MAX5812PEUT-T [ROCHESTER]

SERIAL INPUT LOADING, 4us SETTLING TIME, 12-BIT DAC, PDSO6, MINIATURE, SOT-23, 6 PIN;
MAX5812PEUT-T
型号: MAX5812PEUT-T
厂家: Rochester Electronics    Rochester Electronics
描述:

SERIAL INPUT LOADING, 4us SETTLING TIME, 12-BIT DAC, PDSO6, MINIATURE, SOT-23, 6 PIN

输入元件 信息通信管理 光电二极管 转换器
文件: 总16页 (文件大小:1018K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2340; Rev 0; 1/02  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
General Description  
Features  
The MAX5812 is a single, 12-bit voltage-output, digital-to-  
analog converter (DAC) with an I2C™-compatible 2-wire  
interface that operates at clock rates up to 400kHz. The  
device operates from a single 2.7V to 5.5V supply and  
o Ultra-Low Supply Current  
100µA at V  
130µA at V  
= 3.6V  
= 5.5V  
DD  
DD  
o 300nA Low-Power Power-Down Mode  
o Single 2.7V to 5.5V Supply Voltage  
draws only 100µA at V  
= 3.6V. A low-power power-  
DD  
down mode decreases current consumption to less than  
1µA. The MAX5812 features three software-selectable  
power-down output impedances: 100k, 1k, and high  
impedance. Other features include an internal precision  
o Fast 400kHz I2C-Compatible 2-Wire Serial  
Interface  
®
Rail-to-Rail output buffer and a power-on reset circuit  
o Schmitt-Trigger Inputs for Direct Interfacing to  
that powers up the DAC in the 100kpower-down mode.  
Optocouplers  
The MAX5812 features a double-buffered I2C-compatible  
serial interface that allows multiple devices to share a sin-  
gle bus. All logic inputs are CMOS-logic compatible and  
buffered with Schmitt triggers, allowing direct interfacing  
to optocoupled and transformer-isolated interfaces. The  
MAX5812 minimizes digital noise feedthrough by discon-  
necting the clock (SCL) signal from the rest of the device  
when an address mismatch is detected.  
o Rail-to-Rail Output Buffer Amplifier  
o Three Software-Selectable Power-Down Output  
Impedances  
100k, 1k, and High Impedance  
o Read-Back Mode for Bus and Data Checking  
o Power-On Reset to Zero  
The MAX5812 is specified over the extended temperature  
range of -40°C to +85°C and is available in a space-sav-  
ing 6-pin SOT23 package. Refer to the MAX5811 for the  
10-bit version.  
o Miniature 6-Pin SOT23 Package  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
Applications  
PART  
TEMP RANGE  
Digital Gain and Offset Adjustments  
Programmable Voltage and Current Sources  
Programmable Attenuation  
MAX5812LEUT  
MAX5812MEUT  
MAX5812NEUT  
MAX5812PEUT  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
6 SOT23  
6 SOT23  
6 SOT23  
6 SOT23  
AAYT  
AAYV  
AAYX  
AAYZ  
VCO/Varactor Diode Control  
Selector Guide appears at end of data sheet.  
Functional Diagram appears at end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
I2C is a trademark of Philips Corporation.  
Low-Cost Instrumentation  
Battery-Operated Equipment  
Typical Operating Circuit  
Pin Configuration  
V
DD  
TOP VIEW  
V
DD  
µC  
SCL  
SDA  
R
R
P
P
R
S
1
2
3
6
5
4
V
OUT  
ADD  
SCL  
DD  
SCL  
SDA  
V
DD  
R
S
MAX5812  
MAX5812  
GND  
SDA  
OUT  
MAX5812  
R
S
SCL  
SDA  
V
DD  
R
S
SOT23  
OUT  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
ABSOLUTE MAXIMUM RATINGS  
DD  
OUT, ADD to GND........................................-0.3V to V  
Maximum Current Into Any Pin ...........................................50mA  
V
, SCL, SDA to GND............................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V  
DD  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 9.1mW above +70°C).................727mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
V
= +2.7V to +5.5V, GND = 0, R = 5k, C = 200pF, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
L
L
A
MIN  
= +5V, T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY (Note 2)  
Resolution  
N
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Zero-Code Error  
INL  
(Note 3)  
2
16  
1
DNL  
ZCE  
Guaranteed monotonic (Note 3)  
LSB  
Code = 000 hex, V  
Code = FFF hex  
= 2.7V  
6
2.3  
40  
mV  
ppm/oC  
DD  
Zero-Code Error Tempco  
Gain Error  
GE  
-0.8  
0.26  
-3  
%FS  
ppm/oC  
Gain-Error Tempco  
DAC OUTPUT  
Output Voltage Range  
DC Output Impedance  
No load (Note 4)  
Code = 800 hex  
0
V
V
DD  
1.2  
42.2  
15.1  
8
V
V
V
V
= 5V, V  
= 3V, V  
= 5V  
= full scale (short to GND)  
= full scale (short to GND)  
DD  
DD  
DD  
DD  
OUT  
OUT  
Short-Circuit Current  
Wake-Up Time  
mA  
µs  
= 3V  
8
Power-down mode = high impedance,  
DAC Output Leakage Current  
0.1  
1
µA  
V
= 5.5V, V  
= V  
or GND  
DD  
OUT  
DD  
DIGITAL INPUTS (SCL, SDA)  
Input High Voltage  
V
0.7  
V
V
V
IH  
DD  
Input Low Voltage  
V
0.3  
V
DD  
IL  
Input Hysteresis  
0.05  
V
V
DD  
Input Leakage Current  
Input Capacitance  
Digital inputs = 0 or V  
0.1  
6
1
µA  
pF  
DD  
DD  
DIGITAL OUTPUT (SDA)  
Output Logic Low Voltage  
Three-State Leakage Current  
Three-State Output Capacitance  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
V
I
= 3mA  
SINK  
0.4  
1
V
OL  
I
Digital inputs = 0 or V  
0.1  
6
µA  
pF  
L
SR  
0.5  
4
V/µs  
µs  
To 1/2LSB code 400 hex to C00 hex or  
C00 hex to 400 hex (Note 5)  
Voltage-Output Settling Time  
12  
2
_______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= +2.7V to +5.5V, GND = 0, R = 5k, C = 200pF, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
L
L
A
MIN  
= +5V, T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
Code = 000 hex, digital inputs from 0 to V  
MIN  
TYP  
MAX  
UNITS  
Digital Feedthrough  
0.2  
nV-s  
DD  
Major carry transition, code = 7FF hex to 800  
hex and 800 hex to 7FF hex  
Digital-to-Analog Glitch Impulse  
12  
nV-s  
POWER SUPPLIES  
Supply Voltage Range  
V
2.7  
5.5  
170  
190  
1
V
DD  
All digital inputs at 0 or V  
All digital inputs at 0 or V  
= 3.6V  
= 5.5V  
100  
130  
0.3  
DD  
DD  
Supply Current with No Load  
µA  
µA  
Power-Down Supply Current  
All digital inputs at 0 or V = 5.5V  
DD  
TIMING CHARACTERISTICS (Figure 1)  
Serial Clock Frequency  
f
0
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
START Condition Hold Time  
SCL Pulse Width Low  
SCL Pulse Width High  
Repeated START Setup Time  
Data Hold Time  
t
0.6  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
ns  
HD, STA  
t
LOW  
t
HIGH  
t
SU, STA  
t
0.9  
HD, DAT  
Data Setup Time  
t
100  
SU, DAT  
SDA and SCL Receiving  
Rise Time  
t
(Note 5)  
(Note 5)  
(Note 5)  
0
300  
300  
250  
ns  
ns  
ns  
r
SDA and SCL Receiving  
Fall Time  
t
t
0
f
20 +  
0.1C  
SDA Transmitting Fall Time  
f
b
STOP Condition Setup Time  
Bus Capacitance  
t
0.6  
µs  
SU-STO  
C
(Note 5)  
400  
50  
.
pF  
b
Maximum Duration of  
Suppressed Pulse Widths  
t
0
ns  
SP  
Note 1: All devices are 100% production tested at T = +25°C and are guaranteed by design for T = T  
to T  
MAX  
A
A
MIN  
Note 2: Static specifications are tested with the output unloaded.  
Note 3: Linearity is guaranteed from codes 115 to 3981.  
Note 4: Offset and gain error limit the FSR.  
Note 5: Guaranteed by design. Not production tested.  
_______________________________________________________________________________________  
3
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Typical Operating Characteristics  
(V  
= +5V, R = 5k, T = +25°C.)  
L A  
DD  
INTEGRAL NONLINEARITY  
vs. INPUT CODE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
4
5
4
3
2
1
0
5
4
3
2
1
0
3
2
1
0
-1  
-2  
-3  
-4  
0
1024  
2048  
3072  
4096  
2.7  
3.4  
4.1  
4.8  
5.5  
-40  
-40  
2.7  
-15  
10  
35  
60  
85  
85  
5.5  
INPUT CODE  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
vs. INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
1.00  
0.75  
0.50  
0.25  
0
0
0
-0.25  
-0.50  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.75  
-1.00  
0
1024  
2048  
3072  
4096  
2.7  
3.4  
4.1  
4.8  
5.5  
-15  
10  
35  
60  
INPUT CODE  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR  
vs. SUPPLY VOLTAGE  
ZERO-CODE ERROR  
vs. TEMPERATURE  
ZERO-CODE ERROR  
vs. SUPPLY VOLTAGE  
-2.0  
-1.6  
-1.2  
-0.8  
-0.4  
0
10  
8
10  
8
6
6
4
4
2
2
NO LOAD  
4.8  
NO LOAD  
NO LOAD  
60  
0
0
3.4  
4.1  
2.7  
3.4  
4.1  
4.8  
5.5  
-40  
-15  
10  
35  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Typical Operating Characteristics (continued)  
(V  
= +5V, R = 5k, T = +25°C.)  
L A  
DD  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT (NOTE 6)  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT (NOTE 6)  
GAIN ERROR vs. TEMPERATURE  
6
5
4
3
2
1
0
-2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-1.6  
-1.2  
-0.8  
-0.4  
0
CODE = 400 hex  
NO LOAD  
CODE = FFF hex  
0
2
4
6
8
10  
-40  
-15  
10  
35  
60  
85  
4096  
5.5  
0
2
4
6
8
10  
OUTPUT SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
SUPPLY CURRENT  
vs. INPUT CODE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
100  
95  
90  
85  
80  
100  
90  
80  
70  
60  
50  
NO LOAD  
CODE = FFF hex  
CODE = FFF hex  
NO LOAD  
NO LOAD  
819  
0
1638  
2457  
3276  
-40  
-15  
10  
35  
60  
85  
2.7  
3.4  
4.1  
4.8  
5.5  
INPUT CODE  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
POWER-DOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
EXITING SHUTDOWN  
POWER-UP GLITCH  
MAX5812 toc18  
MAX5812 toc17  
500  
400  
300  
200  
100  
0
5V  
V
DD  
T
A
= -40°C  
T
A
= +25°C  
OUT  
500mV/div  
0
10mV/div  
OUT  
T
= +85°C  
A
Z
= HIGH IMPEDANCE  
OUT  
NO LOAD  
2µs/div  
100µs/div  
2.7  
3.4  
4.1  
4.8  
C
= 200pF  
CODE = 800 hex  
LOAD  
SUPPLY VOLTAGE (V)  
Note 6: The ability to drive loads less than 5kis not implied.  
_______________________________________________________________________________________  
5
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Typical Operating Characteristics (continued)  
(V  
= +5V, R = 5k, T = +25°C.)  
L A  
DD  
MAJOR CARRY TRANSITION  
(POSITIVE)  
MAJOR CARRY TRANSITION  
(NEGATIVE)  
SETTLING TIME  
(POSITIVE)  
MAX5812 toc19  
MAX5812 toc20  
MAX5812 toc21  
OUT  
5mV/div  
OUT  
5mV/div  
OUT  
500mV/div  
2µs/div  
CODE = 7FF hex TO 800 hex  
2µs/div  
CODE = 7FF hex TO 800 hex  
2µs/div  
C
L
= 200pF  
C
L
= 200pF  
C
LOAD  
= 200pF  
CODE = 400 hex to C00 hex  
LOAD  
R = 5kΩ  
LOAD  
R = 5kΩ  
SETTLING TIME  
(NEGATIVE)  
DIGITAL FEEDTHROUGH  
MAX5812 toc23  
MAX5812 toc22  
2V/div  
SCL  
OUT  
500mV/div  
2mV/div  
OUT  
40µs/div  
2µs/div  
C = 200pF  
LOAD  
SCL  
CODE = 000 hex  
C
LOAD  
= 200pF  
CODE = C00 hex to 400 hex  
f
= 12kHz  
6
_______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
Power Supply and DAC Reference Input  
DD  
2
GND  
SDA  
SCL  
ADD  
OUT  
Ground  
3
Bidirectional Serial Data I/O  
4
Serial Clock Line  
5
Address Select. A logic high sets the address LSB to 1; a logic low sets the address LSB to 0.  
