MAX8882EUTAQ [ROCHESTER]

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6, MINIATURE, SOT-23, 6 PIN;
MAX8882EUTAQ
型号: MAX8882EUTAQ
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6, MINIATURE, SOT-23, 6 PIN

信息通信管理 光电二极管 输出元件 调节器
文件: 总12页 (文件大小:985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1818; Rev 1; 10/01  
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
General Description  
Features  
Two LDOs in Tiny SOT23  
The MAX8882/MAX8883 dual, low-noise, low-dropout  
linear regulators operate from a +2.5V to +6.5V input  
and deliver up to 160mA each of continuous current.  
Both versions offer low output noise and low dropout of  
only 72mV at 80mA. Designed with an internal P-  
channel MOSFET pass transistor, the MAX8882/  
MAX8883 maintain a low 165µA supply current (both  
LDOs on), independent of the load current and dropout  
voltage. Other features include short-circuit protection  
and thermal-shutdown protection. The MAX8882 has a  
single shutdown input and provides an external refer-  
ence bypass pin to improve noise performance. The  
MAX8883 includes two independent logic-controlled  
shutdown inputs. The MAX8882/MAX8883 are both  
available in a miniature 6-pin SOT23 package.  
Up to 160mA Output Current (each LDO)  
40µV  
Output Noise (MAX8882)  
RMS  
72mV Dropout at 80mA Load  
Low 165µA Operating Supply Current  
62dB PSRR (greater than 56dB to 100kHz)  
Independent Low-Power Shutdown Controls  
(MAX8883)  
Thermal-Overload and Short-Circuit Protection  
Output Current Limit  
Selector Guide  
PART  
V
V
TOP MARK  
AANR  
AAPW  
AARY  
OUTA  
OUTB  
MAX8882EUTJJ  
MAX8882EUTAQ  
MAX8882EUTA5  
MAX8882EUTQ5  
MAX8882EUTGG  
MAX8883EUTJJ  
MAX8883EUTAQ  
MAX8883EUTA5  
MAX8883EUTQ5  
MAX8883EUTGG  
2.85  
3.3  
3.3  
2.5  
3.0  
2.85  
3.3  
3.3  
2.5  
3.0  
2.85  
2.5  
1.8  
1.8  
3.0  
2.85  
2.5  
1.8  
1.8  
3.0  
________________________Applications  
µP/DSP Core/IO Power  
Cellular and PCS Telephones  
PDAs and Palmtop Computers  
Notebook Computers  
AAPX  
AAZT  
AANS  
AAPY  
Digital Cameras  
AARZ  
Hand-Held Instruments  
AAPZ  
AAZU  
***Other combinations between 1.8V and 3.3V are available in  
100mV increments. Contact factory for other versions.  
Minimum order quantity is 50,000 units.  
Pin Configurations  
Ordering Information  
TOP VIEW  
SHUT-  
DOWN  
TEMP  
RANGE  
PIN-  
PACKAGE  
PART  
OUTB  
GND  
BP  
1
2
3
6
5
4
OUTA  
IN  
MAX8882EUT_ _*  
Single  
Dual  
-40°C to +85°C 6 SOT23-6  
-40°C to +85°C 6 SOT23-6  
MAX8882  
MAX8883EUT_ _*  
*See Selector Guide  
SHDN  
Typical Operating Circuit  
SOT23-6  
OUTA  
V
OUTA  
FIXED  
V
IN  
2.2µF  
2.2µF  
(1.8V to 3.3V)  
2.5V to 6.5V  
MAX8882  
MAX8883  
IN  
Pin Configurations continued at end of data sheet.  
OUTB  
(BP)  
V
OUTB  
2.2µF  
SHDN_  
FIXED  
(1.8V to 3.3V)  
GND  
0.01µF  
( ) ARE FOR MAX8882 ONLY.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
ABSOLUTE MAXIMUM RATINGS  
IN, SHDN, SHDNA, SHDNB, BP to GND...............-0.3V to +7.0V  
OUTA, OUTB to GND ..................................-0.3V to (V + 0.3V)  
Output Short-Circuit Duration.....................................Continuous  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C)............695mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +3.6V, SHDN = SHDNA = SHDNB = IN, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage  
2.5  
6.5  
V
Undervoltage Lockout  
Threshold  
V
_ rising, hysteresis 40mV typical  
2.15  
2.25  
2.40  
V
IN  
T = +25°C, I  
_ = 1mA  
-1  
-2  
1
2
2
A
OUT  
Output Voltage Accuracy  
I
I
_ = 1mA  
%
OUT  
OUT  
_ = 100µA to 160mA  
-3  
Maximum Output Current  
Current Limit  
Continuous  
160  
160  
mA  
mA  
550  
265  
No Load, V = 6.5V  
165  
170  
0.01  
0.1  
IN  
Ground Current  
µA  
µA  
V
I
_ = 80mA, both LDOs  
OUT  
SHDN_ = GND, T = +25°C  
1
A
Shutdown Supply Current  
SHDN_ Input Threshold  
SHDN_ Input Bias Current  
SHDN_ = GND  
V
V
1.6  
IH  
IL  
0.4  
SHDN_ = GND or IN, T = +25°C  
0
0.05  
1
100  
A
nA  
SHDN_ = GND or IN  
I
I
I
_ = 1mA  
_ = 40mA  
_ = 80mA  
OUT  
OUT  
OUT  
Dropout Voltage  
(Notes 2, 3)  
36  
72  
mV  
144  
0.2  
V
= (V  
_ + 0.4V or 2.5V) to + 6.5V,  
OUT  
IN  
Line Regulation  
-0.2  
0
%/V  
I
_ = 1mA  
OUT  
10Hz to 100kHz, C = 0.01µF, C  
_ = 4.7µF,  
BP  
OUT  
MAX8882  
_ = 10mA MAX8883  
OUT  
40  
I
_ = 1mA  
OUT  
Output Voltage Noise  
µV  
RMS  
10Hz to 100kHz, C  
_ = 4.7µF, I  
320  
OUT  
2
_______________________________________________________________________________________  
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.6V, SHDN = SHDNA = SHDNB = IN, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN  
A
A
PARAMETER  
CONDITIONS  
100Hz, C = 0.01µF, C _ = 4.7µF  
MIN  
TYP  
MAX  
UNITS  
MAX8882  
MAX8883  
62  
BP  
OUT  
Output Voltage AC PSRR  
dB  
100Hz, C  
_ = 4.7µF  
60  
OUT  
Thermal Shutdown  
Temperature  
160  
°C  
°C  
Thermal Shutdown  
Hysteresis  
10  
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating temperature range are  
A
guaranteed by design.  
Note 2: The dropout voltage is defined as V - V  
Note 3: See the Typical Operating Characteristics for guaranteed specifications at voltages other than 3.3V.  
when V = V  
(NOM). Specification only applies when V  
2.5V.  
IN  
OUT  
IN  
OUT  
OUT  
Typical Operating Characteristics  
(V  
OUT  
_ = 2.85V, I  
_ = 80mA, V = +3.6V, C  
_ = 2.2µF, C = 0.01µF, and C = 2.2µF, unless otherwise noted.)  
OUT  
IN  
OUT IN  
BP  
SUPPLY CURRENT  
vs. LOAD CURRENT  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. TEMPERATURE  
vs. SUPPLY VOLTAGE  
200  
200  
180  
160  
140  
120  
100  
80  
250  
200  
150  
100  
50  
180  
160  
140  
120  
100  
80  
80mA LOAD, BOTH OUTPUTS  
BOTH OUTPUTS LOADED  
80mA LOAD, BOTH OUTPUTS  
NO LOAD  
60  
60  
40  
40  
20  
20  
0
0
0
0
1
2
3
4
5
6
0
10 20 30 40 50 60 70 80  
LOAD CURRENT (mA)  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE ACCURACY  
vs. TEMPERATURE  
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
DROPOUT vs. V  
OUT  
200  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
90  
75  
60  
45  
30  
15  
0
T
= +25°C  
A
0.6  
0.4  
GUARANTEED MAXIMUM  
T
= +85°C  
A
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
T
= -40°C  
A
MEAN  
60  
40  
20  
0
2.5  
2.7  
2.9  
(V)  
3.1  
3.3  
-40 -25 -10  
5
20 35 50 65 80  
0
10 20 30 40 50 60 70 80  
LOAD CURRENT (mA)  
V
TEMPERATURE (°C)  
OUT  
_______________________________________________________________________________________  
3
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
Typical Operating Characteristics (continued)  
(V  
OUT  
_ = 2.85V, I  
_ = 80mA, V = +3.6V, C  
IN  
_ = 2.2µF, C = 0.01µF, and C = 2.2µF, unless otherwise noted.)  
OUT  
OUT  
BP  
IN  
CHANNEL-TO-CHANNEL ISOLATION  
vs. FREQUENCY  
PSRR vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
70  
100LOAD  
100LOAD  
60  
50  
40  
30  
20  
10  
0
CAPACITVE  
COUPLING  
THERMAL  
COUPLING  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT NOISE SPECTRAL DENSITY  
vs. FREQUENCY  
MAX8882 OUTPUT NOISE  
(10Hz to 100kHz)  
10000  
1000  
100  
500µV/div  
(AC-COUPLED)  
V
_
OUT  
10  
0.01  
0.1  
1
10  
100  
1000  
1ms/div  
LOAD TRANSIENT  
LINE TRANSIENT  
(V = 3.35V, I  
= 0 TO 80mA)  
IN  
LOAD  
MAX8882/3 toc11  
MAX8882/3 toc12  
4.5V  
V
IN  
20mV/div  
(AC-COUPLED)  
3.5V  
V
_
OUT  
1V/div  
20mV/div  
(AC-COUPLED)  
50mA/div  
0
V
_
I
OUT  
LOAD  
50µs/div  
10µs/div  
4
_______________________________________________________________________________________  
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
Typical Operating Characteristics (continued)  
(V  
OUT  
_ = 2.85V, I  
_ = 80mA, V = +3.6V, C  
_ = 2.2µF, C = 0.01µF, and C = 2.2µF, unless otherwise noted.)  
OUT  
IN  
OUT BP IN  
LOAD TRANSIENT NEAR DROPOUT  
SHUTDOWN RESPONSE  
MAX8882/3 toc13  
MAX8882/3 toc14  
R
LOAD  
= 100Ω  
OUTPUT  
20mV/div  
V
20V/div  
1V/div  
OUT  
VOLTAGE  
0
V
= V  
+ 0.1V  
OUT  
IN  
SHUTDOWN  
VOLTAGE  
50µA/div  
I
LOAD  
0
0
10µs/div  
1ms/div  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX8882  
MAX8883  
Regulator B Output. Sources up to 160mA continuous current. Bypass with a  
2.2µF (<0.5typ ESR) capacitor to GND (see the Capacitor Selection and  
Regulator Stability section).  
1
1
OUTB  
Ground. This pin also functions as a heatsink. Solder to a large pad or the  
circuit-board ground plane to maximize thermal dissipation.  
2
3
2
GND  
BP  
Reference Noise Bypass. Bypass with a low-leakage 0.01µF ceramic  
capacitor for reduced noise at both outputs.  
Shutdown A Input. A logic low shuts down regulator A. If SHDNA and  
SHDNB are both low, both regulators and the reference turn off, and supply  
current is reduced to 10nA. If either SHDNA or SHDNB is a logic high, the  
reference is on. Connect to IN for normal operation.  
3
4
SHDNA  
SHDNB  
Shutdown B Input. A logic low shuts down regulator B. If SHDNA and  
SHDNB are both low, both regulators and the reference turn off, and supply  
current is reduced to 10nA. If either SHDNA or SHDNB is a logic high, the  
reference is on. Connect to IN for normal operation.  
Shutdown Input. A logic low shuts down both regulators and the reference,  
reducing the entire supply current to 10nA. Connect to IN for normal  
operation.  
4
5
6
5
SHDN  
IN  
Regulator Input. Supply voltage can range from +2.5V to +6.5V. This input  
also supplies the on-chip reference. Bypass with 2.2µF to GND (see the  
Capacitor Selection and Regulator Stability section).  
Regulator A Output. Sources up to 160mA continuous current. Bypass with  
a 2.2µF (<0.5typ ESR) capacitor to GND (see the Capacitor Selection and  
Regulator Stability section).  
6
OUTA  
_______________________________________________________________________________________  
5
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
perature exceeds T = +160°C, the thermal sensor sig-  
J
Detailed Description  
nals the shutdown logic, turning off the pass transistor  
and allowing the IC to cool. The thermal sensor will turn  
the pass transistor on again after the ICs junction tem-  
perature cools by 10°C, resulting in a pulsed output  
during continuous thermal-overload conditions.  
The MAX8882/MAX8883 are low-noise, low-dropout,  
low-quiescent-current linear regulators designed primar-  
ily for battery-powered applications. These parts are  
available with preset output voltages ranging from 1.8V  
to 3.3V, and the parts can supply loads up to 160mA.  
Thermal-overload protection is designed to protect the  
MAX8882/MAX8883 in the event of fault conditions. For  
continual operation, do not exceed the absolute maxi-  
Shutdown  
MAX8882  
The MAX8882 has a single shutdown control input  
(SHDN). Drive SHDN low to shut down both outputs,  
reducing supply current to 10nA. Connect SHDN to a  
logic-high, or IN, for normal operation.  
mum junction-temperature rating of T = +150°C.  
J
Operating Region and Power Dissipation  
The MAX8882/MAX8883s maximum power dissipation  
depends on the thermal resistance of the case and cir-  
cuit board, the temperature difference between the die  
junction and ambient air, and the rate of air flow. The  
MAX8883  
The MAX8883 has independent shutdown control  
inputs (SHDNA and SHDNB). Drive SHDNA low to shut  
down OUTA. Drive SHDNB low to shut down OUTB.  
Drive both SHDNA and SHDNB low to shut down the  
entire chip, reducing supply current to 10nA. Connect  
both SHDNA and SHDNB to a logic-high, or IN, for nor-  
mal operation.  
power dissipation across the device is P = I  
OUT  
(V  
-
IN  
OUT  
V
) (Figure 1). The maximum power dissipation is:  
P
MAX  
= (T - T ) / (T + T  
)
BA  
J
A
JB  
where T - T is the temperature difference between  
J
A
the MAX8882/MAX8883 die junction and the surround-  
ing air, T (or T ) is the thermal resistance of the  
JB  
JC  
package, and T is the thermal resistance through the  
BA  
Internal P-Channel Pass Transistor  
The MAX8882/MAX8883 feature two 1P-channel  
MOSFET pass transistors. A P-channel MOSFET pro-  
vides several advantages over similar designs using  
PNP pass transistors, including longer battery life. It  
requires no base drive, which reduces quiescent cur-  
rent significantly. PNP-based regulators waste consid-  
erable current in dropout when the pass transistor  
saturates, and they also use high base-drive currents  
under large loads. The MAX8882/MAX8883 do not suf-  
fer from these problems and only consume 165µA of  
quiescent current whether in dropout, light-load, or  
heavy-load applications (see the Typical Operating  
Characteristics). While a PNP-based regulator has  
dropout voltage that is independent of the load, a P-  
channel MOSFETs dropout voltage is proportional to  
load current, providing for low dropout voltage at heavy  
loads and extremely low dropout voltage at lighter  
loads.  
printed circuit board, copper traces, and other materi-  
als to the surrounding air.  
The GND pin of the MAX8882/MAX8883 performs the  
dual functions of providing an electrical connection to  
the ground and channeling heat away. Connect the  
GND pin to ground using a large pad or ground plane.  
SAFE OPERATING REGION  
180  
+70°C  
160  
140  
120  
100  
80  
60  
40  
20  
0
+85°C  
Current Limit  
The MAX8882/MAX8883 contain two independent cur-  
rent limiters, one for each regulator, which monitor and  
control the pass transistors gate voltage, limiting the  
guaranteed maximum output current to 160mA mini-  
mum. The output can be shorted to ground for an indef-  
inite time without damaging the part.  
0
1
2
3
4
5
V
- V _ (V)  
IN OUT  
Figure 1. MAX8882/MAX8883 Safe Operating Region  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8882/MAX8883. When the junction tem-  
6
_______________________________________________________________________________________  
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
Low-Noise Operation (MAX8882)  
An external 0.01µF bypass capacitor at BP, in conjunc-  
tion with an internal resistor, creates a lowpass filter.  
PSRR and Operation from Sources  
Other than Batteries  
The MAX8882/MAX8883 are designed to deliver low  
dropout voltages and low quiescent currents in battery-  
powered systems. Power-supply rejection is 62dB at  
low frequencies and rolls off above 100kHz. (See the  
PSRR vs. Frequency graph in the Typical Operating  
Characteristics.)  
The MAX8882 exhibits 40µV  
with C = 0.01µF and C  
of output voltage noise  
RMS  
_ = 4.7µF. (See the Output  
BP  
OUT  
Noise Spectral Density graph in the Typical Operating  
Characteristics.)  
Applications Information  
When operating from sources other than batteries,  
improved supply-noise rejection and transient response  
can be achieved by increasing the values of the input  
and output bypass capacitors and through passive fil-  
tering techniques.  
Capacitor Selection and  
Regulator Stability  
Use a 2.2µF capacitor on the MAX8882/MAX8883 input  
and a 2.2µF capacitor on the outputs. Larger input  
capacitor values and lower ESRs provide better supply-  
noise rejection and line-transient response. To reduce  
noise, improve load transients, and for loads up to  
160mA, use larger output capacitors (up to 10µF). For  
stable operation over the full temperature range and  
with load currents up to 80mA, use 2.2µF.  
Dropout Voltage  
A regulators minimum input-output voltage differential  
(or dropout voltage) determines the lowest usable sup-  
ply voltage. In battery-powered systems, this deter-  
mines the useful end-of-life battery voltage. Because  
the MAX8882/MAX8883 use a P-channel MOSFET pass  
transistor, their dropout voltage is a function of drain-to-  
Note that some ceramic dielectrics exhibit large capac-  
itance and ESR variation with temperature. With  
dielectrics such as Z5U and Y5V, it may be necessary  
to use 4.7µF or more to ensure stability at temperatures  
below -10°C. With X7R or X5R dielectrics, 2.2µF is suffi-  
cient at all operating temperatures. These regulators  
are optimized for ceramic capacitors, and tantalum  
capacitors are not recommended.  
source on-resistance (R  
) multiplied by the load  
DS(ON)  
current (see the Typical Operating Characteristics).  
Chip Information  
TRANSISTOR COUNT: 493  
Use a 0.01µF bypass capacitor at BP (MAX8882) for  
low output voltage noise. Increasing the capacitance  
will slightly decrease the output noise, but increase the  
startup time. (See the Shutdown Response graph in the  
Typical Operating Characteristics.)  
PROCESS: BiCMOS  
Pin Configurations (continued)  
TOP VIEW  
OUTB  
GND  
1
2
3
6
5
4
OUTA  
IN  
MAX8883  
SHDNA  
SHDNB  
SOT23-6  
_______________________________________________________________________________________  
7
Dual, Low-Noise, Low-Dropout, 160mA Linear  
Regulators in SOT23  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 8 8 8 2  
Pa rt Nu m ber T abl e  
N o t e s :  
1 . S e e t h e M A X 8 8 8 2 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 8 8 8 2 f u l l d a t a s h e e t ( P D F , 2 5 2 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n  
o n e b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P a r t N u m b e r  
F r e e  
S a m p l e  
B u y  
D i r e c t  
T e m p  
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M A X 8 8 8 2 E U T  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M A X 8 8 8 2 E U T - T  
M A X 8 8 8 2 E U T Q 5  
M A X 8 8 8 2 E U T A 5  
M A X 8 8 8 2 E U T A Q +  
M A X 8 8 8 2 E U T A Q  
M A X 8 8 8 2 E U T G G +  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
M A X 8 8 8 2 E U T G G  
M A X 8 8 8 2 E U T J 5 +  
M A X 8 8 8 2 E U T J 5  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 8 8 2 E U T J J +  
M A X 8 8 8 2 E U T J J  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 8 8 2 E U T Q 5 +  
M A X 8 8 8 2 E U T A 5 +  
M A X 8 8 8 2 E U T A 5 - T  
M A X 8 8 8 2 E U T G G - T  
M A X 8 8 8 2 E U T J 5 - T  
M A X 8 8 8 2 E U T J J - T  
M A X 8 8 8 2 E U T Q 5 - T  
M A X 8 8 8 2 E U T Q 5 + T  
M A X 8 8 8 2 E U T A 5 + T  
M A X 8 8 8 2 E U T A Q + T  
M A X 8 8 8 2 E U T G G + T  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
M A X 8 8 8 2 E U T J 5 + T  
M A X 8 8 8 2 E U T J J + T  
M A X 8 8 8 2 E U T A Q - T  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ;  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 S - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY