10  
1.10  
0.80  
0.80  
1.10  
1.25  
1.25  
0.95  
0.95  
1.25  
8
12  
16  
YES  
1.10 1.25  
0.80 0.95  
0.80 0.95  
1.10 1.25  
ND  
NE  
A1  
A2  
k
2
3
4
0.225 x 45° WEED-2  
0.225 x 45° WEED-2  
N/A  
N/A  
NO  
2
3
4
T1633FH-3 0.65  
T1633-4  
0.95  
0
0.02 0.05  
0
0.02 0.05  
0
0.02 0.05  
0.35 x 45°  
WEED-2  
0.20 REF  
0.20 REF  
0.20 REF  
-
-
-
-
-
-
0.25  
0.25  
0.25  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
10. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
2
21-0136  
G
2
Revision History  
Rev 0; 10/02: Initial data sheet release.  
Rev 1; 5/04:  
Rev 2; 8/06:  
Added package code (page 1); added package drawing (page 9).  
Added hybrid package ordering information (pages 1 and 8).  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 3 7 4 1  
Pa rt Nu m ber T abl e  
N
o
t
e
s
:
1 . S e e t h e M A X 3 7 4 1 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e M A X 3 7 4 1  
f u l l d a t a s h e e t ( P D F , 2 9 2 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P
a
r
t
N
u
m
b
e
r
F r e e  
S a m p l e  
B u y  
D i r e c t  
T
e
m
p
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M
A
X
3
7
4
1
H
E
T
E
#
T
G
1
6
T H I N Q F N ; 1 6 p i n ; 3 X 3 X 0 . 8 m m  
D w g : 2 1 - 0 1 3 6 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
T
1
6
3
3
F
H
-
3
*
M
A
X
3
7
4
1
E
T
E
T h i n Q F N ; 1 6 p i n ; 3 X 3 X 0 . 8 m m  
D w g : 2 1 - 0 1 3 6 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
T
1
6
3
3
F
-
3
*
M A X 3 7 4 1 E T E - T  
M A X 3 7 4 1 H E T E # G 1 6  
T h i n Q F N ; 1 6 p i n ; 3 X 3 X 0 . 8 m m  
D w g : 2 1 - 0 1 3 6 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 1 6 3 3 F - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ; 1 6 p i n ; 3 X 3 X 0 . 8 m m  
D w g : 2 1 - 0 1 3 6 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
T
1
6
3
3
F
H
-
3
*
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
C
O
N
T
A
C
T
U
S
:
S
E
N
D
U
S
A
N
E
M
A
I
L
C
o
p
y
r
i
g
h
t
2
0
0
7
b
y
M
a
x
i
m
I
n
t
e
g
r
a
t
e
d
P
r
o
d
u
c
t
s
,
D
a
l
l
a
s
S
e
m
i
c
o
n
d
u
c
t
o
r
L
e
g
a
l
N
o
t
i
c
e
s
P
r
i
v
a
c
y
P
o
l
i
c
y

相关型号:

MAX3744

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744D

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744E

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744E/D

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10
MAXIM

MAX3744EVKIT

Evaluation Kit
MAXIM

MAX3744EVKIT|MAX3745EVKIT

Evaluation Kit for the MAX3744/MAX3745
MAXIM

MAX3744_1

Evaluation Kit
MAXIM

MAX3744|MAX3745

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745D

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745E

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745E/D

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10
MAXIM