Analog Output  
6
swings rail-to-rail and is capable of driving 5kin paral-  
lel with 200pF. The output settles to 0.5LSB within 4µs.  
Detailed Description  
The MAX5812 is a 12-bit, voltage-output DAC with an  
I2C/SMBus-compatible 2-wire interface. The device con-  
sists of a serial interface, power-down circuitry, input  
and DAC registers, a 12-bit resistor string DAC, unity-  
gain output buffer, and output resistor network. The seri-  
al interface decodes the address and control bits,  
routing the data to either the input or DAC register. Data  
can be directly written to the DAC register immediately  
updating the device output, or can be written to the  
input register without changing the DAC output. Both  
registers retain data as long as the device is powered.  
Power-On Reset  
The MAX5812 features an internal power-on-reset  
(POR) circuit that initializes the device upon power-up.  
The DAC registers are set to zero-scale and the device  
is powered down with the output buffer disabled and  
the output pulled to GND through the 100ktermina-  
tion resistor. Following power-up, a wake-up command  
must be initiated before conversions are performed.  
Power-Down Modes  
The MAX5812 has three software-controlled, low-  
power, power-down modes. All three modes disable  
the output buffer and disconnect the DAC resistor  
DAC Operation  
The MAX5812 uses a segmented resistor string DAC  
architecture, which saves power in the overall system  
and guarantees output monotonicity. The MAX5812s  
input coding is straight binary with the output voltage  
given by the following equation:  
string from V , reducing supply current draw to  
DD  
300nA. In power-down mode 0, the device output is  
high impedance. In power-down mode 1, the device  
output is internally pulled to GND by a 1ktermination  
resistor. In power-down mode 2, the device output is  
internally pulled to GND by a 100ktermination resis-  
tor. Table 1 shows the power-down mode command  
words.  
V
× (D)  
N
REF  
2
V
=
OUT  
where N = 12(bits), and D = the decimal value of the  
input code (0 to 4095).  
Upon wake-up, the DAC output is restored to its previ-  
ous value. Data is retained in the input and DAC regis-  
ters during power-down mode.  
Output Buffer  
The MAX5812 analog output is buffered by a precision  
unity-gain follower that slews 0.5V/µs. The buffer output  
Digital Interface  
The MAX5812 features an I2C/SMBus-compatible  
2-wire interface consisting of a serial data line (SDA)  
Table 1. Power-Down Command Bits  
POWER-DOWN  
COMMAND BITS  
MODE/FUNCTION  
PD1  
PD0  
0
0
1
1
0
1
0
1
Power-up device. DAC output restored to previous value.  
Power-down mode 0. Powers down device with output floating.  
Power-down mode 1. Powers down device with output terminated with 1kto GND.  
Power-down mode 2. Powers down device with output terminated with 100kto GND.  
_______________________________________________________________________________________  
7
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
SDA  
t
SU, STA  
t
BUF  
t
SU, DAT  
t
HD, STA  
t
t
SP  
SU, STO  
t
LOW  
t
HD, DAT  
SCL  
t
HIGH  
t
HD, STA  
t
t
R
F
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 1. Two-Wire Serial lnterface Timing Diagram  
S
Sr  
P
and a serial clock line (SCL). The MAX5812 is SMBus  
compatible within the range of V  
= 2.7V to 3.6V. SDA  
DD  
SCL  
SDA  
and SCL facilitate bidirectional communication between  
the MAX5812 and the master at rates up to 400kHz.  
Figure 1 shows the 2-wire interface timing diagram. The  
MAX5812 is a transmit/receive slave-only device, rely-  
ing upon a master to generate a clock signal. The mas-  
ter, typically a microcontroller, initiates data transfer on  
the bus and generates SCL to permit that transfer.  
A master device communicates to the MAX5812 by  
transmitting the proper address followed by command  
and/or data words. Each transmit sequence is framed  
Figure 2. START/STOP Conditions  
by a START (S) or REPEATED START (S ) condition and  
r
a STOP (P) condition. Each word transmitted over the  
bus is 8 bits long and is always followed by an  
acknowledge clock pulse.  
SCL  
SDA  
The MAX5812 SDA and SCL drivers are open-drain out-  
puts, requiring a pullup resistor (500or greater) to  
generate a logic high voltage (see the Typical Operating  
STOP  
START  
LEGAL STOP CONDITION  
Circuit). Series resistors R are optional. These series  
S
resistors protect the input stages of the MAX5812 from  
high-voltage spikes on the bus lines and minimize  
crosstalk and undershoot of the bus signals.  
SCL  
SDA  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. The data on SDA must remain stable during the  
high period of the SCL clock pulse. Changes in SDA  
while the SCL is high are control signals (see the  
START and STOP Conditions section). SDA and SCL  
idle high when the I2C bus is not busy.  
ILLEGAL  
START  
STOP  
ILLEGAL EARLY STOP CONDITION  
Figure 3. Early STOP condition  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issu-  
ing a START condition. A START condition is a high-to-  
8
_______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
low transition on SDA with SCL high. A STOP condition  
2
Table 2. MAX5812 I C Slave Addresses  
is a low-to-high transition on SDA while SCL is high  
(Figure 2). A START condition from the master signals  
the beginning of a transmission to the MAX5812. The  
master terminates transmission by issuing a not  
acknowledge followed by a STOP condition (see the  
Acknowledge Bit section). The STOP condition frees the  
DEVICE ADDRESS  
PART  
V
ADD  
(A ...A )  
6
0
MAX5812L  
MAX5812L  
MAX5812M  
MAX5812M  
MAX5812N  
MAX5812N  
MAX5812P  
MAX5812P  
GND  
0010 000  
0010 001  
0010 010  
0010 011  
0110 100  
0110 101  
1010 100  
1010 101  
V
DD  
bus. If a repeated START condition (S ) is generated  
r
GND  
instead of a STOP condition, the bus remains active.  
When a STOP condition or incorrect address is detect-  
ed, the MAX5812 internally disconnects SCL from the  
serial interface until the next START condition, minimiz-  
ing digital noise and feedthrough.  
V
DD  
GND  
V
DD  
GND  
V
DD  
Early STOP Conditions  
The MAX5812 recognizes a STOP condition at any point  
during transmission except when a STOP condition  
occurs in the same high pulse as a START condition  
(Figure 3). This condition is not a legal I2C format, at  
least one clock pulse must separate any START and  
STOP conditions.  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
Figure 4. Slave Address Byte Definition  
Repeated START Conditions  
A repeated start (S ) condition might indicate a change  
r
of data direction on the bus. Such a change occurs  
when a command word is required to initiate a read  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
operation. S also can be used when the bus master is  
r
writing to several I2C devices and does not want to  
relinquish control of the bus. The MAX5812 serial inter-  
face supports continuous write operations with or with-  
Figure 5. Command Byte Definition  
value bit-by-bit, allowing the interface to power-down  
immediately when an incorrect address is detected.  
The LSB of the address word is the Read/Write (R/W)  
bit. R/W indicates whether the master is writing to or  
reading from the MAX5812 (R/W = 0 selects the write  
condition, R/W = 1 selects the read condition). After  
receiving the proper address, the MAX5812 issues an  
ACK by pulling SDA low for one clock cycle.  
out an S condition separating them. Continuous read  
r
operations require S conditions because of the change  
r
in direction of data flow.  
Acknowledge Bit (ACK)  
The acknowledge bit (ACK) is the ninth bit attached to  
any 8-bit data word. ACK is always generated by the  
receiving device. The MAX5812 generates an ACK  
when receiving an address or data by pulling SDA low  
during the ninth clock period. When transmitting data,  
the MAX5812 waits for the receiving device to generate  
an ACK. Monitoring ACK allows detection of unsuc-  
cessful data transfers. An unsuccessful data transfer  
occurs if a receiving device is busy or if a system fault  
has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communica-  
tion at a later time.  
The MAX5812 has eight factory/user-programmed  
addresses (Table 2). Address bits A6 through A1 are  
preset; A0 is controlled by ADD. Connecting ADD to  
GND sets A0 = 0. Connecting ADD to V  
This feature allows up to eight MAX5812s to share a bus.  
sets A0 = 1.  
DD  
Write Data Format  
In write mode (R/W = 0), data that follows the address  
byte controls the MAX5812 (Figure 5). Bits C3C0 con-  
figure the MAX5812 (Table 3). Bits D11D0 are DAC  
data. Input and DAC registers update on the falling  
edge of SCL during the acknowledge bit. Should the  
write cycle be prematurely aborted, data will not be  
updated and the write cycle must be repeated. Figure  
6 shows two example write data sequences.  
Slave Address  
A bus master initiates communication with a slave  
device by issuing a START condition followed by the  
7-bit slave address (Figure 4). When idle, the MAX5812  
waits for a START condition followed by its slave  
address. The serial interface compares each address  
_______________________________________________________________________________________  
9
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Table 3. Command Byte Definitions  
SERIAL DATA INPUT  
FUNCTION  
C3  
C2  
C1  
C0  
D11/PD1* D10/PD0*  
D9–D8  
Load DAC with a new data from the following data byte  
and update DAC output simultaneously as soon as data  
is available from the serial bus. The DAC and input  
registers are updated with the new data.  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
1
1
0
0
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
Load input register with the data from the following data  
byte. DAC output remains unchanged.  
1
1
1
1
1
1
0
1
1
1
0
1
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
Load input register with data from the following data byte.  
Update DAC output to the previously stored data.  
Update DAC output from input register. The device will  
ignore any new data.  
X
X
XX  
Read data request. Data bits are ignored. The contents of  
the DAC register are available on the bus.  
1
0
0
0
1
1
X
X
X
X
X
X
X
0
0
X
0
1
XX  
XX  
XX  
Powers up device.  
Power-down mode 0. Powers down device with output  
floating.  
Power-down mode 1. Powers down device with output  
terminated with 1kto GND.  
0
0
1
1
X
X
X
X
1
1
0
1
XX  
XX  
Power-down mode 2. Powers down device with output  
terminated with 100kto GND.  
*When C3 = 0 and C2 = 1, data bits D11 and D10 write to the power-down registers (PD1 and PD0).  
X = Don’t care.  
MSB  
S
LSB  
R/W  
MSB  
C3  
LSB  
D8  
A6  
A5  
A4  
D6  
A4  
A3  
D5  
A3  
A2  
D4  
A2  
A1  
D3  
A1  
A0  
ACK  
C2  
C1  
C0  
D11  
D10  
D9  
ACK  
MSB  
D7  
LSB  
D0  
D2  
D1  
ACK  
P
EXAMPLE WRITE DATA SEQUENCE  
MSB  
S
LSB  
R/W  
MSB  
C3  
LSB  
X
A6  
A5  
A0  
ACK  
C2  
X
X
PD1  
PD0  
X
ACK  
P
EXAMPLE WRITE TO POWER-DOWN REGISTER SEQUENCE  
Figure 6. Example Write Command Sequences  
10 ______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
MSB  
A6  
LSB  
MSB  
C3  
LSB  
X
R/W  
= 0  
S
A4  
A3  
A2  
A1  
A0  
C2  
X
X
X
X
ACK  
A5  
X
ACK  
DATA BYTES GENERATED BY MASTER DEVICE  
MSB  
A6  
LSB  
MSB  
X
LSB  
D8  
R/W  
= 1  
ACK  
Sr  
A4  
A3  
A2  
A1  
A0  
ACK  
X
PD0  
D11  
D10  
D9  
A5  
PD1  
ACK GENERATED BY  
MASTER DEVICE  
DATA BYTES GENERATED BY MAX5812  
LSB  
MSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK  
P
Figure 7. Example Read Word Data Sequence  
patible only with the 7-bit I2C addressing protocol. Ten-  
bit address formats are not supported.  
IN  
OUT  
V
DD  
Digital Feedthrough Suppression  
When the MAX5812 detects an address mismatch, the  
serial interface disconnects the SCL signal from the  
core circuitry. This minimizes digital feedthrough  
caused by the SCL signal on a static output. The serial  
interface reconnects the SCL signal when a valid  
START condition is detected.  
OUT  
MAX6030/  
MAX5812  
MAX6050  
GND  
GND  
Figure 8. Powering the MAX5812 from An External Reference  
Applications Information  
Read Data Format  
In read mode (R/W = 1), the MAX5812 writes the con-  
tents of the DAC register to the bus. The direction of  
data flow reverses after the address acknowledge by  
the MAX5812. The device transmits the first byte of  
data, waits for the master to acknowledge, and then  
transmits the second byte. Figure 7 shows an example-  
read data sequence.  
Powering the Device From an  
External Reference  
The MAX5812 uses the V  
as the DAC voltage refer-  
DD  
ence. Any power-supply noise is directly coupled to the  
device output. The circuit in Figure 8 uses a precision  
voltage reference to power the MAX5812, isolating the  
device from any power-supply noise. Powering the  
MAX5812 in such a manner greatly improves overall  
performance, especially in noisy systems. The  
MAX6030 (3V, 75ppm/°C) or the MAX6050 (5V,  
75ppm/°C) precision voltage references are ideal  
choices because of the low power requirements of the  
MAX5812.  
2
I C Compatibility  
The MAX5812 is compatible with existing I2C systems.  
SCL and SDA are high-impedance inputs; SDA has an  
open drain that pulls the data line low during the ninth  
clock pulse. The Typical Operating Circuit shows a typ-  
ical I2C application. The communication protocol sup-  
ports standard I2C 8-bit communications. The general  
call address is ignored. The MAX5812 address is com-  
Digital Inputs and Interface Logic  
The MAX5812 2-wire digital interface is I2C and SMBus-  
compatible. The two digital inputs (SCL and SDA) load  
______________________________________________________________________________________ 11  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Functional Diagram  
V
DD  
INPUT  
REGISTER  
MUX AND DAC  
REGISTER  
12-BIT  
DAC  
OUT  
RESISTOR  
NETWORK  
SERIAL  
INTERFACE  
POWER-DOWN  
CIRCUITRY  
MAX5812  
SDA ADD SCL  
GND  
the digital input serially into the DAC. Schmitt-trigger  
buffered inputs allow slow transition interfaces such as  
optocouplers to interface directly to the device. The  
digital inputs are compatible with CMOS logic levels.  
Chip Information  
TRANSISTOR COUNT: 7172  
PROCESS: BiCMOS  
Power-Supply Bypassing and  
Ground Management  
Careful PC board layout is important for optimal system  
performance. Keep analog and digital signals separate  
to reduce noise injection and digital feedthrough. Use a  
ground plane to ensure that the ground return from  
GND to the power supply ground is short and low  
impedance. Bypass V  
with a 0.1µF capacitor to  
DD  
ground as close to the device as possible.  
Selector Guide  
PART  
ADDRESS  
0010 00X  
0010 01X  
0110 10X  
1010 10X  
MAX5812LEUT  
MAX5812MEUT  
MAX5812NEUT  
MAX5812PEUT  
12 ______________________________________________________________________________________  
12-Bit Low-Power, 2-Wire, Serial  
Voltage-Output DAC  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
ENG LIS H ? ? ? ? ? ? ? ? ?  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ERS  
M a x i m > P r o d u c t s > D i g i t a l - t o - A n a l o g C o n v e r t e r s A u t o m o t i v e  
M A X 5 8 1 2  
1
2
-
B
i
t
L
o
w
-
P
o
w
e
r
,
2
-
W
i
r
e
,
S
e
r
i
a
l
V
o
l
t
a
g
e
-
O
u
t
p
u
t
D
A
C
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
A l l  
O r d e r i n g I n f o r m a t i o n  
N o t e s :  
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
3 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e F u l l D a t a  
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t u s e s .  
D e v i c e s : 1 - 1 0 o f 1 0  
M A X 5 8 1 2  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P
a
c
k
a
g
e
:
T
Y
P
E
P
I
N
S
F
O
O
T
P
R
I
N
T
S
a
m
p
l
e
D
R
A
W
I
N
G
C
O
D
E
/
V
A
R
*
M
A
X
5
8
1
2
M
E
U
T
#
T
G
1
6
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
H
-
6
*
M A X 5 8 1 2 M E U T # G 1 6  
M A X 5 8 1 2 P E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f i e  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
-
6
*
M
A
X
5
8
1
2
N
E
U
T
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
-
6
*
M A X 5 8 1 2 M E U T  
M A X 5 8 1 2 L E U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
M A X 5 8 1 2 P E U T - T  
M A X 5 8 1 2 N E U T - T  
M A X 5 8 1 2 M E U T - T  
M A X 5 8 1 2 L E U T - T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
-
6
*
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
D e s c r i p t i o n  
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 2 3 4 0 ; R e v 0 ; 2 0 0 2 - 0 2 - 2 2  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 7 - 3 0  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY