MAX9718BETB [ROCHESTER]

1.4W, 1 CHANNEL, AUDIO AMPLIFIER, DSO10, 3 X 3 MM, 0.80 MM HEIGHT, MO-229, TDFN-10;
MAX9718BETB
型号: MAX9718BETB
厂家: Rochester Electronics    Rochester Electronics
描述:

1.4W, 1 CHANNEL, AUDIO AMPLIFIER, DSO10, 3 X 3 MM, 0.80 MM HEIGHT, MO-229, TDFN-10

放大器
文件: 总24页 (文件大小:1276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3050; Rev 1; 6/04  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
General Description  
Features  
The MAX9718/MAX9719 differential input audio power  
amplifiers are ideal for portable audio devices with  
internal speakers. The differential input structure  
improves noise rejection and provides common-mode  
rejection. A bridge-tied load (BTL) architecture mini-  
mizes external component count, while providing high-  
quality, power audio amplification. The MAX9718 is a  
single-channel amplifier while the MAX9719 is a dual-  
channel amplifier for stereo systems. Both devices  
deliver 1.4W continuous average power per channel to  
a 4load with less than 1% THD+N while operating  
from a single +5V supply. The devices are available as  
adjustable gain amplifiers or with internally fixed gains  
of 0dB, 3dB, and 6dB to reduce component count.  
2.7V to 5.5V Single-Supply Operation  
Very High -93dB PSRR at 217Hz  
1.4W into 4at 1% THD+N (per Channel)  
Differential Input  
Internal Fixed Gain to Reduce Component Count  
Adjustable Gain Option (MAX9718A/MAX9719A)  
100nA Low-Power Shutdown Mode  
No Audible Clicks or Pops at Power-Up/Down  
Improved Performance Pin-Compatible Upgrade  
to LM4895 (MAX9718D)  
A shutdown input disables the bias generator and  
amplifiers and reduces quiescent current consumption  
to less than 100nA. The MAX9718 shutdown input can  
be set as active high or active low. These devices fea-  
ture Maxim’s comprehensive click-and-pop suppres-  
sion circuitry that reduces audible clicks and pops  
during startup and shutdown.  
Ordering Information  
TEMP  
RANGE  
PIN-  
PACKAGE  
GAIN  
(dB)  
PART  
MAX9718AEBL-T -40°C to +85°C 3 x 3 UCSP  
Adj  
Adj  
Adj  
MAX9718AETB  
MAX9718AEUB  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX-EP*  
The MAX9718 is pin compatible with the LM4895,  
and is available in 9-bump UCSP™, 10-pin TDFN, and  
10-pin µMAX® packages. The MAX9719 is available in  
16-pin TQFN, 16-pin TSSOP, and 16-bump UCSP pack-  
ages. Both devices operate over the -40°C to +85°C  
extended temperature range.  
*EP = Exposed paddle.  
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
Applications  
Mobile Phones  
PDAs  
UCSP is a trademark of Maxim Integrated Products, Inc.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Portable Devices  
Simplified Block Diagram  
SINGLE SUPPLY  
2.7V TO 5.5V  
SINGLE SUPPLY  
2.7V TO 5.5V  
OUTL+  
INL+  
OUT+  
IN+  
INL-  
OUTL-  
OUTR+  
INR+  
IN-  
OUT-  
SHDN  
INR-  
OUTR-  
SHDM  
MAX9718  
SHDN  
MAX9719  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to GND) ..................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering) Reflow............................+235°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
Any Other Pin to GND ...............................-0.3V to (V  
+ 0.3V)  
CC  
IN_, BIAS, SHDM, SHDN, SHDN Continuous Current ........20mA  
OUT_ Short-Circuit Duration to GND or V .............Continuous  
CC  
Continuous Power Dissipation (T = +70°C)  
A
9-Bump UCSP (derate 5.2mW/°C above +70°C)..........412mW  
10-Pin TDFN (derate 24.4mW/°C above +70°C) ........1951mW  
10-Pin µMAX (derate 10.3mW/°C above +70°C)..........825mW  
16-Bump UCSP (derate 8.2mW/°C above +70°C) .......659mW  
16-Pin TQFN (derate 16.9mW/°C above +70°C) ........1349mW  
16-Pin TSSOP (derate 21.3mW/°C above +70°C) ......1702mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—5V Supply  
(V  
= 5V, GND = 0, SHDN/SHDN = V  
(MAX9718/MAX9719), SHDM = GND (MAX9718), R = R = 10k(MAX971_A),  
CC  
CC  
IN  
F
T
= +25°C. C  
= 0.1µF, no load. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
BIAS A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
V
2.7  
5.5  
V
CC  
V
= V  
= V  
, T = -40°C to +85°C,  
BIAS A  
IN-  
IN+  
Supply Current  
I
5.0  
0.1  
7.5  
1
mA  
µA  
V
CC  
per amplifier (Note 2)  
Shutdown Supply Current  
I
SHDN = SHDM = SHDN = GND, per amplifier  
SHDN  
V
0.7 x V  
CC  
IH  
SHDN, SHDN, SHDM  
Threshold  
V
0.3 x V  
CC  
IL  
V
- 5%  
/2  
V
/2 +  
CC  
5%  
CC  
Common-Mode Bias Voltage  
Output Offset Voltage  
V
(Note 3)  
V
/2  
V
BIAS  
CC  
A = 0dB, MAX971_A,  
V
MAX971_B  
1
10  
V
V
= V  
= V  
BIAS  
mV  
OS  
IN-  
IN+  
A = 3dB, MAX971_C  
V
1
1
15  
20  
A = 6dB, MAX971_D  
V
A = 0dB, MAX971_B  
0.5  
0.5  
0.5  
0.5  
10  
V
V
V
- 0.5  
V
CC  
CC  
CC  
CC  
Inferred from  
CMRR test  
A = 3dB, MAX971_C  
V
- 0.6  
- 0.8  
- 1.2  
Common-Mode Input Voltage  
V
V
IC  
A = 6dB, MAX971_D  
V
External gain, MAX971_A  
V
Input Impedance  
R
MAX971_B, MAX971_C, MAX971_D  
15  
-60  
-60  
20  
k  
IN  
-50  
Common-Mode Rejection Ratio  
CMRR  
dB  
f = 1kHz  
n
V
V
= V  
RIPPLE  
= V  
BIAS  
,
IN-  
IN+  
f = 217Hz  
f = 1kHz  
-93  
-90  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
= 200mV  
,
dB  
P-P  
R = 8, C  
= 1µF  
L
BIAS  
R = 8Ω  
L
0.8  
1.1  
1.4  
THD+N = 1%,  
= 1kHz (Note 4)  
P
W
%
OUT  
f
IN  
R = 4Ω  
L
Total Harmonic Distortion Plus  
Noise  
R = 8, f = 1kHz, P  
V
= 0.75W,  
L
IN  
OUT  
THD+N  
0.002  
= 5V, A = 6dB (Note 5)  
V
CC  
2
_______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
ELECTRICAL CHARACTERISTICS5V Supply (continued)  
(V  
= 5V, GND = 0, SHDN/SHDN = V  
(MAX9718/MAX9719), SHDM = GND (MAX9718), R = R = 10k(MAX971_A),  
CC  
CC  
IN  
F
T
= +25°C. C  
= 0.1µF, no load. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
BIAS A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Gain Accuracy  
MAX971_B/MAX971_C/MAX971_D  
1
%
Channel-to-Channel Gain  
Matching  
MAX9719B/MAX9719C/MAX9719D  
1
%
Signal-to-Noise Ratio  
SNR  
P
= 1W, R = 8Ω  
-104  
+160  
15  
dB  
°C  
°C  
pF  
OUT  
L
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Maximum Capacitive Drive  
C
Bridge-tied capacitance  
500  
LOAD  
Power-Up/Enable from  
Shutdown Time  
t
10  
ms  
PU  
Shutdown Time  
Turn-Off Transient  
Crosstalk  
t
3.5  
50  
µs  
mV  
dB  
SHDN  
V
(Note 6)  
POP  
MAX9719, f = 1kHz  
-85  
IN  
ELECTRICAL CHARACTERISTICS3V Supply  
(V  
= 3V, GND = 0, SHDN/SHDN = V  
(MAX9718/MAX9719), SHDM = GND (MAX9718), R = R = 10k(MAX971_A),  
CC  
CC  
IN  
F
T
= +25°C. C  
= 0.1µF, no load. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
BIAS A  
PARAMETER  
SYMBOL  
CONDITIONS  
= V , T = -40°C to +85°C,  
IN+ BIAS  
MIN  
TYP  
3.8  
MAX  
6.0  
1
UNITS  
mA  
µA  
V
= V  
IN-  
A
Supply Current  
I
CC  
per amplifier (Note 2)  
Shutdown Supply Current  
I
SHDN = SHDM = SHDN = GND, per amplifier  
0.1  
SHDN  
V
0.7 x V  
CC  
IH  
SHDN, SHDN, SHDM  
Threshold  
V
V
0.3 x V  
CC  
IL  
V
- 5%  
/2  
V
+ 5%  
/2  
CC  
CC  
Common-Mode Bias Voltage  
Output Offset Voltage  
V
(Note 3)  
V
/2  
V
BIAS  
CC  
A = 0dB, MAX971_A/  
V
MAX971_B  
1
10  
V
V
= V  
= V  
BIAS  
mV  
OS  
IN-  
IN+  
A = 3dB, MAX971_C  
V
1
1
15  
20  
A = 6dB, MAX971_D  
V
A = 0dB, MAX971_B  
0.5  
0.5  
0.5  
0.5  
10  
V
V
V
V
- 0.7  
V
CC  
CC  
CC  
CC  
Inferred from  
CMRR test  
A = 3dB, MAX971_C  
V
- 0.8  
- 1.0  
- 1.2  
Common-Mode Input Voltage  
V
V
IC  
A = 6dB, MAX971_D  
V
External gain, MAX971_A  
Input Impedance  
R
IN  
MAX971_B/MAX971_C/MAX971_D  
15  
-60  
-70  
20  
kΩ  
-50  
Common-Mode Rejection Ratio  
CMRR  
dB  
f
= 1kHz  
N
V
V
= V  
= V  
BIAS  
,
IN-  
IN+  
f = 217Hz  
f = 1kHz  
-93  
-90  
= 200mV  
,
RIPPLE  
P-P  
Power-Supply Rejection Ratio  
PSRR  
dB  
R = 8,  
C
L
= 1µF  
BIAS  
_______________________________________________________________________________________  
3
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
ELECTRICAL CHARACTERISTICS3V Supply (continued)  
(V  
= 3V, GND = 0, SHDN/SHDN = V  
(MAX9718/MAX9719), SHDM = GND (MAX9718), R = R = 10k(MAX971_A),  
CC  
CC  
IN  
F
T
= +25°C. C  
= 0.1µF, no load. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
BIAS A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Power  
P
R = 8, THD+N = 1%, f = 1kHz (Note 4)  
475  
mW  
OUT  
L
IN  
Total Harmonic Distortion Plus  
Noise  
R = 8, f = 1kHz, P  
A = 6dB  
V
= 0.25W,  
L
IN  
OUT  
THD+N  
0.003  
%
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Maximum Capacitive Drive  
+160  
15  
°C  
°C  
pF  
C
Bridge-tied capacitance  
500  
LOAD  
Power-Up/Enable from  
Shutdown Time  
t
10  
ms  
PU  
Shutdown Time  
Turn-Off Transient  
Crosstalk  
t
3
µs  
mV  
dB  
SHDN  
V
(Note 6)  
40  
-85  
POP  
MAX9719, f = 1kHz  
N
Note 1: All specifications are 100% tested at T = +25°C. Specifications over temperature (T = T  
to T  
) are guaranteed by  
MAX  
A
A
MIN  
design, not production tested.  
Note 2: Quiescent power-supply current is specified and tested with no load. Quiescent power-supply current depends on the offset  
voltage when a practical load is connected to the amplifier. Guaranteed by design.  
Note 3: Common-mode bias voltage is the voltage on BIAS and is nominally V /2.  
CC  
Note 4: Output power is specified by a combination of a functional output current test and characterization analysis.  
Note 5: Measurement bandwidth for THD+N is 22Hz to 22kHz.  
Note 6: Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC  
GND. V  
rise and fall times greater than or equal to 1ms.  
CC  
Typical Operating Characteristics  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
A
CC  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
10  
1
10  
1
10  
V
= 5V  
V
= 5V  
CC  
L
V
= 5V  
CC  
CC  
R = 4  
R = 8Ω  
R = 4Ω  
L
L
A
= 4  
A = 2  
V
A
= 2  
V
V
1
0.1  
OUTPUT POWER = 1W  
0.1  
0.1  
OUTPUT POWER = 1W  
OUTPUT POWER = 750mW  
OUTPUT POWER = 250mW  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.001  
OUTPUT POWER = 200mW  
OUTPUT POWER = 50mW  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
CC  
A
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
10  
1
10  
1
10  
V
= 3V  
V
= 3V  
V
= 5V  
CC  
CC  
CC  
R = 4Ω  
R = 4Ω  
R = 8Ω  
L
L
L
A
= 4  
A
= 2  
A
= 4  
V
V
V
1
0.1  
OUTPUT POWER = 175mW  
OUTPUT POWER = 70mW  
0.1  
0.1  
OUTPUT POWER = 800mW  
OUTPUT POWER = 200mW  
OUTPUT POWER = 50mW  
OUTPUT POWER = 250mW  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY  
10  
1
100  
10  
10  
1
V
= 3V  
V
= 5V  
CC  
L
V
= 3V  
CC  
CC  
R = 8Ω  
R = 4Ω  
R = 8Ω  
L
L
A
= 4  
A = 2  
V
A
= 2  
V
V
0.1  
1
0.1  
OUTPUT POWER = 50mW  
OUTPUT POWER = 200mW  
f
= 10kHz  
OUTPUT POWER = 100mW  
OUTPUT POWER = 250mW  
IN  
f = 100Hz  
IN  
0.01  
0.001  
0.0001  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
f
= 1kHz  
IN  
10  
100  
1k  
10k  
100k  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT POWER (W)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
= 5V  
V
= 5V  
V
= 5V  
CC  
L
CC  
CC  
R = 8Ω  
R = 4Ω  
R = 8Ω  
L
L
A
= 4  
A
= 4  
A = 2  
V
V
V
1
1
1
f
= 100Hz  
f
= 1kHz  
IN  
IN  
f
= 100Hz  
IN  
f
= 10kHz  
f
= 1kHz  
IN  
0.1  
0.1  
0.1  
IN  
f
= 100Hz  
IN  
f
= 10kHz  
f
= 10kHz  
IN  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
IN  
0
0.2 0.4 0.6 0.8 1.0  
OUTPUT POWER (W)  
1.2 1.4  
0
0.5  
1.0  
OUTPUT POWER (W)  
1.5  
2.0  
0
0.2 0.4 0.6 0.8 1.0  
OUTPUT POWER (W)  
1.2 1.4  
_______________________________________________________________________________________  
5
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
A
CC  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
100  
100  
10  
100  
10  
V
= 3V  
V
= 3V  
V
= 3V  
CC  
CC  
CC  
R = 4Ω  
R = 4Ω  
R = 8Ω  
L
L
L
A
= 2  
A
= 4  
A
= 2  
V
V
V
10  
1
f
= 10kHz  
IN  
1
1
f
= 10kHz  
IN  
0.1  
0.1  
0.1  
f
= 10kHz  
IN  
f
= 1kHz  
IN  
f
= 1kHz  
200  
f
= 1kHz  
200  
IN  
IN  
f
= 100Hz  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 100Hz  
500  
f
= 100Hz  
500  
IN  
IN  
0
100  
300  
400  
500  
600  
0
100  
200  
300  
400  
600  
0
100  
300  
400  
600  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. COMMON-MODE VOLTAGE  
TOTAL HARMONIC DISTORTION + NOISE  
vs. COMMON-MODE VOLTAGE  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER  
0.01  
0.001  
0.01  
0.001  
100  
10  
V
P
A
= 5V  
V
P
A
= 3V  
= 200mW  
= 2  
V
= 3V  
CC  
CC  
O
V
CC  
= 200mW  
R = 8Ω  
O
V
L
= 2  
A
= 4  
V
1
f
= 1kHz  
IN  
0.1  
f
= 10kHz  
IN  
0.01  
0.001  
f
= 100Hz  
400  
IN  
0.0001  
0.0001  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
0
100  
200  
300  
500  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
OUTPUT POWER (mW)  
OUTPUT POWER  
vs. LOAD RESISTANCE  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R = 4Ω  
V
= 5V  
CC  
L
R = 8Ω  
L
f = 1kHz  
f = 1kHz  
f = 1kHz  
A
= 2  
A = 2  
V
A
= 2  
V
V
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
CC  
A
OUTPUT POWER  
vs. LOAD RESISTANCE  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
1.0  
0.8  
0.6  
0.4  
0.2  
0
600  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
V
= 5V  
V
= 3V  
CC  
R = 4Ω  
L
CC  
R = 8Ω  
L
CC  
f = 1kHz  
A = 2  
500  
400  
300  
200  
100  
0
f = 1kHz  
A
f = 1kHz  
A
V
= 2  
= 2  
V
V
THD+N = 10%  
THD+N = 1%  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT POWER (W)  
1
10  
100  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
LOAD RESISTANCE ()  
OUTPUT POWER (W)  
GAIN AND PHASE  
vs. FREQUENCY  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
150  
120  
90  
700  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
A = 60dB  
V
V
= 3V  
V
= 3V  
CC  
R = 4Ω  
L
CC  
R = 8Ω  
L
f = 1kHz  
A
f = 1kHz  
A
= 2  
= 2  
V
V
60  
30  
0
-30  
-60  
-90  
-120  
-150  
0
10  
100  
1k  
10k  
100k  
0
100 200 300 400 500 600 700  
OUTPUT POWER (mW)  
0
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 200mV  
P-P  
V
= 200mV  
P-P  
RIPPLE  
RIPPLE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R = 8Ω  
R = 8Ω  
L
L
C
= 1µF  
C
= 1µF  
BIAS  
BIAS  
V
V
= 5V  
CC  
CC  
V
= 5V  
CC  
= 3V  
V
= 3V  
CC  
-100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
_______________________________________________________________________________________  
7
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
A
CC  
CROSSTALK  
vs. FREQUENCY  
CROSSTALK  
vs. FREQUENCY  
0
0
V
V
= 3V  
V
V
= 5V  
CC  
RIPPLE  
L
CC  
RIPPLE  
L
-10  
-10  
= 200mV  
= 200mV  
P-P  
P-P  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
R = 8Ω  
R = 8,  
C
= 1µF  
C
= 1µF  
BIAS  
BIAS  
-60  
-70  
-60  
-70  
CHANNEL 2  
CHANNEL 2  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
CHANNEL 1  
-100  
-110  
-120  
CHANNEL 1  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
ENTERING SHUTDOWN  
EXITING SHUTDOWN  
MAX9718 toc32  
MAX9718 toc33  
C
CC  
R = 8Ω  
L
= 0.1µF  
BIAS  
= 3V  
V
SHDN  
2V/div  
C
CC  
R = 8Ω  
L
= 0.1µF  
BIAS  
= 3V  
V
SHDN  
2V/div  
OUT+  
1V/div  
OUT+  
1V/div  
OUT-  
1V/div  
OUT-  
1V/div  
OUT+ - OUT-  
200mV/div  
OUT+ - OUT-  
200mV/div  
100µs/div  
4ms/div  
EXITING POWER-DOWN  
ENTERING POWER-DOWN  
MAX9718 toc35  
MAX9718 toc34  
C
CC  
R = 8Ω  
L
= 0.1µF  
BIAS  
= 3V  
V
SHDN  
2V/div  
SHDN  
1V/div  
OUT+  
1V/div  
OUT+  
1V/div  
OUT-  
1V/div  
OUT-  
1V/div  
OUT+ - OUT-  
200mV/div  
C
CC  
R = 8Ω  
L
= 0.1µF  
BIAS  
= 3V  
OUT+ - OUT-  
200mV/div  
V
4ms/div  
100µs/div  
8
_______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, C  
= 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
BIAS  
CC  
A
SHUTDOWN CURRENT  
vs. TEMPERATURE  
TURN-ON TIME  
vs. DC BIAS BYPASS CAPACITOR  
SUPPLY CURRENT  
vs. TEMPERATURE  
0.03  
0.02  
0.01  
0
6
80  
70  
60  
50  
40  
30  
20  
10  
0
TO -3dB OF FINAL VALUE  
V
V
= 5V  
= 3V  
5
4
3
2
1
0
CC  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
V
= 3V  
0.80  
CC  
V
= 3V  
CC  
-0.01  
-0.02  
-0.03  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
0.20  
0.40  
0.60  
(µF)  
1.00  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
C
BIAS  
Pin Description  
PIN  
MAX9718  
MAX9719  
UCSP  
NAME  
FUNCTION  
TDFN/  
µMAX  
UCSP  
TQFN  
TSSOP  
Shutdown Input. The polarity of SHDN is dependent on the state  
of SHDM.  
1
C2  
SHDN  
9
B3  
11  
SHDN  
Shutdown Input. Active-low shutdown input.  
Inverting Input  
2
C1  
IN-  
Shutdown-Mode Polarity Input. SHDM controls the polarity of  
SHDN. Connect SHDM high for an active-high SHDN input.  
Connect SHDM low for an active-low SHDN input (see Table 1).  
3
B2  
SHDM  
4
5
6
A1  
A2  
A3  
5
B2  
7
IN+  
BIAS  
OUT-  
Noninverting Input  
DC Bias Bypass  
Bridge Amplifier Negative Output  
A2,  
C2, C4  
7
B3  
1, 6, 11  
3, 8,13  
GND  
Ground  
8
B1  
C3  
13  
8, 14  
2
A4, D3  
15  
N.C.  
No Connection. Not internally connected.  
Power Supply  
9
16, 10  
V
CC  
10  
4
OUT+  
INR+  
INL-  
Bridge Amplifier Positive Output  
Right-Channel Noninverting Input  
Left-Channel Inverting Input  
Left-Channel Noninverting Input  
C1  
3
B1  
5
4
A1  
6
INL+  
7
A3  
9
OUTL+ Left-Channel Bridge Amplifier Positive Output  
OUTL- Left-Channel Bridge Amplifier Negative Output  
10  
B4  
12  
_______________________________________________________________________________________  
9
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Pin Description (continued)  
PIN  
MAX9718  
MAX9719  
UCSP  
NAME  
FUNCTION  
TDFN/  
UCSP  
TQFN  
TSSOP  
µMAX  
EP  
12  
15  
16  
EP  
D4  
D2  
D1  
14  
1
OUTR+ Right-Channel Bridge Amplifier Positive Output  
OUTR-  
INR-  
EP  
Right-Channel Bridge Amplifier Negative Output  
Right-Channel Inverting Input  
2
EP  
Exposed Pad. Connect EP to GND.  
Detailed Description  
Table 1. Shutdown Mode Selection  
(MAX9718 Only)  
The MAX9718/MAX9719 are 1.4W BTL speaker ampli-  
fiers. The MAX9718 is a mono speaker amplifier, while  
the MAX9719 is a stereo speaker amplifier. Both  
devices feature a low-power shutdown mode, and  
industry-leading click-and-pop suppression. The  
MAX9718 features a two-input shutdown scheme to  
configure shutdown for active high or active low. These  
devices consist of high output-current audio amps con-  
figured as BTL amplifiers (see the Functional Diagrams).  
Both adjustable and fixed gain (0dB, 3dB, 6dB) versions  
are available.  
SHDM  
SHDN  
OPERATIONAL MODE  
Shutdown  
0
0
1
1
0
1
0
1
Normal operation  
Normal operation  
Shutdown  
Applications Information  
BTL Amplifier  
BIAS  
These devices operate from a single 2.7V to 5.5V sup-  
ply and feature an internally generated, common-mode  
The MAX9718/MAX9719 are designed to drive a load  
differentially, a configuration referred to as bridge-tied  
load or BTL. The BTL configuration (Figure 1) offers  
advantages over the single-ended configuration, where  
one side of the load is connected to ground. Driving the  
load differentially doubles the output voltage compared  
to a single-ended amplifier under similar conditions.  
bias voltage of V / 2 referenced to ground. BIAS pro-  
CC  
vides both click-and-pop suppression and sets the DC  
bias level for the audio outputs. Choose the value of the  
bypass capacitor as described in the BIAS Capacitor  
section. Do not connect external loads to BIAS as this  
can affect the overall performance.  
Substituting 2 x V  
for V  
into the following  
OUT(P-P)  
OUT(P-P)  
Shutdown Mode  
The MAX9718/MAX9719 feature a 100nA low-power  
shutdown mode that reduces quiescent current con-  
sumption. Entering shutdown disables the devices bias  
circuitry, the amplifier outputs go high impedance, and  
BIAS is driven to GND. The MAX9718 SHDM input con-  
trols the polarity of SHDN. Drive SHDM high for an  
active-high SHDN input. Drive SHDM low for an active-  
low SHDN input (see Table 1). The MAX9719 features  
an active-low shutdown input, SHDN.  
equations yields four times the output power due to  
doubling of the output voltage:  
V
OUT(PP)  
V
=
RMS  
2 2  
2
V
RMS  
P
=
OUT  
R
L
Since the differential outputs are biased at midsupply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be  
large, expensive, consume board space, and degrade  
low-frequency performance.  
Click-and-Pop Suppression  
The MAX9718/MAX9719 feature Maxims industry-lead-  
ing click-and-pop suppression circuitry. During startup,  
the amplifier common-mode bias voltage ramps to the  
DC bias point. When entering shutdown, the amplifier  
outputs are high impedance to 100kbetween both  
outputs. This scheme minimizes the energy present in  
the audio band.  
10 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
R
F
R
F
V
+1  
OUT(P-P)  
2 x V  
V
OUT(P-P)  
MAX9718A  
MAX9719A  
R
INVERTING  
DIFFERENTIAL  
INPUT  
IN  
IN-  
IN+  
-1  
OUT(P-P)  
(OPTIONAL)  
(OPTIONAL)  
OUT+  
OUT-  
BIAS  
GENERATOR  
Figure 1. Bridge-Tied Load Configuration  
R
IN  
NONINVERTING  
DIFFERENTIAL  
INPUT  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9718/  
MAX9719 dissipate a significant amount of power. The  
maximum power dissipation for each package is given  
in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
Figure 2. Setting the MAX9718A/MAX9719A Gain  
by 15°C. A pulsing output under continuous thermal  
T
T  
A
J(MAX)  
P
=
D(MAX)  
overload results as the device heats and cools.  
θ
JA  
For optimum power dissipation and heat sinking, con-  
nect the exposed pad found on the µMAX, TDFN,  
TQFN, and TSSOP packages to a large ground plane.  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
section. For example, θ of the TQFN package is  
JA  
Fixed Differential Gain  
The MAX9718B, MAX9718C, MAX9718D, MAX9719B,  
MAX9719C, and MAX9719D feature internally fixed  
gains (see the Selector Guide). This simplifies design,  
decreases required footprint size, and eliminates exter-  
nal gain-setting resistors. Resistors R1 and R2 shown in  
the Typical Operating Circuit are used to achieve each  
fixed gain.  
+59.2°C/W.  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
maximum internal power dissipation for a given V  
and load is given by the following equation:  
CC  
2
2V  
CC  
P
=
D(MAX)  
Adjustable Differential Gain  
Gain-Setting Resistors  
External feedback resistors set the gain of the  
2
π R  
L
If the internal power dissipation for a given application  
exceeds the maximum allowed for a given package,  
reduce power dissipation by increasing the ground  
plane heat-sinking capability and the size of the traces  
to the device (see the Layout and Grounding section).  
Other methods for reducing power dissipation are to  
MAX9718A and MAX9719A. Resistors R and R  
F
(Figure 2) set the gain of the amplifier as follows:  
IN  
R
F
A
=
V
R
IN  
reduce V , increase load impedance, decrease ambi-  
CC  
ent temperature, reduce gain, or reduce input signal.  
where A is the desired voltage gain. Hence, an R of  
V
IN  
10kand an R of 20kyields a gain of 2V/V, or 6dB.  
F
Thermal-overload protection limits total power dissipa-  
tion in the MAX9718/MAX9719. When the junction tem-  
perature exceeds +160°C, the thermal protection  
circuitry disables the amplifier output stage. The ampli-  
fiers are enabled once the junction temperature cools  
R can be either fixed or variable, allowing the use of a  
F
digitally controlled potentiometer to alter the gain under  
software control.  
______________________________________________________________________________________ 11  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Input Filter  
The fully differential amplifier inputs can be biased at  
voltages other than midsupply. The common-mode  
feedback circuit adjusts for input bias, ensuring the  
outputs are still biased at midsupply. Input capacitors  
are not required as long as the common-mode input  
voltage is within the specified range listed in the  
Electrical Characteristics table.  
Layout and Grounding  
Good PC board layout is essential for optimizing perfor-  
mance. Use large traces for the power-supply inputs and  
amplifier outputs to minimize losses due to parasitic trace  
resistance and route heat away from the device. Good  
grounding improves audio performance, minimizes  
crosstalk between channels, and prevents any digital  
switching noise from coupling into the audio signal.  
If input capacitors are used, input capacitor C , in  
IN  
The MAX9718/MAX9719 TDFN, TQFN, TSSOP, and  
µMAX packages feature exposed thermal pads on their  
undersides. This pad lowers the thermal resistance of the  
package by providing a direct-heat conduction path  
from the die to the PC board. Connect the exposed pad  
to the ground plane using multiple vias, if required.  
conjunction with R , forms a highpass filter that  
IN  
removes the DC bias from an incoming signal. The AC-  
coupling capacitor allows the amplifier to bias the sig-  
nal to an optimum DC level. Assuming zero-source  
impedance, the -3dB point of the highpass filter is  
given by:  
UCSP Applications Information  
1
f 3dB  
=
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PC board tech-  
niques, bump-pad layout, and recommended reflow  
temperature profile, as well as the latest information on  
reliability testing results, refer to the Application Note:  
UCSP—A Wafer-Level Chip-Scale Package available  
on Maxims website at www.maxim-ic.com/ucsp.  
2πR C  
IN IN  
Setting f  
too high affects the low-frequency  
-3dB  
response of the amplifier. Use capacitors with  
dielectrics that have low-voltage coefficients, such as  
tantalum or aluminum electrolytic. Capacitors with high-  
voltage coefficients, such as ceramics, can increase  
distortion at low frequencies.  
BIAS Capacitor  
BIAS is the output of the internally generated V /2  
CC  
BIAS  
bias voltage. The BIAS bypass capacitor, C  
,
Selector Guide  
improves PSRR and THD+N by reducing power supply  
and other noise sources at the common-mode bias  
node, and also generates the clickless/popless startup  
DC bias waveform for the speaker amplifiers. Bypass  
BIAS with a 0.1µF capacitor to GND. Larger values of  
SELECTABLE  
GAIN  
SHUTDOWN  
POLARITY  
PART  
MONO STEREO  
(dB)  
C
(up to 1µF) improve PSRR, but slow down  
BIAS  
MAX9718A  
MAX9718B  
MAX9718C  
MAX9718D  
MAX9719A  
MAX9719B  
MAX9719C  
MAX9719D  
Adjustable  
t
/t  
times. A 1µF C  
capacitor slows turn-on  
BIAS  
ON OFF  
0
and turn-off times by 10 and improves PSRR by 20dB  
(at 1kHz). Do not connect external loads to BIAS.  
3
6
Supply Bypassing  
Proper power-supply bypassing ensures low-noise,  
low-distortion performance. Connect a 1µF ceramic  
Adjustable  
0
3
6
capacitor from V  
to GND. Add additional bulk  
CC  
capacitance as required by the application. Locate the  
bypass capacitor as close to the device as possible.  
12 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
UCSP Marking Information:  
Ordering Information (continued)  
TEMP  
RANGE  
PIN-  
PACKAGE  
GAIN  
(dB)  
PART  
AAA  
XXX  
MAX9718BEBL-T -40°C to +85°C 3 x 3 UCSP  
0
0
MAX9718BETB  
MAX9718BEUB  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX-EP*  
: A1 Bump indicator  
0
AAA: Product code  
XXX: Lot code  
MAX9718CEBL-T -40°C to +85°C 3 x 3 UCSP  
3
MAX9718CETB  
MAX9718CEUB  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX-EP*  
3
3
MAX9718DEBL-T -40°C to +85°C 3 x 3 UCSP  
6
MAX9718DETB  
MAX9718DEUB  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX-EP*  
6
Chip Information  
6
MAX9718 TRANSISTOR COUNT: 2359  
MAX9719 TRANSISTOR COUNT: 4447  
PROCESS: BiCMOS  
MAX9719AEBE-T -40°C to +85°C 4 x 4 UCSP  
Adj  
Adj  
Adj  
0
MAX9719AETE  
MAX9719AEAE  
-40°C to +85°C 16 TQFN-EP*  
-40°C to +85°C 16 TSSOP-EP*  
MAX9719BEBE-T -40°C to +85°C 4 x 4 UCSP  
MAX9719BETE  
MAX9719BEAE  
-40°C to +85°C 16 TQFN-EP*  
-40°C to +85°C 16 TSSOP-EP*  
0
0
MAX9719CEBE-T -40°C to +85°C 4 x 4 UCSP  
3
MAX9719CETE  
MAX9719CEAE  
-40°C to +85°C 16 TQFN-EP*  
-40°C to +85°C 16 TSSOP-EP*  
3
3
MAX9719DEBE-T -40°C to +85°C 4 x 4 UCSP  
6
MAX9719DETE  
MAX9719DEAE  
-40°C to +85°C 16 TQFN-EP*  
-40°C to +85°C 16 TSSOP-EP*  
6
6
*EP = Exposed paddle.  
______________________________________________________________________________________ 13  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
System Diagram  
2.7V TO 5.5V  
10µF  
1µF  
V
CC  
MAX9719  
OUTL+  
OUTL-  
IN1+  
INL+  
INL-  
INR+  
INR-  
IN1-  
IN2+  
IN2-  
OUTR+  
OUTR-  
BIAS  
GND  
SHDN  
0.1µF  
2.7V TO 5.5V  
IN-  
Q
Q
220kΩ  
MAX961  
V
CC  
IN+  
0.1µF  
0.1µF  
SHDN  
MAX9722B  
1µF  
1µF  
INL  
INR  
OUTL  
OUTR  
2.7V TO 5.5V  
PV  
PV  
SV  
DD  
DD  
SS  
SV  
SS  
C1P  
CIN  
1µF  
0.1µF  
1µF  
1µF  
AUTOMATIC HEADPHONE DETECTION AND SPEAKER DISABLE CIRCUIT  
14 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Functional Diagrams  
2.7V TO 5.5V  
SUPPLY  
V
CC  
1.0µF  
R
2
C
IN  
INVERTING  
DIFFERENTIAL  
INPUT  
R
R
1
IN-  
OUT+  
OUT-  
(OPTIONAL)  
C
IN  
NONINVERTING  
DIFFERENTIAL  
INPUT  
1
IN+  
R
2
(OPTIONAL)  
BIAS  
BIAS  
GENERATOR  
C
BIAS  
0.1µF  
SHDN  
SHDM  
MAX9718B  
MAX9718C  
MAX9718D  
SHUTDOWN  
CONTROL  
GND  
R
F
R
F
2.7V TO 5.5V  
SUPPLY  
V
CC  
1.0µF  
C
IN  
INVERTING  
DIFFERENTIAL  
INPUT  
R
R
IN  
IN-  
OUT+  
OUT-  
(OPTIONAL)  
C
IN  
NONINVERTING  
DIFFERENTIAL  
INPUT  
IN  
IN+  
(OPTIONAL)  
BIAS  
BIAS  
GENERATOR  
C
BIAS  
0.1µF  
MAX9718A  
SHDN  
SHDM  
MAX9718A  
SHUTDOWN  
CONTROL  
A = 2  
C
V
f
= 1Hz  
C
IN  
= 1µF  
IN  
GND  
R
= 10kΩ  
R = 20kΩ  
F
______________________________________________________________________________________ 15  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Functional Diagrams (continued)  
2.7V TO 5.5V  
SUPPLY  
V
MAX9719B  
MAX9719C  
MAX9719D  
CC  
1.0µF  
R
2
C
IN  
INVERTING  
DIFFERENTIAL  
INPUT  
R
1
INL-  
OUTL+  
OUTL-  
(OPTIONAL)  
C
IN  
R
NONINVERTING  
DIFFERENTIAL  
INPUT  
1
INL+  
BIAS  
R
R
2
2
(OPTIONAL)  
BIAS  
GENERATOR  
C
BIAS  
0.1µF  
SHDN  
INR-  
SHUTDOWN  
CONTROL  
C
IN  
INVERTING  
DIFFERENTIAL  
INPUT  
R
1
OUTR+  
OUTR-  
(OPTIONAL)  
C
IN  
R
NONINVERTING  
DIFFERENTIAL  
INPUT  
1
INR+  
GND  
R
2
(OPTIONAL)  
R
F
R
F
2.7V TO 5.5V  
SUPPLY  
V
CC  
1.0µF  
MAX9719A  
C
IN  
INVERTING  
DIFFERENTIAL  
INPUT  
R
R
IN  
IN  
INL-  
INL+  
OUTL+  
OUTL-  
(OPTIONAL)  
C
IN  
NONINVERTING  
DIFFERENTIAL  
INPUT  
(OPTIONAL)  
BIAS  
BIAS  
GENERATOR  
C
BIAS  
0.1µF  
SHDN  
SHUTDOWN  
CONTROL  
C
IN  
R
R
INVERTING  
DIFFERENTIAL  
INPUT  
IN  
IN  
INR-  
OUTR+  
OUTR-  
(OPTIONAL)  
C
IN  
NONINVERTING  
DIFFERENTIAL  
INPUT  
INR+  
GND  
MAX9719A  
A
= 2  
V
(OPTIONAL)  
f
C
= 1Hz  
C
IN  
= 1µF  
IN  
R
F
R
= 10kΩ  
R = 20kΩ  
F
R
F
16 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Pin Configurations  
TOP VIEW  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
MAX9718  
2
3
A
B
C
IN+  
BIAS  
OUT-  
GND  
SHDN  
IN-  
1
2
3
4
5
10 OUT+  
9
8
7
6
V
CC  
V
SHDM  
SHDN  
SHDM  
IN+  
N.C.  
GND  
OUT-  
CC  
MAX9718  
IN-  
OUT+  
BIAS  
µMAX  
3 × 3 UCSP  
TOP VIEW  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
MAX9719  
2
3
4
V
SHDN  
IN-  
1
2
3
4
5
10 OUT+  
A
B
C
D
INL+  
INL-  
INR+  
INR-  
GND  
OUTL+  
CC  
9
8
7
6
V
CC  
SHDM  
IN+  
N.C.  
GND  
OUT-  
BIAS  
GND  
SHDN  
OUTL-  
GND  
MAX9718  
BIAS  
3mm × 3mm × 0.8mm TDFN  
V
OUTR+  
OUTR-  
CC  
4 × 4 UCSP  
TOP VIEW  
TOP VIEW  
16  
15  
14  
13  
OUTR-  
1
2
3
4
5
6
7
8
16 V  
CC  
INR-  
GND  
15 N.C.  
GND  
OUTR+  
GND  
1
2
3
4
12  
11  
10  
9
14 OUTR+  
13 GND  
INR+  
INL-  
INL+  
INR+  
INL-  
INL+  
BIAS  
GND  
MAX9719  
MAX9719  
12 OUTL-  
11 SHDN  
OUTL-  
SHDN  
10 V  
CC  
9
OUTL+  
5
6
7
8
TSSOP-EP  
4mm × 4mm × 0.8mm TQFN  
______________________________________________________________________________________ 17  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 3x3 UCSP  
1
21-0093  
I
1
18 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D
N
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
C
C
L
L
L
L
A
e
e
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
21-0137  
F
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEC  
0.40 0.05  
0.30 0.05  
1.90 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
T833-1  
8
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
1.70 0.10 2.30 0.10 0.40 BSC  
1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
0.20 0.03  
0.20 0.03  
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
21-0137  
F
2
______________________________________________________________________________________ 19  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
20 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 4x4 UCSP  
1
21-0101  
H
1
______________________________________________________________________________________ 21  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
1
C
21-0139  
2
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
2
C
21-0139  
2
22 ______________________________________________________________________________________  
Low-Cost, Mono/Stereo,  
1.4W Differential Audio Power Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY  
EXPOSED PAD  
1
21-0108  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY