MAX5063BASA+T [ROCHESTER]

2 A HALF BRDG BASED MOSFET DRIVER, PDSO8, LEAD FREE, SOIC-8;
MAX5063BASA+T
型号: MAX5063BASA+T
厂家: Rochester Electronics    Rochester Electronics
描述:

2 A HALF BRDG BASED MOSFET DRIVER, PDSO8, LEAD FREE, SOIC-8

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总21页 (文件大小:1086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3502; Rev 5; 5/07  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
General Description  
Features  
HIP2100/HIP2101 Pin Compatible (MAX5062A/  
The MAX5062/MAX5063/MAX5064 high-frequency,  
125V half-bridge, n-channel MOSFET drivers drive high-  
and low-side MOSFETs in high-voltage applications.  
These drivers are independently controlled and their  
35ns typical propagation delay, from input to output, are  
matched to within 3ns (typ). The high-voltage operation  
with very low and matched propagation delay between  
drivers, and high source/sink current capabilities in a  
thermally enhanced package make these devices suit-  
able for the high-power, high-frequency telecom power  
converters. The 125V maximum input voltage range pro-  
vides plenty of margin over the 100V input transient  
requirement of telecom standards. A reliable on-chip  
MAX5063A)  
Up to 125V Input Operation  
8V to 12.6V V  
Input Voltage Range  
DD  
2A Peak Source and Sink Current Drive Capability  
35ns Typical Propagation Delay  
Guaranteed 8ns Propagation Delay Matching  
Between Drivers  
Programmable Break-Before-Make Timing  
(MAX5064)  
Up to 1MHz Combined Switching Frequency while  
Driving 100nC Gate Charge (MAX5064)  
bootstrap diode connected between V  
and BST elimi-  
DD  
nates the need for an external discrete diode.  
Available in CMOS (V  
/ 2) or TTL Logic-Level  
DD  
Inputs with Hysteresis  
The MAX5062A/C and the MAX5063A/C offer both nonin-  
verting drivers (see the Selector Guide). The  
MAX5062B/D and the MAX5063B/D offer a noninverting  
high-side driver and an inverting low-side driver. The  
MAX5064A/B offer two inputs per driver that can be  
either inverting or noninverting. The MAX5062A/B/C/D  
Up to 15V Logic Inputs Independent of Input  
Voltage  
Low 2.5pF Input Capacitance  
Instant Turn-Off of Drivers During Fault or PWM  
Start-Stop Synchronization (MAX5064)  
and the MAX5064A feature CMOS (V  
/ 2) logic inputs.  
DD  
The MAX5063A/B/C/D and the MAX5064B feature TTL  
logic inputs. The MAX5064A/B include a break-before-  
make adjustment input that sets the dead time between  
drivers from 16ns to 95ns. The drivers are available in the  
industry-standard 8-pin SO footprint and pin configura-  
tion, and a thermally enhanced 8-pin SO and 12-pin  
(4mm x 4mm) thin QFN packages. All devices operate  
over the -40°C to +125°C automotive temperature range.  
Low 200µA Supply Current  
Versions Available With Combination of  
Noninverting and Inverting Drivers (MAX5062B/D  
and MAX5063B/D)  
Available in 8-Pin SO, Thermally Enhanced SO,  
and 12-Pin Thin QFN Packages  
Ordering Information  
PIN-  
TOP  
PKG  
Applications  
PART  
TEMP RANGE  
PACKAGE MARK CODE  
Telecom Half-Bridge Power Supplies  
Two-Switch Forward Converters  
Full-Bridge Converters  
MAX5062AASA -40°C to +125°C 8 SO  
MAX5062BASA -40°C to +125°C 8 SO  
MAX5062CASA -40°C to +125°C 8 SO-EP*  
MAX5062DASA -40°C to +125°C 8 SO-EP*  
*EP = Exposed paddle.  
Devices are available in both leaded and lead-free packaging.  
Specify lead-free by replacing “-T” with “+T” when ordering.  
Ordering Information continued at end of data sheet.  
S8-5  
S8-5  
S8E-14  
S8E-14  
Active-Clamp Forward Converters  
Power-Supply Modules  
Motor Control  
Selector Guide  
PART  
HIGH-SIDE DRIVER  
Noninverting  
LOW-SIDE DRIVER  
Noninverting  
Inverting  
LOGIC LEVELS  
CMOS (V / 2)  
PIN COMPATIBLE  
MAX5062AASA  
MAX5062BASA  
MAX5062CASA  
MAX5062DASA  
HIP 2100IB  
DD  
Noninverting  
CMOS (V / 2)  
DD  
Noninverting  
Noninverting  
Inverting  
CMOS (V / 2)  
DD  
Noninverting  
CMOS (V / 2)  
DD  
Selector Guide continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
, IN_H, IN_L, IN_L+, IN_L-, IN_H+, IN_H-........-0.3V to +15V  
8-Pin SO with Exposed Pad (derate 19.2mW/°C  
above +70°C)* ....................................................1538.5mW  
12-Pin Thin QFN (derate 24.4mW/°C  
V
DD  
DL, BBM .....................................................-0.3V to (V  
+ 0.3V)  
DD  
HS............................................................................-5V to +130V  
DH to HS.....................................................-0.3V to (V + 0.3V)  
BST to HS ...............................................................-0.3V to +15V  
AGND to PGND (MAX5064)..................................-0.3V to +0.3V  
dV/dt at HS ........................................................................50V/ns  
above +70°C)* ....................................................1951.2mW  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.9mW/°C above +70°C)...............470.6mW  
*Per JEDEC 51 standard multilayer board.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +8V to +12.6V, V = GND = 0V, BBM = open, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
= +12V and T = +25°C.) (Note 1)  
DD  
BST  
HS  
A
V
= V  
DD  
BST A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Operating Supply Voltage  
V
(Note 2)  
8.0  
12.6  
140  
V
DD  
MAX5062_/  
MAX5063_  
70  
IN_H = IN_L = GND  
(no switching)  
V
Quiescent Supply Current  
I
µA  
DD  
DD  
MAX5064_  
120  
260  
V
Operating Supply Current  
I
f
= 500kHz, V = +12V  
DD  
3
mA  
µA  
mA  
V
DD  
DDO  
SW  
BST Quiescent Supply Current  
BST Operating Supply Current  
I
IN_H = IN_L = GND (no switching)  
15  
40  
3
BST  
I
f
= 500kHz, V  
V rising  
DD  
= V  
= +12V  
BST  
BSTO  
SW  
DD  
UVLO (V  
to GND)  
UVLO  
6.5  
6.0  
7.3  
6.9  
0.5  
8.0  
7.8  
DD  
VDD  
UVLO (BST to HS)  
UVLO Hysteresis  
LOGIC INPUT  
UVLO  
BST rising  
V
BST  
V
MAX5062_/MAX5064A,  
CMOS (V / 2) version  
0.67 x  
0.55 x  
V
V
Input-Logic High  
V
V
V
V
DD  
DD  
DD  
IH_  
MAX5063_/MAX5064B, TTL version  
2
1.65  
MAX5062_/MAX5064A,  
CMOS (V / 2) version  
DD  
0.4 x  
0.33 x  
V
DD  
V
Input-Logic Low  
V
DD  
IL_  
MAX5063_/MAX5064B, TTL version  
1.4  
0.8  
MAX5062_/MAX5064A,  
CMOS (V / 2) version  
DD  
1.6  
Logic-Input Hysteresis  
V
HYS  
MAX5063_/MAX5064B, TTL version  
0.25  
2
_______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= +8V to +12.6V, V = GND = 0V, BBM = open, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
= +12V and T = +25°C.) (Note 1)  
DD  
BST  
HS  
A
V
= V  
DD  
BST A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
, V  
= 0V  
IN_H+ IN_L+  
= V  
for MAX5062B/D, MAX5063B/D  
IN_L  
DD  
Logic-Input Current  
Input Resistance  
I_IN  
-1  
0.001  
+1  
µA  
, V  
, V  
= V  
IN_H- IN_L- IN_H DD  
= 0V for MAX5062A/C, MAX5063A/C  
IN_L  
IN_H+, IN_L+ IN_H, to GND  
IN_L to V for MAX5062B/D,  
DD  
MAX5063B/D  
R
C
1
M  
IN  
IN_H-, IN_L-, IN_H, to V  
DD  
IN_LforMAX5062A/C, MAX5063A/C to GND  
Input Capacitance  
2.5  
pF  
IN  
HIGH-SIDE GATE DRIVER  
HS Maximum Voltage  
BST Maximum Voltage  
V
125  
140  
V
V
HS_MAX  
V
BST_MAX  
T
A
T
A
T
A
T
A
= +25°C  
= +125°C  
= +25°C  
= +125°C  
2.5  
3.5  
2.1  
3.2  
3.3  
4.6  
2.8  
4.2  
Driver Output Resistance  
(Sourcing)  
V
= 12V, I  
= 100mA  
= 100mA  
DD  
DH  
R
ON_HP  
(sourcing)  
Driver Output Resistance  
(Sinking)  
V
DD  
(sinking)  
= 12V, I  
DH  
R
ON_HN  
DH Reverse Current (Latchup  
Protection)  
(Note 3)  
400  
mA  
V
Power-Off Pulldown Clamp  
Voltage  
V
= 0V or floating, I  
= 1mA (sinking)  
0.94  
1.16  
BST  
DH  
Peak Output Current (Sourcing)  
Peak Output Current (Sinking)  
LOW-SIDE GATE DRIVER  
C = 10nF, V  
= 0V  
2
2
A
A
L
DH  
I
DH_PEAK  
C = 10nF, V  
L
= 12V  
DH  
T
A
T
A
T
A
T
A
= +25°C  
= +125°C  
= +25°C  
= +125°C  
2.5  
3.5  
2.1  
3.2  
3.3  
4.6  
2.8  
4.2  
Driver Output Resistance  
(Sourcing)  
V
= 12V, I = 100mA  
DD DL  
R
R
ON_LP  
(sourcing)  
V = 12V, I = 100mA  
DD  
Driver Output Resistance  
(Sinking)  
DL  
ON_LN  
(sinking)  
Reverse Current at DL (Latchup  
Protection)  
(Note 3)  
400  
mA  
V
Power-Off Pulldown Clamp  
Voltage  
V
= 0V or floating, I = 1mA (sinking)  
0.95  
1.16  
1.11  
DD  
DL  
Peak Output Current (Sourcing)  
Peak Output Current (Sinking)  
INTERNAL BOOTSTRAP DIODE  
Forward Voltage Drop  
I
C = 10nF, V = 0V  
L
2
2
A
A
PK_LP  
DL  
I
C = 10nF, V = 12V  
L
PK_LN  
DL  
V
I
I
= 100mA  
0.91  
40  
V
f
BST  
Turn-On and Turn-Off Time  
t
= 100mA  
ns  
R
BST  
_______________________________________________________________________________________  
3
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= +8V to +12.6V, V = GND = 0V, BBM = open, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
= +12V and T = +25°C.) (Note 1)  
DD  
BST  
HS  
A
V
= V  
DD  
BST A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
SWITCHING CHARACTERISTICS FOR HIGH- AND LOW-SIDE DRIVERS (V  
= V  
= +12V)  
DD  
BST  
C = 1000pF  
7
L
Rise Time  
Fall Time  
t
C = 5000pF  
L
33  
65  
7
R
C = 10,000pF  
L
C = 1000pF  
L
t
ns  
C = 5000pF  
L
33  
65  
30  
35  
30  
35  
F
C = 10,000pF  
L
CMOS  
TTL  
55  
63  
55  
63  
Figure 1, C = 1000pF  
L
Turn-On Propagation Delay Time  
Turn-Off Propagation Delay Time  
t
ns  
ns  
D_ON  
(Note 3)  
CMOS  
TTL  
Figure 1, C = 1000pF  
L
t
D_OFF  
(Note 3)  
Delay Matching Between  
Inverting Input to Output and  
Noninverting Input to Output  
C = 1000pF, BBM open for MAX5064,  
L
Figure 1 (Note 3)  
t
t
2
8
8
ns  
ns  
ns  
MATCH1  
MATCH2  
Delay Matching Between Driver-  
Low and Driver-High  
C = 1000pF, BBM open for MAX5064,  
L
Figure 1 (Note 3)  
2
R
BBM  
R
BBM  
R
BBM  
= 10kΩ  
16  
56  
Break-Before-Make Accuracy  
(MAX5064 Only)  
= 47k(Notes 3, 4)  
= 100kΩ  
40  
72  
95  
Internal Nonoverlap  
1
ns  
ns  
V
V
= V  
= 12V  
= 8V  
135  
170  
Minimum Pulse-Width Input Logic  
(High or Low) (Note 5)  
DD  
DD  
BST  
BST  
t
PW-MIN  
= V  
Note 1: All devices are 100% tested at T = +125°C. Limits over temperature are guaranteed by design.  
A
Note 2: Ensure that the V -to-GND or BST-to-HS voltage does not exceed 13.2V.  
DD  
Note 3: Guaranteed by design, not production tested.  
Note 4: Break-before-make time is calculated by t  
Note 5: See the Minimum Pulse Width section.  
= 8ns x (1 + R  
/ 10k).  
BBM  
BBM  
4
_______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Operating Characteristics  
(Typical values are at V  
= V  
= +12V and T = +25°C, unless otherwise specified.)  
DD  
BST  
A
UNDERVOLTAGE LOCKOUT  
V
DD  
AND BST UNDERVOLTAGE LOCKOUT  
HYSTERESIS vs. TEMPERATURE  
(V AND V  
RISING) vs. TEMPERATURE  
I vs. V  
DD DD  
DD  
BST  
MAX5062/3/4 toc03  
7.5  
7.4  
7.3  
7.2  
7.1  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MAX5064  
IN_L-, IN_H- = V  
IN_L+, IN_H+ = GND  
DD  
UVLO  
VDD  
BST  
2V/div  
V
DD  
UVLO  
HYSTERESIS  
VDD  
UVLO  
HYSTERESIS  
BST  
UVLO  
0V  
500µA/div  
I
DD  
0A  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
40µs/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
+ I  
vs. V  
INTERNAL BST DIODE  
(I-V) CHARACTERISTICS  
DDO BSTO DD  
(f = 250kHz)  
SW  
200  
180  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= +125°C  
= +25°C  
= 0°C  
A
A
A
A
160  
T
140  
T
120  
T
= -40°C  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
V
(V)  
V
DD  
- V (V)  
BST  
DD  
V
QUIESCENT CURRENT  
DD  
BST QUIESCENT CURRENT  
vs. BST VOLTAGE  
DD  
vs. V (NO SWITCHING)  
160  
140  
120  
100  
80  
21  
18  
15  
12  
9
V
= V + 1V,  
DD  
MAX5064  
BST  
NO SWITCHING  
T
= +125°C  
A
T
= +25°C, T = 0°C  
A
A
T
= +125°C  
A
60  
T
= -40°C  
A
6
40  
3
20  
T
= -40°C, T = 0°C, T = +25°C  
A A  
A
0
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
V
(V)  
V
(V)  
DD  
BST  
_______________________________________________________________________________________  
5
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Operating Characteristics (continued)  
(Typical values are at V  
= V  
= +12V and T = +25°C, unless otherwise specified.)  
DD  
BST  
A
V
DD  
AND BST OPERATING SUPPLY  
CURRENT vs. FREQUENCY  
DH OR DL OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
SINKING 100mA  
C = 0  
L
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (kHz)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DH OR DL RISE TIME  
vs. TEMPERATURE (C = 10nF)  
PEAK DH AND DL  
SOURCE/SINK CURRENT  
L
MAX5062/3/4 toc10  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
C
= 100nF  
L
V
= V = 8V  
BST  
DD  
5V/div  
2A/div  
DH OR DL  
V
= V = 12V  
BST  
DD  
SINK AND SOURCE  
CURRENT  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1µs/div  
TEMPERATURE (°C)  
DH OR DL FALL TIME  
vs. TEMPERATURE (C = 10nF)  
DH OR DL RISE PROPAGATION DELAY  
vs. TEMPERATURE  
LOAD  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= V = 8V  
BST  
DD  
DH  
DL  
V
= V = 12V  
BST  
DD  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Operating Characteristics (continued)  
(Typical values are at V  
= V  
= +12V and T = +25°C, unless otherwise specified.)  
BST A  
DD  
DH OR DL FALL PROPAGATION DELAY  
vs. TEMPERATURE  
BREAK-BEFORE-MAKE  
DEAD TIME vs. R  
BBM  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
250  
225  
200  
175  
150  
125  
100  
75  
MAX5064  
DH  
DL  
50  
25  
0
0
170  
290  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
50  
90 130  
210 250  
TEMPERATURE (°C)  
R
(k)  
BBM  
BREAK-BEFORE-MAKE DEAD TIME  
vs. TEMPERATURE  
DELAY MATCHING (DH/DL RISING)  
MAX5062/3/4 toc17  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX5064  
C
= 0  
L
R
= 100kΩ  
BBM  
INPUT  
DH/DL  
5V/div  
5V/div  
R
= 10kΩ  
BBM  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10ns/div  
TEMPERATURE (°C)  
DH/DL RESPONSE TO V GLITCH  
DELAY MATCHING (DH/DL FALLING)  
DD  
MAX5062/3/4 toc19  
MAX5062/3/4 toc18  
C
= 0  
L
10V/div  
10V/div  
DH  
DL  
INPUT  
DH/DL  
5V/div  
5V/div  
V
10V/div  
5V/div  
DD  
INPUT  
40µs/div  
10ns/div  
_______________________________________________________________________________________  
7
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
MAX5062/MAX5063 Pin Description  
PIN  
NAME  
FUNCTION  
1
V
Power Input. Bypass to GND with a parallel combination of 0.1µF and 1µF ceramic capacitor.  
DD  
Boost Flying Capacitor Connection. Connect a 0.1µF ceramic capacitor between BST and HS for the  
high-side MOSFET driver supply.  
2
BST  
3
4
5
DH  
HS  
High-Side-Gate Driver Output. Driver output for the high-side MOSFET gate.  
Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.  
High-Side Noninverting Logic Input  
IN_H  
Low-Side Noninverting Logic Input (MAX5062A/C, MAX5063A/C). Low-side inverting logic input  
(MAX5062B/D, MAX5063B/D).  
6
IN_L  
7
8
GND  
DL  
Ground. Use GND as a return path to the DL driver output and IN_H/IN_L inputs.  
Low-Side-Gate Driver Output. Drives low-side MOSFET gate.  
Exposed Pad. Internally connected to GND. Externally connect the exposed pad to a large ground  
plane to aid in heat dissipation (MAX5062C/D, MAX5063C/D only).  
EP  
MAX5064 Pin Description  
PIN  
NAME  
FUNCTION  
Boost Flying Capacitor Connection. Connect a 0.1µF ceramic capacitor between BST and HS for the  
high-side MOSFET driver supply.  
1
BST  
2
3
4
DH  
HS  
High-Side-Gate Driver Output. Drives high-side MOSFET gate.  
Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.  
Analog Ground. Return path for low-switching current signals. IN_H/IN_L inputs referenced to  
AGND  
Break-Before-Make Programming Resistor Connection. Connect a 10kto 100kresistor from BBM  
to AGND to program the break-before-make time (t  
greater than 200kdisables the BBM function and makes t  
) from 16ns to 95ns. Resistance values  
BBM  
5
BBM  
= 1ns. Bypass this pin with at least a  
BBM  
1nF capacitor to AGND.  
High-Side Inverting CMOS (V / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to  
DD  
AGND when not used.  
6
7
IN_H-  
IN_H+  
IN_L-  
High-Side Noninverting CMOS (V / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to  
DD  
V
when not used.  
DD  
Low-Side Inverting CMOS (V / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to AGND  
DD  
when not used.  
8
Low-Side Noninverting CMOS (V / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to  
DD  
9
IN_L+  
V
when not used.  
DD  
Power Ground. Return path for high-switching current signals. Use PGND as a return path for the  
low-side driver.  
10  
PGND  
DL  
11  
12  
Low-Side-Gate Driver Output. Drives the low-side MOSFET gate.  
V
Power Input. Bypass to PGND with a 0.1µF ceramic in parallel with a 1µF ceramic capacitor.  
DD  
Exposed Pad. Internally connected to AGND. Externally connect to a large ground plane to aid in  
heat dissipation.  
EP  
8
_______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
V
IH  
IN_L+  
V
IL  
90%  
10%  
DL  
t
D_OFF1  
t
D_ON1  
t
F
t
R
V
IH  
IN_L-  
V
IL  
t
D_OFF2  
t
D_ON2  
V
IH  
IN_H+  
V
IL  
90%  
10%  
DH  
t
D_OFF3  
t
D_ON3  
t
F
t
R
V
IH  
IN_H-  
V
IL  
t
t
D_ON4  
D_OFF4  
t
t
= (t  
= (t  
- t  
) or (t  
- t  
- t  
)
MATCH1  
MATCH2  
D_ON2 D_ON1  
D_OFF2 D_OFF1  
- t  
) or (t  
) or (t  
- t  
) or (t  
- t  
)
D_ON3 D_ON1  
D_ON4 D_ON2  
D_OFF3 D_OFF1  
D_OFF4 D_OFF2  
Figure 1. Timing Characteristics for Noninverting and Inverting Logic Inputs  
propagation delays. The typical propagation delay from  
the logic-input signal to the drive output is 35ns with a  
matched propagation delay of 3ns typical. Matching  
these propagation delays is as important as the  
absolute value of the delay itself. The high 125V input  
voltage range allows plenty of margin above the 100V  
transient specification per telecom standards.  
Detailed Description  
The MAX5062/MAX5063/MAX5064 are 125V/2A high-  
speed, half-bridge MOSFET drivers that operate from a  
supply voltage of +8V to +12.6V. The drivers are  
intended to drive a high-side switch without any isola-  
tion device like an optocoupler or drive transformer.  
The high-side driver is controlled by a TTL/CMOS logic  
signal referenced to ground. The 2A source and sink  
The MAX5064 is available in a thermally enhanced  
TQFN package, which can dissipate up to 1.95W (at  
+70°C) and allow up to 1MHz switching frequency  
while driving 100nC combined gate-charge MOSFETs.  
drive capability is achieved by using low R  
p-  
DS_ON  
and n-channel driver output stages. The BiCMOS  
process allows extremely fast rise/fall times and low  
_______________________________________________________________________________________  
9
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Undervoltage Lockout  
Internal Bootstrap Diode  
An internal diode connects from V to BST and is  
used in conjunction with a bootstrap capacitor external-  
ly connected between BST and HS. The diode charges  
Both the high- and low-side drivers feature undervolt-  
DD  
age lockout (UVLO). The low-side driver’s UVLO  
LOW  
threshold is referenced to GND and pulls both driver  
outputs low when V falls below 6.8V. The high-side  
the capacitor from V  
when the DL low-side switch is  
DD  
DD  
driver has its own undervoltage lockout threshold  
(UVLO ), referenced to HS, and pulls DH low when  
BST falls below 6.4V with respect to HS.  
on and isolates V  
when HS is pulled high as the high-  
DD  
side driver turns on (see the Typical Operating Circuit).  
HIGH  
The internal bootstrap diode has a typical forward volt-  
age drop of 0.9V and has a 10ns typical turn-off/turn-on  
During turn-on, once V rises above its UVLO thresh-  
DD  
old, DL starts switching and follows the IN_L logic input.  
At this time, the bootstrap capacitor is not charged and  
time. For lower voltage drops from V  
to BST, connect  
and BST.  
DD  
an external Schottky diode between V  
DD  
the BST-to-HS voltage is below UVLO . For synchro-  
BST  
Programmable Break-Before-Make  
(MAX5064)  
nous buck and half-bridge converter topologies, the  
bootstrap capacitor can charge up in one cycle and  
normal operation begins in a few microseconds after the  
Half-bridge and synchronous buck topologies require  
that the high- or low-side switch be turned off before  
the other switch is turned on to avoid shoot-through  
currents. Shoot-through occurs when both high- and  
low-side switches are on at the same time. This condi-  
tion is caused by the mismatch in the propagation  
delay from IN_H/IN_L to DH/DL, driver output imped-  
ance, and the MOSFET gate capacitance. Shoot-  
through currents increase power dissipation, radiate  
EMI, and can be catastrophic, especially with high  
input voltages.  
BST-to-HS voltage exceeds UVLO . In the two-switch  
BST  
forward topology, the BST capacitor takes some time (a  
few hundred microseconds) to charge and increase its  
voltage above UVLO  
.
BST  
The typical hysteresis for both UVLO thresholds is 0.5V.  
The bootstrap capacitor value should be selected care-  
fully to avoid unintentional oscillations during turn-on  
and turn-off at the DH output. Choose the capacitor  
value about 20 times higher than the total gate capaci-  
tance of the MOSFET. Use a low-ESR-type X7R dielec-  
tric ceramic capacitor at BST (typically a 0.1µF ceramic  
is adequate) and a parallel combination of 1µF and  
The MAX5064 offers a break-before-make (BBM) fea-  
ture that allows the adjustment of the delay from the  
input to the output of each driver. The propagation  
delay from the rising edges of IN_H and IN_L to the ris-  
ing edges of DH and DL, respectively, can be pro-  
grammed from 16ns to 95ns. Note that the BBM time  
0.1µF ceramic capacitors from V  
to GND  
DD  
(MAX5062_, MAX5063_) or to PGND (MAX5064_). The  
high-side MOSFET’s continuous on-time is limited due  
to the charge loss from the high-side driver’s quiescent  
current. The maximum on-time is dependent on the size  
(t  
) has a higher percentage error at lower value  
BBM  
because of the fixed comparator delay in the BBM  
of C  
, I  
(50µA max), and UVLO  
.
BST BST  
BST  
block. The propagation delay mismatch (t  
needs to be included when calculating the total t  
)
MATCH_  
Output Driver  
The MAX5062/MAX5063/MAX5064 have low 2.5Ω  
p-channel and n-channel devices (totem pole)  
BBM  
error. The low 8ns (maximum) delay mismatch reduces  
the total t variation. Use the following equations to  
R
DS_ON  
BBM  
in the output stage. This allows for a fast turn-on and  
turn-off of the high gate-charge switching MOSFETs.  
The peak source and sink current is typically 2A.  
Propagation delays from the logic inputs to the driver  
outputs are matched to within 8ns. The internal p- and  
n-channel MOSFETs have a 1ns break-before-make  
logic to avoid any cross conduction between them. This  
internal break-before-make logic eliminates shoot-  
through currents reducing the operating supply current  
calculate R  
for the required BBM time and  
BBM  
t
:
BBM_ERROR  
t
BBM  
8ns  
R
= 10k×  
1 for R  
< 200kΩ  
BBM  
BBM  
t
= 0.15 × t  
+ t  
BBM MATCH_  
BBM_ERROR  
where t  
is in nanoseconds.  
BBM  
as well as the spikes at V . The DL voltage is approxi-  
DD  
The voltage at BBM is regulated to 1.3V. The BBM circuit  
adjusts t depending on the current drawn by R  
mately equal to V  
and the DH-to-HS voltage, a diode  
.
BBM  
DD  
BBM  
drop below V , when they are in a high state and to  
Bypass BBM to AGND with a 1nF or smaller ceramic  
capacitor (C ) to avoid any effect of ground bounce  
DD  
zero when in a low state. The driver R  
is lower at  
DS_ON  
BBM  
higher V . Lower R  
means higher source and  
caused during switching. The charging time of C  
DD  
DS_ON  
BBM  
sink currents and faster switching speeds.  
does not affect t  
at turn-on because the BBM voltage  
BBM  
is stabilized before the UVLO clears the device turn-on.  
10 ______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Topologies like the two-switch forward converter, where  
both high- and low-side switches are turned on and off  
simultaneously, can have the BBM function disabled by  
shoot-through in the absence of external BBM delay  
during the narrow pulse at low duty cycle (see Figure 2).  
At high duty cycle (close to 100%) the DH minimum low  
leaving BBM unconnected. When disabled, t  
cally 1ns.  
is typi-  
BBM  
pulse width (t  
) must be higher than the DL  
DMIN-DH-L  
minimum low pulse width (t  
) to avoid overlap  
DMIN-DL-L  
and shoot-through (see Figure 3). In the case of  
MAX5062/MAX5063/MAX5064, there is a possibility of  
about 40ns overlap if an external BBM delay is not pro-  
vided. We recommend adding external delay in the INH  
path so that the minimum low pulse width seen at INH  
Driver Logic Inputs (IN_H, IN_L, IN_H+,  
IN_H-, IN_L+, IN_L-)  
The MAX5062_/MAX5064A are CMOS (V  
/ 2) logic-  
DD  
input drivers while the MAX5063_/MAX5064B have TTL-  
compatible logic inputs. The logic-input signals are  
independent of V . For example, the IC can be pow-  
DD  
is always longer than t  
. See the Electrical  
PW-MIN  
Characteristics table for the typical values of t  
.
PW-MIN  
ered by a 10V supply while the logic inputs are provid-  
ed from a 12V CMOS logic. Also, the logic inputs are  
protected against voltage spikes up to 15V, regardless  
V
DD  
V
IN  
of the V  
voltage. The TTL and CMOS logic inputs  
DD  
A)  
have 400mV and 1.6V hysteresis, respectively, to avoid  
double pulsing during transition. The logic inputs are  
high-impedance pins and should not be left floating.  
The low 2.5pF input capacitance reduces loading and  
increases switching speed. The noninverting inputs are  
pulled down to GND and the inverting inputs are pulled  
PWM  
IN  
INH  
INL  
DH  
V
OUT  
N
N
up to V  
internally using a 1Mresistor. The PWM  
DD  
HS  
DL  
output from the controller must assume a proper state  
while powering up the device. With the logic inputs  
floating, the DH and DL outputs pull low as V  
up above the UVLO threshold.  
rises  
DD  
The MAX5064_ has two logic inputs per driver, which  
provide greater flexibility in controlling the MOSFET.  
Use IN_H+/IN_L+ for noninverting logic and IN_H-/  
IN_L- for inverting logic operation. Connect  
MAX5062B/MAX5062D/MAX5063B/MAX5063D/MAX5064  
B)  
PWM  
IN  
IN_H+/IN_L+ to V  
and IN_H-/IN_L- to GND if not  
DD  
used. Alternatively, the unused input can be used as an  
ON/OFF function. Use IN_+ for active-low and IN_- for  
active-high shutdown logic.  
t
DMIN-DH-H  
Table 1. MAX5064_ Truth Table  
DH  
IN_H+/IN_L+  
IN_H-/IN_L-  
DH/DL  
Low  
Low  
Low  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
High  
BUILT-IN  
DEAD TIME  
Minimum Pulse Width  
The MAX5062/MAX5063/MAX5064 uses a single-shot  
level shifter architecture to achieve low propagation  
delay. Typical level shifter architecture causes a mini-  
mum (high or low) pulse width (t ) at the output that  
DMIN  
DL  
may be higher than the logic-input pulse width. For  
MAX5062/MAX5063/MAX5064 devices, the DH mini-  
t
DMIN-DL-L  
mum high pulse width (t  
) is lower than the DL  
DMIN-DL-L  
DMIN-DH-H  
minimum low pulse width (t  
Figure 2. Minimum Pulse-Width Behavior for Narrow Duty-  
Cycle Input (On-Time < t  
) to avoid any  
)
PW-MIN  
______________________________________________________________________________________ 11  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
V
DD  
V
IN  
A)  
C)  
PWM  
IN  
EXTERNAL  
BBM DELAY  
PWM  
IN  
INH  
INL  
DH  
V
OUT  
N
N
HS  
DL  
EXTERNAL  
BBM DELAY  
t
DMIN-DH-L  
DH  
MAX5062B/MAX5062D/MAX5063B/MAX5063D/MAX5064  
V
DD  
V
IN  
B)  
POTENTIAL  
OVERLAP TIME  
EXTERNAL  
BBM DELAY  
PWM  
IN  
INH  
INL  
DH  
V
OUT  
N
N
HS  
DL  
DL  
t
DMIN-DL-H  
MAX5062A/MAX5062C/MAX5063A/MAX5063C/MAX5064  
Figure 3. Minimum Pulse-Width Behavior for High Duty-Cycle Input (Off-Time < t  
)
PW-MIN  
series inductance. Place the external MOSFET as close  
as possible to the MAX5062/MAX5063/MAX5064 to fur-  
ther minimize board inductance and AC path resis-  
tance. For the MAX5064_ the low-power logic ground  
(AGND) is separated from the high-power driver return  
(PGND). Apply the logic-input signal between IN_ to  
AGND and connect the load (MOSFET gate) between  
DL and PGND.  
Applications Information  
Supply Bypassing and Grounding  
Pay extra attention to bypassing and grounding the  
MAX5062/MAX5063/MAX5064. Peak supply and output  
currents may exceed 4A when both drivers are driving  
large external capacitive loads in-phase. Supply drops  
and ground shifts create forms of negative feedback for  
inverters and may degrade the delay and transition  
times. Ground shifts due to insufficient device ground-  
ing may also disturb other circuits sharing the same AC  
Power Dissipation  
Power dissipation in the MAX5062/MAX5063/MAX5064  
is primarily due to power loss in the internal boost  
diode and the nMOS and pMOS FETS.  
ground return path. Any series inductance in the V  
,
DD  
DH, DL, and/or GND paths can cause oscillations due  
to the very high di/dt when switching the MAX5062/  
MAX5063/MAX5064 with any capacitive load. Place  
one or more 0.1µF ceramic capacitors in parallel as  
For capacitive loads, the total power dissipation for the  
device is:  
2
P = C × V  
× f  
+ I  
(
+ I  
× V  
close to the device as possible to bypass V  
to GND  
)
DD  
D
L
DD  
SW  
DDO  
BSTO DD  
(MAX5062/MAX5063) or PGND (MAX5064). Use a  
ground plane to minimize ground return resistance and  
12 ______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
where C is the combined capacitive load at DH and  
from V  
to GND or BST to HS can damage the  
DD  
L
DL. V  
is the supply voltage and f  
is the switching  
SW  
device. Place one or more low ESL 0.1µF decou-  
pling ceramic capacitors from V to GND  
DD  
frequency of the converter. P includes the power dis-  
D
DD  
sipated in the internal bootstrap diode. The internal  
(MAX5062/MAX5063) or to PGND (MAX5064), and  
from BST to HS as close as possible to the part. The  
ceramic decoupling capacitors should be at least  
20 times the gate capacitance being driven.  
power dissipation reduces by P  
, if an external  
DIODE  
bootstrap Schottky diode is used. The power dissipa-  
tion in the internal boost diode (when driving a capaci-  
tive load) will be the charge through the diode per  
switching period multiplied by the maximum diode for-  
• There are two AC current loops formed between the  
device and the gate of the MOSFET being driven.  
The MOSFET looks like a large capacitance from gate  
to source when the gate is being pulled low. The  
active current loop is from the MOSFET driver output  
(DL or DH) to the MOSFET gate, to the MOSFET  
source, and to the return terminal of the MOSFET dri-  
ver (either GND or HS). When the gate of the MOS-  
FET is being pulled high, the active current loop is  
from the MOSFET driver output, (DL or DH), to the  
MOSFET gate, to the MOSFET source, to the return  
terminal of the drivers decoupling capacitor, to the  
positive terminal of the decoupling capacitor, and to  
the supply connection of the MOSFET driver. The  
decoupling capacitor will be either the flying capaci-  
tor connected between BST and HS or the decou-  
ward voltage drop (V = 1V).  
f
P
= C × V 1 × f  
× V  
(
)
DIODE  
DH  
DD  
SW f  
The total power dissipation when using the internal  
boost diode will be P and, when using an external  
D
Schottky diode, will be P - P  
. The total power  
DIODE  
D
dissipated in the device must be kept below the maxi-  
mum of 1.951W for the 12-pin TQFN package, 1.5W for  
the 8-pin SO with exposed pad, and 0.471W for the  
regular 8-pin SO package at T = +70°C ambient.  
A
Layout Information  
The MAX5062/MAX5063/MAX5064 drivers source and  
sink large currents to create very fast rise and fall  
edges at the gates of the switching MOSFETs. The high  
di/dt can cause unacceptable ringing if the trace  
lengths and impedances are not well controlled. Use  
the following PC board layout guidelines when design-  
ing with the MAX5062/MAX5063/MAX5064:  
pling capacitor for V . Care must be taken to  
DD  
minimize the physical distance and the impedance of  
these AC current paths.  
• Solder the exposed pad of the TQFN (MAX5064) or  
SO (MAX5062C/D and MAX5063C/D) package to a  
large copper plane to achieve the rated power dissi-  
pation. Connect AGND and PGND at one point near  
• It is important that the V  
voltage (with respect to  
DD  
ground) or BST voltage (with respect to HS) does  
not exceed 13.2V. Voltage spikes higher than 13.2V  
V
DD  
’s decoupling capacitor return.  
______________________________________________________________________________________ 13  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Application Circuits  
V
= 8V TO 12.6V  
V = 0 TO 125V  
IN  
DD  
V
DD  
BST  
DH  
N
N
MAX5062A/  
MAX5063A  
IN_H  
IN_L  
PWM  
CONTROLLER  
HS  
DL  
V
OUT  
GND  
PIN FOR PIN REPLACEMENT FOR THE HIP2100/HIP2101  
Figure 4. MAX5062 Half-Bridge Conversion  
V
DD  
= 8V TO 12.6V  
V
IN  
= 0 TO 125V  
C
BST  
V
DD  
BST  
N
N
DH  
MAX5064  
IN_H+  
PWM  
V
OUT  
HS  
DL  
IN_L-  
BBM  
AGND PGND  
R
C
BBM  
BBM  
Figure 5. Synchronous Buck Converter  
14 ______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Application Circuits (continued)  
V
DD  
= 8V TO 12.6V  
V
IN  
= 0 TO 125V  
C
BST  
V
DD  
BST  
N
DH  
HS  
MAX5064  
IN_H+  
IN_L+  
BBM  
V
OUT  
PWM  
DL  
N
AGND PGND  
Figure 6. Two-Switch Forward Conversion  
V
= 8V TO 12.6V  
V
= 0 TO 125V  
DD  
IN  
C
BST  
V
DD  
BST  
DH  
N
N
PWM  
MAX5064_  
IN_H+  
HS  
DL  
IN_L-  
BBM  
V
OUT  
AGND  
PGND  
R
BBM  
C
BBM  
Figure 7. MAX5064 Half-Bridge Converter  
______________________________________________________________________________________ 15  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Functional Diagrams  
MAX5062A  
MAX5062C  
MAX5062B/  
MAX5062D  
MAX5063A/  
MAX5063C  
V
DD  
/2 CMOS  
V
DD  
/2 CMOS  
TTL  
BST  
BST  
BST  
2
3
2
3
2
3
IN_H  
IN_L  
IN_H  
IN_L  
IN_H  
IN_L  
DH  
HS  
DH  
HS  
DH  
HS  
5
6
5
6
5
6
4
1
4
1
4
1
V
V
V
DD  
DD  
DD  
DL  
DL  
DL  
8
8
8
GND  
GND  
GND  
7
7
7
SO/SO-EP  
SO/SO-EP  
SO/SO-EP  
MAX5063B/  
MAX5064A  
MAX5064B  
MAX5063D  
TTL  
V
DD  
/2 CMOS  
TTL  
BST  
BST  
BST  
2
3
1
2
1
2
IN_H+  
IN_H+  
7
7
IN_H  
IN_L  
DH  
HS  
DH  
HS  
DH  
HS  
5
6
IN_H-  
BBM  
IN_H-  
BBM  
6
5
6
5
4
1
3
3
V
V
V
DD  
DD  
DD  
12  
12  
IN_L+  
IN_L+  
9
9
DL  
DL  
DL  
8
11  
11  
IN_L-  
AGND  
IN_L-  
AGND  
8
4
8
4
GND  
PGND  
PGND  
7
10  
10  
SO/SO-EP  
THIN QFN  
THIN QFN  
Pin Configurations  
TOP VIEW  
IN_L+ IN_L- IN_H+  
9
8
7
V
1
2
3
4
8
DL  
V
1
8
7
6
5
DL  
DD  
DD  
PGND 10  
DL 11  
6
5
4
IN_H-  
BBM  
BST  
DH  
HS  
7
6
5
GND  
IN_L  
IN_H  
BST  
2
3
4
GND  
IN_L  
IN_H  
MAX5062A/B  
MAX5063A/B  
MAX5062C/D  
MAX5063C/D  
MAX5064A/  
MAX5064B  
DH  
HS  
V
DD  
12  
AGND  
1
2
3
SO  
SO-EP  
BST  
DH  
HS  
THIN QFN  
16 ______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Typical Operating Circuit  
V
IN  
= 125V  
V
DD  
8V TO 12.6V  
MAX5064A/  
MAX5064B  
BST  
PWM IN  
IN_H+  
IN_H-  
C
C
BST  
DH  
HS  
V
OUT  
V
DD  
IN_L+  
DD  
DL  
V
IN_L-  
BBM  
DD  
PGND  
AGND  
C
BBM  
R
BBM  
Selector Guide (continued)  
PART  
HIGH-SIDE DRIVER  
Noninverting  
LOW-SIDE DRIVER  
Noninverting  
Inverting  
LOGIC LEVELS  
PIN COMPATIBLE  
MAX5063AASA  
MAX5063BASA  
MAX5063CASA  
MAX5063DASA  
TTL  
TTL  
TTL  
TTL  
HIP2101IB  
Noninverting  
Noninverting  
Noninverting  
Inverting  
Noninverting  
Both Inverting and  
Noninverting  
Both Inverting and  
Noninverting  
MAX5064AATC  
MAX5064BATC  
CMOS (V / 2)  
DD  
Both Inverting and  
Noninverting  
Both Inverting and  
Noninverting  
TTL  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 790  
PROCESS: HV BiCMOS  
TEMP PIN-  
TOP  
PKG  
PART  
RANGE PACKAGE MARK  
CODE  
-40°C to  
+125°C  
MAX5063AASA  
MAX5063BASA  
MAX5063CASA  
MAX5063DASA  
MAX5064AATC  
MAX5064BATC  
8 SO  
S8-5  
S8-5  
-40°C to  
+125°C  
8 SO  
-40°C to  
+125°C  
8 SO-EP*  
8 SO-EP*  
12 TQFN  
12 TQFN  
S8E-14  
S8E-14  
T1244-4  
T1244-4  
-40°C to  
+125°C  
-40°C to  
+125°C  
AAEF  
AAEG  
-40°C to  
+125°C  
*EP = Exposed paddle.  
Devices are available in both leaded and lead-free packaging.  
Specify lead-free by replacing “-T” with “+T” when ordering.  
______________________________________________________________________________________ 17  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
8L SOIC, .150" EXPOSED PAD  
1
21-0111  
C
1
18 ______________________________________________________________________________________  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 19  
125V/2A, High-Speed,  
Half-Bridge MOSFET Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Revision History  
Pages changed at Rev 5: 1, 2, 4, 5, 11–15, 19, 20  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5063BASA-T

Half Bridge Based MOSFET Driver, 2A, BICMOS, PDSO8, SOIC-8
MAXIM

MAX5063DASA

Half Bridge Based MOSFET Driver, 2A, BICMOS, PDSO8, 0.150 INCH, MS-012, SOIC-8
MAXIM

MAX5063DASA+

Half Bridge Based MOSFET Driver, 2A, BICMOS, PDSO8, 0.150 INCH, MS-012, SOIC-8
MAXIM

MAX5063DASA-T

Half Bridge Based MOSFET Driver, 2A, BICMOS, PDSO8, 0.150 INCH, MS-012, SOIC-8
MAXIM

MAX5064BATC+T

Half Bridge Based MOSFET Driver, 2A, BICMOS, 4 X 4 MM, 0.80 MM PITCH, LEAD FREE, MO-220WGGB, TQFN-12
MAXIM

MAX5065

Dual-Phase, +0.6V to +3.3V Output Parallelable, Average-Current-Mode Controllers
MAXIM

MAX5065EAI

Dual-Phase, +0.6V to +3.3V Output Parallelable, Average-Current-Mode Controllers
MAXIM

MAX5065EAI+

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065EAI+T

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065EAI-T

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065|MAX5067

Dual-Phase. +0.6V to +3.3V Output Parallelable. Average-Current-Mode Controllers
MAXIM

MAX5066

Configurable, Single-/Dual-Output, Synchronous Buck Controller for High-Current Applications
MAXIM