MAX806SEPA+ [ROCHESTER]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, 0.300 INCH, PLASTIC, DIP-8;
MAX806SEPA+
型号: MAX806SEPA+
厂家: Rochester Electronics    Rochester Electronics
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, 0.300 INCH, PLASTIC, DIP-8

光电二极管
文件: 总13页 (文件大小:964K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0243; Rev 2; 12/05  
3.0V/3.3V Microprocessor Supervisory Circuits  
_______________General Description  
____________________________Features  
RESET and RESET Outputs  
Manual Reset Input  
Precision Supply-Voltage Monitor  
200ms Reset Time Delay  
Watchdog Timer (1.6s timeout)  
–————–  
These microprocessor (µP) supervisory circuits reduce  
the complexity and number of components required for  
power-supply monitoring and battery-control functions  
in µP systems. They significantly improve system relia-  
bility and accuracy compared to separate ICs or  
discrete components.  
These devices are designed for use in systems powered  
by 3.0V or 3.3V supplies. See the selector guide in the  
back of this data sheet for similar devices designed for  
5V systems. The suffixes denote different reset threshold  
voltages: 3.075V (T), 2.925V (S), and 2.625V (R) (see the  
Reset Threshold section in the Detailed Description). All  
these parts are available in 8-pin DIP and SO packages.  
Functions offered in this series are as follows:  
Battery-Backup Power Switching—  
Battery Can Exceed VCC in Normal Operation  
40µA VCC Supply Current  
1µA Battery Supply Current  
Voltage Monitor for Power-Fail or  
Low-Battery Warning  
–————–  
Guaranteed RESET Assertion to VCC = 1V  
8-Pin DIP and SO Packages  
______________Ordering Information  
PART**  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX690_CPA  
MAX690_CSA  
MAX690_C/D  
MAX690_EPA  
MAX690_ESA  
MAX690_MJA  
Part  
0°C to +70°C  
MAX690  
MAX704  
MAX802  
MAX804  
MAX805  
MAX806  
4ꢀ  
4ꢀ  
2ꢀ  
2ꢀ  
4ꢀ  
2ꢀ  
75mV  
75mV  
2ꢀ  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
8 CERDIP  
2ꢀ  
Ordering Information continued at end of data sheet.  
*Contact factory for dice specifications.  
75mV  
2ꢀ  
**These parts offer a choice of reset threshold voltage. Select  
the letter corresponding to the desired nominal reset threshold  
voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into  
the blank to complete the part number.  
Devices in PDIP and SO packages are available in both leaded  
and lead-free packaging. Specify lead free by adding the +  
symbol at the end of the part number when ordering. Lead free  
not available for CERDIP package.  
________________________Applications  
Battery-Powered Computers and Controllers  
Embedded Controllers  
Intelligent Instruments  
Automotive Systems  
_________Typical Operating Circuits  
Critical µP Power Monitoring  
Portable Equipment  
REGULATED +3.3V OR +3.0V  
V
CC  
UNREGULATED  
DC  
μP  
__________________Pin Configuration  
0.1μF  
V
CC  
RESET  
RESET  
(RESET)  
R1  
R2  
TOP VIEW  
NMI  
PFO  
MAX690T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
I/O LINE  
GND  
PFI  
WDI  
1
2
3
4
8
7
6
5
V
VBATT  
OUT  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
3.6V  
LITHIUM  
BATTERY  
BUS  
RESET (RESET)  
WDI <MR>  
PFO  
V
CC  
V
OUT  
VBATT  
GND  
PFI  
GND  
V
CC  
CMOS RAM  
GND  
0.1μF  
0.1μF  
DIP/SO  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R  
< > ARE FOR MAX704T/S/R, MAX806T/S/R  
See last page for MAX704T/S/R, MAX806T/S/R.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3.0V/3.3V Microprocessor Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
.........................................................................-0.3V to 6.0V  
Plastic DIP (derate 9.09mW/°C above +70°C) ..............727mW  
SO (derate 5.88mW/°C above +70°C)...........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)...................640mW  
Operating Temperature Ranges  
CC  
VBATT....................................................................-0.3V to 6.0V  
All Other Inputs ...................-0.3V to the higher of V or VBATT  
Continuous Input Current  
CC  
V
..................................................................................100mA  
MAX690_C_ _/MAX704_C_ _/MAX80_ _C_ _ ........0°C to +70°C  
MAX690_E_ _/MAX704_E_ _/MAX80_ _E_ _. .....-40°C to +85°C  
MAX690_M_ _/MAX704_M_ _/MAX80_ _M_ _...-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
VBATT ...............................................................................18mA  
GND ..................................................................................18mA  
Output Current  
–————– –  
RESET, PFO ....................................................................18mA  
V
................................................................................100mA  
OUT  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.0  
TYP  
MAX UNITS  
MAX690_C, MAX704_C, MAX80_ _C  
MAX690_E/M, MAX704_E/M, MAX80_ _E/M  
MAX690_C/E, MAX704_C/E,  
5.5  
V
Operating Voltage Range,  
V
, VBATT (Note 1)  
CC  
1.1  
5.5  
40  
50  
40  
50  
50  
MAX80_ _C/E, V  
< 3.6V  
CC  
MAX690_C/E, MAX704_C/E,  
MAX80_ _C/E, V < 5.5V  
–  
MR = V  
(MAX704_/  
MAX806_)  
65  
µA  
55  
CC  
CC  
V
Supply Current  
CC  
I
SUPPLY  
(excluding I  
)
OUT  
MAX690_M, MAX704_M,  
MAX80_ _M, V < 3.6V  
CC  
MAX690_M, MAX704_M,  
MAX80_ _M, V < 5.5V  
70  
CC  
–  
MR = V  
CC  
V
Supply Current in Battery-  
CC  
(MAX704_/  
MAX806_)  
V
CC  
= 2.0V, VBATT = 2.3V  
25  
50  
µA  
Backup Mode (excluding I  
)
OUT  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E,  
0.4  
0.4  
1
10  
0.5  
5
VBATT Supply Current, Any Mode  
(excluding I ) (Note 2)  
µA  
µA  
OUT  
0.01  
0.01  
Battery Leakage Current  
(Note 3)  
V
-
V
-
CC  
CC  
I
= 5mA (Note 4)  
0.03  
0.015  
OUT  
V
0.3  
-
V
0.15  
-
CC  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
= 50mA  
CC  
I
OUT  
V
-
V
-
CC  
MAX690_M, MAX704_M, MAX80_ _M  
= 5mA (Note 4)  
CC  
V
Output Voltage  
V
OUT  
I
0.035  
0.015  
OUT  
V
-
V
-
CC  
MAX690_M, MAX704_M, MAX80_ _M  
CC  
I
= 50mA  
0.35  
0.15  
OUT  
V
-
V
-
CC  
CC  
I
= 250µA, V  
> 2.5V (Note 4)  
OUT  
CC  
0.0015 0.0006  
2
_______________________________________________________________________________________  
3.0V/3.3V Microprocessor Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25˚C.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
VBATT VBATT  
I
I
= 250µA, VBATT = 2.3V  
OUT  
OUT  
- 0.1  
- 0.034  
V
OUT  
in Battery-Backup Mode  
V
VBATT  
- 0.14  
= 1mA, VBATT = 2.3V  
VBATT - V  
V
> V  
> 1.75V (Note 5)  
CC  
65  
25  
mV  
CC, SW  
Battery Switch Threshold,  
Falling  
V
CC  
V
SW  
VBATT > V  
(Note 6)  
CC  
2.30  
2.40  
2.50  
V
Battery Switch Threshold,  
Rising (Note 7)  
This value is identical to the reset threshold,  
V rising  
CC  
V
V
CC  
V
V
V
V
V
V
V
V
V
V
V
V
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
3.00  
3.00  
3.00  
3.00  
2.85  
2.85  
2.88  
2.88  
2.55  
2.55  
2.59  
2.59  
140  
3.075  
3.085  
3.075  
3.085  
2.925  
2.935  
2.925  
2.935  
2.625  
2.635  
2.625  
2.635  
200  
3.15  
3.17  
3.12  
3.14  
3.00  
3.02  
3.00  
3.02  
2.70  
2.72  
2.70  
2.72  
280  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
MAX690T/704T/805T  
MAX802T/804T/806T  
MAX690S/704S/805S  
MAX802S/804S/806S  
MAX690R/704R/805R  
MAX802R/804R/806S  
Reset Threshold (Note 8)  
V
V
RST  
Reset Timeout Period  
t
V
< 3.6V  
CC  
ms  
V
WP  
V
CC  
V
CC  
–—————–  
PFO, RESET Output Voltage  
V
I
= 50µA  
SOURCE  
OH  
- 0.3  
- 0.05  
–—————–  
PFO, RESET Output Short to  
I
V
I
= 3.3V, V  
= 0V  
180  
500  
0.3  
µV  
V
OS  
CC  
OH  
GND Current (Note 4)  
= 1.2mA;  
–—————–  
SINK  
PFO, RESET, RESET  
V
MAX690_/704_/802_/806_, V  
MAX804_/805_, V  
= V min;  
RST  
max  
0.06  
OL  
OL  
CC  
Output Voltage  
= V  
CC  
RST  
VBATT = 0V, V  
MAX690_C, MAX704_C, MAX80_ _C  
= 1.0V, I  
= 40µA,  
SINK  
CC  
0.13  
0.17  
0.3  
–—————–  
PFO, RESET Output Voltage  
V
V
VBATT = 0V, V = 1.2V, I = 200µA,  
MAX690_E/M, MAX704_E/M, MAX80_ _E/M  
CC  
SINK  
0.3  
+1  
MAX804_C,  
MAX805_C  
-1  
VBATT = 0V,  
V
V
RESET Output Leakage Current  
(Note 9)  
= V  
min;  
µA  
CC  
RST  
MAX804_E/M,  
MAX805_E/M  
= 0V, V  
RESET  
CC  
-10  
+10  
_______________________________________________________________________________________  
3
3.0V/3.3V Microprocessor Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25˚C.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
MAX802_C/E, MAX804_C/E,  
MAX806_C/E  
1.212  
1.237  
1.262  
V
V
V
< 3.6V  
falling  
CC  
PFI  
PFI Input Threshold  
V
PFT  
PFH  
MAX690_/MAX704_/MAX805_  
1.187  
-25  
1.237  
1.287  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E,  
2
2
25  
nA  
PFI Input Current  
-500  
500  
10  
20  
MAX80_ _C/E  
PFI Hysteresis, PFI Rising  
PFI Input Current  
V
V
CC  
< 3.6V  
mV  
MAX690_M, MAX704_M, MAX80_ _M  
10  
2
25  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
-25  
25  
nA  
-500  
2
500  
V
0.7 x V  
CC  
IH  
–  
MR Input Threshold  
MAX704_/MAX806_ only  
MAX704_/MAX806_ only  
V
V
0.3 x V  
100  
IL  
MR  
MD  
CC  
CC  
–  
MR Pulse Width  
t
t
20  
60  
60  
ns  
ns  
µA  
–  
MR to Reset Delay  
MAX704_/MAX806_ only  
–  
500  
350  
0.7 x V  
–  
MR Pull-Up Current  
MAX704_/MAX806_ only, MR = 0V, V  
= 3V  
20  
CC  
V
IH  
CC  
WDI Input Threshold  
WDI Input Current  
MAX690_/MAX802_/MAX804_/MAX805_ only  
V
V
0.3 x V  
-1  
IL  
MAX690_C/E, MAX802_C/E,  
MAX804_C/E, MAX805_C/E  
+0.01  
+0.01  
+1  
0V< V  
< 5.5V  
µA  
CC  
MAX690_M, MAX802_M,  
MAX804_M, MAX805_M  
-10  
+10  
2.24  
MAX690/MAX802/MAX804/  
MAX805 only  
Watchdog Timeout Period  
WDI Pulse Width  
t
V
CC  
< 3.6V  
1.12  
100  
1.60  
20  
s
WD  
MAX690_/MAX802_/MAX804_/MAX805_ only  
ns  
–  
Note 1: V supply current, logic input leakage, watchdog functionality (MAX690_/802_/805_/804_), MR functionality  
CC  
–————–  
(MAX704_/806_), PFI functionality, state of RESET (MAX690_/704_/802_/806_), and RESET (MAX804_/805_) tested at  
–————–  
–—–  
VBATT = 3.6V, and V = 5.5V. The state of RESET or RESET and PFO is tested at V = V min.  
CC  
CC  
CC  
Note 2: Tested at VBATT = 3.6V, V = 3.5V and 0V. The battery current will rise to 10µA over a narrow transition window around  
CC  
V
= 1.9V.  
CC  
Note 3: Leakage current into the battery is tested under the worst-case conditions at V = 5.5V, VBATT = 1.8V and at V = 1.5V,  
CC  
CC  
VBATT= 1.0V.  
Note 4: Guaranteed by design.  
Note 5: When V > V > VBATT, V  
remains connected to V until V drops below VBATT. The V -to-VBATT comparator  
CC CC CC  
SW  
CC  
OUT  
has a small 25mV typical hysteresis to prevent oscillation. For V < 1.75V (typ), V  
switches to VBATT regardless of the  
CC  
OUT  
voltage on VBATT.  
Note 6: When VBATT > V > V , V  
remains connected to V until V drops below the battery switch threshold (V ).  
CC CC SW  
CC  
SW OUT  
Note 7: V  
switches from VBATT to V when V rises above the reset threshold, independent of VBATT. Switchover back to  
occurs at the exact voltage that causes RESET to go high (on the MAX804_/805_, RESET goes low); however  
OUT  
CC CC  
–————–  
V
CC  
switchover occurs 200ms prior to reset.  
Note 8: The reset threshold tolerance is wider for V rising than for V falling to accommodate the 10mV typical hysteresis, which  
CC  
CC  
prevents internal oscillation.  
Note 9: The leakage current into or out of the RESET pin is tested with RESET asserted (RESET output high impedance).  
4
_______________________________________________________________________________________  
3.0V/3.3V Microprocessor Supervisory Circuits  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
V
-to-V  
vs. TEMPERATURE  
ON-RESISTANCE  
VBATT-to-V  
ON-RESISTANCE  
OUT  
SUPPLY CURRENT  
vs. TEMPERATURE  
CC  
OUT  
vs. TEMPERATURE  
5
180  
140  
50  
V
CC  
= 0V  
VBATT = 3.0V  
VBATT = 2V  
V
CC  
= 5V  
4
3
2
1
0
45  
40  
35  
30  
25  
V
= 2.5V  
CC  
VBATT = 3V  
V
= 3.3V  
CC  
V
= 3.3V  
= 2.5V  
CC  
100  
60  
VBATT = 3V  
PFI = GND  
MR/WDI FLOATING  
VBATT = 3.3V  
V
= 5V  
CC  
VBATT = 5V  
V
CC  
20  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
RESET-COMPARATOR PROPAGATION  
DELAY vs. TEMPERATURE  
BATTERY SUPPLY CURRENT  
vs. TEMPERATURE  
216  
30  
10,000  
VBATT = 3.0V  
100mV OVERDRIVE  
V
= 0V  
CC  
PFI = GND  
VBATT = 5V  
212  
208  
204  
200  
196  
26  
22  
18  
14  
10  
1000  
100  
10  
V
= 5V  
CC  
VBATT = 3.0V  
VBATT = 3V  
1
VBATT = 2V  
V
= 3.3V  
CC  
0.1  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PFI THRESHOLD  
vs. TEMPERATURE  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
1.240  
1.004  
V
CC  
= 3.3V  
1.238  
1.236  
1.234  
1.232  
1.230  
1.002  
1.000  
0.998  
0.996  
0.994  
V
= 5V  
CC  
V
= 2.5V  
CC  
VBATT = 3.0V  
VBATT = 3.0V  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3.0V/3.3V Microprocessor Supervisory Circuits  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
MAX690 MAX704 MAX804  
MAX802 MAX806 MAX805  
Supply Output for CMOS RAM. When V is above the reset threshold, V  
is  
OUT  
CC  
1
1
1
V
OUT  
connected to V  
through a p-channel MOSFET switch. When V  
falls below V  
and  
SW  
CC  
CC  
VBATT, VBATT connects to V  
Main Supply Input  
Ground  
. Connect to V  
if no battery is used.  
OUT  
CC  
2
3
2
3
2
3
V
CC  
GND  
–—–  
falls below V , PFO goes  
Power-Fail Input. When PFI is less than V  
or when V  
PFT  
CC  
SW  
4
5
4
5
4
5
PFI  
–—–  
low; otherwise, PFO remains high. Connect to ground if unused.  
–—–  
Power-Fail Output. When PFI is less than V , or V falls below V , PFO goes low;  
–—–  
PFO  
PFT  
CC  
SW  
–—–  
otherwise, PFO remains high. Leave open if unused.  
Watchdog Input. If WDI remains high or low for 1.6s, the internal watchdog timer runs out  
and reset is triggered. The internal watchdog timer clears while reset is asserted or when  
WDI sees a rising or falling edge. The watchdog function cannot be disabled.  
6
6
6
WDI  
–  
Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as  
–  
–  
MR is low and for 200ms after MR returns high. This active-low input has an internal  
70µA pullup current. It can be driven from a TTL or CMOS logic line, or shorted to ground  
with a switch. Leave open if unused.  
–  
MR  
Active-Low Reset Output. Pulses low for 200ms when triggered, and stays low whenever  
–  
V
is below the reset threshold or when MR is a logic low. It remains low for 200ms after  
–————–  
RESET  
CC  
7
7
–  
either V  
rises above the reset threshold, the watchdog triggers a reset, or MR goes  
CC  
from low to high.  
RESET Active-High, Open-Drain Reset Output is the inverse of RESET.  
Backup-Battery Input. When V falls below V and VBATT, V  
–————–  
8
8
7
8
switches from V to  
CC  
CC  
SW  
OUT  
VBATT VBATT. When V  
rises above the reset threshold, V reconnects to V . VBATT may  
OUT CC  
CC  
exceed V . Connect to V  
if no battery is used.  
CC  
CC  
Reset Threshold  
_______________Detailed Description  
The MAX690T/MAX704T/MAX805T are intended for  
3.3V systems with a 5ꢀ power-supply tolerance and a  
10ꢀ system tolerance. Except for watchdog faults,  
reset will not assert as long as the power supply  
remains above 3.15V (3.3V - 5ꢀ). Reset is guaranteed  
to assert before the power supply falls below 3.0V.  
Reset Output  
A microprocessor’s (µP’s) reset input starts the µP in a  
known state. These µP supervisory circuits assert reset to  
prevent code execution errors during power-up, power-  
down, brownout conditions, or a watchdog timeout.  
–————–  
RESET is guaranteed to be a logic low for 0V < VCC  
<
The MAX690S/MAX704S/MAX805S are designed for  
3.3V 10ꢀ power supplies. Except for watchdog  
faults, they are guaranteed not to assert reset as long  
as the supply remains above 3.0V (3.3V - 10ꢀ). Reset  
is guaranteed to assert before the power supply falls  
below 2.85V (VCC - 14ꢀ).  
VRST, provided that VBATT is greater than 1V. Without  
–————–  
a backup battery, RESET is guaranteed valid for VCC  
> 1V. Once VCC exceeds the reset threshold, an  
–————–  
internal timer keeps RESET low for the reset timeout  
–————–  
period; after this interval, RESET goes high (Figure 2).  
If a brownout condition occurs (VCC dips below the  
The MAX690R/MAX704R/MAX805R are optimized for  
monitoring 3.0V 10ꢀ power supplies. Reset will not  
occur until VCC falls below 2.7V (3.0V - 10ꢀ), but is  
guaranteed to occur before the supply falls below  
2.59V (3.0V - 14ꢀ).  
–————–  
–————–  
reset threshold), RESET goes low. Each time RESET  
is asserted, it stays low for the reset timeout period.  
Any time VCC goes below the reset threshold, the  
internal timer restarts.  
The watchdog timer can also initiate a reset. See the  
The MAX802R/S/T, MAX804R/S/T, and MAX806R/S/T  
are respectively similar to the MAX690R/S/T,  
MAX805R/S/T, and MAX704R/S/T, but with tightened  
reset and power-fail threshold tolerances.  
Watchdog Input section.  
The MAX804_/MAX805_ active-high RESET output is  
open drain, and the inverse of the MAX690_/MAX704_/  
–————–  
MAX802_/MAX806_ RESET output.  
6
_______________________________________________________________________________________  
3.0V/3.3V Microprocessor Supervisory Circuits  
3.0V OR 3.3V  
VBATT  
BATTERY  
SWITCHOVER  
CIRCUITRY  
V
V
RST  
V
OUT  
V
CC  
V
CC  
SW  
BATTERY  
SWITCHOVER  
COMPARATOR  
0V  
3.0V OR 3.3V  
V
OUT  
VBATT = 3.6V  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
1.237V  
RESET  
t
WP  
V
SW  
COMPARATOR  
3.0V OR 3.3V  
RESET  
1.237V  
*
RESET  
GENERATOR  
WATCHDOG  
TIMER  
*
WDI  
RESET  
(RESET)  
(RESET)  
**  
MR  
PFI  
PFO  
POWER-FAIL  
COMPARATOR  
V
PFT  
PFO  
VBATT = PFI = 3.6V  
= 0mA  
I
OUT  
( ) MAX804T/S/R, MAX805T/S/R ONLY, RESET EXTERNALLY PULLED UP TO V  
* MAX690T/S/R, MAX802T/S/R, MAX804T/S/R, MAX805T/S/R ONLY  
** MAX704T/S/R, MAX806T/S/R ONLY  
CC  
( ) MAX804T/S/R, MAX805T/S/R ONLY  
Figure 1. Block Diagram  
Figure 2. Timing Diagram  
Watchdog Input  
Power-Fail Comparator  
The PFI input is compared to an internal reference. If  
(MAX690_/802_/804_/805_)  
–—–  
PFI is less than VPFT, PFO goes low. The power-fail  
The watchdog circuit monitors the µP’s activity. If the µP  
does not toggle the watchdog input (WDI) within 1.6sec,  
a reset pulse is triggered. The internal 1.6sec timer is  
cleared by either a reset pulse or by a transition (low-to-  
high or high-to-low) at WDI. If WDI is tied high or low, a  
RESET pulse is triggered every 1.8sec (tWD plus tRS).  
comparator is intended for use as an undervoltage  
detector to signal a failing power supply. However, the  
comparator does not need to be dedicated to this  
function because it is completely separate from the rest  
of the circuitry.  
–————–  
–—–  
The power-fail comparator turns off and PFO goes low  
As long as reset is asserted, the timer remains cleared  
and does not count. As soon as reset is deasserted,  
the timer starts counting. Unlike the 5V MAX690 family,  
the watchdog function cannot be disabled.  
when VCC falls below VSW on power-down. The power-  
fail comparator turns on as VCC crosses VSW on  
power-up. If the comparator is not used, connect PFI to  
–—–  
–—–  
ground and leave PFO unconnected. PFO may be  
–  
connected to MR on the MAX704_/MAX806_ so that a  
low voltage on PFI will generate a reset (Figure 5b).  
_______________________________________________________________________________________  
7
3.0V/3.3V Microprocessor Supervisory Circuits  
Backup-Battery Switchover  
__________Applications Information  
In the event of a brownout or power failure, it may be  
These µP supervisory circuits are not short-circuit  
necessary to preserve the contents of RAM. With a  
protected. Shorting VOUT to ground—excluding power-  
backup battery installed at VBATT, the devices auto-  
up transients such as charging a decoupling  
matically switch RAM to backup power when VCC  
capacitor—destroys the device. Decouple both VCC  
falls.  
and VBATT pins to ground by placing 0.1µF capacitors  
as close to the device as possible.  
This family of µP supervisors (designed for 3.3V and 3V  
systems) doesn’t always connect VBATT to VOUT when  
VBATT is greater than VCC. VBATT connects to VOUT  
(through a 140Ω switch) when VCC is below VSW and  
VBATT is greater than VCC, or when VCC falls below  
1.75V (typ) regardless of the VBATT voltage. This is  
done to allow the backup battery (e.g., a 3.6V lithium  
Using a SuperCap  
as a Backup Power Source  
SuperCaps™ are capacitors with extremely high  
capacitance values (e.g., order of 0.47F) for their size.  
Figure 3 shows two ways to use a SuperCap as a  
backup power source. The SuperCap may be  
connected through a diode to the 3V input (Figure 3a)  
or, if a 5V supply is also available, the SuperCap may  
be charged up to the 5V supply (Figure 3b) allowing a  
longer backup period. Since VBATT can exceed VCC  
while VCC is above the reset threshold, there are no  
special precautions when using these µP supervisors  
with a SuperCap.  
cell) to have a higher voltage than VCC  
.
Switchover at VSW (2.40V) ensures that battery-backup  
mode is entered before VOUT gets too close to the 2.0V  
minimum required to reliably retain data in CMOS RAM.  
Switchover at higher VCC voltages would decrease  
backup-battery life. When VCC recovers, switchover is  
deferred until VCC rises above the reset threshold  
(VRST) to ensure a stable supply. VOUT is connected to  
V
CC through a 3Ω PMOS power switch.  
Operation without a Backup  
Power Source  
These µP supervisors were designed for battery-  
backed applications. If a backup battery is not used,  
connect both VBATT and VOUT to VCC, or use a  
different µP supervisor such as the MAX706T/S/R or  
MAX708T/S/R.  
Manual Reset  
–  
A logic low on MR asserts reset. Reset remains asserted  
–  
–  
while MR is low, and for tWP (200ms) after MR returns  
high. This input has an internal 70µA pull-up current, so  
–  
it can be left open if it is not used. MR can be driven with  
TTL or CMOS logic levels, or with open-drain/collector  
outputs. Connect a normally open momentary switch  
Replacing the Backup Battery  
The backup power source can be removed while VCC  
remains valid, if VBATT is decoupled with a 0.1µF  
–  
from MR to GND to create a manual-reset function;  
external debounce circuitry is not required.  
capacitor to ground, without danger of triggering  
–————–  
RESET/R E S E T. As long as VCC stays above VSW  
battery-backup mode cannot be entered.  
,
Table 1. Input and Output Status in  
Battery-Backup Mode  
Adding Hysteresis  
to the Power-Fail Comparator  
The power-fail comparator has a typical input  
hysteresis of 10mV. This is sufficient for most applica-  
tions where a power-supply line is being monitored  
through an external voltage divider (see the Monitoring  
an Additional Power Supply section).  
PIN NAME  
STATUS  
Connected to VBATT through an internal  
140Ω switch  
V
OUT  
V
Disconnected from V  
OUT  
CC  
The power-fail comparator is disabled when  
< V  
PFI  
V
If additional noise margin is desired, connect a resistor  
–—–  
CC  
SW  
–—–  
PFO  
between PFO and PFI as shown in Figure 4a. Select  
Logic low when V  
< V  
or PFI < V  
SW PFT  
CC  
the ratio of R1 and R2 such that PFI sees 1.237V (VPFT  
)
WDI  
The watchdog timer is disabled  
Disabled  
when VIN falls to its trip point (VTRIP). R3 adds the  
hysteresis and will typically be more than 10 times the  
value of R1 or R2. The hysteresis window extends both  
above (VH) and below (VL) the original trip point (VTRIP).  
–  
MR  
–————–  
RESET  
Low logic  
RESET  
VBATT  
High impedance  
Connected to V  
OUT  
SuperCap is a trademark of Baknor Industries.  
8
_______________________________________________________________________________________  
3.0V/3.3V Microprocessor Supervisory Circuits  
3.0V OR 3.3V  
+5V  
3.0V OR  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
V
OUT  
V
TO STATIC  
RAM  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
V
3.3V  
V
TO STATIC  
RAM  
CC  
CC  
OUT  
1N4148  
1N4148  
0.47F  
VBATT  
RESET  
(RESET)  
TO μP  
VBATT  
RESET  
(RESET)  
TO μP  
0.47F  
GND  
GND  
(
) ARE FOR MAX804T/S/R, MAX805T/S/R ONLY  
a
b
(
) ARE FOR MAX804T/S/R, MAX805T/S/R ONLY  
Figure 3. Using a SuperCap as a Backup Power Source  
–————–  
Connecting an ordinary signal diode in series with R3,  
as shown in Figure 4b, causes the lower trip point (VL)  
to coincide with the trip point without hysteresis (VTRIP),  
example, the RESET output is driven high and the µP  
wants to pull it low, indeterminate logic levels may  
result. To correct this, connect a 4.7kΩ resistor  
–————–  
so the entire hysteresis window occurs above VTRIP  
.
between the RESET output and the µP reset I/O, as in  
–————–  
This method provides additional noise margin without  
compromising the accuracy of the power-fail threshold  
when the monitored voltage is falling. It is useful for  
accurately detecting when a voltage falls past a  
threshold.  
Figure 6. Buffer the RESET output to other system  
components.  
Negative-Going V  
Transients  
CC  
While issuing resets to the µP during power-up, power-  
down, and brownout conditions, these supervisors are  
relatively immune to short-duration negative-going VCC  
transients (glitches). It is usually undesirable to reset  
the µP when VCC experiences only small glitches.  
The current through R1 and R2 should be at least 1µA to  
ensure that the 25nA (max over extended temperature  
range) PFI input current does not shift the trip point. R3  
should be larger than 10kΩ so it does not load down the  
–—–  
Figure 7 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
going VCC pulses, starting at 3.3V and ending below  
the reset threshold by the magnitude indicated (reset  
comparator overdrive). The graph shows the maximum  
pulse width a negative-going VCC transient may  
typically have without causing a reset pulse to be  
issued. As the amplitude of the transient increases  
(i.e., goes farther below the reset threshold), the  
maximum allowable pulse width decreases. Typically,  
a VCC transient that goes 100mV below the reset  
threshold and lasts for 40µs or less will not cause a  
reset pulse to be issued.  
PFO pin. Capacitor C1 adds additional noise rejection.  
Monitoring an Additional Power Supply  
These µP supervisors can monitor either positive or  
negative supplies using a resistor voltage divider to  
–—–  
PFI. PFO can be used to generate an interrupt to the  
–  
–—–  
µP (Figure 5). Connecting PFO to MR on the MAX704  
and MAX806 causes reset to assert when the  
monitored supply goes out of tolerance. Reset remains  
–  
–—–  
asserted as long as PFO holds MR low, and for 200ms  
–—–  
after PFO goes high.  
Interfacing to µPs  
with Bidirectional Reset Pins  
µPs with bidirectional reset pins, such as the Motorola  
A 100nF bypass capacitor mounted close to the VCC  
pin provides additional transient immunity.  
68HC11 series, can contend with the MAX690_/  
–————–  
MAX704_/MAX802_/MAX806_ RESET output. If, for  
_______________________________________________________________________________________  
9
3.0V/3.3V Microprocessor Supervisory Circuits  
V
IN  
V
IN  
R
R
1
2
V
V
CC  
R
R
CC  
1
2
PFI  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
PFI  
R
3
R
3
C1*  
C1*  
PFO  
PFO  
GND  
GND  
*OPTIONAL  
*OPTIONAL  
TO μP  
TO μP  
PFO  
V
PFO  
0V  
V
0V  
V
IN  
IN  
V
V
H
V
V
TRIP  
L
H
0V  
0V  
V
TRIP  
R + R  
1
2
(
)
R + R  
1
= V  
2
TRIP  
PFT  
R
V
= V  
PFT  
2
(
)
TRIP  
WHERE V  
V
= 1.237V  
= 10mV  
R
2
PFT  
PFH  
1
1
1
(V  
V )  
D
CC -  
R
+
+
V
= R (V + V  
)
PFH  
1
1
1
(
)
H
1
PFT  
V
= (V + V ) (R )  
H
PFT  
PFH  
1
R
R
R
+
+
(
)
1
2
3
3
R
R
R
3
1
2
WHERE V  
V
= 1.237V  
= 10mV  
PFT  
PFH  
1
1
1
V
CC  
+
+
V = R  
L
V
(
)
1
PFT  
R
R
R
R
3
1
2
3
V
= DIODE FORWARD VOLTAGE DROP  
D
L
a
b
V
= V  
TRIP  
Figure 4. a) Adding Additional Hysteresis to the Power-Fail Comparator b) Shifting the Additional Hysteresis above V  
PFT  
V
IN  
3.0V OR 3.3V  
3.0V OR 3.3V  
V
V
CC  
CC  
R
R
R
R
1
2
1
2
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
GND  
PFI  
PFO  
PFI  
PFO  
MR  
*
GND  
V-  
V
CC  
V
CC  
PFO  
PFO  
V
V-  
IN  
V
V
TRIP  
V
V
H
L
0V  
TRIP  
1
1
V
CC  
R + R  
1
2
+
V
= R (V + V  
PFT  
)
* MAX704T/S/R,  
MAX806T/S/R ONLY  
TRIP  
2
PFH  
1
V
V
= V  
PFT  
(
)
CC  
TRIP  
(
)
1
R
R
R
1
1
2
R
2
WHERE V  
V
= 1.237V  
= 10mV  
PFT  
PFH  
1
V
R + R  
2
+
V = R (V )  
PFT  
L
2
= (V + V  
PFT  
)
(
)
H
PFH  
(
)
R
1
R
R
1
2
NOTE: V  
TRIP  
IS NEGATIVE  
R
2
a
b
Figure 5. Using the Power-Fail Comparator to Monitor an Additional Power Supply  
10 ______________________________________________________________________________________  
3.0V/3.3V Microprocessor Supervisory Circuits  
_Typical Operating Circuits (cont.)  
BUFFERED RESET TO OTHER SYSTEM COMPONENTS  
3.0V OR 3.3V  
V
V
OUT  
RAM  
CC  
V
V
CC  
CC  
VBATT  
μP  
0.1µF  
3.6V  
0.1µF  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX806T/S/R  
0.1µF  
MAX704T/S/R  
MAX806T/S/R  
4.7kΩ  
RESET  
RESET  
MR  
RESET  
GND PFI  
μP  
GND  
GND  
Figure 6. Interfacing to µPs with Bidirectional Reset I/O  
100  
80  
V
CC  
= 3.3V  
T
= +25°C  
A
60  
40  
20  
0
10  
100  
1000  
- V ) (mV)  
RESET COMPARATOR OVERDRIVE (V  
RST  
CC  
Figure 7. Maximum Transient Duration without Causing a  
Reset Pulse vs. Reset Comparator Overdrive  
______________________________________________________________________________________ 11  
3.0V/3.3V Microprocessor Supervisory Circuits  
_Ordering Information (continued)  
___________________Chip Topography  
V
VBATT  
PART**  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
OUT  
MAX704_CPA  
MAX704_CSA  
MAX704_C/D  
MAX704_EPA  
MAX704_ESA  
MAX704_MJA  
MAX802_CPA  
MAX802_CSA  
MAX802_C/D  
MAX802_EPA  
MAX802_ESA  
MAX802_MJA  
MAX804_CPA  
MAX804_CSA  
MAX804_C/D  
MAX804_EPA  
MAX804_ESA  
MAX804_MJA  
MAX805_CPA  
MAX805_CSA  
MAX805_C/D  
MAX805_EPA  
MAX805_ESA  
MAX805_MJA  
MAX806_CPA  
MAX806_CSA  
MAX806_C/D  
MAX806_EPA  
MAX806_ESA  
MAX806_MJA  
Dice*  
V
CC  
8 Plastic DIP  
8 SO  
0.110"  
(2.794mm)  
8 CERDIP  
8 Plastic DIP  
8 SO  
GND  
RESET  
(RESET)  
Dice*  
WDI  
[MR]  
8 Plastic DIP  
8 SO  
8 CERDIP  
8 Plastic DIP  
8 SO  
Dice*  
PFI PFO  
0.080"  
8 Plastic DIP  
8 SO  
8 CERDIP  
8 Plastic DIP  
8 SO  
(2.032mm)  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R.  
[ ] ARE FOR MAX704T/S/R, MAX806T/S/R.  
Dice*  
8 Plastic DIP  
8 SO  
TRANSISTOR COUNT: 802;  
8 CERDIP  
8 Plastic DIP  
8 SO  
SUBSTRATE IS CONNECTED TO THE HIGHER OF  
VCC OR VBATT, AND MUST BE FLOATED IN ANY  
HYBRID DESIGN.  
Dice*  
8 Plastic DIP  
8 SO  
8 CERDIP  
*Contact factory for dice specifications.  
**These parts offer a choice of reset threshold voltage. Select  
the letter corresponding to the desired nominal reset threshold  
voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into  
the blank to complete the part number.  
Devices in PDIP and SO packages are available in both leaded  
and lead-free packaging. Specify lead free by adding the +  
symbol at the end of the part number when ordering. Lead free  
not available for CERDIP package.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX806SESA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX806SESA+

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, PLASTIC, SO-8
MAXIM

MAX806SESA+T

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, PLASTIC, SO-8
MAXIM

MAX806SESA-T

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, PLASTIC, SO-8
MAXIM

MAX806SMJA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX806SMJA

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, CDIP8, 0.300 INCH, CERDIP-8
ROCHESTER

MAX806T

µ.P Reset IC with Watchdog and Battery Switchover
MAXIM

MAX806TC/D

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX806TCPA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX806TCSA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX806TCSA

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 0.150 INCH, PLASTIC, SO-8
ROCHESTER

MAX806TCSA+T

暂无描述
MAXIM