MC9S12H128VPVE [ROCHESTER]

16-BIT, FLASH, 16MHz, MICROCONTROLLER, PQFP112, LQFP-112;
MC9S12H128VPVE
型号: MC9S12H128VPVE
厂家: Rochester Electronics    Rochester Electronics
描述:

16-BIT, FLASH, 16MHz, MICROCONTROLLER, PQFP112, LQFP-112

时钟 微控制器 外围集成电路
文件: 总131页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC9S12H256 Device User Guide — V01.20  
MC9S12H256  
Device User Guide  
V01.20  
Covers also MC9S12H128  
Original Release Date: 29 SEP 2000  
Revised: 28 JUL 2008  
Freescale Semiconductor Inc.  
1
DOCUMENT NUMBER  
9S12H256BDGV1/D  
Revision History  
Version Revision Effective  
Author  
Description of Changes  
Number  
Date  
Date  
07 MAR  
2001  
03 APR  
2001  
V01.00  
Initial version.  
- Minor formal corrections  
10 MAI  
2001  
10 MAY  
2001  
V01.01  
V01.02  
- Changed ATD coupling ratio to10-2  
- Changed VDD5 to 4.5V  
- Removed 112-pin package references  
- Changed ATD Electrical Characteristics separate coupling ratio for  
positive and negative bulk current injection  
14 MAY  
2001  
14 MAY  
2001  
30 MAY  
2001  
30 MAY  
2001  
V01.03  
V01.04  
- Reinserted 112-pin package information.  
11 JUN  
2001  
11 JUN  
2001  
- Removed SRSv2 comment from preface  
- Corrected RESET pin to active low in table 2-1  
- Adapted style and wording to 9DP256 device user guide  
- Minor format and wording improvements  
- Added SRAM data retention disclaimer  
18 JUN  
2001  
18 JUN  
2001  
V01.05  
V01.06  
- Changed Oscillator Characteristics tCQOUT max 2.5s and replaced  
Clock Monitor Time-out by Clock Monitor Failure Assert Frequency  
- Changed Self Clock Mode Frequency min 1MHz and max 5.5MHz  
- Changed IDDPS (RTI and COP disabled) to 400µA  
28 JUN  
2001  
28 JUN  
2001  
- Corrected typo in Figure 2-1 pin 76: PK3 -> PK2  
- Added tEXTR and tEXTF to Oscillator Characteristics  
- Added typ value for tUPOSC  
- Corrected tEXTL and tEXTH values  
- Updated thermal resistances as per Thermal Simulation Report,  
July 10, 2001  
12 JUL  
2001  
12 JUL  
2001  
V01.07  
16 JUL  
2001  
16 JUL  
2001  
- updated EEPROM size  
- added DC cutoff capacitor into layout proposals  
V01.08  
V01.09  
V01.10  
03 AUG  
2001  
03 AUG  
2001  
- minor updates  
29 AUG  
2001  
29 AUG  
2001  
- updated electrical spec  
Freescale reserves the right to make changes without further notice to any products herein to improve reliability, function or  
design. Freescale does not assume any liability arising out of the application or use of any product or circuit described herein;  
neither does it convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Freescale was negligent regarding the design or manufacture of the part.  
2
MC9S12H256 Device User Guide — V01.20  
Description of Changes  
Version Revision Effective  
Author  
Number  
Date  
Date  
11 OCT  
2001  
11 OCT  
2001  
- Replaced references w.r.t. new family name HCS12.  
- Corrected XCLKS reference in CRG electrical spec.  
V01.11  
07 NOV  
2001  
07 NOV  
2001  
V01.12  
V01.13  
- added ‘powered by’ column in pin list table  
- new document numbering  
- removed document order number except from cover sheet  
- updated min VDD, VDDPLL  
- updated currents on VOH,VOL for standard pins  
- updated CIN, IDDS, IREF, CINS, TEXTL, TEXTH  
- included missing lcd electrical spec  
- updated NVM spec  
08 MAR  
2002  
08 MAR  
2002  
- updated input leakage  
- updated slew rate spec on PU,PV, PW  
- updated supply currents  
- included 1K78X  
16 DEC  
2002  
16 DEC  
2002  
V01.14  
- added detailed register map  
31 MAR  
2003  
31 MAR  
2003  
- added K1 max value  
- added chragepump current min/max values  
V01.15  
V01.16  
V01.17  
V01.18  
V01.19  
V01.20  
05 NOV  
2003  
05 NOV  
2003  
- corrected pinout problem in LQFP112 layout proposal  
- added MC9S12H128  
04 AUG  
2004  
04 AUG  
2004  
13 AUG  
2004  
13 AUG  
2004  
- added Internal Pull Resistor columns to signal properties table  
- changed SPI0 to SPI, ATD0 to ATD  
05 NOV  
2004  
05 NOV  
2004  
28 JUL  
2008  
28 JUL  
2008  
- changed PU,PV,PW rise/fall times in EPP package at cold.  
3
MC9S12H256 Device User Guide — V01.20  
4
MC9S12H256 Device User Guide — V01.20  
Section 1 Introduction  
1.1  
1.2  
1.3  
1.4  
1.5  
1.5.1  
1.6  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Part ID Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Section 2 Signal Description  
2.1  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Signal Properties Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
TEST — Test Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin. . . . . . . . . . . . . 60  
PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
PA[7:0] / FP[15:8] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . 60  
PB[7:0] / FP[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins. . . . . . . . . . . . . . . . . . . . . . 61  
PE7 / FP22 / XCLKS / NOACC — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PE3 / FP21 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PE2 / FP20 / R/W — Port E I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PE0 / XIRQ — Port E Input Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PH[7:0] / KWH[7:0] — Port H I/O Pins [7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PJ[3:0] / KWJ[3:0] — Port J I/O Pins [3:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PK7 / FP23 / ECS / ROMONE — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PK[3:0] / BP[3:0] / XADDR[17:14] — Port K I/O Pins [3:0] . . . . . . . . . . . . . . . . . . . . . . . . 62  
PL[7:4] / FP[31:28] — Port L I/O Pins [7:4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PL[3:0] / FP[19:16] — Port L I/O Pins [3:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
2.3.10  
2.3.11  
2.3.12  
2.3.13  
2.3.14  
2.3.15  
2.3.16  
2.3.17  
2.3.18  
2.3.19  
2.3.20  
2.3.21  
2.3.22  
2.3.23  
5
MC9S12H256 Device User Guide — V01.20  
2.3.24  
2.3.25  
2.3.26  
2.3.27  
2.3.28  
2.3.29  
2.3.30  
2.3.31  
2.3.32  
2.3.33  
2.3.34  
2.3.35  
2.3.36  
2.3.37  
2.3.38  
2.3.39  
2.3.40  
2.3.41  
2.3.42  
2.3.43  
2.3.44  
2.3.45  
2.3.46  
2.3.47  
2.4  
PM5 / TXCAN1 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PM4 / RXCAN1 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PM3 / TXCAN0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PM2 / RXCAN0 — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PM1 / SCL — Port M I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PM0 / SDA — Port M I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PP[5:2] / PWM[5:2] — Port P I/O Pins [5:2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PP[1:0] / PWM[1:0] — Port P I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS7 / SS — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS6 / SCK — Port S I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS5 / MOSI — Port S I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS4 / MISO — Port S I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PT[7:4] / IOC[7:4] — Port T I/O Pins [7:4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PT[3:0] / IOC[3:0] / FP[27:24] — Port T I/O Pins [3:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PU[7:4] / M1C1P, M1C1M, M1C0P, M1C0M — Port U I/O Pins [7:4] . . . . . . . . . . . . . . . . 65  
PU[3:0] / M0C1P, M0C1M, M0C0P, M0C0M — Port U I/O Pins [3:0] . . . . . . . . . . . . . . . . 65  
PV[7:4] / M3C1P, M3C1M, M3C0P, M3C0M — Port V I/O Pins [7:4] . . . . . . . . . . . . . . . . 65  
PV[3:0] / M2C1P, M2C1M, M2C0P, M2C0M — Port V I/O Pins [3:0] . . . . . . . . . . . . . . . . 66  
PW[7:4] / M5C1P, M5C1M, M5C0P, M5C0M — Port W I/O Pins [7:4] . . . . . . . . . . . . . . . 66  
PW[3:0] / M4C1P, M4C1M, M4C0P, M4C0M — Port W I/O Pins [3:0] . . . . . . . . . . . . . . . 66  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VDDR — External Power Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VDDX1, VDDX2, VSSX1, VSSX2 — External Power and Ground Pins . . . . . . . . . . . . . . . 66  
VDD1, VSS1, VSS2 — Core Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VDDM1, VDDM2, VDDM3 — Power Supply Pins for Motor 0 to 5 . . . . . . . . . . . . . . . . . . 67  
VSSM1, VSSM2, VSSM3 — Ground Pins for Motor 0 to 5 . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VLCD — Power Supply Reference Pin for LCD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VRH, VRL — ATD Reference Voltage Input Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
2.4.7  
2.4.8  
2.4.9  
Section 3 System Clock Description  
6
MC9S12H256 Device User Guide — V01.20  
3.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Section 4 Modes of Operation  
4.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Normal Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Special Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Test Operating Mode (Freescale Use Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Unsecuring the Microcontroller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
Section 5 Resets and Interrupts  
5.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Effects of Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5.2  
5.2.1  
5.3  
5.3.1  
5.3.2  
Section 6 HCS12 Core Block Description  
Section 7 Clock and Reset Generator (CRG) Block Description  
7.1  
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
XCLKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.1.1  
Section 8 Timer (TIM) Block Description  
Section 9 Analog to Digital Converter (ATD) Block Description  
Section 10 Inter-IC Bus (IIC) Block Description  
Section 11 Serial Communications Interface (SCI) Block Description  
Section 12 Serial Peripheral Interface (SPI) Block Description  
7
MC9S12H256 Device User Guide — V01.20  
Section 13 Pulse Width Modulator (PWM) Block Description  
Section 14 Flash EEPROM 256K Block Description  
Section 15 EEPROM 4K Block Description  
Section 16 RAM Block Description  
Section 17 Liquid Crystal Display Driver (LCD) Block Description  
Section 18 MSCAN Block Description  
Section 19 PWM Motor Control (MC) Block Description  
Section 20 Port Integration Module (PIM) Block Description  
Section 21 Voltage Regulator (VREG) Block Description  
21.1 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
21.1.1  
21.1.2  
VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
21.2 Recommended PCB layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Appendix A Electrical Characteristics  
A.1  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Current Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
A.1.1  
A.1.2  
A.1.3  
A.1.4  
A.1.5  
A.1.6  
A.1.7  
A.1.8  
A.1.9  
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
A.2  
ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
A.2.1  
A.2.2  
8
MC9S12H256 Device User Guide — V01.20  
A.2.3  
A.3  
ATD accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
NVM, Flash and EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
NVM Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
LCD_32F4B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
General Muxed Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
A.3.1  
A.3.2  
A.4  
A.4.1  
A.4.2  
A.4.3  
A.5  
A.6  
A.6.1  
A.6.2  
A.7  
A.8  
A.8.1  
Appendix B Package Information  
B.1  
B.2  
B.3  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
112-pin LQFP package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
144-pin LQFP package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
9
MC9S12H256 Device User Guide — V01.20  
10  
MC9S12H256 Device User Guide — V01.20  
Figure 1-1  
Figure 1-2  
Figure 1-3  
Figure 1-4  
Figure 2-1  
Figure 2-2  
Figure 3-1  
Figure 21-1  
Figure 21-2  
Figure A-1  
Figure A-2  
Figure A-3  
Figure A-4  
Figure A-5  
Figure A-6  
Figure A-7  
Figure A-8  
Figure A-9  
Figure B-1  
Figure B-2  
MC9S12H256 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MC9S12H128 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MC9S12H256 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
MC9S12H128 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pin Assignments in 112-pin LQFP for MC9S12H256 and MC9S12H128. . . . . . . . . . 56  
Pin Assignments in 144-pin LQFP for MC9S12H256 . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
LQFP112 recommended PCB layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
LQFP144 recommended PCB layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Jitter Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
SPI Slave Timing (CPHA =1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
General External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . . . . . . 126  
144-pin LQFP mechanical dimensions (case no. 918-03). . . . . . . . . . . . . . . . . . . . . 127  
11  
MC9S12H256 Device User Guide — V01.20  
12  
MC9S12H256 Device User Guide — V01.20  
Table 0-1  
Table 1-1  
Table 1-2  
Table 1-3  
Table 1-4  
Table 1-5  
Table 1-6  
Table 2-1  
Table 4-1  
Table 5-1  
Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Device Memory Map MC9S12H256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Device Memory Map MC9S12H128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . . . . . . . . 44  
Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . . . . . . . . 46  
Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reset and Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 21-1 Recommended Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Table A-2 ESD and Latch-up Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table A-6 5V I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Table A-8 ATD Operating Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table A-10 ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table A-11 NVM Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table A-13 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table A-14 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Table A-15 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table A-16 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Table A-17 SPI Master Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table A-18 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
LCD_32F4B Driver Electrical Characteristics 119  
Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13  
MC9S12H256 Device User Guide — V01.20  
14  
MC9S12H256 Device User Guide — V01.20  
Preface  
The Device User Guide provides information about the MC9S12H256 and MC9S12H128 device made up  
of standard HCS12 blocks and the HCS12 processor core.  
This document is part of the customer documentation. A complete set of device manuals also includes the  
HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In an  
effort to reduce redundancy all module specific information is located only in the respective Block User  
Guide. If applicable, special implementation details of the module are given in the block description  
sections of this document.  
See Table 0-1 for names and versions of the referenced documents throughout the Device User Guide.  
Table 0-1 Document References  
User Guide  
Version  
Document Order Number  
HCS12COREUG  
S12CRGV2/D  
HCS12 V1.5 Core User Guide  
CRG Block User Guide  
1.2  
V02  
V01  
V02  
V02  
V02  
V02  
V01  
V02  
V02  
V01  
V02  
V02  
V01  
V01  
TIM_16B8C Block User Guide  
ATD_10B16C Block User Guide  
IIC Block User Guide  
S12TIM16B8CV1/D  
S12ATD10B16CV2/D  
S12IICV2/D  
SCI Block User Guide  
S12SCIV2/D  
SPI Block User Guide  
S12SPIV2/D  
PWM_8B6C Block User Guide  
FTS256K Block User Guide  
EETS4K Block User Guide  
LCD_32F4B Block User Guide  
MSCAN Block User Guide  
MC_10B12C Block User Guide  
PIM_9H256 Block User Guide  
VREG Block User Guide  
S12PWM8B6CV1/D  
S12FTS256KV2/D  
S12EETS4KV2/D  
S12LCD32F4BV1/D  
S12MSCANV2/D  
S12MC10B12CV2/D  
S12PIMH256V1/D  
S12VREGV1/D  
15  
MC9S12H256 Device User Guide — V01.20  
16  
MC9S12H256 Device User Guide — V01.20  
Section 1 Introduction  
1.1 Overview  
The MC9S12H256 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip  
peripherals including a 16-bit central processing unit (HCS12 CPU), 256K bytes of Flash EEPROM, 12K  
bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), a serial  
peripheral interface (SPI), an IIC-bus interface (IIC), an 8-channel 16-bit timer (TIM), a 16-channel, 10-bit  
analog-to-digital converter (ATD), a six-channel pulse width modulator (PWM), and two CAN 2.0 A, B  
software compatible modules (MSCAN).  
The MC9S12H128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip  
peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 6K  
bytes of RAM, 2K bytes of EEPROM, one asynchronous serial communications interface (SCI), a serial  
peripheral interface (SPI), an IIC-bus interface (IIC), an 8-channel 16-bit timer (TIM), a 8-channel, 10-bit  
analog-to-digital converter (ATD), a two-channel pulse width modulator (PWM), and two CAN 2.0 A, B  
software compatible modules (MSCAN).  
In addition, it features a 32x4 liquid crystal display (LCD) controller/driver and a motor pulse width  
modulator (MC) consisting of 24 high current outputs suited to drive up to 6 stepper motors. System  
resource mapping, clock generation, interrupt control, and bus interfacing are managed by the HCS12  
Core.  
The MC9S12H256 has full 16-bit data paths throughout. The inclusion of a PLL circuit allows power  
consumption and performance to be adjusted to suit operational requirements. In addition to the I/O ports  
available in each module, 12 general purpose I/O pins are available with interrupt and wake-up capability  
from STOP or WAIT mode.  
1.2 Features  
HCS12 Core  
– 16-bit HCS12 CPU  
i. Upward compatible with M68HC11 instruction set  
ii. Interrupt stacking and programmer’s model identical to M68HC11  
iii.20-bit ALU  
iv. Instruction queue  
v. Enhanced indexed addressing  
– MEBI (Multiplexed External Bus Interface)  
– MMC (Module Mapping Control)  
– INT (Interrupt control)  
– BKP (Breakpoints)  
17  
MC9S12H256 Device User Guide — V01.20  
– BDM (Background Debug Mode)  
CRG (low current oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor)  
8-bit and 4-bit ports with interrupt functionality  
– Digital filtering  
– Programmable rising or falling edge trigger  
Memory  
– 128K, 256K Flash EEPROM  
– 2K, 4K byte EEPROM  
– 6K, 12K byte RAM  
Analog-to-Digital Converter  
– 8, 16 channels, 10-bit resolution  
– External conversion trigger capability  
Two 1M bit per second, CAN 2.0 A, B software compatible modules  
– Five receive and three transmit buffers  
– Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit  
– Four separate interrupt channels for Rx, Tx, error and wake-up  
– Low-pass filter wake-up function  
– Loop-back for self test operation  
Timer  
– 16-bit main counter with 7-bit prescaler  
– 8 programmable input capture or output compare channels  
– Two 8-bit or one 16-bit pulse accumulators  
2, 6 PWM channels  
– Programmable period and duty cycle  
– 8-bit 2, 6-channel or 16-bit 1, 3-channel  
– Separate control for each pulse width and duty cycle  
– Center-aligned or left-aligned outputs  
– Programmable clock select logic with a wide range of frequencies  
– Fast emergency shutdown input  
Serial interfaces  
– Two asynchronous Serial Communications Interfaces (SCI)  
– Synchronous Serial Peripheral Interface (SPI)  
18  
MC9S12H256 Device User Guide — V01.20  
– Inter-Integrated Circuit interface (IIC)  
Liquid Crystal Display driver with variable input voltage  
– Configurable for up to 32 frontplanes and 4 backplanes or general purpose input or output  
– 5 modes of operation allow for different display sizes to meet application requirements  
– Unused frontplane and backplane pins can be used as general purpose I/O  
16, 24 high current drivers suited for PWM motor control  
– Each PWM channel switchable between two drivers in an H-bridge configuration  
– Left, right and center aligned outputs  
– Support for sine and cosine drive  
– Dithering  
– Output slew rate control  
144-Pin or 112-Pin LQFP package  
– I/O lines with 5V input and drive capability  
– 5V A/D converter inputs  
– Operation at 32MHz equivalent to 16MHz Bus Speed  
– Development support  
– Single-wire background debug™ mode (BDM)  
– On-chip hardware breakpoints  
1.3 Modes of Operation  
User modes  
Normal and Emulation Operating Modes  
– Normal Single-Chip Mode  
– Normal Expanded Wide Mode  
– Normal Expanded Narrow Mode  
– Emulation Expanded Wide Mode  
– Emulation Expanded Narrow Mode  
Special Operating Modes  
– Special Single-Chip Mode with active Background Debug Mode  
– Special Test Mode (Freescale Use Only)  
– Special Peripheral Mode (Freescale Use Only)  
Low power modes  
19  
MC9S12H256 Device User Guide — V01.20  
Stop Mode  
Pseudo Stop Mode  
Wait Mode  
1.4 Block Diagram  
Figure 1-1 is a block diagram of the MC9S12H256 device.  
20  
MC9S12H256 Device User Guide — V01.20  
VDDR  
VDDA  
VSSA  
VRH  
VDDA  
VSSA  
VRH  
Voltage Regulator  
VDD1  
VSS1,VSS2  
VRL  
VRL  
AN00  
AN01  
AN02  
AN03  
AN04  
AN05  
AN06  
AN07  
AN08  
AN09  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
PAD00  
PAD01  
PAD02  
PAD03  
PAD04  
PAD05  
PAD06  
PAD07  
PAD08  
PAD09  
PAD10  
PAD11  
PAD12  
PAD13  
PAD14  
PAD15  
256k Bytes Flash EEPROM  
4k Bytes EEPROM  
Analog to  
Digital  
Converter  
(ATD)  
12K Bytes RAM  
Single-wire Background  
Debug Module  
BKGD  
CPU12  
XFC  
VDDPLL  
VSSPLL  
EXTAL  
XTAL  
Clock and  
Reset  
Generation  
Module  
Periodic Interrupt  
COP Watchdog  
Clock Monitor  
Breakpoints  
PLL  
RESET  
TEST  
PE0  
PE1  
PE4  
PE5  
PE6  
XIRQ  
IRQ  
ECLK  
MODA  
MODB  
PW0  
PW1  
PW2  
PW3  
PW4  
PW5  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
Integration  
Module  
Pulse  
Width  
Modulator  
(PWM)  
VLCD  
VLCD  
RXD0  
TXD0  
PS0  
PS1  
SCI0  
SCI1  
XADDR14 PK0  
XADDR15 PK1  
XADDR16 PK2  
XADDR17 PK3  
BP0  
BP1  
BP2  
BP3  
PIX0  
PIX1  
PIX2  
PIX3  
RXD1  
TXD1  
PS2  
PS3  
SDI/MISO  
SDO/MOSI  
SCK  
PS4  
PS5  
PS6  
PS7  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
FP0  
FP1  
FP2  
FP3  
FP4  
FP5  
FP6  
FP7  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
SPI  
SS  
LCD  
Driver  
SDA  
SCL  
PM0  
PM1  
IIC  
RXCAN0  
TXCAN0  
PM2  
PM3  
CAN0  
CAN1  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
FP8  
FP9  
ADDR8  
ADDR9  
RXCAN1  
TXCAN1  
PM4  
PM5  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
FP10  
FP11  
FP12  
FP13  
FP14  
FP15  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
VDDM1  
VSSM1  
PU0  
PU1  
MOTOR0 and MOTOR1 Supply  
M0C0M  
PWM0  
PWM1  
PWM2  
PWM3  
M0C0P  
MOTOR0  
M0C1M  
M0C1P  
PU2  
PU3  
Multiplexed Multiplexed  
PL0  
PL1  
PL2  
PL3  
PL4  
PL5  
PL6  
PL7  
FP16  
FP17  
FP18  
FP19  
FP28  
FP29  
FP30  
FP31  
Narrow  
Bus  
Wide  
Bus  
M1C0M  
M1C0P  
PU4  
PU5  
MOTOR1  
M1C1M  
M1C1P  
PU6  
PU7  
VDDM2  
VSSM2  
PV0  
PV1  
MOTOR2 and MOTOR3 Supply  
M2C0M  
PE2  
PE3  
PE7  
FP20  
FP21  
FP22  
R/W  
LSTRB/TAGLO  
NOACC/XCLKS  
PWM4  
PWM5  
PWM6  
PWM7  
M2C0P  
MOTOR2  
M2C1M  
M2C1P  
PV2  
PV3  
M3C0M  
M3C0P  
PV4  
PV5  
PK7  
FP23  
ECS/ROMONE  
MOTOR3  
M3C1M  
M3C1P  
PV6  
PV7  
PT0  
PT1  
PT2  
PT3  
FP24  
FP25  
FP26  
FP27  
IOC0  
IOC1  
IOC2  
IOC3  
NOTE: Not all  
functionality shown  
in this block  
VDDM3  
VSSM3  
PW0  
PW1  
MOTOR4 and MOTOR5 Supply  
M4C0M  
diagram is  
available in all  
packages!  
PWM8  
PWM9  
PWM10  
PWM11  
PT4  
PT5  
PT6  
PT7  
IOC4  
IOC5  
IOC6  
IOC7  
M4C0P  
MOTOR4  
Input Capture and  
Output Compare  
Timer  
M4C1M  
M4C1P  
PW2  
PW3  
M5C0M  
M5C0P  
PW4  
PW5  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
KWH0  
KWH1  
KWH2  
KWH3  
KWH4  
KWH5  
KWH6  
KWH7  
MOTOR5  
M5C1M  
M5C1P  
PW6  
PW7  
Supply pins  
Internal Logic 2.5V  
VDD1  
VSS1,2  
I/O Driver 5V  
VDDX1,2  
VSSX1,2  
Pin  
Interrupt  
Logic  
A/D Converter 5V &  
Voltage Regulator  
Reference  
PJ0  
PJ1  
PJ2  
PJ3  
KWJ0  
KWJ1  
KWJ2  
PLL 2.5V  
VREG Input 5V  
VDDR  
VDDA  
VSSA  
VDDPLL  
VSSPLL  
KWJ3  
Figure 1-1 MC9S12H256 Block Diagram  
21  
MC9S12H256 Device User Guide — V01.20  
Figure 1-2 is a block diagram of the MC9S12H128 device.  
22  
MC9S12H256 Device User Guide — V01.20  
VDDR  
VDDA  
VSSA  
VRH  
VDDA  
VSSA  
VRH  
Voltage Regulator  
VDD1  
VSS1,VSS2  
VRL  
VRL  
AN00  
AN01  
AN02  
AN03  
AN04  
AN05  
AN06  
AN07  
AN08  
PAD00  
PAD01  
PAD02  
PAD03  
PAD04  
PAD05  
PAD06  
PAD07  
128k Bytes Flash EEPROM  
2k Bytes EEPROM  
6K Bytes RAM  
Analog to  
Digital  
Converter  
(ATD)  
Single-wire Background  
Debug Module  
BKGD  
CPU12  
XFC  
VDDPLL  
VSSPLL  
EXTAL  
XTAL  
Clock and  
Reset  
Generation  
Module  
Periodic Interrupt  
COP Watchdog  
Clock Monitor  
Breakpoints  
PLL  
RESET  
TEST  
PE0  
PE1  
PE4  
PE5  
PE6  
XIRQ  
IRQ  
ECLK  
MODA  
MODB  
PW0  
PW1  
PW2  
PW3  
PW4  
PW5  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
Integration  
Module  
Pulse  
Width  
Modulator  
(PWM)  
VLCD  
VLCD  
RXD0  
TXD0  
PS0  
PS1  
SCI0  
SPI  
XADDR14 PK0  
XADDR15 PK1  
XADDR16 PK2  
XADDR17 PK3  
BP0  
BP1  
BP2  
BP3  
PIX0  
PIX1  
PIX2  
PIX3  
SDI/MISO  
SDO/MOSI  
SCK  
PS4  
PS5  
PS6  
PS7  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
FP0  
FP1  
FP2  
FP3  
FP4  
FP5  
FP6  
FP7  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
SS  
LCD  
Driver  
SDA  
SCL  
PM0  
PM1  
IIC  
RXCAN0  
TXCAN0  
PM2  
PM3  
CAN0  
CAN1  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
FP8  
FP9  
ADDR8  
ADDR9  
RXCAN1  
TXCAN1  
PM4  
PM5  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
FP10  
FP11  
FP12  
FP13  
FP14  
FP15  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
VDDM1  
VSSM1  
PU0  
PU1  
MOTOR0 and MOTOR1 Supply  
M0C0M  
PWM0  
PWM1  
PWM2  
PWM3  
M0C0P  
MOTOR0  
M0C1M  
M0C1P  
PU2  
PU3  
Multiplexed Multiplexed  
PL0  
PL1  
PL2  
PL3  
FP16  
FP17  
FP18  
FP19  
Narrow  
Bus  
Wide  
Bus  
M1C0M  
M1C0P  
PU4  
PU5  
MOTOR1  
M1C1M  
M1C1P  
PU6  
PU7  
VDDM2  
VSSM2  
PV0  
PV1  
MOTOR2 and MOTOR3 Supply  
M2C0M  
PE2  
PE3  
PE7  
FP20  
FP21  
FP22  
R/W  
LSTRB/TAGLO  
NOACC/XCLKS  
PWM4  
PWM5  
PWM6  
PWM7  
M2C0P  
MOTOR2  
M2C1M  
M2C1P  
PV2  
PV3  
M3C0M  
M3C0P  
PV4  
PV5  
PK7  
FP23  
ECS/ROMONE  
MOTOR3  
M3C1M  
M3C1P  
PV6  
PV7  
PT0  
PT1  
PT2  
PT3  
FP24  
FP25  
FP26  
FP27  
IOC0  
IOC1  
IOC2  
IOC3  
NOTE: Not all  
functionality shown  
in this block  
diagram is  
available in all  
packages!  
VDDM3  
VSSM3  
PW0  
PW1  
MOTOR4 and MOTOR5 Supply  
M4C0M  
PWM8  
PWM9  
PWM10  
PWM11  
PT4  
PT5  
PT6  
PT7  
IOC4  
IOC5  
IOC6  
IOC7  
M4C0P  
MOTOR4  
Input Capture and  
Output Compare  
Timer  
M4C1M  
M4C1P  
PW2  
PW3  
M5C0M  
M5C0P  
PW4  
PW5  
MOTOR5  
M5C1M  
M5C1P  
PW6  
PW7  
Supply pins  
Internal Logic 2.5V  
VDD1  
VSS1,2  
I/O Driver 5V  
VDDX1,2  
VSSX1,2  
A/D Converter 5V &  
Voltage Regulator  
Reference  
PLL 2.5V  
VREG Input 5V  
VDDR  
VDDA  
VSSA  
VDDPLL  
VSSPLL  
Figure 1-2 MC9S12H128 Block Diagram  
23  
MC9S12H256 Device User Guide — V01.20  
1.5 Device Memory Map  
24  
MC9S12H256 Device User Guide — V01.20  
25  
MC9S12H256 Device User Guide — V01.20  
Table 1-1 and Figure 1-3 show the device memory map of the MC9S12H256.  
Table 1-1 Device Memory Map MC9S12H256  
Size  
(Bytes)  
Address  
Module  
$0000 – $0017 CORE (Ports A, B, E, Modes, Inits, Test)  
$0018 – $0019 Reserved  
24  
2
$001A – $001B Device ID register (PARTID)  
$001C – $001F CORE (MEMSIZ, IRQ, HPRIO)  
$0020 – $0027 Reserved  
2
4
8
$0028 – $002F CORE (Background Debug Mode)  
$0030 – $0033 CORE (PPAGE, Port K)  
8
4
$0034 – $003F Clock and Reset Generator (PLL, RTI, COP)  
$0040 – $006F Standard Timer Module 16-bit 8 channels (TIM)  
$0070 – $007F Reserved  
12  
48  
16  
48  
16  
8
$0080 – $00AF Analog to Digital Converter 10-bit 16 channels (ATD)  
$00B0 – $00BF Reserved  
$00C0 – $00C7 Inter Integrated Circuit (IIC)  
$00C8 – $00CF Serial Communications Interface 0 (SCI0)  
$00D0 – $00D7 Serial Communications Interface 1 (SCI1)  
$00D8 – $00DF Serial Peripheral Interface (SPI)  
$00E0 – $00FF Pulse Width Modulator 8-bit 6 channels (PWM)  
$0100 – $010F Flash control registers  
8
8
8
32  
16  
12  
4
$0110 – $011B EEPROM control registers  
$011C – $011F Reserved  
$0120 – $0137 Liquid Crystal Display Driver 32x4 (LCD)  
24  
Freescale Scalable Controller Area Network 0  
$0140 – $017F  
(MSCAN0)  
64  
64  
Freescale Scalable Controller Area Network 1  
$0180 – $01BF  
(MSCAN1)  
$01C0 – $01FF Motor Control Module (MC)  
$0200 – $027F Port Integration Module (PIM)  
$0280 – $03FF Reserved  
64  
128  
384  
$0000 – $0FFF EEPROM array  
$1000 – $3FFF RAM array  
4096  
12288  
Fixed Flash EEPROM array  
$4000 – $7FFF  
16384  
16384  
incl. 0.5K, 1K, 2K or 4K Protected Sector at start  
$8000 – $BFFF Flash EEPROM Page Window  
Fixed Flash EEPROM array  
$C000 – $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end  
and 256 bytes of Vector Space at $FF80 – $FFFF  
16384  
26  
MC9S12H256 Device User Guide — V01.20  
$0000  
1K Register Space  
$03FF  
$0000  
Mappable to any 2K Boundary  
$0000  
$0400  
$0800  
4K Bytes EEPROM  
initially overlapped by register space  
$1000  
$0FFF  
$1000  
Mappable to any 4K Boundary  
12K Bytes RAM  
Alignable to top ($1000 – $3FFF)  
or bottom ($0000 – $2FFF)  
$3FFF  
$4000  
Mappable to any 16K Boundary  
$4000  
0.5K, 1K, 2K or 4K Protected Sector  
16K Fixed Flash EEPROM  
$7FFF  
$8000  
$8000  
16K Page Window  
Sixteen * 16K Flash EEPROM Pages  
EXT  
$BFFF  
$C000  
$C000  
16K Fixed Flash EEPROM  
2K, 4K, 8K or 16K Protected Boot Sector  
$FFFF  
$FF00  
BDM  
(If Active)  
$FF00  
$FFFF  
VECTORS  
VECTORS  
VECTORS  
$FFFF  
NORMAL  
SINGLE CHIP  
EXPANDED*  
SPECIAL  
SINGLE CHIP  
* Assuming that a ‘0’ was driven onto port K7 during reset to normal expanded mode  
Figure 1-3 MC9S12H256 Memory Map  
Table 1-2 and Figure 1-4 show the device memory map of the MC9S12H128.  
Table 1-2 Device Memory Map MC9S12H128  
Size  
(Bytes)  
Address  
Module  
$0000 – $0017 CORE (Ports A, B, E, Modes, Inits, Test)  
$0018 – $0019 Reserved  
24  
2
$001A – $001B Device ID register (PARTID)  
$001C – $001F CORE (MEMSIZ, IRQ, HPRIO)  
$0020 – $0027 Reserved  
2
4
8
$0028 – $002F CORE (Background Debug Mode)  
$0030 – $0033 CORE (PPAGE, Port K)  
8
4
$0034 – $003F Clock and Reset Generator (PLL, RTI, COP)  
$0040 – $006F Standard Timer Module 16-bit 8 channels (TIM)  
$0070 – $007F Reserved  
12  
48  
16  
48  
16  
8
$0080 – $00AF Analog to Digital Converter 10-bit 16 channels (ATD)  
$00B0 – $00BF Reserved  
$00C0 – $00C7 Inter Integrated Circuit (IIC)  
27  
MC9S12H256 Device User Guide — V01.20  
Table 1-2 Device Memory Map MC9S12H128  
Size  
(Bytes)  
Address  
Module  
$00C8 – $00CF Serial Communications Interface 0 (SCI0)  
$00D0 – $00D7 Reserved  
8
8
$00D8 – $00DF Serial Peripheral Interface (SPI)  
$00E0 – $00FF Pulse Width Modulator 8-bit 6 channels (PWM)  
$0100 – $010F Flash control registers  
8
32  
16  
12  
4
$0110 – $011B EEPROM control registers  
$011C – $011F Reserved  
$0120 – $0137 Liquid Crystal Display Driver 32x4 (LCD)  
24  
Freescale Scalable Controller Area Network 0  
$0140 – $017F  
(MSCAN0)  
64  
64  
Freescale Scalable Controller Area Network 1  
$0180 – $01BF  
(MSCAN1)  
$01C0 – $01FF Motor Control Module (MC)  
$0200 – $027F Port Integration Module (PIM)  
$0280 – $03FF Reserved  
64  
128  
384  
$0000 – $07FF EEPROM array  
$1000 – $3FFF RAM array  
2048  
12288  
Fixed Flash EEPROM array  
$4000 – $7FFF  
16384  
16384  
incl. 0.5K, 1K, 2K or 4K Protected Sector at start  
$8000 – $BFFF Flash EEPROM Page Window  
Fixed Flash EEPROM array  
$C000 – $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end  
and 256 bytes of Vector Space at $FF80 – $FFFF  
16384  
28  
MC9S12H256 Device User Guide — V01.20  
$0000  
1K Register Space  
$03FF  
$0000  
Mappable to any 2K Boundary  
$0000  
$0400  
2K Bytes EEPROM  
initially overlapped by register space  
$0800  
$2800  
$07FF  
$2800  
Mappable to any 4K Boundary  
6K Bytes RAM  
Alignable to top ($2800 – $3FFF)  
or bottom ($0000 – $17FF)  
$3FFF  
$4000  
Mappable to any 16K Boundary  
$4000  
$8000  
$C000  
0.5K, 1K, 2K or 4K Protected Sector  
16K Fixed Flash EEPROM  
$7FFF  
$8000  
16K Page Window  
Sixteen * 16K Flash EEPROM Pages  
EXT  
$BFFF  
$C000  
16K Fixed Flash EEPROM  
2K, 4K, 8K or 16K Protected Boot Sector  
$FFFF  
$FF00  
BDM  
(If Active)  
$FF00  
$FFFF  
VECTORS  
VECTORS  
VECTORS  
$FFFF  
NORMAL  
SINGLE CHIP  
EXPANDED*  
SPECIAL  
SINGLE CHIP  
* Assuming that a ‘0’ was driven onto port K7 during reset to normal expanded mode  
Figure 1-4 MC9S12H128 Memory Map  
29  
MC9S12H256 Device User Guide — V01.20  
1.5.1 Detailed Register Map  
$0000 - $000F  
MEBI map 1 of 3 (Core User Guide)  
Address  
$0000  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PORTA  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
PORTB  
DDRA  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
DDRB  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reserved  
Reserved  
Reserved  
Reserved  
PORTE  
DDRE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 1  
0
Bit 0  
0
Bit 7  
Bit 7  
6
5
5
4
4
3
3
2
6
0
Bit 2  
0
0
PEAR  
NOACCE  
MODC  
PUPKE  
PIPOE  
NECLK  
0
LSTRE  
RDWE  
0
MODE  
MODB  
0
MODA  
0
IVIS  
0
EMK  
EME  
0
0
0
0
PUCR  
PUPEE  
PUPBE PUPAE  
0
0
0
0
0
0
0
0
0
RDRIV  
RDPK  
0
RDPE  
0
RDPB  
0
RDPA  
EBICTL  
Reserved  
ESTR  
0
0
0
0
$0010 - $0014  
MMC map 1 of 4 (Core User Guide)  
Address  
$0010  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
0
Bit 0  
RAMHAL  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
INITRM  
RAM15 RAM14 RAM13 RAM12 RAM11  
0
0
0
0
0
$0011  
$0012  
$0013  
$0014  
INITRG  
INITEE  
MISC  
REG14  
REG13  
REG12  
REG11  
0
EE15  
0
EE14  
0
EE13  
0
EE12  
0
EEON  
EXSTR1 EXSTR0 ROMHM ROMON  
Bit 0  
Bit 7  
6
5
4
3
2
1
MTST0  
Test Only  
30  
MC9S12H256 Device User Guide — V01.20  
$0015 - $0016  
INT map 1 of 2 (Core User Guide)  
Address  
$0015  
Name  
ITCR  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
WRINT  
ADR3  
ADR2  
ADR1  
ADR0  
$0016  
ITEST  
INTE  
INTC  
INTA  
INT8  
INT6  
INT4  
INT2  
INT0  
$0017 - $0017  
MMC map 2 of 4 (Core User Guide)  
Address  
$0017  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
MTST1  
Test Only  
$0018 - $001B  
Miscellaneous Peripherals (Device User Guide, Table 1-5)  
Address  
$0018  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Reserved  
0
0
0
0
0
0
0
0
$0019  
$001A  
$001B  
Reserved  
PARTIDH  
PARTIDL  
ID15  
ID7  
ID14  
ID6  
ID13  
ID5  
ID12  
ID4  
ID11  
ID3  
ID10  
ID2  
ID9  
ID1  
ID8  
ID0  
$001C - $001D  
MMC map 3 of 4 (Core and Device User Guide, Table 1-6)  
Address  
$001C  
Name  
Bit 7  
Read: reg_sw0  
Write:  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
Bit 1  
Bit 0  
eep_sw1 eep_sw0  
ram_sw2 ram_sw1 ram_sw0  
MEMSIZ0  
Read: rom_sw1 rom_sw0  
Write:  
0
0
0
0
pag_sw1 pag_sw0  
$001D  
MEMSIZ1  
$001E - $001E  
MEBI map 2 of 3 (Core User Guide)  
Address  
$001E  
Name  
Bit 7  
Bit 6  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
INTCR  
IRQE  
IRQEN  
$001F - $001F  
INT map 2 of 2 (Core User Guide)  
Address  
$001F  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
Read:  
Write:  
HPRIO  
PSEL7  
PSEL6  
PSEL5  
PSEL4  
PSEL3  
PSEL2  
PSEL1  
31  
MC9S12H256 Device User Guide — V01.20  
$0020 - $0027  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$0020 -  
$0027  
Reserved  
$0028 - $002F  
BKP (Core User Guide)  
Address  
$0028  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
BKPCT0  
BKEN  
BKFULL BKBDM BKTAG  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
BKPCT1  
BKP0X  
BKP0H  
BKP0L  
BKP1X  
BKP1H  
BKP1L  
BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW  
0
0
BK0V5  
BK0V4  
BK0V3  
BK0V2  
BK0V1  
BK0V0  
Bit 8  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 7  
0
6
0
5
BK1V5  
13  
4
BK1V4  
12  
3
BK1V3  
11  
2
BK1V2  
10  
1
Bit 0  
BK1V1  
BK1V0  
Bit 8  
Bit 15  
Bit 7  
14  
6
9
1
5
4
3
2
Bit 0  
$0030 - $0031  
MMC map 4 of 4 (Core User Guide)  
Address  
$0030  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
PIX5  
0
Bit 4  
PIX4  
0
Bit 3  
PIX3  
0
Bit 2  
PIX2  
0
Bit 1  
PIX1  
0
Bit 0  
PIX0  
0
Read:  
Write:  
Read:  
Write:  
PPAGE  
0
0
$0031  
Reserved  
$0032 - $0033  
MEBI map 3 of 3 (Core User Guide)  
Address  
$0032  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
PORTK  
$0033  
DDRK  
Bit 7  
6
5
4
3
2
1
Bit 0  
32  
MC9S12H256 Device User Guide — V01.20  
$0034 - $003F  
CRG (Clock and Reset Generator)  
Address  
$0034  
Name  
SYNR  
Bit 7  
0
Bit 6  
0
Bit 5  
SYN5  
0
Bit 4  
SYN4  
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SYN3  
SYN2  
SYN1  
SYN0  
0
0
0
0
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
$003F  
REFDV  
REFDV3 REFDV2 REFDV1 REFDV0  
0
0
0
0
0
LOCK  
0
0
TRACK  
0
0
0
SCM  
0
CTFLG  
TEST ONLY  
CRGFLG  
CRGINT  
CLKSEL  
PLLCTL  
RTICTL  
RTIF  
RTIE  
PORF  
0
LOCKIF  
LOCKIE  
SCMIF  
SCMIE  
PLLSEL  
PSTP  
PLLON  
RTR6  
SYSWAI ROAWAI PLLWAI  
0
CWAI  
PRE  
RTIWAI COPWAI  
CME  
0
AUTO  
ACQ  
PCE  
SCME  
RTR0  
RTR5  
0
RTR4  
0
RTR3  
0
RTR2  
RTR1  
COPCTL  
WCOP  
0
RSBCK  
0
CR2  
0
CR1  
0
CR0  
0
0
0
0
0
0
0
FORBYP  
TEST ONLY  
0
0
0
0
0
CTCTL  
TEST ONLY  
0
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
ARMCOP  
$0040 - $006F  
TIM (Timer 16 Bit 8 Channels)  
Address  
$0040  
Name  
TIOS  
Bit 7  
IOS7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
IOS6  
IOS5  
IOS4  
IOS3  
IOS2  
IOS1  
IOS0  
0
0
0
0
0
0
0
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
CFORC  
OC7M  
Write: FOC7  
Read:  
FOC6  
FOC5  
FOC4  
FOC3  
FOC2  
FOC1  
FOC0  
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0  
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0  
Write:  
Read:  
Write:  
OC7D  
Read: Bit 15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
0
Bit 8  
Bit 0  
0
TCNT (hi)  
TCNT (lo)  
TSCR1  
TTOV  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Bit 7  
0
0
TEN  
TOV7  
OM7  
OM3  
TSWAI  
TOV6  
OL7  
TSFRZ  
TOV5  
OM6  
TFFCA  
TOV4  
OL6  
TOV3  
OM5  
OM1  
TOV2  
OL5  
TOV1  
OM4  
OM0  
TOV0  
OL4  
TCTL1  
TCTL2  
OL3  
OM2  
OL2  
OL1  
OL0  
33  
MC9S12H256 Device User Guide — V01.20  
$0040 - $006F  
TIM (Timer 16 Bit 8 Channels)  
Address  
$004A  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
TCTL3  
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A  
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A  
$004B  
$004C  
$004D  
$004E  
$004F  
$0050  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
$005A  
$005B  
$005C  
$005D  
$005E  
$005F  
$0060  
$0061  
$0062  
TCTL4  
TIE  
C7I  
TOI  
C6I  
0
C5I  
0
C4I  
0
C3I  
C2I  
C1I  
C0I  
TSCR2  
TFLG1  
TCRE  
PR2  
PR1  
PR0  
C7F  
C6F  
0
C5F  
0
C4F  
0
C3F  
0
C2F  
0
C1F  
0
C0F  
0
TFLG2  
TOF  
TC0 (hi)  
TC0 (lo)  
TC1 (hi)  
TC1 (lo)  
TC2 (hi)  
TC2 (lo)  
TC3 (hi)  
TC3 (lo)  
TC4 (hi)  
TC4 (lo)  
TC5 (hi)  
TC5 (lo)  
TC6 (hi)  
TC6 (lo)  
TC7 (hi)  
TC7 (lo)  
PACTL  
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
PAI  
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 7  
0
PAEN  
0
PAMOD PEDGE  
CLK1  
0
CLK0  
0
PAOVI  
PAOVF  
1
0
0
0
PAFLG  
PAIF  
Bit 0  
PACNT (hi)  
Bit 7  
6
5
4
3
2
34  
MC9S12H256 Device User Guide — V01.20  
$0040 - $006F  
TIM (Timer 16 Bit 8 Channels)  
Address  
$0063  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PACNT (lo)  
$0064  
$0065  
$0066  
$0067  
$0068  
$0069  
$006A  
$006B  
$006C  
$006D  
$006E  
$006F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
TIMTST  
Test Only  
TCBYP PCBYP  
Reserved  
Reserved  
$0070 - $007F  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$0070 -  
$007F  
Reserved  
$0080 - $00AF  
ATD (Analog to Digital Converter 10 Bit 16 Channel)  
Address  
$0080  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
ATDCTL0  
0
0
0
0
0
0
0
0
$0081  
$0082  
$0083  
$0084  
$0085  
ATDCTL1  
ATDCTL2  
ATDCTL3  
ATDCTL4  
ATDCTL5  
ASCIF  
ADPU  
0
AFFC  
S8C  
AWAI ETRIGLE ETRIGP ETRIG  
ASCIE  
FRZ1  
PRS1  
CB  
S4C  
S2C  
PRS4  
MULT  
S1C  
PRS3  
CD  
FIFO  
PRS2  
CC  
FRZ0  
PRS0  
CA  
SRES8  
DJM  
SMP1  
DSGN  
SMP0  
SCAN  
35  
MC9S12H256 Device User Guide — V01.20  
$0080 - $00AF  
ATD (Analog to Digital Converter 10 Bit 16 Channel)  
Address  
$0086  
Name  
Bit 7  
SCF  
Bit 6  
0
Bit 5  
ETORF  
Bit 4  
FIFOR  
Bit 3  
CC3  
Bit 2  
CC2  
Bit 1  
CC1  
Bit 0  
CC0  
Read:  
Write:  
Read:  
Write:  
ATDSTAT0  
0
0
0
0
0
0
0
0
$0087  
$0088  
$0089  
$008A  
$008B  
$008C  
$008D  
$008E  
$008F  
$0090  
$0091  
$0092  
$0093  
$0094  
$0095  
$0096  
$0097  
$0098  
$0099  
$009A  
$009B  
$009C  
$009D  
$009E  
Reserved  
ATDTEST0  
ATDTEST1  
ATDSTAT2  
ATDSTAT1  
ATDDIEN0  
ATDDIEN1  
PORTAD0  
PORTAD1  
ATDDR0H  
ATDDR0L  
ATDDR1H  
ATDDR1L  
ATDDR2H  
ATDDR2L  
ATDDR3H  
ATDDR3L  
ATDDR4H  
ATDDR4L  
ATDDR5H  
ATDDR5L  
ATDDR6H  
ATDDR6L  
ATDDR7H  
Read: SAR9  
Write:  
Read: SAR1  
Write:  
Read: CCF15  
Write:  
Read: CCF7  
Write:  
SAR8  
SAR0  
CCF14  
CCF6  
SAR7  
0
SAR6  
0
SAR5  
0
SAR4  
SAR3  
ATDCLK  
CCF9  
CCF1  
SAR2  
RST  
SC  
CCF13  
CCF5  
CCF12  
CCF4  
CCF11  
CCF3  
CCF10  
CCF8  
CCF2  
10  
CCF0  
Bit 8  
Read:  
Bit 15  
Write:  
14  
13  
12  
11  
9
Read:  
Write:  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit8  
Read: Bit15  
Write:  
14  
13  
12  
11  
10  
Read:  
Write:  
Bit7  
6
14  
6
5
13  
5
4
12  
4
3
11  
3
2
10  
2
1
9
1
9
1
9
1
9
1
9
1
9
1
9
1
9
BIT 0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Read: Bit15  
Write:  
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
13  
12  
11  
10  
36  
MC9S12H256 Device User Guide — V01.20  
$0080 - $00AF  
ATD (Analog to Digital Converter 10 Bit 16 Channel)  
Address  
$009F  
Name  
Bit 7  
Bit7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit0  
Read:  
Write:  
ATDDR7L  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
9
1
9
1
9
1
9
1
9
1
9
1
9
1
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
Bit8  
Bit0  
$00A0  
$00A1  
$00A2  
$00A3  
$00A4  
$00A5  
$00A6  
$00A7  
$00A8  
$00A9  
$00AA  
$00AB  
$00AC  
$00AD  
$00aE  
$00AF  
ATDDR8H  
ATDDR8L  
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
ATDDR9H  
ATDDR9L  
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
ATDDR10H  
ATDDR10L  
ATDDR11H  
ATDDR11L  
ATDDR12H  
ATDDR12L  
ATDDR13H  
ATDDR13L  
ATDDR14H  
ATDDR14L  
ATDDR15H  
ATDDR15L  
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
Read: Bit15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
Read:  
Write:  
Bit7  
$00B0 - $00BF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$00B0 -  
$00BF  
Reserved  
$00C0 - $00C7  
IIC (Inter IC Bus)  
Address  
$00C0  
Name  
IBAD  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
ADR7  
ADR6  
ADR5  
ADR4  
ADR3  
ADR2  
ADR1  
$00E1  
IBFD  
IBC7  
IBC6  
IBC5  
IBC4  
IBC3  
IBC2  
IBC1  
IBC0  
37  
MC9S12H256 Device User Guide — V01.20  
$00C0 - $00C7  
IIC (Inter IC Bus)  
Address  
$00C2  
Name  
IBCR  
Bit 7  
IBEN  
TCF  
Bit 6  
IBIE  
Bit 5  
MS/SL  
IBB  
Bit 4  
Bit 3  
TXAK  
0
Bit 2  
0
RSTA  
SRW  
Bit 1  
0
Bit 0  
IBSWAI  
RXAK  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
TX/RX  
IAAS  
$00C3  
$00C4  
$00C5  
$00C6  
$00C7  
IBSR  
IBAL  
IBIF  
IBDR  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D 0  
0
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$00C8 - $00CF  
SCI0 (Asynchronous Serial Interface)  
Address  
$00C8  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI0BDH  
SBR12  
SBR11  
SBR10  
SBR9  
SBR8  
$00C9  
$00CA  
$00CB  
$00CC  
$00CD  
$00CE  
$00CF  
SCI0BDL  
SCI0CR1  
SCI0CR2  
SCI0SR1  
SCI0SR2  
SCI0DRH  
SCI0DRL  
SBR7  
SBR6  
SBR5  
SBR4  
M
SBR3  
SBR2  
ILT  
SBR1  
PE  
SBR0  
PT  
LOOPS SCISWAI RSRC  
WAKE  
TIE  
TCIE  
TC  
RIE  
ILIE  
TE  
RE  
NF  
RWU  
FE  
SBK  
PF  
Read: TDRE  
Write:  
RDRF  
IDLE  
OR  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
0
0
RAF  
0
BRK13  
0
TXDIR  
0
R8  
T8  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
$00D0 - $00D7  
SCI1 (Asynchronous Serial Interface) only on MC9S12H256  
Address  
$00D0  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI1BDH  
SBR12  
SBR11  
SBR10  
SBR9  
SBR8  
$00D1  
$00D2  
$00D3  
$00D4  
SCI1BDL  
SCI1CR1  
SCI1CR2  
SCI1SR1  
SBR7  
SBR6  
SBR5  
SBR4  
M
SBR3  
SBR2  
ILT  
SBR1  
PE  
SBR0  
PT  
LOOPS SCISWAI RSRC  
WAKE  
TIE  
TCIE  
TC  
RIE  
ILIE  
TE  
RE  
NF  
RWU  
FE  
SBK  
PF  
Read: TDRE  
Write:  
RDRF  
IDLE  
OR  
38  
MC9S12H256 Device User Guide — V01.20  
$00D0 - $00D7  
SCI1 (Asynchronous Serial Interface) only on MC9S12H256  
Address  
$00D5  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
BRK13  
0
Bit 1  
TXDIR  
0
Bit 0  
RAF  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI1SR2  
R8  
0
0
0
0
$00D6  
$00D7  
SCI1DRH  
SCI1DRL  
T8  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
$00D8 - $00DF  
SPI (Serial Peripheral Interface)  
Address  
$00D8  
Name  
Bit 7  
SPIE  
0
Bit 6  
SPE  
0
Bit 5  
SPTIE  
0
Bit 4  
Bit 3  
Bit 2  
CPHA  
0
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SPICR1  
MSTR  
CPOL  
SSOE  
LSBFE  
$00D9  
$00DA  
$00DB  
$00DC  
$00DD  
$00DE  
$00DF  
SPICR2  
SPIBR  
MODFEN BIDIROE  
SPISWAI SPC0  
0
SPIF  
0
0
SPPR2  
0
SPPR1  
SPTEF  
SPPR0  
SPR2  
0
SPR1  
0
SPR0  
0
MODF  
0
0
0
SPISR  
0
0
0
0
0
Reserved  
SPIDR  
Bit7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit0  
0
Reserved  
Reserved  
0
0
0
0
0
0
0
0
$00E0 - $00FF  
PWM (Pulse Width Modulator 8 Bit 6 Channel)  
Address  
$00E0  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWME  
PWME5 PWME4 PWME3 PWME2 PWME1 PWME0  
0
0
0
0
0
0
0
0
0
$00E1  
$00E2  
$00E3  
$00E4  
$00E5  
$00E6  
$00E7  
$00E8  
PWMPOL  
PWMCLK  
PWMPRCLK  
PWMCAE  
PWMCTL  
PPOL5  
PCLK5  
PCKB1  
CAE5  
PPOL4  
PCLK4  
PCKB0  
CAE4  
PPOL3  
PPOL2  
PCLK2  
PCKA2  
CAE2  
PPOL1  
PCLK1  
PCKA1  
PPOL0  
PCLK0  
PCKA0  
PCLK3  
0
PCKB2  
0
CAE3  
CAE1  
0
CAE0  
0
CON45 CON23 CON01  
PSWAI  
0
PFRZ  
0
0
0
0
0
0
0
0
0
0
0
PWMTST  
Test Only  
0
3
0
2
PWMPRSC  
Test Only  
PWMSCLA  
Bit 7  
6
5
4
1
Bit 0  
39  
MC9S12H256 Device User Guide — V01.20  
$00E0 - $00FF  
PWM (Pulse Width Modulator 8 Bit 6 Channel)  
Address  
$00E9  
Name  
Bit 7  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWMSCLB  
6
0
5
0
4
0
3
0
2
0
1
0
PWMSCNTA  
Test Only  
$00EA  
$00EB  
$00EC  
$00ED  
$00EE  
$00EF  
$00F0  
$00F1  
$00F2  
$00F3  
$00F4  
$00F5  
$00F6  
$00F7  
$00F8  
$00F9  
$00FA  
$00FB  
$00FC  
$00FD  
$00FE  
$00FF  
0
0
0
0
0
0
0
0
PWMSCNTB  
Test Only  
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
PWMCNT0  
PWMCNT1  
PWMCNT2  
PWMCNT3  
PWMCNT4  
PWMCNT5  
PWMPER0  
PWMPER1  
PWMPER2  
PWMPER3  
PWMPER4  
PWMPER5  
PWMDTY0  
PWMDTY1  
PWMDTY2  
PWMDTY3  
PWMDTY4  
PWMDTY5  
PWMSDN  
Reserved  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
3
0
2
PWM5IN  
PWMRSTRT  
PWMIF PWMIE  
PWMLVL  
0
PWM5INL PWM5ENA  
0
0
0
0
0
0
0
40  
MC9S12H256 Device User Guide — V01.20  
$0100 - $010F  
Flash Control Register (fts256k)  
Address  
$0100  
Name  
Bit 7  
Read: FDIVLD  
Write:  
Read: KEYEN  
Write:  
Bit 6  
PRDIV8  
NV6  
Bit 5  
FDIV5  
NV5  
Bit 4  
FDIV4  
NV4  
Bit 3  
FDIV3  
NV3  
Bit 2  
FDIV2  
NV2  
Bit 1  
FDIV1  
SEC1  
Bit 0  
FDIV0  
SEC0  
FCLKDIV  
$0101  
$0102  
$0103  
$0104  
$0105  
$0106  
$0107  
$0108  
$0109  
$010A  
$010B  
FSEC  
Reserved  
FCNFG  
FPROT  
FSTAT  
Read:  
Write:  
0
0
0
0
0
0
0
0
WRALL  
0
0
Read:  
CBEIE  
Write:  
CCIE  
KEYACC  
BKSEL1 BKSEL0  
Read:  
Write:  
FPOPEN  
NV6  
FPHDIS FPHS1  
FPHS0 FPLDIS  
FPLS1  
0
FPLS0  
0
Read:  
CBEIF  
Write:  
CCIF  
0
PVIOL ACCERR  
0
BLANK  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
FCMD  
CMDB6 CMDB5  
CMDB2  
CMDB0  
0
0
0
0
0
0
Reserved for  
Factory Test  
FADDRHI  
FADDRLO  
FDATAHI  
FDATALO  
Reserved  
Bit 14  
6
13  
5
12  
4
11  
3
10  
2
9
1
9
Bit 8  
Bit 0  
Bit 8  
Bit 7  
Bit 15  
14  
13  
12  
11  
10  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
$010C -  
$010F  
$0110 - $011B  
EEPROM Control Register (eets4k)  
Address  
$0110  
Name  
Bit 7  
Read: EDIVLD  
Write:  
Bit 6  
PRDIV8  
0
Bit 5  
EDIV5  
0
Bit 4  
EDIV4  
0
Bit 3  
EDIV3  
0
Bit 2  
EDIV2  
0
Bit 1  
EDIV1  
0
Bit 0  
EDIV0  
0
ECLKDIV  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
$0111  
$0112  
$0113  
$0114  
$0115  
$0116  
$0117  
$0118  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved for  
Factory Test  
ECNFG  
EPROT  
ESTAT  
ECMD  
CBEIE  
CCIE  
EPOPEN  
NV6  
NV5  
NV4  
EPDIS  
0
EP2  
EP1  
0
EP0  
0
CCIF  
CBEIF  
0
PVIOL ACCERR  
0
BLANK  
0
0
0
0
0
CMDB6 CMDB5  
CMDB2  
0
CMDB0  
0
0
0
0
0
0
0
0
0
Reserved for  
Factory Test  
EADDRHI  
10  
9
Bit 8  
41  
MC9S12H256 Device User Guide — V01.20  
$0110 - $011B  
EEPROM Control Register (eets4k)  
Address  
$0119  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
EADDRLO  
$011A  
$011B  
EDATAHI  
EDATALO  
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 8  
Bit 0  
$011C - $011F  
Reserved for RAM Control Register  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$011C -  
$011F  
Reserved  
$0120 - $0137  
LCD (Liquid Crystal Display 32 frontplanes, 4 backplanes)  
Address  
$0120  
Name  
Bit 7  
LCDEN  
0
Bit 6  
0
Bit 5  
LCLK2  
0
Bit 4  
LCLK1  
0
Bit 3  
LCLK0  
0
Bit 2  
BIAS  
0
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
LCDCR0  
DUTY1  
DUTY0  
0
LCDSWAI LCDRPSTP  
$0121  
$0122  
$0123  
$0124  
$0125  
$0126  
$0127  
$0128  
$0129  
$012A  
$012B  
$012C  
$012D  
$012E  
$012F  
LCDCR1  
FPENR0  
FPEN7  
FPEN6  
FPEN5  
FPEN4  
FPEN3  
FPEN2  
FPEN1  
FPEN0  
FPEN8  
FPENR1  
FPEN15 FPEN14 FPEN13 FPEN12 FPEN11 FPEN10 FPEN9  
FPENR2  
FPEN23 FPEN22 FPEN21 FPEN20 FPEN19 FPEN18 FPEN17 FPEN16  
FPEN31 FPEN30 FPEN29 FPEN28 FPEN27 FPEN26 FPEN25 FPEN24  
FPENR3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
Reserved  
LCDRAM0  
LCDRAM1  
LCDRAM2  
LCDRAM3  
LCDRAM4  
LCDRAM5  
LCDRAM6  
LCDRAM7  
FP1BP3 FP1BP2 FP1BP1 FP1BP0 FP0BP3 FP0BP2 FP0BP1 FP0BP0  
FP3BP3 FP3BP2 FP3BP1 FP3BP0 FP2BP3 FP2BP2 FP2BP1 FP2BP0  
FP5BP3 FP5BP2 FP5BP1 FP5BP0 FP4BP3 FP4BP2 FP4BP1 FP4BP0  
FP7BP3 FP7BP2 FP7BP1 FP7BP0 FP6BP3 FP6BP2 FP6BP1 FP6BP0  
FP9BP3 FP9BP2 FP9BP1 FP9BP0 FP8BP3 FP8BP2 FP8BP1 FP8BP0  
FP11BP3 FP11BP2 FP11BP1 FP11BP0 FP10BP3 FP10BP2 FP10BP1 FP10BP0  
FP13BP3 FP13BP2 FP13BP1 FP13BP0 FP12BP3 FP12BP2 FP12BP1 FP12BP0  
FP15BP3 FP15BP2 FP15BP1 FP15BP0 FP14BP3 FP14BP2 FP14BP1 FP14BP0  
42  
MC9S12H256 Device User Guide — V01.20  
$0120 - $0137  
LCD (Liquid Crystal Display 32 frontplanes, 4 backplanes)  
Address  
$0130  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
LCDRAM8  
FP17BP3 FP17BP2 FP17BP1 FP17BP0 FP16BP3 FP16BP2 FP16BP1 FP16BP0  
FP19BP3 FP19BP2 FP19BP1 FP19BP0 FP18BP3 FP18BP2 FP18BP1 FP18BP0  
FP21BP3 FP21BP2 FP21BP1 FP21BP0 FP20BP3 FP20BP2 FP20BP1 FP20BP0  
FP23BP3 FP23BP2 FP23BP1 FP23BP0 FP22BP3 FP22BP2 FP22BP1 FP22BP0  
FP25BP3 FP25BP2 FP25BP1 FP25BP0 FP24BP3 FP24BP2 FP24BP1 FP24BP0  
FP27BP3 FP27BP2 FP27BP1 FP27BP0 FP26BP3 FP26BP2 FP26BP1 FP26BP0  
FP29BP3 FP29BP2 FP29BP1 FP29BP0 FP28BP3 FP28BP2 FP28BP1 FP28BP0  
FP31BP3 FP31BP2 FP31BP1 FP31BP0 FP30BP3 FP30BP2 FP30BP1 FP30BP0  
$0131  
$0132  
$0133  
$0134  
$0135  
$0136  
$0137  
LCDRAM9  
LCDRAM10  
LCDRAM11  
LCDRAM12  
LCDRAM13  
LCDRAM14  
LCDRAM15  
$0140 - $017F  
CAN0 (Freescale Scalable CAN - MSCAN)  
Address  
$0140  
Name  
Bit 7  
Bit 6  
RXACT  
Bit 5  
Bit 4  
SYNCH  
Bit 3  
TIME  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN0CTL0  
RXFRM  
CSWAI  
WUPE  
SLPRQ INITRQ  
SLPAK  
BRP1  
INITAK  
BRP0  
$0141  
$0142  
$0143  
$0144  
$0145  
$0146  
$0147  
$0148  
$0149  
$014A  
$014B  
$014C  
$014D  
$014E  
CAN0CTL1  
CAN0BTR0  
CAN0BTR1  
CAN0RFLG  
CAN0RIER  
CAN0TFLG  
CAN0TIER  
CAN0TARQ  
CAN0TAAK  
CAN0TBSEL  
CAN0IDAC  
Reserved  
CANE CLKSRC LOOPB LISTEN  
SJW1 SJW0 BRP5 BRP4  
WUPM  
BRP2  
BRP3  
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10  
RSTAT1 RSTAT0 TSTAT1 TSTAT0  
WUPIF  
CSCIF  
OVRIF  
RXF  
RXFIE  
TXE0  
WUPIE  
0
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TXE2  
TXE1  
0
0
0
0
0
0
0
TXEIE2 TXEIE1 TXEIE0  
ABTRQ2 ABTRQ1 ABTRQ0  
ABTAK2 ABTAK1 ABTAK0  
TX2  
TX1  
TX0  
IDHIT2  
IDHIT1  
IDHIT0  
IDAM1  
0
IDAM0  
0
0
0
0
0
0
0
0
0
Reserved  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
Write:  
CAN0RXERR  
43  
MC9S12H256 Device User Guide — V01.20  
$0140 - $017F  
CAN0 (Freescale Scalable CAN - MSCAN)  
Address  
$014F  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0  
CAN0TXERR  
Write:  
Read:  
$0150 - CAN0IDAR0 -  
$0153 CAN0IDAR3  
$0154 - CAN0IDMR0 -  
$0157 CAN0IDMR3  
$0158 - CAN0IDAR4 -  
$015B CAN0IDAR7  
$015C - CAN0IDMR4 -  
AC7  
AM7  
AC7  
AM7  
AC6  
AM6  
AC6  
AM6  
AC5  
AM5  
AC5  
AM5  
AC4  
AM4  
AC4  
AM4  
AC3  
AM3  
AC3  
AM3  
AC2  
AM2  
AC2  
AM2  
AC1  
AM1  
AC1  
AM1  
AC0  
AM0  
AC0  
AM0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$015F  
CAN0IDMR7  
FOREGROUND RECEIVE BUFFER see Table 1-3  
$0160 -  
$016F  
CAN0RXFG  
$0170 -  
$017F  
CAN0TXFG  
FOREGROUND TRANSMIT BUFFER see Table 1-3  
Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
$0160  
Name  
Bit 7  
ID28  
ID10  
Bit 6  
ID27  
ID9  
Bit 5  
ID26  
ID8  
Bit 4  
ID25  
ID7  
Bit 3  
ID24  
ID6  
Bit 2  
ID23  
ID5  
Bit 1  
ID22  
ID4  
Bit 0  
ID21  
ID3  
Extended ID Read:  
Standard ID Read:  
CAN0RIDR0 Write:  
Extended ID Read:  
Standard ID Read:  
CAN0RIDR1 Write:  
Extended ID Read:  
Standard ID Read:  
CAN0RIDR2 Write:  
Extended ID Read:  
Standard ID Read:  
CAN0RIDR3 Write:  
ID20  
ID2  
ID19  
ID1  
ID18  
ID0  
SRR=1  
RTR  
IDE=1  
IDE=0  
ID17  
ID9  
ID16  
ID8  
ID15  
ID7  
$0161  
$0162  
ID14  
ID6  
ID13  
ID5  
ID12  
ID4  
ID11  
ID3  
ID10  
ID2  
ID1  
ID0  
RTR  
$0163  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
$0164- CAN0RDSR0 -  
$016B  
CAN0RDSR7  
DLC3  
DLC2  
DLC1  
DLC0  
$016C  
CAN0RDLR  
$016D  
$016E  
$016F  
Reserved  
TSR14  
TSR6  
TSR13  
TSR5  
TSR12  
TSR4  
TSR11  
TSR3  
TSR10  
TSR2  
TSR9  
TSR1  
TSR8  
TSR0  
CAN0RTSRH  
CAN0RTSRL  
Extended ID Read:  
CAN0TIDR0 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CAN0TIDR1 Write:  
Standard ID Read:  
Write:  
ID28  
ID10  
ID20  
ID2  
ID27  
ID9  
ID26  
ID8  
ID25  
ID7  
ID24  
ID6  
ID23  
ID5  
ID22  
ID4  
ID21  
ID3  
$0170  
$0171  
ID19  
ID1  
ID18  
ID0  
SRR=1  
RTR  
IDE=1  
IDE=0  
ID17  
ID16  
ID15  
44  
MC9S12H256 Device User Guide — V01.20  
Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
Name  
Bit 7  
ID14  
Bit 6  
ID13  
Bit 5  
ID12  
Bit 4  
ID11  
Bit 3  
ID10  
Bit 2  
ID9  
Bit 1  
ID8  
Bit 0  
ID7  
Extended ID Read:  
CAN0TIDR2 Write:  
Standard ID Read:  
Write:  
$0172  
Extended ID Read:  
CAN0TIDR3 Write:  
Standard ID Read:  
Write:  
ID6  
DB7  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
RTR  
$0173  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$0174- CAN0TDSR0 -  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
$017B  
CAN0TDSR7  
$017C  
CAN0TDLR  
DLC3  
DLC2  
DLC1  
DLC0  
$017D  
$017E  
$017F  
CON0TTBPR  
CAN0TTSRH  
CAN0TTSRL  
PRIO7  
PRIO6  
TSR14  
PRIO5  
TSR13  
PRIO4  
TSR12  
PRIO3  
TSR11  
PRIO2  
TSR10  
PRIO1  
TSR9  
PRIO0  
TSR8  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
TSR6  
TSR5  
TSR4  
TSR3  
TSR2  
TSR1  
TSR0  
$0180 - $01BF  
CAN1 (Freescale Scalable CAN - MSCAN)  
Address  
$0180  
Name  
Bit 7  
Bit 6  
RXACT  
Bit 5  
Bit 4  
SYNCH  
Bit 3  
TIME  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN1CTL0  
RXFRM  
CSWAI  
WUPE  
SLPRQ INITRQ  
SLPAK  
INITAK  
$0181  
$0182  
$0183  
$0184  
$0185  
$0186  
$0187  
$0188  
$0189  
$018A  
$018B  
$018C  
$018D  
CAN1CTL1  
CAN1BTR0  
CAN1BTR1  
CAN1RFLG  
CAN1RIER  
CAN1TFLG  
CAN1TIER  
CAN1TARQ  
CAN1TAAK  
CAN1TBSEL  
CAN1IDAC  
Reserved  
CANE CLKSRC LOOPB LISTEN  
SJW1 SJW0 BRP5 BRP4  
WUPM  
BRP2  
BRP3  
BRP1  
BRP0  
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10  
RSTAT1 RSTAT0 TSTAT1 TSTAT0  
WUPIF  
CSCIF  
OVRIF  
RXF  
RXFIE  
TXE0  
WUPIE  
0
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TXE2  
TXE1  
0
0
0
0
0
0
0
TXEIE2 TXEIE1 TXEIE0  
ABTRQ2 ABTRQ1 ABTRQ0  
ABTAK2 ABTAK1 ABTAK0  
TX2  
TX1  
TX0  
IDHIT2  
IDHIT1  
IDHIT0  
IDAM1  
0
IDAM0  
0
0
0
0
0
0
0
0
0
Reserved  
45  
MC9S12H256 Device User Guide — V01.20  
$0180 - $01BF  
CAN1 (Freescale Scalable CAN - MSCAN)  
Address  
$018E  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
CAN1RXERR  
Write:  
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0  
$018F  
CAN1TXERR  
Write:  
Read:  
$0190 - CAN1IDAR0 -  
$0193 CAN1IDAR3  
$0194 - CAN1IDMR0 -  
$0197 CAN1IDMR3  
$0198 - CAN1IDAR4 -  
$019B CAN1IDAR7  
$019C - CAN1IDMR4 -  
AC7  
AM7  
AC7  
AM7  
AC6  
AM6  
AC6  
AM6  
AC5  
AM5  
AC5  
AM5  
AC4  
AM4  
AC4  
AM4  
AC3  
AM3  
AC3  
AM3  
AC2  
AM2  
AC2  
AM2  
AC1  
AM1  
AC1  
AM1  
AC0  
AM0  
AC0  
AM0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$019F  
CAN1IDMR7  
FOREGROUND RECEIVE BUFFER see Table 1-3  
$01A0 -  
$01AF  
CAN1RXFG  
$01B0 -  
$01BF  
CAN1TXFG  
FOREGROUND TRANSMIT BUFFER see Table 1-3  
Table 1-4 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
$01A0  
Name  
Bit 7  
ID28  
ID10  
Bit 6  
ID27  
ID9  
Bit 5  
ID26  
ID8  
Bit 4  
ID25  
ID7  
Bit 3  
ID24  
ID6  
Bit 2  
ID23  
ID5  
Bit 1  
ID22  
ID4  
Bit 0  
ID21  
ID3  
Extended ID Read:  
Standard ID Read:  
CAN1RIDR0 Write:  
Extended ID Read:  
Standard ID Read:  
CAN1RIDR1 Write:  
Extended ID Read:  
Standard ID Read:  
CAN1RIDR2 Write:  
Extended ID Read:  
Standard ID Read:  
CAN1RIDR3 Write:  
ID20  
ID2  
ID19  
ID1  
ID18  
ID0  
SRR=1  
RTR  
IDE=1  
IDE=0  
ID17  
ID9  
ID16  
ID8  
ID15  
ID7  
$01A1  
$01A2  
ID14  
ID6  
ID13  
ID5  
ID12  
ID4  
ID11  
ID3  
ID10  
ID2  
ID1  
ID0  
RTR  
$01A3  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
$01A4- CAN1RDSR0 -  
$01AB  
CAN1RDSR7  
DLC3  
DLC2  
DLC1  
DLC0  
$01AC  
CAN1RDLR  
$01AD  
$01AE  
$01AF  
Reserved  
TSR14  
TSR6  
TSR13  
TSR5  
TSR12  
TSR4  
TSR11  
TSR3  
TSR10  
TSR2  
TSR9  
TSR1  
TSR8  
TSR0  
CAN1RTSRH  
CAN1RTSRL  
Extended ID Read:  
CAN1TIDR0 Write:  
Standard ID Read:  
Write:  
ID28  
ID10  
ID27  
ID9  
ID26  
ID8  
ID25  
ID7  
ID24  
ID6  
ID23  
ID5  
ID22  
ID4  
ID21  
ID3  
$01B0  
46  
MC9S12H256 Device User Guide — V01.20  
Table 1-4 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
Name  
Bit 7  
ID20  
Bit 6  
ID19  
Bit 5  
ID18  
Bit 4  
Bit 3  
Bit 2  
ID17  
Bit 1  
ID16  
Bit 0  
ID15  
Extended ID Read:  
CAN1TIDR1 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CAN1TIDR2 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CAN1TIDR3 Write:  
Standard ID Read:  
Write:  
SRR=1  
IDE=1  
$01B1  
ID2  
ID1  
ID0  
RTR  
ID11  
IDE=0  
ID10  
ID14  
ID13  
ID12  
ID9  
ID1  
ID8  
ID0  
ID7  
$01B2  
ID6  
DB7  
ID5  
ID4  
ID3  
ID2  
RTR  
$01B3  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$01B4- CAN1TDSR0 -  
$01BB  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
CAN1TDSR7  
$01BC  
CAN1TDLR  
DLC3  
DLC2  
DLC1  
DLC0  
$01BD  
$01BE  
$01BF  
CON1TTBPR  
CAN1TTSRH  
CAN1TTSRL  
PRIO7  
PRIO6  
TSR14  
PRIO5  
TSR13  
PRIO4  
TSR12  
PRIO3  
TSR11  
PRIO2  
TSR10  
PRIO1  
TSR9  
PRIO0  
TSR8  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
TSR6  
TSR5  
TSR4  
TSR3  
TSR2  
TSR1  
TSR0  
$01C0 - $01FF  
MC (Motor Controller 10bit 12 channels)  
Address  
$01C0  
Name  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
FAST  
0
Bit 2  
DITH  
0
Bit 1  
0
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
MCCTL0  
MCPRE1 MCPRE0 MCSWAI  
MCTOIF  
0
0
0
0
0
0
0
$01C1  
$01C2  
$01C3  
$01C4  
$01C5  
$01C6  
$01C7  
$01C8  
$01C9  
$01CA  
$01CB  
MCCTL1  
MCPER (hi)  
MCPER (lo)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RECIRC  
0
MCTOIE  
P8  
0
P10  
P9  
P7  
0
P6  
0
P5  
0
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
47  
MC9S12H256 Device User Guide — V01.20  
$01C0 - $01FF  
MC (Motor Controller 10bit 12 channels)  
Address  
$01CC  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$01CD  
$01CE  
$01CF  
$01D0  
$01D1  
$01D2  
$01D3  
$01D4  
$01D5  
$01D6  
$01D7  
$01D8  
$01D9  
$01DA  
$01DB  
$01DC  
$01DD  
$01DE  
$01DF  
$01E0  
$01E1  
$01E2  
$01E3  
$01E4  
Reserved  
Reserved  
Reserved  
MCCC0  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM1  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
OM0  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM1  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
AM0  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD1  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
CD0  
MCCC1  
MCCC2  
MCCC3  
MCCC4  
MCCC5  
MCCC6  
MCCC7  
MCCC8  
MCCC9  
MCCC10  
MCCC11  
Reserved  
Reserved  
Reserved  
Reserved  
MCDC0 (hi)  
MCDC0 (lo)  
MCDC1 (hi)  
MCDC1 (lo)  
MCDC2 (hi)  
OM1  
0
OM0  
0
AM1  
0
AM0  
0
CD1  
0
CD0  
0
0
0
0
0
0
0
S
0
0
0
S
0
0
0
S
0
0
0
0
0
0
S
D7  
S
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D8  
D0  
D8  
D0  
D8  
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
48  
MC9S12H256 Device User Guide — V01.20  
$01C0 - $01FF  
MC (Motor Controller 10bit 12 channels)  
Address  
$01E5  
Name  
Bit 7  
D7  
Bit 6  
D6  
S
Bit 5  
D5  
S
Bit 4  
D4  
S
Bit 3  
D3  
S
Bit 2  
D2  
Bit 1  
D1  
Bit 0  
D0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
MCDC2 (lo)  
$01E6  
$01E7  
$01E8  
$01E9  
$01EA  
$01EB  
$01EC  
$01ED  
$01EE  
$01EF  
$01F0  
$01F1  
$01F2  
$01F3  
$01F4  
$01F5  
$01F6  
$01F7  
$01F8  
$01F9  
$01FA  
$01FB  
$01FC  
MCDC3 (hi)  
MCDC3 (lo)  
MCDC4 (hi)  
MCDC4 (lo)  
MCDC5 (hi)  
MCDC5 (lo)  
MCDC6 (hi)  
MCDC6 (lo)  
MCDC7 (hi)  
MCDC7 (lo)  
MCDC8 (hi)  
MCDC8 (lo)  
MCDC9 (hi)  
MCDC9 (lo)  
MCDC10 (hi)  
MCDC10 (lo)  
MCDC11 (hi)  
MCDC11 (lo)  
Reserved  
S
D7  
S
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D2  
D7  
S
D6  
S
D5  
S
D4  
S
D3  
S
D10  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
49  
MC9S12H256 Device User Guide — V01.20  
$01C0 - $01FF  
MC (Motor Controller 10bit 12 channels)  
Address  
$01FD  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$01FE  
$01FF  
Reserved  
Reserved  
$0200 - $027F  
PIM (Port Integration Module)  
Address  
$0200  
Name  
PTT  
Bit 7  
Bit 6  
PTT6  
PTIT6  
Bit 5  
PTT5  
PTIT5  
Bit 4  
PTT4  
PTIT4  
Bit 3  
PTT3  
PTIT3  
Bit 2  
PTT2  
PTIT2  
Bit 1  
PTT1  
PTIT1  
Bit 0  
PTT0  
PTIT0  
Read:  
Write:  
PTT7  
Read: PTIT7  
Write:  
$0201  
$0202  
$0203  
$0204  
$0205  
$0206  
$0207  
$0208  
$0209  
$020A  
$020B  
$020C  
$020D  
$020E  
$020F  
$0210  
$0211  
$0212  
PTIT  
DDRT  
RDRT  
PERT  
Read:  
DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0  
RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERT7  
PERT6  
PERT5  
PERT4  
PERT3  
PERT2  
PERT1  
PERT0  
PPST  
PPST7  
0
PPST6  
0
PPST5  
0
PPST4  
0
PPST3  
0
PPST2  
0
PPST1  
0
PPST0  
0
Reserved  
Reserved  
PTS  
0
0
0
0
0
0
0
0
PTS7  
PTS6  
PTS5  
PTS4  
PTS3  
PTS2  
PTS1  
PTS0  
Read: PTIS7  
Write:  
PTIS6  
PTIS5  
PTIS4  
PTIS3  
PTIS2  
PTIS1  
PTIS0  
PTIS  
Read:  
DDRS  
RDRS  
PERS  
PPSS  
WOMS  
Reserved  
PTM  
DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0  
RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERS7  
PPSS7  
PERS6  
PPSS6  
PERS5  
PPSS5  
PERS4  
PPSS4  
PERS3  
PPSS3  
PERS2  
PPSS2  
PERS1  
PPSS1  
PERS0  
PPSS0  
WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTM5  
PTM4  
PTM3  
PTM2  
PTM1  
PTM0  
PTIM5  
PTIM4  
PTIM3  
PTIM2  
PTIM1  
PTIM0  
PTIM  
DDRM  
DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0  
50  
MC9S12H256 Device User Guide — V01.20  
$0200 - $027F  
PIM (Port Integration Module)  
Address  
$0213  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
RDRM  
RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0  
PERM5 PERM4 PERM3 PERM2 PERM1 PERM0  
PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0  
WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$0214  
$0215  
$0216  
$0217  
$0218  
$0219  
$021A  
$021B  
$021C  
$021D  
$021E  
$021F  
$0220  
$0221  
$0222  
$0223  
$0224  
$0225  
$0226  
$0227  
$0228  
$0229  
$022A  
$022B  
PERM  
PPSM  
WOMM  
Reserved  
PTP  
0
0
0
0
0
0
PTP5  
PTP4  
PTP3  
PTP2  
PTP1  
PTP0  
PTIP5  
PTIP4  
PTIP3  
PTIP2  
PTIP1  
PTIP0  
PTIP  
DDRP  
RDRP  
PERP  
PPSP  
Reserved  
Reserved  
PTH  
DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0  
RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0  
PERP5  
PERP4  
PERP3  
PERP2  
PERP1  
PERP0  
PPSP5  
0
PPSP4  
0
PPSP3  
0
PPSP2  
0
PPSP1  
0
PPSS0  
0
0
0
0
0
0
0
PTH7  
PTH6  
PTH5  
PTH4  
PTH3  
PTH2  
PTH1  
PTH0  
Read: PTIH7  
Write:  
PTIH6  
PTIH5  
PTIH4  
PTIH3  
PTIH2  
PTIH1  
PTIH0  
PTIH  
Read:  
DDRH  
RDRH  
PERH  
PPSH  
PIEH  
DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0  
RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0  
PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PPSH7  
PIEH7  
PPSH6  
PIEH6  
PPSH5  
PIEH5  
PPSH4  
PIEH4  
PPSH3  
PIEH3  
PIFH3  
PPSH2  
PIEH2  
PIFH2  
PPSH1  
PIEH1  
PIFH1  
PPSH0  
PIEH0  
PIFH0  
PIFH  
PIFH7  
0
PIFH6  
0
PIFH5  
0
PIFH4  
0
PTJ  
PTJ3  
PTJ2  
PTJ1  
PTJ0  
0
0
0
0
0
0
0
0
0
0
0
0
PTIJ3  
PTIJ2  
PTIJ1  
PTIJ0  
PTIJ  
DDRJ  
RDRJ  
DDRJ3  
RDRJ3  
DDRJ2  
RDRJ2  
DDRJ1  
RDRJ1  
DDRJ0  
RDRJ0  
51  
MC9S12H256 Device User Guide — V01.20  
$0200 - $027F  
PIM (Port Integration Module)  
Address  
$022C  
Name  
PERJ  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERJ3  
PERJ2  
PERJ1  
PERJ0  
0
0
0
0
0
0
0
0
0
0
0
0
$022D  
$022E  
$022F  
$0230  
$0231  
$0232  
$0233  
$0234  
$0235  
$0236  
$0237  
$0238  
$0239  
$023A  
$023B  
$023C  
$023D  
$023E  
$023F  
$0240  
$0241  
$0242  
$0243  
$0244  
PPSJ  
PIEJ  
PPSJ3  
PIEJ3  
PIFJ3  
PPSJ2  
PIEJ2  
PIFJ2  
PPSJ1  
PIEJ1  
PIFJ1  
PPSJ0  
PIEJ0  
PIFJ0  
PIFJ  
PTL  
PTL7  
PTL6  
PTL5  
PTL4  
PTL3  
PTL2  
PTL1  
PTL0  
Read: PTIL7  
Write:  
Read:  
DDRL7  
Write:  
Read:  
RDRL7  
Write:  
Read:  
PERL7  
Write:  
PTIL6  
PTIL5  
PTIL4  
PTIL3  
PTIL2  
PTIL1  
PTIL0  
PTIL  
DDRL  
RDRL  
PERL  
PPSL  
Reserved  
Reserved  
PTU  
DDRL7  
RDRL6  
PERL6  
DDRL5  
RDRL5  
PERL5  
DDRL4  
RDRL4  
PERL4  
DDRL3  
RDRL3  
PERL3  
DDRL2  
RDRL2  
PERL2  
DDRL1  
RDRL1  
PERL1  
DDRL0  
RDRL0  
PERL0  
Read:  
PPSL7  
Write:  
PPSL6  
0
PPSL5  
0
PPSL4  
0
PPSL3  
0
PPSL2  
0
PPSL1  
0
PPSL0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
0
0
0
PTU7  
PTU6  
PTU5  
PTU4  
PTU3  
PTU2  
PTU1  
PTU0  
Read: PTIU7  
Write:  
PTIU6  
PTIU5  
PTIU4  
PTIU3  
PTIU2  
PTIU1  
PTIU0  
PTIU  
Read:  
DDRU  
SRRU  
PERU  
PPSU  
Reserved  
Reserved  
PTV  
DDRU7 DDRU7 DDRU5 DDRU4 DDRU3 DDRU2 DDRU1 DDRU0  
SRRU7 SRRU6 SRRU5 SRRU4 SRRU3 SRRU2 SRRU1 SRRU0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERU7  
PERU6  
PERU5  
PERU4  
PERU3  
PERU2  
PERU1  
PERU0  
PPSU7  
0
PPSU6  
0
PPSU5  
0
PPSU4  
0
PPSU3  
0
PPSU2  
0
PPSU1  
0
PPSU0  
0
0
0
0
0
0
0
0
0
PTV7  
PTV6  
PTV5  
PTV4  
PTV3  
PTV2  
PTV1  
PTV0  
Read: PTIV7  
Write:  
PTIV6  
PTIV5  
PTIV4  
PTIV3  
PTIV2  
PTIV1  
PTIV0  
PTIV  
Read:  
DDRV  
SRRV  
PERV  
DDRV7 DDRV7 DDRV5 DDRV4 DDRV3 DDRV2 DDRV1 DDRV0  
Write:  
Read:  
Write:  
Read:  
Write:  
SRRV7  
PERV7  
SRRV6  
PERV6  
SRRV5  
PERV5  
SRRV4  
PERV4  
SRRV3  
PERV3  
SRRV2  
PERV2  
SRRV1  
PERV1  
SRRV0  
PERV0  
52  
MC9S12H256 Device User Guide — V01.20  
$0200 - $027F  
PIM (Port Integration Module)  
Address  
$0245  
Name  
PPSV  
Bit 7  
PPSV7  
0
Bit 6  
PPSV6  
0
Bit 5  
PPSV5  
0
Bit 4  
PPSV4  
0
Bit 3  
PPSV3  
0
Bit 2  
PPSV2  
0
Bit 1  
PPSV1  
0
Bit 0  
PPSV0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$0246  
$0247  
$0248  
$0249  
$024A  
$024B  
$024C  
$024D  
$024E  
$024F  
Reserved  
Reserved  
PTW  
0
0
0
0
0
0
0
0
PTW7  
PTW6  
PTW5  
PTW4  
PTW3  
PTW2  
PTW1  
PTW0  
Read: PTIW7  
Write:  
PTIW6  
PTIW5  
PTIW4  
PTIW3  
PTIW2  
PTIW1  
PTIW0  
PTIW  
Read:  
DDRW  
DDRW7 DDRW7 DDRW5 DDRW4 DDRW3 DDRW2 DDRW1 DDRW0  
SRRW7 SRRW6 SRRW5 SRRW4 SRRW3 SRRW2 SRRW1 SRRW0  
PERW7 PERW6 PERW5 PERW4 PERW3 PERW2 PERW1 PERW0  
PPSW7 PPSW6 PPSW5 PPSW4 PPSW3 PPSW2 PPSW1 PPSW0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SRRW  
PERW  
PPSW  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
$0250 -  
$027F  
$0280 - $03FF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$0280 -  
$03FF  
Reserved  
1.6 Part ID Assignments  
The part ID is located in two 8-bit registers PARTIDH and PARTIDL at addresses $001A,$001B,  
respectively. The read-only value is a unique part ID for each revision of the chip. Table 1-5 shows the  
assigned part ID numbers.  
Table 1-5 Assigned Part ID Numbers  
1
Device  
Mask Set Number  
0K78X  
Part ID  
$1000  
$1001  
MC9S12H256  
MC9S12H256  
1K78X  
53  
MC9S12H256 Device User Guide — V01.20  
NOTES:  
1. The coding is as follows:  
Bit 15-12: Major family identifier  
Bit 11-8: Minor family identifier  
Bit 7-4: Major mask set revision number including FAB transfers  
Bit 3-0: Minor - non full - mask set revision  
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C  
and $001D after reset). Table 1-6 shows the read-only values of these registers. Refer to section Module  
Mapping and Control (MMC) of HCS12 Core User Guide for further details.  
Table 1-6 Memory size registers  
Register name  
MEMSIZ0  
Value  
$25  
MEMSIZ1  
$81  
54  
MC9S12H256 Device User Guide — V01.20  
Section 2 Signal Description  
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal  
properties, and detailed discussion of signals. It is built from the signal description sections of the Block  
User Guides of the individual IP blocks on the device.  
2.1 Device Pinout  
The MC9S12H256 is available in a 112-pin and 144-pin quad flat pack (LQFP), the MC9S12H128 is  
available in a 112-pin quad flat pack (LQFP). Most pins perform two or more functions, as described in  
the Signal Descriptions. Figure 2-1 and Figure 2-2 show the pin assignments.  
NOTE: In expanded narrow modes the lower byte data is multiplexed with higher byte data  
through pins 64-71 on the 112-pin LQFP or through pins 111-118 on the 144-pin  
LQFP version.  
55  
MC9S12H256 Device User Guide — V01.20  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
PB5/ADDR5/DATA5/FP5  
PB4/ADDR4/DATA4/FP4  
PB3/ADDR3/DATA3/FP3  
PB2/ADDR2/DATA2/FP2  
PB1/ADDR1/DATA1/FP1  
PB0/ADDR0/DATA0/FP0  
PK0/XADDR14/BP0  
PK1/XADDR15/BP1  
PK2/XADDR16/BP2  
PK3/XADDR17/BP3  
VLCD  
VSS1  
VDD1  
PAD07/AN07  
PAD06/AN06  
PAD05/AN05  
PAD04/AN04  
PAD03/AN03  
PAD02/AN02  
PAD01/AN01  
PAD00/AN00  
VDDA  
VRH  
VRL  
VSSA  
PE0/XIRQ  
PE4/ECLK  
1
2
3
4
5
6
7
8
M0C0M/PU0  
M0C0P/PU1  
M0C1M/PU2  
M0C1P/PU3  
VDDM1  
VSSM1  
M1C0M/PU4  
M1C0P/PU5  
M1C1M/PU6  
M1C1P/PU7  
M2C0M/PV0  
M2C0P/PV1  
M2C1M/PV2  
M2C1P/PV3  
VDDM2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MC9S12H-Family  
112 LQFP  
VSSM2  
M3C0M/PV4  
M3C0P/PV5  
M3C1M/PV6  
M3C1P/PV7  
M4C0M/PW0  
M4C0P/PW1  
M4C1M/PW2  
M4C1P/PW3  
VDDM3  
VSSM3  
M5C0M/PW4  
M5C0P/PW5  
PE6/IPIPE1/MODB  
Figure 2-1 Pin Assignments in 112-pin LQFP for MC9S12H256 and MC9S12H128  
56  
MC9S12H256 Device User Guide — V01.20  
M0C0M/PU0  
M0C0P/PU1  
M0C1M/PU2  
M0C1P/PU3  
VDDM1  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
PB5/ADDR5/DATA5/FP5  
PB4/ADDR4/DATA4/FP4  
PB3/ADDR3/DATA3/FP3  
PB2/ADDR2/DATA2/FP2  
PB1/ADDR1/DATA1/FP1  
PB0/ADDR0/DATA0/FP0  
PK0/XADDR14/BP0  
PK1/XADDR15/BP1  
PK2/XADDR16/BP2  
PK3/XADDR17/BP3  
VLCD  
VSSM1  
M1C0M/PU4  
M1C0P/PU5  
M1C1M/PU6  
M1C1P/PU7  
KWH0/PH0  
KWH1/PH1  
KWH2/PH2  
KWH3/PH3  
M2C0M/PV0  
M2C0P/PV1  
M2C1M/PV2  
M2C1P/PV3  
VDDM2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSS1  
VDD1  
PAD15/AN15  
PAD07/AN07  
PAD14/AN14  
PAD06/AN06  
PAD13/AN13  
PAD05/AN05  
PAD12/AN12  
PAD04/AN04  
PAD11/AN11  
PAD03/AN03  
PAD10/AN10  
PAD02/AN02  
PAD09/AN09  
PAD01/AN01  
PAD08/AN08  
PAD00/AN00  
VDDA  
MC9S12H-Family  
144 LQFP  
VSSM2  
M3C0M/PV4  
M3C0P/PV5  
M3C1M/PV6  
M3C1P/PV7  
KWH4/PH4  
KWH5/PH5  
KWH6/PH6  
KWH7/PH7  
M4C0M/PW0  
M4C0P/PW1  
M4C1M/PW2  
M4C1P/PW3  
VDDM3  
VRH  
VRL  
VSSA  
PE0/XIRQ  
PE4/ECLK  
PE6/IPIPE1/MODB  
Pins shown in BOLD are not available in the 112 LQFP package  
VSSM3  
M5C0M/PW4  
M5C0P/PW5  
74  
73  
Figure 2-2 Pin Assignments in 144-pin LQFP for MC9S12H256  
57  
MC9S12H256 Device User Guide — V01.20  
2.2 Signal Properties Summary  
Table 2-1 summarizes all pin functions.  
NOTE: Bold entries determine pins not available on 112-pin LQFP.  
Table 2-1 Signal Properties  
Internal Pull  
Resistor  
Pin Name Pin Name  
Pin Name  
Pin Name Powered  
Description  
Function 1 Function 2 Function 3 Function 4  
by  
Reset  
CTRL  
State  
EXTAL  
XTAL  
VDDPLL  
VDDPLL  
VDDX2  
Oscillator Pins  
RESET  
TEST  
XFC  
None  
None  
External Reset Pin  
Test Input  
VDDX2  
VDDPLL  
PLL Loop Filter  
Always  
Up  
Background Debug, Tag High, Mode  
Pin  
BKGD  
PAD[7:0]  
PAD[15:8]  
TAGHI  
AN[7:0]  
AN[15:8]  
MODC  
VDDX2  
VDDA  
VDDA  
Up  
Port AD Inputs, Analog Inputs (ATD)  
None  
None  
Port AD Inputs, Analog Inputs  
(ATD)  
ADDR[15:8]/  
DATA[15:8]  
PUCR/  
PUPAE  
PA[7:0]  
PB[7:0]  
PE7  
FP[15:8]  
FP[7:0]  
FP22  
VDDX1  
VDDX1  
VDDX1  
Down  
Down  
Down  
Port A I/O, Multiplexed Address/Data  
Port B I/O, Multiplexed Address/Data  
ADDR[7:0]/  
DATA[7:0]  
PUCR/  
PUPBE  
PUCR/  
PUPEE  
Port E I/O, Access, Clock Select,  
LCD driver  
XCLKS  
NOACC  
PE6  
PE5  
PE4  
IPIPE1  
IPIPE0  
ECLK  
MODB  
MODA  
VDDX2  
VDDX2  
VDDX2  
Port E I/O, Pipe Status, Mode Input  
Port E I/O, Pipe Status, Mode Input  
Port E I/O, Bus Clock Output  
While RESET pin is  
low: Down  
Mode de- Port E I/O, LCD driver, Byte Strobe,  
pendent Tag Low  
PE3  
FP21  
LSTRB  
TAGLO  
VDDX1  
PUCR/  
PUPEE  
PE2  
PE1  
PE0  
FP20  
IRQ  
R/W  
VDDX1  
VDDX2  
VDDX2  
Port E I/O, R/W in expanded modes  
Port E Input, Maskable Interrupt  
Up  
XIRQ  
Port E Input, Non Maskable Interrupt  
PERH/  
PPSH  
PH[7:0]  
PJ[3:0]  
PK7  
KWH[7:0]  
KWJ[3:0]  
FP23  
VDDM  
VDDX1  
VDDX1  
VDDX1  
Disabled Port H I/O, Interrupts  
PERJ/  
PPSJ  
Disabled Port J I/O, Interrupts  
Port K I/O, Emulation Chip Select,  
ECS  
ROMONE  
ROM On Enable  
PUCR/  
PUPKE  
Down  
Port K I/O, LCD driver, Extended  
PK[3:0]  
BP[3:0]  
XADDR[17:14]  
Addresses  
PL[3:0]  
FP[19:16]  
VDDX1  
VDDX1  
Port L I/O, LCD drivers  
Down  
PERL/  
PPSL  
PL[7:4]  
FP[31:28]  
Port L I/O, LCD drivers  
58  
MC9S12H256 Device User Guide — V01.20  
Internal Pull  
Resistor  
Description  
Reset  
Pin Name Pin Name  
Pin Name  
Pin Name Powered  
Function 1 Function 2 Function 3 Function 4  
by  
CTRL  
State  
PM5  
PM4  
PM3  
PM2  
PM1  
PM0  
PP[5:2]  
PP[1:0]  
PS7  
TXCAN1  
RXCAN1  
TXCAN0  
RXCAN0  
SCL  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX2  
VDDX1  
Port M I/O, TX of CAN1  
Port M I/O, RX of CAN1  
Port M I/O, TX of CAN0  
Port M I/O, RX of CAN0  
Port M I/O, SCL of IIC  
Port M I/O, SDA of IIC  
Port P I/O, PWM channels  
Port P I/O, PWM channels  
Port S I/O, SS of SPI  
PERM/  
PPSM  
Disabled  
SDA  
PWM[5:2]  
PWM[1:0]  
SS  
PERP/  
PPSP  
Disabled  
Disabled  
PS6  
SCK  
Port S I/O, SCK of SPI  
Port S I/O, MOSI of SPI  
Port S I/O, MISO of SPI  
Port S I/O, TXD of SCI1  
Port S I/O, RXD of SCI1  
Port S I/O, TXD of SCI0  
Port S I/O, RXD of SCI0  
Port T I/O, Timer channels  
PS5  
MOSI  
PS4  
MISO  
PERS/  
PPSS  
PS3  
TXD1  
PS2  
RXD1  
PS1  
TXD0  
PS0  
RXD0  
PT[7:4]  
IOC[7:4]  
PERT/  
PPST  
Down  
Port T I/O, Timer channels, LCD  
driver  
PT[3:0]  
PU[3:0]  
IOC[3:0]  
FP[27:24]  
VDDX1  
M0C0M  
M0C0P  
M0C1M  
M0C1P  
VDDM  
Port U I/O, Motor0 of MC  
Port U I/O, Motor1 of MC  
Port V I/O, Motor2 of MC  
Port V I/O, Motor3 of MC  
Port W I/O, Motor4 of MC  
Port W I/O, Motor5 of MC  
PERU/  
PPSU  
Disabled  
M1C0M  
M1C0P  
M1C1M  
M1C1P  
PU[7:4]  
PV[3:0]  
PV[7:4]  
PW[3:0]  
PW[7:4]  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
M2C0M  
M2C0P  
M2C1M  
M2C1P  
PERV/  
PPSV  
Disabled  
M3C0M  
M3C0P  
M3C1M  
M3C1P  
M4C0M  
M4C0P  
M4C1M  
M4C1P  
PERW/  
PPSW  
Disabled  
M5C0M  
M5C0P,  
M5C1M  
M5C1P  
59  
MC9S12H256 Device User Guide — V01.20  
2.3 Detailed Signal Descriptions  
2.3.1 EXTAL, XTAL — Oscillator Pins  
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived  
from the EXTAL input frequency. XTAL is the crystal output.  
2.3.2 RESET — External Reset Pin  
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up  
state, and an output when an internal MCU function causes a reset.  
2.3.3 TEST — Test Pin  
This pin is reserved for test.  
NOTE: The TEST pin must be tied to VSS in all applications.  
2.3.4 XFC — PLL Loop Filter Pin  
Dedicated pin used to create the PLL loop filter.  
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin  
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug  
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on  
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the  
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is  
latched to the MODC bit at the rising edge of RESET.  
2.3.6 PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8]  
PAD15-PAD8 are general purpose input pins and analog inputs for the analog to digital converter.  
NOTE: These pins are not available in the 112-pin LQFP version.  
2.3.7 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0]  
PAD7-PAD0 are general purpose input pins and analog inputs for the analog to digital converter.  
2.3.8 PA[7:0] / FP[15:8] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins  
PA7-PA0 are general purpose input or output pins. They can be configured as frontplane segment driver  
outputs FP15-FP8 of the LCD. In MCU expanded modes of operation, these pins are used for the  
multiplexed external address and data bus.  
60  
MC9S12H256 Device User Guide — V01.20  
2.3.9 PB[7:0] / FP[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins  
PB7-PB0 are general purpose input or output pins. They can be configured as frontplane segment driver  
outputs FP7-FP0 of the LCD. In MCU expanded modes of operation, these pins are used for the  
multiplexed external address and data bus.  
2.3.10 PE7 / FP22 / XCLKS / NOACC — Port E I/O Pin 7  
PE7 is a general purpose input or output pin. It can be configured as frontplane segment driver output FP22  
of the LCD module. The XCLKS signal selects between an external clock or oscillator configuration  
during reset.  
The XCLKS input selects between an external clock or oscillator configuration. The state of this pin is  
latched at the rising edge of RESET. If the input is a logic high the EXTAL pin is configured for an  
external clock drive. If input is a logic low an oscillator circuit is configured on EXTAL and XTAL. Since  
this pin is an input with a pull-down device during reset, if the pin is left floating, the default configuration  
is an oscillator circuit on EXTAL and XTAL.  
During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the  
current bus cycle is an unused or “free” cycle. This signal will assert when the CPU is not using the bus.  
2.3.11 PE6 / MODB / IPIPE1 — Port E I/O Pin 6  
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.12 PE5 / MODA / IPIPE0 — Port E I/O Pin 5  
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.13 PE4 / ECLK — Port E I/O Pin 4  
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.  
ECLK can be used as a timing reference.  
2.3.14 PE3 / FP21 / LSTRB / TAGLO — Port E I/O Pin 3  
PE3 is a general purpose input or output pin. It can be configured as frontplane segment driver output FP21  
of the LCD module. In MCU expanded modes of operation, LSTRB is used for the low-byte strobe  
function to indicate the type of bus access and when instruction tagging is on, TAGLO is used to tag the  
low half of the instruction word being read into the instruction queue.  
61  
MC9S12H256 Device User Guide — V01.20  
2.3.15 PE2 / FP20 / R/W — Port E I/O Pin 2  
PE2 is a general purpose input or output pin. It can be configured as frontplane segment driver output FP20  
of the LCD module. In MCU expanded modes of operations, this pin performs the read/write output signal  
for the external bus. It indicates the direction of data on the external bus.  
2.3.16 PE1 / IRQ — Port E Input Pin 1  
PE1 is a general purpose input pin and also the maskable interrupt request input that provides a means of  
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
2.3.17 PE0 / XIRQ — Port E Input Pin 0  
PE0 is a general purpose input pin and also the non-maskable interrupt request input that provides a means  
of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
2.3.18 PH[7:0] / KWH[7:0] — Port H I/O Pins [7:0]  
PH7-PH0 are general purpose input or output pins. They can be configured to generate an interrupt causing  
the MCU to exit STOP or WAIT mode.  
NOTE: These pins are not available in the 112-pin LQFP version.  
2.3.19 PJ[3:0] / KWJ[3:0] — Port J I/O Pins [3:0]  
PJ3-PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing  
the MCU to exit STOP or WAIT mode.and are shared with the interrupt function.  
NOTE: These pins are not available in the 112-pin LQFP version.  
2.3.20 PK7 / FP23 / ECS / ROMONE — Port K I/O Pin 7  
PK7 is a general purpose input or output pin. It can be configured as frontplane segment driver output FP23  
of the LCD module. During MCU expanded modes of operation, this pin is used as the emulation chip  
select signal (ECS). During reset of the MCU to normal expanded modes of operation, this pin is used to  
enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of RESET, the  
state of this pin is latched to the ROMON bit.  
2.3.21 PK[3:0] / BP[3:0] / XADDR[17:14] — Port K I/O Pins [3:0]  
PK3-PK0 are general purpose input or output pins. They can be configured as backplane segment driver  
outputs BP3-BP0 of the LCD module. In MCU expanded modes of operation, these pins provide the  
expanded address XADDR[17:14] for the external bus.  
62  
MC9S12H256 Device User Guide — V01.20  
2.3.22 FreescalePL[7:4] / FP[31:28] — Port L I/O Pins [7:4]  
PL7-PL4 are general purpose input or output pins. They can be configured as frontplane segment driver  
outputs FP31-FP28 of the LCD module.  
NOTE: These pins are not available in the 112-pin LQFP version.  
2.3.23 PL[3:0] / FP[19:16] — Port L I/O Pins [3:0]  
PL3-PL0 are general purpose input or output pins. They can be configured as frontplane segment driver  
outputs FP19-FP16 of the LCD module.  
2.3.24 PM5 / TXCAN1 — Port M I/O Pin 5  
PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN1 of the  
Freescale Scalable Controller Area Network controller 1 (CAN1)  
2.3.25 PM4 / RXCAN1 — Port M I/O Pin 4  
PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN1 of the  
Freescale Scalable Controller Area Network controller 1 (CAN1)  
2.3.26 PM3 / TXCAN0 — Port M I/O Pin 3  
PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN0 of the  
Freescale Scalable Controller Area Network controller 0 (CAN0)  
2.3.27 PM2 / RXCAN0 — Port M I/O Pin 2  
PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN0 of the  
Freescale Scalable Controller Area Network controller 0 (CAN0)  
2.3.28 PM1 / SCL — Port M I/O Pin 1  
PM1 is a general purpose input or output pin. It can be configured as the serial clock pin SCL of the  
Inter-IC Bus Interface (IIC).  
NOTE: This pin is not available in the 112-pin LQFP version.  
2.3.29 PM0 / SDA — Port M I/O Pin 0  
PM0 is a general purpose input or output pin. It can be configured as the serial data pin SDA of the Inter-IC  
Bus Interface (IIC).  
NOTE: This pin is not available in the 112-pin LQFP version.  
63  
MC9S12H256 Device User Guide — V01.20  
2.3.30 PP[5:2] / PWM[5:2] — Port P I/O Pins [5:2]  
PP5-PP2 are general purpose input or output pins. They can be configured as Pulse Width Modulator  
(PWM) channel outputs PWM5-PWM2.  
NOTE: These pins are not available in the 112-pin LQFP version.  
2.3.31 PP[1:0] / PWM[1:0] — Port P I/O Pins [1:0]  
PP1-PP0 are general purpose input or output pins. They can be configured as Pulse Width Modulator  
(PWM) channel outputs PWM1-PWM0.  
2.3.32 PS7 / SS — Port S I/O Pin 7  
PS7 is a general purpose input or output pin. It can be configured as slave select pin SS of the Serial  
Peripheral Interface (SPI).  
2.3.33 PS6 / SCK — Port S I/O Pin 6  
PS6 is a general purpose input or output pin. It can be configured as serial clock pin SCK of the Serial  
Peripheral Interface (SPI).  
2.3.34 PS5 / MOSI — Port S I/O Pin 5  
PS5 is a general purpose input or output pin. It can be configured as the master output (during master  
mode) or slave input (during slave mode) pin MOSI of the Serial Peripheral Interface (SPI).  
2.3.35 PS4 / MISO — Port S I/O Pin 4  
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or  
slave output (during slave mode) pin MISO for the Serial Peripheral Interface (SPI).  
2.3.36 PS3 / TXD1 — Port S I/O Pin 3  
PS3 is a general purpose input or output pin. It can be configured as transmit pin TXD1 of the Serial  
Communication Interface 1 (SCI1).  
NOTE: This pin is not available in the 112-pin LQFP version.  
2.3.37 PS2 / RXD1 — Port S I/O Pin 2  
PS2 is a general purpose input or output pin. It can be configured as receive pin RXD1 of the Serial  
Communication Interface 1 (SCI1).  
NOTE: This pin is not available in the 112-pin LQFP version.  
64  
MC9S12H256 Device User Guide — V01.20  
2.3.38 PS1 / TXD0 — Port S I/O Pin 1  
PS1 is a general purpose input or output pin. It can be configured as transmit pin TXD0 of the Serial  
Communication Interface 0 (SCI0).  
2.3.39 PS0 / RXD0 — Port S I/O Pin 0  
PS0 is a general purpose input or output pin. It can be configured as receive pin RXD0 of the Serial  
Communication Interface 0 (SCI0).  
2.3.40 PT[7:4] / IOC[7:4] — Port T I/O Pins [7:4]  
PT7-PT4 are general purpose input or output pins. They can be configured as input capture or output  
compare pins IOC7-IOC4 of the Timer (TIM).  
2.3.41 PT[3:0] / IOC[3:0] / FP[27:24] — Port T I/O Pins [3:0]  
PT3-PT0 are general purpose input or output pins. They can be configured as input capture or output  
compare pins IOC3-IOC0 of the Timer (TIM). They can be configured as frontplane segment driver  
outputs FP27-FP24 of the LCD module.  
2.3.42 PU[7:4] / M1C1P, M1C1M, M1C0P, M1C0M — Port U I/O Pins [7:4]  
PU7-PU4 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 1. PWM output on  
M1C0M results in a positive current flow through coil 0 when M1C0P is driven to a logic high state. PWM  
output on M1C1M results in a positive current flow through coil 1 when M1C1P is driven to a logic high  
state.  
2.3.43 PU[3:0] / M0C1P, M0C1M, M0C0P, M0C0M — Port U I/O Pins [3:0]  
PU3-PU0 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 0. PWM output on  
M0C0M results in a positive current flow through coil 0 when M0C0P is driven to a logic high state. PWM  
output on M0C1M results in a positive current flow through coil 1 when M0C1P is driven to a logic high  
state.  
2.3.44 PV[7:4] / M3C1P, M3C1M, M3C0P, M3C0M — Port V I/O Pins [7:4]  
PV7-PV4 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 3. PWM output on  
M3C0M results in a positive current flow through coil 0 when M3C0P is driven to a logic high state. PWM  
output on M3C1M results in a positive current flow through coil 1 when M3C1P is driven to a logic high  
state.  
65  
MC9S12H256 Device User Guide — V01.20  
2.3.45 PV[3:0] / M2C1P, M2C1M, M2C0P, M2C0M — Port V I/O Pins [3:0]  
PV3-PV0 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 2. PWM output on  
M2C0M results in a positive current flow through coil 0 when M2C0P is driven to a logic high state. PWM  
output on M2C1M results in a positive current flow through coil 1 when M2C1P is driven to a logic high  
state.  
2.3.46 PW[7:4] / M5C1P, M5C1M, M5C0P, M5C0M — Port W I/O Pins [7:4]  
PW7-PW4 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 5. PWM output on  
M5C0M results in a positive current flow through coil 0 when M5C0P is driven to a logic high state. PWM  
output on M5C1M results in a positive current flow through coil 1 when M5C1P is driven to a logic high  
state.  
2.3.47 PW[3:0] / M4C1P, M4C1M, M4C0P, M4C0M — Port W I/O Pins [3:0]  
PW3-PW0 are general purpose input or output pins. They can be configured as high current PWM output  
pins which can be used for motor drive. These pins interface to the coils of motor 4. PWM output on  
M4C0M results in a positive current flow through coil 0 when M4C0P is driven to a logic high state. PWM  
output on M4C1M results in a positive current flow through coil 1 when M4C1P is driven to a logic high  
state.  
2.4 Power Supply Pins  
MC9S12H256 power and ground pins are described below.  
NOTE: All VSS pins must be connected together in the application (21.2 Recommended  
PCB layout).  
Because fast signal transitions place high, short-duration current demands on the  
power supply, use bypass capacitors with high-frequency characteristics and place  
them as close to the MCU as possible. Bypass requirements depend on how heavily  
the MCU pins are loaded (Table 21-1).  
2.4.1 VDDR — External Power Pin  
VDDR is the power supply pin for the internal voltage regulator.  
2.4.2 VDDX1, VDDX2, VSSX1, VSSX2 — External Power and Ground Pins  
VDDX1, VDDX2, VSSX1 and VSSX2 are the power supply and ground pins for input/output  
drivers.VDDX1 and VDDX2 as well as VSSX1 and VSSX2 are not internally connected.  
66  
MC9S12H256 Device User Guide — V01.20  
2.4.3 VDD1, VSS1, VSS2 — Core Power Pins  
VDD1, VSS1 and VSS2 are the core power and ground pins and related to the voltage regulator output.  
These pins serve as connection points for filter capacitors. VSS1 and VSS2 are internally connected.  
NOTE: No load allowed except for bypass capacitors.  
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG  
VDDA, VSSA are the power supply and ground pins for the voltage regulator and the analog to digital  
converter.  
2.4.5 VDDM1, VDDM2, VDDM3 — Power Supply Pins for Motor 0 to 5  
VDDM1, VDDM2 and VDDM3 are the supply pins for the ports U,V and W. VDDM1, VDDM2 and  
VDDM3 are internally connected.  
2.4.6 VSSM1, VSSM2, VSSM3 — Ground Pins for Motor 0 to 5  
VSSM1, VSSM2 and VSSM3 are the ground pins for the ports U,V and W. VSSM1, VSSM2 and VSSM3  
are internally connected.  
2.4.7 VLCD — Power Supply Reference Pin for LCD driver  
VLCD is the voltage reference pin for the LCD driver. Adjusting the voltage on this pin will change the  
display contrast.  
2.4.8 VRH, VRL — ATD Reference Voltage Input Pins  
VRH and VRL are the voltage reference pins for the analog to digital converter.  
2.4.9 VDDPLL, VSSPLL — Power Supply Pins for PLL  
VDDPLL and VSSPLL are the PLL supply pins and serve as connection points for external loop filter  
components.  
NOTE: No load allowed except for bypass capacitors.  
67  
MC9S12H256 Device User Guide — V01.20  
68  
MC9S12H256 Device User Guide — V01.20  
Section 3 System Clock Description  
3.1 Overview  
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.  
Figure 3-1 shows the clock connections from the CRG to all modules.  
Consult the CRG Block User Guide for details on clock generation.  
S12_CORE  
core clock  
Flash  
RAM  
EEPROM  
TIM  
ATD  
EXTAL  
XTAL  
PWM  
bus clock  
CRG  
SCI0, SCI1  
SPI  
oscillator clock  
CAN0, CAN1  
IIC  
MC  
LCD  
PIM  
Figure 3-1 Clock Connections  
69  
MC9S12H256 Device User Guide — V01.20  
70  
MC9S12H256 Device User Guide — V01.20  
Section 4 Modes of Operation  
4.1 Overview  
Eight possible modes determine the operating configuration of the MC9S12H256. Each mode has an  
associated default memory map and external bus configuration.  
Three low power modes exist for the device.  
4.2 Modes of Operation  
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during  
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating  
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA  
pins are latched into these bits on the rising edge of the reset signal.  
Table 4-1 Mode Selection  
MODC  
MODB  
MODA  
Mode Description  
Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all  
other modes but a serial command is required to make BDM active.  
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
Emulation Expanded Narrow, BDM allowed  
Special Test (Expanded Wide) (Freescale Use Only), BDM allowed  
Emulation Expanded Wide, BDM allowed  
Normal Single Chip, BDM allowed  
Normal Expanded Narrow, BDM allowed  
Peripheral (Freescale Use Only); BDM allowed but bus operations  
would cause bus conflicts (must not be used)  
1
1
1
1
0
1
Normal Expanded Wide, BDM allowed  
There are two basic types of operating modes:  
1. Normal modes: Some registers and bits are protected against accidental changes.  
2. Special modes: Allow greater access to protected control registers and bits for special purposes such  
as testing.  
A system development and debug feature, background debug mode (BDM), is available in all modes. In  
special single-chip mode, BDM is active immediately after reset.  
Some aspects of Port E are not mode dependent. Bit 1 of Port E is a general purpose input or the IRQ  
interrupt input. IRQ can be enabled by bits in the CPU’s condition codes register but it is inhibited at reset  
so this pin is initially configured as a simple input with a pull-up. Bit 0 of Port E is a general purpose input  
or the XIRQ interrupt input. XIRQ can be enabled by bits in the CPU’s condition codes register but it is  
inhibited at reset so this pin is initially configured as a simple input with a pull-up. The ESTR bit in the  
EBICTL register is set to one by reset in any user mode. This assures that the reset vector can be fetched  
71  
MC9S12H256 Device User Guide — V01.20  
even if it is located in an external slow memory device. The PE6/MODB/IPIPE1 and PE5/MODA/IPIPE0  
pins act as high-impedance mode select inputs during reset.  
The following paragraphs discuss the default bus setup and describe which aspects of the bus can be  
changed after reset on a per mode basis.  
4.2.1 Normal Operating Modes  
These modes provide three operating configurations. Background debug is available in all three modes,  
but must first be enabled for some operations by means of a BDM background command, then activated.  
4.2.1.1 Normal Single-Chip Mode  
There is no external expansion bus in this mode. All pins of Ports A, B and E are configured as general  
purpose I/O pins Port E bits 1 and 0 are available as general purpose input only pins with internal pull-ups  
enabled. All other pins of Port E are bidirectional I/O pins that are initially configured as high-impedance  
inputs with internal pull-ups enabled. Ports A and B are configured as high-impedance inputs with their  
internal pull-ups disabled.  
The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,  
IPIPE0, LSTRB, and R/W while the MCU is in single chip modes. In single chip modes, the associated  
control bits PIPOE, LSTRE, and RDWE are reset to zero. Writing the opposite state into them in single  
chip mode does not change the operation of the associated Port E pins.  
In normal single chip mode, the MODE register is writable one time. This allows a user program to change  
the bus mode to narrow or wide expanded mode and/or turn on visibility of internal accesses.  
Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically the only  
use for an E clock output while the MCU is in single chip modes would be to get a constant speed clock  
for use in the external application system.  
4.2.1.2 Normal Expanded Wide Mode  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E bit 4 is configured as the E clock output signal. These signals allow external memory and peripheral  
devices to be interfaced to the MCU.  
Port E pins other than PE4/ECLK are configured as general purpose I/O pins (initially high-impedance  
inputs with internal pull-up resistors enabled). Control bits PIPOE, NECLK, LSTRE, and RDWE in the  
PEAR register can be used to configure Port E pins to act as bus control outputs instead of general purpose  
I/O pins.  
It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but  
it would be unusual to do so in this mode. Development systems where pipe status signals are monitored  
would typically use the special variation of this mode.  
The Port E bit 2 pin can be reconfigured as the R/W bus control signal by writing “1” to the RDWE bit in  
PEAR. If the expanded system includes external devices that can be written, such as RAM, the RDWE bit  
72  
MC9S12H256 Device User Guide — V01.20  
would need to be set before any attempt to write to an external location. If there are no writable resources  
in the external system, PE2 can be left as a general purpose I/O pin. The  
Port E bit 3 pin can be reconfigured as the LSTRB bus control signal by writing “1” to the LSTRE bit in  
PEAR. The default condition of this pin is a general purpose input because the LSTRB function is not  
needed in all expanded wide applications.  
The Port E bit 4 pin is initially configured as ECLK output with stretch. The E clock output function  
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and  
the ESTR bit in the EBICTL register. The E clock is available for use in external select decode logic or as  
a constant speed clock for use in the external application system.  
4.2.1.3 Normal Expanded Narrow Mode  
This mode is used for lower cost production systems that use 8-bit wide external EPROMs or RAMs. Such  
systems take extra bus cycles to access 16-bit locations but this may be preferred over the extra cost of  
additional external memory devices.  
Ports A and B are configured as a 16-bit address bus and Port A is multiplexed with data. Internal visibility  
is not available in this mode because the internal cycles would need to be split into two 8-bit cycles.  
Since the PEAR register can only be written one time in this mode, use care to set all bits to the desired  
states during the single allowed write.  
The PE3/LSTRB pin is always a general purpose I/O pin in normal expanded narrow mode. Although it  
is possible to write the LSTRE bit in PEAR to “1” in this mode, the state of LSTRE is overridden and Port  
E bit 3 cannot be reconfigured as the LSTRB output.  
It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but  
it would be unusual to do so in this mode. LSTRB would also be needed to fully understand system  
activity. Development systems where pipe status signals are monitored would typically use special  
expanded wide mode or occasionally special expanded narrow mode.  
The PE4/ECLK pin is initially configured as ECLK output with stretch. The E clock output function  
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and  
the ESTR bit in the EBICTL register. In normal expanded narrow mode, the E clock is available for use  
in external select decode logic or as a constant speed clock for use in the external application system.  
The PE2/R/W pin is initially configured as a general purpose input with a pull-up but this pin can be  
reconfigured as the R/W bus control signal by writing “1” to the RDWE bit in PEAR. If the expanded  
narrow system includes external devices that can be written such as RAM, the RDWE bit would need to  
be set before any attempt to write to an external location. If there are no writable resources in the external  
system, PE2 can be left as a general purpose I/O pin.  
4.2.1.4 Internal Visibility  
Internal visibility is available when the MCU is operating in expanded wide modes or special narrow  
mode. It is not available in single-chip, peripheral or normal expanded narrow modes. Internal visibility is  
enabled by setting the IVIS bit in the MODE register.  
73  
MC9S12H256 Device User Guide — V01.20  
If an internal access is made while E, R/W, and LSTRB are configured as bus control outputs and internal  
visibility is off (IVIS=0), E will remain low for the cycle, R/W will remain high, and address, data and the  
LSTRB pins will remain at their previous state.  
When internal visibility is enabled (IVIS=1), certain internal cycles will be blocked from going external.  
During cycles when the BDM is selected, R/W will remain high, data will maintain its previous state, and  
address and LSTRB pins will be updated with the internal value. During CPU no access cycles when the  
BDM is not driving, R/W will remain high, and address, data and the LSTRB pins will remain at their  
previous state.  
4.2.1.5 Emulation Expanded Wide Mode  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E provides bus control and status signals. These signals allow external memory and peripheral devices  
to be interfaced to the MCU. These signals can also be used by a logic analyzer to monitor the progress of  
application programs.  
The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,  
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output  
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the PEAR  
register in special mode are restricted.  
4.2.1.6 Emulation Expanded Narrow Mode  
Expanded narrow modes are intended to allow connection of single 8-bit external memory devices for  
lower cost systems that do not need the performance of a full 16-bit external data bus. Accesses to internal  
resources that have been mapped external (i.e. PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR,  
PUCR, RDRIV) will be accessed with a 16-bit data bus on Ports A and B. Accesses of 16-bit external  
words to addresses which are normally mapped external will be broken into two separate 8-bit accesses  
using Port A as an 8-bit data bus. Internal operations continue to use full 16-bit data paths. They are only  
visible externally as 16-bit information if IVIS=1.  
Ports A and B are configured as multiplexed address and data output ports. During external accesses,  
address A15, data D15 and D7 are associated with PA7, address A0 is associated with PB0 and data D8  
and D0 are associated with PA0. During internal visible accesses and accesses to internal resources that  
have been mapped external, address A15 and data D15 is associated with PA7 and address A0 and data  
D0 is associated with PB0.  
The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,  
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output  
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the PEAR  
register in special mode are restricted.  
4.2.2 Special Operating Modes  
There are two special operating modes that correspond to normal operating modes. These operating modes  
are commonly used in factory testing and system development.  
74  
MC9S12H256 Device User Guide — V01.20  
4.2.2.1 Special Single-Chip Mode  
When the MCU is reset in this mode, the background debug mode is enabled and active. The MCU does  
not fetch the reset vector and execute application code as it would in other modes. Instead the active  
background mode is in control of CPU execution and BDM firmware is waiting for additional serial  
commands through the BKGD pin. When a serial command instructs the MCU to return to normal  
execution, the system will be configured as described below unless the reset states of internal control  
registers have been changed through background commands after the MCU was reset.  
There is no external expansion bus after reset in this mode. Ports A and B are initially simple bidirectional  
I/O pins that are configured as high-impedance inputs with internal pull-ups disabled; however, writing to  
the mode select bits in the MODE register (which is allowed in special modes) can change this after reset.  
All of the Port E pins (except PE4/ECLK) are initially configured as general purpose high-impedance  
inputs with pull-ups enabled. PE4/ECLK is configured as the E clock output in this mode.  
The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,  
IPIPE0, LSTRB, and R/W while the MCU is in single chip modes. In single chip modes, the associated  
control bits PIPOE, LSTRE and RDWE are reset to zero. Writing the opposite value into these bits in  
single chip mode does not change the operation of the associated Port E pins.  
Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically the only  
use for an E clock output while the MCU is in single chip modes would be to get a constant speed clock  
for use in the external application system.  
4.2.2.2 Special Test Mode (Freescale Use Only)  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E provides bus control and status signals. In special test mode, the write protection of many control  
bits is lifted so that they can be thoroughly tested without needing to go through reset.  
4.2.3 Test Operating Mode (Freescale Use Only)  
There is a test operating mode in which an external master, such as an I.C. tester, can control the on-chip  
peripherals.  
4.2.3.1 Peripheral Mode  
This mode is intended for Freescale factory testing of the MCU. In this mode, the CPU is inactive and an  
external (tester) bus master drives address, data and bus control signals in through Ports A, B and E. In  
effect, the whole MCU acts as if it was a peripheral under control of an external CPU. This allows faster  
testing of on-chip memory and peripherals than previous testing methods. Since the mode control register  
is not accessible in peripheral mode, the only way to change to another mode is to reset the MCU into a  
different mode. Background debugging should not be used while the MCU is in special peripheral mode  
as internal bus conflicts between BDM and the external master can cause improper operation of both  
functions.  
75  
MC9S12H256 Device User Guide — V01.20  
4.3 Security  
The device will make available a security feature preventing the unauthorized read and write of the  
memory contents. This feature allows:  
Protection of the contents of FLASH,  
Protection of the contents of EEPROM,  
Operation in single-chip mode,  
Operation from external memory with internal FLASH and EEPROM disabled.  
The user must be reminded that part of the security must lie with the user’s code. An extreme example  
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose  
of security. At the same time the user may also wish to put a back door in the user’s program. An example  
of this is the user downloads a key through the SCI which allows access to a programming routine that  
updates parameters stored in EEPROM.  
4.3.1 Securing the Microcontroller  
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by  
programming the security bits located in the FLASH module. These non-volatile bits will keep the part  
secured through resetting the part and through powering down the part.  
The security byte resides in a portion of the Flash array.  
Check the Flash Block User Guide for more details on the security configuration.  
4.3.2 Operation of the Secured Microcontroller  
4.3.2.1 Normal Single Chip Mode  
This will be the most common usage of the secured part. Everything will appear the same as if the part was  
not secured with the exception of BDM operation. The BDM operation will be blocked.  
4.3.2.2 Executing from External Memory  
The user may wish to execute from external space with a secured microcontroller. This is accomplished  
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM  
operations will be blocked.  
4.3.3 Unsecuring the Microcontroller  
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be  
done through an external program in expanded mode.  
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.  
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program  
76  
MC9S12H256 Device User Guide — V01.20  
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally  
done through the BDM, but the user could also change to expanded mode (by writing the mode bits  
through the BDM) and jumping to an external program (again through BDM commands). Note that if the  
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be  
secured again.  
4.4 Low Power Modes  
Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop,  
and Wait Mode.  
77  
MC9S12H256 Device User Guide — V01.20  
78  
MC9S12H256 Device User Guide — V01.20  
Section 5 Resets and Interrupts  
5.1 Overview  
Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and  
interrupts.  
5.2 Vectors  
5.2.1 Vector Table  
Table 5-1 lists interrupt sources and vectors in default order of priority.  
Table 5-1 Reset and Interrupt Vector Table  
CCR  
Mask  
HPRIO Value  
to Elevate  
Vector Address  
Interrupt Source  
Local Enable  
$FFFE, $FFFF  
$FFFC, $FFFD  
$FFFA, $FFFB  
$FFF8, $FFF9  
$FFF6, $FFF7  
$FFF4, $FFF5  
$FFF2, $FFF3  
$FFF0, $FFF1  
$FFEE, $FFEF  
$FFEC, $FFED  
$FFEA, $FFEB  
$FFE8, $FFE9  
$FFE6, $FFE7  
$FFE4, $FFE5  
$FFE2, $FFE3  
$FFE0, $FFE1  
$FFDE, $FFDF  
$FFDC, $FFDD  
$FFDA, $FFDB  
$FFD8, $FFD9  
External or Power On Reset  
Clock Monitor fail reset  
COP failure reset  
None  
None  
None  
None  
COPCTL (CME, FCME)  
COP rate select  
None  
-
-
-
Unimplemented instruction trap None  
-
SWI  
XIRQ  
None  
X-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
None  
-
None  
-
IRQ  
INTCR (IRQEN)  
RTICTL (RTIE)  
TIE (C0I)  
$F2  
$F0  
$EE  
$EC  
$EA  
$E8  
$E6  
$E4  
$E2  
$E0  
$DE  
$DC  
$DA  
$D8  
Real Time Interrupt  
Timer channel 0  
Timer channel 1  
Timer channel 2  
Timer channel 3  
Timer channel 4  
Timer channel 5  
Timer channel 6  
Timer channel 7  
Timer overflow  
Pulse accumulator A overflow  
Pulse accumulator input edge  
SPI  
TIE (C1I)  
TIE (C2I)  
TIE (C3I)  
TIE (C4I)  
TIE (C5I)  
TIE (C6I)  
TIE (C7I)  
TSCR2 (TOI)  
PACTL (PAOVI)  
PACTL (PAI)  
SPICR1 (SPIE)  
SC0CR2  
(TIE, TCIE, RIE, ILIE)  
$FFD6, $FFD7  
$FFD4, $FFD5  
SCI0  
I-Bit  
$D6  
SC1CR2  
(TIE, TCIE, RIE, ILIE)  
SCI1  
ATD  
I-Bit  
I-Bit  
$D4  
$D2  
$FFD2, $FFD3  
$FFD0, $FFD1  
$FFCE, $FFCF  
$FFCC, $FFCD  
$FFCA, $FFCB  
ATDCTL2 (ASCIE)  
Reserved  
Port J  
Port H  
I-Bit  
I-Bit  
PTJIF (PTJIE)  
PTHIF (PTHIE)  
$CE  
$CC  
Reserved  
79  
MC9S12H256 Device User Guide — V01.20  
Table 5-1 Reset and Interrupt Vector Table  
CCR  
Mask  
HPRIO Value  
to Elevate  
Vector Address  
Interrupt Source  
Local Enable  
$FFC8, $FFC9  
$FFC6, $FFC7  
$FFC4, $FFC5  
$FFC2, $FFC3  
$FFC0, $FFC1  
$FFBE, $FFBF  
$FFBC, $FFBD  
$FFBA, $FFBB  
$FFB8, $FFB9  
$FFB6, $FFB7  
Reserved  
CRG PLL lock  
CRG Self Clock Mode  
Reserved  
I-Bit  
I-Bit  
CRGINT (LOCKIE)  
CRGINT (SCMIE)  
$C6  
$C4  
IIC Bus  
I-Bit  
IBCR (IBIE)  
$C0  
Reserved  
Reserved  
EEPROM  
FLASH  
I-Bit  
EECTL (CCIE, CBEIE)  
FCTL (CCIE, CBEIE)  
CAN0RIER (WUPIE)  
$BA  
$B8  
$B6  
I-Bit  
I-Bit  
CAN0 wake-up  
CAN0RIER (CSCIE,  
OVRIE)  
$FFB4, $FFB5  
CAN0 errors  
I-Bit  
$B4  
$FFB2, $FFB3  
$FFB0, $FFB1  
$FFAE, $FFAF  
CAN0 receive  
CAN0 transmit  
CAN1 wake-up  
I-Bit  
I-Bit  
I-Bit  
CAN0RIER (RXFIE)  
CAN0TIER (TXEIE[2:0])  
CAN0RIER (WUPIE)  
$B2  
$B0  
$AE  
CAN1RIER (CSCIE,  
OVRIE)  
$FFAC, $FFAD  
CAN1 errors  
I-Bit  
$AC  
$FFAA, $FFAB  
$FFA8, $FFA9  
CAN1 receive  
CAN1 transmit  
I-Bit  
I-Bit  
CAN1RIER (RXFIE)  
$AA  
$A8  
CAN1TIER (TXEIE[2:0])  
$FF98 to  
$FFA7  
Reserved  
$FF96, $FF97  
Motor Control Timer Overflow  
PWM Emergency Shutdown  
I-Bit  
MCCTL1 (MCOCIE)  
PWMSDN(PWMIE)  
$96  
$8C  
$FF9E to  
$FF95  
Reserved  
$FF8C, $FF8D  
I-Bit  
Reserved  
$FF80 to  
$FF8B  
5.3 Effects of Reset  
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the  
respective module Block User Guides for register reset states.  
5.3.1 I/O pins  
Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of  
reset.  
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.  
NOTE: For devices assembled in 112-pin LQFP packages all non-bonded out pins should  
be configured as outputs after reset in order to avoid current drawn from floating  
inputs. Refer to Table 2-1 for affected pins.  
80  
MC9S12H256 Device User Guide — V01.20  
5.3.2 Memory  
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset  
The RAM array is not automatically initialized out of reset.  
81  
MC9S12H256 Device User Guide — V01.20  
82  
MC9S12H256 Device User Guide — V01.20  
Section 6 HCS12 Core Block Description  
Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central  
processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed  
external bus interface (MEBI), breakpoint module (BKP) and background debug mode module (BDM).  
Section 7 Clock and Reset Generator (CRG) Block  
Description  
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.  
7.1 Device-specific information  
7.1.1 XCLKS  
The XCLKS input signal is active high (see 2.3.10 PE7 / FP22 / XCLKS / NOACC — Port E I/O Pin 7).  
Section 8 Timer (TIM) Block Description  
Consult the TIM_16B8C Block User Guide for information about the Timer module.  
Section 9 Analog to Digital Converter (ATD) Block  
Description  
Consult the ATD_10B16C Block User Guide for information about the Analog to Digital Converter  
module.  
Section 10 Inter-IC Bus (IIC) Block Description  
Consult the IIC Block User Guide for information about the Inter-IC Bus module.  
Section 11 Serial Communications Interface (SCI) Block  
Description  
83  
MC9S12H256 Device User Guide — V01.20  
There are two Serial Communications Interfaces (SCI0 and SCI1) implemented on the MC9S12H256  
device and one SCI (SCI0) on MC9S12H128. Consult the SCI Block User Guide for information about  
each Serial Communications Interface module.  
Section 12 Serial Peripheral Interface (SPI) Block  
Description  
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.  
Section 13 Pulse Width Modulator (PWM) Block  
Description  
Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator module.  
Section 14 Flash EEPROM 256K Block Description  
Consult the FTS256K Block User Guide for information about the flash module.  
Section 15 EEPROM 4K Block Description  
Consult the EETS4K Block User Guide for information about the EEPROM module.  
Section 16 RAM Block Description  
The RAM module does not contain any control registers. Thus no Block User Guide is available.  
This module supports single-cycle misaligned word accesses without wait states.  
Section 17 Liquid Crystal Display Driver (LCD) Block  
Description  
Consult the LCD_32F4B Block User Guide for information about the Liquid Crystal Display Driver  
module.  
Section 18 MSCAN Block Description  
84  
MC9S12H256 Device User Guide — V01.20  
There are two MSCAN modules (CAN0 and CAN1) implemented on the MC9S12H256 device. Consult  
the MSCAN Block User Guide for information on each MSCAN.  
Section 19 PWM Motor Control (MC) Block Description  
Consult the MC_10B12C Block User Guide for information about the PWM Motor Control module.  
Section 20 Port Integration Module (PIM) Block Description  
Consult the PIM_9H256 Block User Guide for information about the Port Integration Module.  
Section 21 Voltage Regulator (VREG) Block Description  
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.  
21.1 Device-specific information  
21.1.1 VREGEN  
There is no VREGEN pin implemented on this device.  
21.1.2 Modes of Operation  
21.1.2.1 Run Mode  
VREG enters run mode whenever the CPU is neither in Stop nor in Pseudo Stop mode. Both regulating  
loops operate in Run mode with full performance.  
21.1.2.2 Standby Mode  
VREG enters Standby mode when the CPU operates either in Stop or in Pseudo Stop mode. The supply of  
the core logic as well as the oscillators are derived from two voltage clamps. Standby mode minimizes  
quiescent current drawn by the voltage regulator block.  
21.1.2.3 Shutdown Mode  
VREG Shutdown mode is not available on MC9S12H family devices.  
85  
MC9S12H256 Device User Guide — V01.20  
21.2 Recommended PCB layout  
Figure 21-1 LQFP112 recommended PCB layout  
VDDX1  
VDDM1  
C7  
VSSM1  
VSS1  
C1  
VDD1  
VDDM2  
C6  
VSSM2  
VDDA  
VDDM3  
C5  
C2  
VSSA  
VSSM3  
VDDR/  
VDDX2  
Q1  
VSSPLL  
VDDPLL  
R1  
86  
MC9S12H256 Device User Guide — V01.20  
Figure 21-2 LQFP144 recommended PCB layout  
VDDX1  
VDDM1  
C7  
VSSM1  
VSS1  
C1  
VDD1  
VDDM2  
C6  
VSSM2  
VDDA  
VDDM3  
C5  
C2  
VSSA  
VSSM3  
VDDR/  
VDDX2  
Q1  
VSSPLL  
VDDPLL  
R1  
87  
MC9S12H256 Device User Guide — V01.20  
Table 21-1 Recommended Components  
Component  
Purpose  
Type  
Value  
100 .. 220nF  
>=100nF  
C1  
C2  
VDD1 filter cap  
VDDA filter cap  
VDDX2 filter cap  
VDDR filter cap  
VDDM3 filter cap  
VDDM2 filter cap  
VDDM1 filter cap  
VDDX1 filter cap  
VDDPLL filter cap  
OSC load cap  
ceramic X7R  
X7R/tantalum  
X7R/tantalum  
X7R/tantalum  
X7R/tantalum  
X7R/tantalum  
X7R/tantalum  
X7R/tantalum  
ceramic X7R  
C3  
>=100nF  
C4  
>=100nF  
C5  
>=100nF  
C6  
>=100nF  
C7  
>=100nF  
C8  
>=100nF  
C9  
100nF .. 220nF  
C10  
C11  
C12  
C13  
C14  
R1  
OSC load cap  
PLL loop filter cap  
PLL loop filter cap  
DC cutoff cap  
See CRG Block User Guide  
PLL loop filter res  
Quartz/Resonator  
Q1  
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the  
MCU itself. The following rules must be observed:  
Every supply pair must be decoupled by a ceramic/tantalum capacitor connected as near as possible  
to the corresponding pins(C1 – C9).  
Central point of the ground star should be the VSS1 pin.  
Use low ohmic low inductance connections between VSS1, VSS2, VSSA, VSSX1,2 and  
VSSM1,2,3.  
VSSPLL must be directly connected to VSS1.  
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C10,  
C11, C14 and Q1 as small as possible.  
Do not place other signals or supplies underneath area occupied by C10, C11, C14 and Q1 and the  
connection area to the MCU.  
Central power input should be fed in at the VDDA/VSSA pins.  
88  
MC9S12H256 Device User Guide — V01.20  
Appendix A Electrical Characteristics  
A.1 General  
This supplement contains the most accurate electrical information for the MC9S12H256 and  
MC9S12H128 microcontroller available at the time of publication.  
This introduction is intended to give an overview on several common topics like power supply, current  
injection etc.  
A.1.1 Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate.  
NOTE: This classification is shown in the column labeled “C” in the parameter tables  
where appropriate.  
P:  
Those parameters are guaranteed during production testing on each individual device.  
C:  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
T:  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within  
this category.  
D:  
Those parameters are derived mainly from simulations.  
A.1.2 Power Supply  
The MC9S12H256 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL  
as well as the digital core.  
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.  
The VDDX1/VSSX1 and VDDX2/VSSX2 pairs supply the I/O pins except PH, PU, PV and PW. VDDR  
supplies the internal voltage regulator.  
VDDM1/VSSM1, VDDM2/VSSM2 and VDDM3/VSSM3 pairs supply the ports PH, PU, PV and PW.  
89  
MC9S12H256 Device User Guide — V01.20  
VDD1, VSS1 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator  
and the PLL.  
VSS1 and VSS2 are internally connected by metal.  
VDDA, VDDX1, VDDX2, VDDM as well as VSSA, VSSX1, VSSX2 and VSSM are connected by  
anti-parallel diodes for ESD protection.  
NOTE: In the following context VDD5 is used for either VDDA, VDDM, VDDR and  
VDDX1/2; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted.  
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX1/2, VDDM  
and VDDR pins.  
VDD is used for VDD1 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL.  
IDD is used for the sum of the currents flowing into VDD1 and VDDPLL.  
A.1.3 Pins  
There are four groups of functional pins.  
A.1.3.1 5V I/O pins  
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog  
inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of  
the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down  
resistors are disabled permanently.  
A.1.3.2 Analog Reference  
This group is made up by the VRH and VRL pins.  
A.1.3.3 Oscillator  
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied  
by VDDPLL.  
A.1.3.4 TEST  
This pin is used for production testing only.  
A.1.4 Current Injection  
Power supply must maintain regulation within operating V  
or V range during instantaneous and  
DD  
DD5  
operating maximum current conditions. If positive injection current (V > V  
) is greater than I  
, the  
in  
DD5  
DD5  
injection current may flow out of VDD5 and could result in external power supply going out of regulation.  
Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the  
90  
MC9S12H256 Device User Guide — V01.20  
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is  
very low which would reduce overall power consumption.  
A.1.5 Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima  
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the  
device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (e.g., either V  
or V  
).  
SS5  
DD5  
1
Table A-1 Absolute Maximum Ratings  
Num  
Rating  
Symbol  
Min  
–0.3  
–0.3  
–0.3  
Max  
6.0  
Unit  
V
VDD5  
1
2
3
I/O, Regulator and Analog Supply Voltage  
Digital Logic Supply Voltage 2  
PLL Supply Voltage 2  
VDD  
3.0  
V
VDDPLL  
3.0  
V
Voltage difference VDDX1 to VDDX2 to VDDM and  
VDDA  
4
–0.3  
0.3  
V
VDDX  
5
6
7
8
9
Voltage difference VSSX to VSSR and VSSA  
Digital I/O Input Voltage  
Analog Reference  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.3  
6.0  
V
V
V
V
V
VSSX  
VIN  
V
RH, VRL  
VILV  
VTEST  
6.0  
XFC, EXTAL, XTAL inputs  
TEST input  
3.0  
10.0  
Instantaneous Maximum Current  
ID  
Single pin limit for all digital I/O pins except PU, PV  
and PW 3  
10  
–25  
+25  
mA  
Instantaneous Maximum Current  
Single pin limit for Port PU, PV and PW 4  
ID  
11  
12  
13  
–55  
–25  
+55  
+25  
mA  
mA  
Instantaneous Maximum Current  
Single pin limit for XFC, EXTAL, XTAL5  
IDL  
Instantaneous Maximum Current  
Single pin limit for TEST 6  
IDT  
–0.25  
– 65  
0
mA  
Tstg  
14  
Storage Temperature Range  
155  
°C  
NOTES:  
1. Beyond absolute maximum ratings device might be damaged.  
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.  
The absolute maximum ratings apply when the device is powered from an external source.  
3. All digital I/O pins are internally clamped to VSSX1/2 and VDDX1/2, VSSM and VDDM or VSSA and VDDA  
.
4. Ports PU, PV, PW are internally clamped to VSSM and VDDM  
.
91  
MC9S12H256 Device User Guide — V01.20  
5. Those pins are internally clamped to VSSPLL and VDDPLL  
.
6. This pin is clamped low to VSSPLL, but not clamped high. This pin must be tied low in applications.  
A.1.6 ESD Protection and Latch-up Immunity  
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body  
Model (HBM), the Machine Model (MM) and the Charge Device Model.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
Table A-2 ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
1500  
100  
Unit  
Series Resistance  
R1  
C
Storage Capacitance  
pF  
Human Body  
Number of Pulse per pin  
positive  
negative  
3
3
Series Resistance  
R1  
C
0
pF  
Storage Capacitance  
200  
Machine  
Latch-up  
Number of Pulse per pin  
positive  
negative  
3
3
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Table A-3 ESD and Latch-Up Protection Characteristics  
Num C  
Rating  
Symbol  
VHBM  
Min  
2000  
200  
Max  
Unit  
1
2
3
C Human Body Model (HBM)  
V
V
V
VMM  
C Machine Model (MM)  
VCDM  
C Charge Device Model (CDM)  
Latch-up Current at TA = 125°C  
500  
ILAT  
4
5
C
+100  
–100  
mA  
mA  
positive  
negative  
Latch-up Current at TA = 27°C  
ILAT  
C
+200  
–200  
positive  
negative  
92  
MC9S12H256 Device User Guide — V01.20  
A.1.7 Operating Conditions  
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions  
apply to all the following data.  
NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the  
ambient temperature T and the junction temperature T . For power dissipation  
A
J
calculations refer to Section A.1.8 Power Dissipation and Thermal  
Characteristics.  
Table A-4 Operating Conditions  
Rating  
Symbol  
Min  
4.5  
Typ  
5
Max  
5.25  
2.75  
2.75  
0.1  
Unit  
V
VDD5  
I/O, Regulator and Analog Supply Voltage  
Digital Logic Supply Voltage 1  
VDD  
2.35  
2.35  
–0.1  
–0.1  
0.5  
2.5  
2.5  
0
V
PLL Supply Voltage 2  
VDDPLL  
V
Voltage Difference VDDX to VDDR and VDDA  
Voltage Difference VSSX to VSSR and VSSA  
Oscillator  
V
VDDX  
0
0.1  
V
VSSX  
fosc  
fbus  
16  
MHz  
MHz  
Bus Frequency  
0.5  
16  
MC9S12H256C, MC9S12H128C  
Operating Junction Temperature Range  
TJ  
TA  
–40  
–40  
100  
85  
°C  
°C  
Operating Ambient Temperature Range 2  
MC9S12H256V, MC9S12H128V  
27  
TJ  
TA  
Operating Junction Temperature Range  
–40  
–40  
120  
105  
°C  
°C  
Operating Ambient Temperature Range 2  
MC9S12H256M, MC9S12H128M  
27  
TJ  
TA  
Operating Junction Temperature Range  
–40  
–40  
140  
125  
°C  
°C  
Operating Ambient Temperature Range 2  
27  
NOTES:  
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The  
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external  
source.  
2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the rela-  
tion between ambient temperature TA and device junction temperature TJ.  
A.1.8 Power Dissipation and Thermal Characteristics  
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum  
operating junction temperature is not exceeded. The average chip-junction temperature (T ) in °C can be  
J
obtained from:  
93  
MC9S12H256 Device User Guide — V01.20  
T = T + (P • Θ  
)
J
A
D
JA  
T = Junction Temperature, [°C]  
J
T
= Ambient Temperature, [°C]  
A
D
P
= Total Chip Power Dissipation, [W]  
Θ
= Package Thermal Resistance, [°C/W]  
JA  
The total power dissipation can be calculated from:  
= P  
P
+ P  
D
INT  
IO  
P
= Chip Internal Power Dissipation, [W]  
INT  
P
= I  
P
V  
+ I  
V  
INT  
DDR DDR DDA DDA  
2
=
R
I  
DSON IO  
IO  
i
i
P is the sum of all output currents on I/O ports associated with VDDX1,2 and VDDM1,2,3.  
IO  
1
Table A-5 Thermal Package Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Thermal Resistance LQFP112, single sided PCB2  
oC/W  
θJA  
1
2
3
4
T
54  
Thermal Resistance LQFP112, double sided PCB  
with 2 internal planes3  
oC/W  
oC/W  
oC/W  
θJA  
θJA  
θJA  
T
41  
45  
37  
T Thermal Resistance LQFP 144, single sided PCB  
Thermal Resistance LQFP 144, double sided PCB  
with 2 internal planes  
T
NOTES:  
1. The values for thermal resistance are achieved by package simulations  
2. PC Board according to EIA/JEDEC Standard 51-2  
3. PC Board according to EIA/JEDEC Standard 51-7  
A.1.9 I/O Characteristics  
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.  
not all pins feature pull up/down resistances.  
94  
MC9S12H256 Device User Guide — V01.20  
95  
MC9S12H256 Device User Guide — V01.20  
Table A-6 5V I/O Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
VIH  
0.65*VDD5  
VDD5 + 0.3  
1
2
3
P Input High Voltage  
V
VIL  
VSS5 – 0.3  
0.35*VDD5  
P Input Low Voltage  
C Input Hysteresis  
V
VHYS  
250  
mV  
Input Leakage Current except PU, PV, PW (pins in  
high impedance input mode)1  
Vin = VDD5 or VSS5  
Iin  
4
5
P
P
–1.0  
–2.5  
1.0  
2.5  
µA  
µA  
Input Leakage Current PU, PV, PW (pins in high  
impedance input mode)2  
Vin = VDD5 or VSS5  
Iin  
Output High Voltage (pins in output mode, except PU,  
PV and PW)  
VOH  
VDD5 – 0.8  
6
7
P
P
V
V
Partial Drive I  
= –1.0mA  
OH  
= –10mA  
Full Drive I  
OH  
Output Low Voltage (pins in output mode except PU,  
PV and PW)  
VOL  
0.8  
Partial Drive I  
= +1.0mA  
OL  
= +10mA  
Full Drive I  
OL  
Output High Voltage (pins PU, PV and PW in output  
VOH  
VOL  
VDD5 – 0.32 VDD5 – 0.2  
8
9
P
P
V
V
mode) I  
= –20mA  
OH  
Output Low Voltage (pins PU, PV and PW in output  
.2  
0.32  
mode) I = +20mA  
OL  
Output Rise Time (pins PU, PV and PW in output  
mode with slew control enabled) VDD5=5V,  
10  
11  
P Rload=1K, 10% to 90% of VOH  
tr  
1203  
100  
1803  
130  
60  
60  
ns  
-40°C, EPP package  
25°C, 140°C  
Output Fall Time (pins PU, PV and PW in output  
mode with slew control enabled) VDD5=5V,  
tf  
P Rload=1K, 10% to 90% of VOH  
1203  
100  
1803  
130  
60  
60  
ns  
-40°C, EPP package  
25°C, 140°C  
Internal Pull Up Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
IPDL  
12  
13  
14  
15  
P
–10  
–130  
µA  
µA  
µA  
µA  
Internal Pull Up Device Current,  
tested at VIH Min.  
P
Internal Pull Down Device Current,  
tested at VIH Min.  
P
130  
Internal Pull Down Device Current,  
tested at VIL Max.  
P
10  
96  
MC9S12H256 Device User Guide — V01.20  
Table A-6 5V I/O Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Cin  
16 D Input Capacitance  
Injection current4  
6
pF  
IICS  
IICP  
17  
T
–2.5  
–25  
2.5  
25  
mA  
Single Pin limit  
Total Device Limit. Sum of all injected currents  
Port H, J Interrupt Input Pulse filtered5  
Port H, J Interrupt Input Pulse passed5  
tPULSE  
tPULSE  
18  
19  
P
P
3
µs  
µs  
10  
NOTES:  
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for  
each 8 C to 12 C in the temperature range from 50 C to 125 C.  
2. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for  
each 8 C to 12 C in the temperature range from 50 C to 125 C.  
3. This only applies to the EPP package, non-EPP packages retain the 100ns typ and 130ns max spec.  
4. Refer to Section A.1.4 Current Injection, for more details  
5. Parameter only applies in STOP or Pseudo STOP mode.  
A.1.10 Supply Currents  
This section describes the current consumption characteristics of the device as well as the conditions for  
the measurements.  
A.1.10.1 Measurement Conditions  
All measurements are without output loads. Unless otherwise noted the currents are measured in single  
chip mode, internal voltage regulator enabled and at 16MHz bus frequency using a 4MHz oscillator in  
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.  
A.1.10.2 Additional Remarks  
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data  
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be  
97  
MC9S12H256 Device User Guide — V01.20  
given. A very good estimate is to take the single chip currents and add the currents due to the external  
loads.  
Table A-7 Supply Current Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Run supply currents  
1
P
mA  
IDD5  
Single Chip, Internal regulator enabled  
65  
Wait Supply current  
All modules enabled, PLL on  
only RTI enabled 1  
IDDW  
2
P
P
40  
5
mA  
Pseudo Stop Current (RTI and COP disabled) 1, 2  
–40°C  
C
P
C
C
P
C
P
C
P
360  
420  
760  
800  
950  
1000  
1500  
1700  
2500  
27°C  
520  
70°C  
85°C  
IDDPS  
3
4
5
µA  
C Temp Option 100°C  
105°C  
V Temp Option 120°C  
125°C  
M Temp Option 140° C  
2000  
3300  
4800  
Pseudo Stop Current (RTI and COP enabled) 1, 2  
C
C
C
C
C
C
C
420  
480  
820  
–40°C  
27°C  
70°C  
85°C  
105°C  
125°C  
140°C  
IDDPS  
µA  
860  
1050  
1700  
2500  
Stop Current 2  
C
P
C
C
P
C
P
C
P
20  
40  
–40°C  
27°C  
70°C  
85°C  
100  
200  
300  
550  
700  
1200  
1400  
2200  
IDDS  
µA  
1500  
2900  
4500  
C Temp Option 100°C  
105°C  
V Temp Option 120°C  
125°C  
M Temp Option 140°C  
NOTES:  
1. PLL off  
2. At those low power dissipation levels TJ = TA can be assumed  
98  
MC9S12H256 Device User Guide — V01.20  
A.2 ATD Characteristics  
This section describes the characteristics of the analog to digital converter.  
A.2.1 ATD Operating Characteristics  
The Table A-8 shows conditions under which the ATD operates.  
The following constraints exist to obtain full-scale, full range results:  
V
V V V V  
. This constraint exists since the sample buffer amplifier can not drive  
SSA  
RL  
IN  
RH  
DDA  
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively  
be clipped.  
Table A-8 ATD Operating Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
/2  
Unit  
Reference Potential  
1
D
Low  
High  
V
V
V
V
V
RL  
SSA  
DDA  
V
V
/2  
V
RH  
DDA  
DDA  
Differential Reference Voltage1  
2
3
C
V
f
–V  
4.50  
0.5  
5.00  
5.25  
2.0  
V
RH  
RL  
D ATD Clock Frequency  
MHz  
ATDCLK  
ATD 10-Bit Conversion Period  
D
Clock Cycles2  
4
5
N
T
14  
7
28  
14  
Cycles  
µs  
CONV10  
Conv, Time at 2.0MHz ATD Clock fATDCLK  
CONV10  
ATD 8-Bit Conversion Period  
Clock Cycles2  
D
D
N
T
12  
6
26  
13  
Cycles  
µs  
CONV8  
CONV8  
Conv, Time at 2.0MHz ATD Clock fATDCLK  
Stop Recovery Time (VDDA=5.0 Volts)  
6
7
t
20  
µs  
SR  
P Reference Supply current  
I
0.375  
mA  
REF  
NOTES:  
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V  
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample  
period of 16 ATD clocks.  
A.2.2 Factors influencing accuracy  
Three factors – source resistance, source capacitance and current injection – have an influence on the  
accuracy of the ATD.  
A.2.2.1 Source Resistance:  
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance  
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R  
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or  
S
99  
MC9S12H256 Device User Guide — V01.20  
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source  
resistance is allowed.  
A.2.2.2 Source Capacitance  
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due  
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input  
voltage 1LSB, then the external filter capacitor, C 1024 * (C – C ).  
f
INS  
INN  
A.2.2.3 Current Injection  
There are two cases to consider.  
1. A current is injected into the channel being converted. The channel being stressed has conversion  
values of $3FF ($FF in 8-bit mode) for analog inputs greater than V and $000 for values less than  
RH  
V
unless the current is higher than specified as disruptive condition.  
RL  
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this  
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy  
of the conversion depending on the source resistance.  
The additional input voltage error on the converted channel can be calculated as V  
= K * R *  
ERR  
S
I
, with I being the sum of the currents injected into the two pins adjacent to the converted  
INJ  
INJ  
channel.  
Table A-9 ATD Electrical Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
RS  
1
C Max input Source Resistance  
1
KΩ  
Total Input Capacitance  
T Non Sampling  
Sampling  
CINN  
CINS  
2
10  
22  
pF  
INA  
Kp  
Kn  
3
4
5
C Disruptive Analog Input Current  
–2.5  
2.5  
mA  
A/A  
A/A  
10–4  
10–2  
C Coupling Ratio positive current injection  
C Coupling Ratio negative current injection  
100  
MC9S12H256 Device User Guide — V01.20  
A.2.3 ATD accuracy  
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input  
capacitance and source resistance.  
Table A-10 ATD Conversion Performance  
Conditions are shown in Table A-4 unless otherwise noted  
VREF = VRH – VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV  
f
= 2.0MHz  
ATDCLK  
Num C  
Rating  
Symbol  
LSB  
DNL  
INL  
Min  
Typ  
Max  
Unit  
mV  
1
2
3
4
5
6
7
8
P 10-Bit Resolution  
5
P 10-Bit Differential Nonlinearity  
P 10-Bit Integral Nonlinearity  
–1  
–2.5  
–3  
1
2.5  
3
Counts  
Counts  
Counts  
mV  
1.5  
2.0  
20  
10-Bit Absolute Error1  
P
AE  
P 8-Bit Resolution  
LSB  
DNL  
INL  
P 8-Bit Differential Nonlinearity  
P 8-Bit Integral Nonlinearity  
–0.5  
–1.0  
–1.5  
0.5  
1.0  
1.5  
Counts  
Counts  
Counts  
0.5  
1.0  
8-Bit Absolute Error1  
P
AE  
NOTES:  
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.  
For the following definitions see also Figure A-1.  
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.  
V V  
i
i 1  
DNL(i) =  
1  
------------------------  
1LSB  
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:  
n
V V  
n
0
-------------------  
1LSB  
INL(n) =  
DNL(i) =  
n  
i = 1  
101  
MC9S12H256 Device User Guide — V01.20  
DNL  
10-Bit Absolute Error Boundary  
LSB  
V
V
i
i–1  
$3FF  
$3FE  
$3FD  
$3FC  
$3FB  
$3FA  
$3F9  
$3F8  
$3F7  
$3F6  
$3F5  
$3F4  
$3F3  
8-Bit Absolute Error Boundary  
$FF  
$FE  
$FD  
2
9
8
7
6
5
4
3
2
1
0
Ideal Transfer Curve  
10-Bit Transfer Curve  
1
8-Bit Transfer Curve  
5
10  
15  
20  
25  
30  
35  
40  
45  
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120  
Vin  
mV  
Figure A-1 ATD Accuracy Definitions  
NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.  
102  
MC9S12H256 Device User Guide — V01.20  
A.3 NVM, Flash and EEPROM  
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for  
both Flash and EEPROM.  
A.3.1 NVM timing  
The time base for all NVM program or erase operations is derived from the oscillator. A minimum  
oscillator frequency f  
is required for performing program or erase operations. The NVM modules  
NVMOSC  
do not have any means to monitor the frequency and will not prevent program or erase operation at  
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at  
a lower frequency a full program or erase transition is not assured.  
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator  
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within  
the limits specified as f  
.
NVMOP  
The minimum program and erase times shown in Table A-11 are calculated for maximum f  
and  
NVMOP  
maximum f . The maximum times are calculated for minimum f  
and a f of 2MHz.  
bus  
NVMOP  
bus  
A.3.1.1 Single Word Programming  
The programming time for single word programming is dependant on the bus frequency as a well as on  
the frequency f and can be calculated according to the following formula.  
NVMOP  
1
1
t
= 9 ⋅  
+ 25 ⋅  
---------------------  
----------  
swpgm  
f
f
NVMOP  
bus  
A.3.1.2 Burst Programming  
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst  
programming by keeping the command pipeline filled. The time to program a consecutive word can be  
calculated as:  
1
1
t
= 4 ⋅  
+ 9 ⋅  
---------------------  
----------  
bwpgm  
f
f
NVMOP  
bus  
The time to program a whole row is:  
t
= t  
+ 31 t  
swpgm bwpgm  
brpgm  
Burst programming is more than 2 times faster than single word programming.  
103  
MC9S12H256 Device User Guide — V01.20  
A.3.1.3 Sector Erase  
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:  
1
t
4000 ⋅  
---------------------  
era  
f
NVMOP  
The setup time can be ignored for this operation.  
A.3.1.4 Mass Erase  
Erasing a NVM block takes:  
1
t
20000 ⋅  
---------------------  
mass  
The setup time can be ignored for this operation.  
f
NVMOP  
Table A-11 NVM Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
fNVMOSC  
fNVMBUS  
fNVMOP  
tswpgm  
Min  
0.5  
1
Typ  
Max  
Unit  
MHz  
MHz  
kHz  
µs  
32 1  
1
2
3
4
5
6
7
8
D External Oscillator Clock  
D Bus frequency for Programming or Erase Operations  
D Operating Frequency  
150  
200  
74.5 3  
31 3  
46 2  
20.4 2  
678.4 2  
20 5  
P Single Word Programming Time  
Flash Burst Programming consecutive word 4  
Flash Burst Programming Time for 32 Words 4  
tbwpgm  
tbrpgm  
tera  
D
D
µs  
1035.5 3  
26.7 3  
133 3  
µs  
P Sector Erase Time  
P Mass Erase Time  
ms  
100 5  
tmass  
ms  
NOTES:  
1. Restrictions for oscillator in crystal mode apply!  
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency  
fbus  
.
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus  
Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.  
.
4. urst Programming operations are not applicable to EEPROM  
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP  
.
A.3.2 NVM Reliability  
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process  
monitors and burn-in to screen early life failures.  
104  
MC9S12H256 Device User Guide — V01.20  
The failure rates for data retention and program/erase cycling are specified at the operating conditions  
noted.  
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is  
executed.  
Table A-12 NVM Reliability Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Data Retention  
Num C  
Rating  
Cycles  
Unit  
Lifetime  
10  
1
2
C Flash/EEPROM (-40˚C to +125˚C)  
C EEPROM (-40˚C to +125˚C)  
15  
5
Years  
Years  
10,000  
NOTE: Flash cycling performance is 10 cycles at -40˚C to +125˚C. Data retention is  
specified for 15 years.  
NOTE: EEPROM cycling performance is 10K cycles at -40˚C to 125˚C. Data retention is  
specified for 5 years on words after cycling 10K times. However if only 10 cycles  
are executed on a word the data retention is specified for 15 years.  
105  
MC9S12H256 Device User Guide — V01.20  
106  
MC9S12H256 Device User Guide — V01.20  
A.4 Reset, Oscillator and PLL  
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and  
Phase-Locked-Loop (PLL).  
A.4.1 Startup  
Table A-13 summarizes several startup characteristics explained in this section. Detailed description of  
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.  
Table A-13 Startup Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
VPORR  
VPORA  
PWRSTL  
nRST  
Min  
Typ  
Max  
Unit  
V
1
2
3
4
5
6
T POR release level  
T POR assert level  
2.07  
0.97  
2
V
tosc  
nosc  
D Reset input pulse width, minimum input time  
D Startup from Reset  
192  
20  
196  
14  
PWIRQ  
tWRS  
D Interrupt pulse width, IRQ edge-sensitive mode  
D Wait recovery startup time  
ns  
tcyc  
A.4.1.1 POR  
The release level V  
and the assert level V  
are derived from the VDD supply. They are also valid  
PORA  
PORR  
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check  
are started. If after a time t no valid oscillation is detected, the MCU will start using the internal self  
CQOUT  
clock. The fastest startup time possible is given by n  
.
uposc  
A.4.1.2 SRAM Data Retention  
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing  
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset  
the PORF bit in the CRG Flags Register has not been set.  
A.4.1.3 External Reset  
When external reset is asserted for a time greater than PW  
the CRG module generates an internal  
RSTL  
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an  
oscillation before reset.  
107  
MC9S12H256 Device User Guide — V01.20  
A.4.1.4 Stop Recovery  
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR  
is performed before releasing the clocks to the system.  
A.4.1.5 Pseudo Stop and Wait Recovery  
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in  
both modes. The controller can be woken up by internal or external interrupts. After t the CPU starts  
wrs  
fetching the interrupt vector.  
A.4.2 Oscillator  
The device features an internal Colpitts oscillator. By asserting the XCLKS input during reset this  
oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the  
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP  
or oscillator fail. t  
specifies the maximum time before switching to the internal self clock mode after  
CQOUT  
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum  
oscillator start-up time t . The device also features a clock monitor. A Clock Monitor Failure is  
UPOSC  
asserted if the frequency of the incoming clock signal is below the Assert Frequency f  
CMFA.  
Table A-14 Oscillator Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
fOSC  
Min  
0.5  
Typ  
Max  
Unit  
MHz  
1
2
3
4
5
6
7
8
9
C Crystal oscillator range  
P Startup Current  
16  
iOSC  
100  
µA  
nUPOSC  
cycOSC  
D Oscillator start-up time from POR or STOP  
C Oscillator start-up time  
4100  
81  
1002  
2.5  
tUPOSC  
tCQOUT  
fCMFA  
fEXT  
ms  
s
D Clock Quality check time-out  
0.45  
50  
P Clock Monitor Failure Assert Frequency  
100  
200  
32  
KHz  
MHz  
ns  
External square wave input frequency3  
P
0.5  
15  
tEXTL  
tEXTH  
tEXTR  
tEXTF  
CIN  
D External square wave pulse width low  
D External square wave pulse width high  
15  
ns  
10 D External square wave rise time  
11 D External square wave fall time  
12 D Input Capacitance EXTAL pin  
13 D Input Capacitance XTAL pin  
DC Operating Bias in Colpitts Configuration on  
1
1
ns  
ns  
9
pF  
pF  
CIN  
13  
VDCBIAS  
14  
C
1.1  
V
EXTAL Pin  
NOTES:  
1. fosc = 4MHz, C = 22pF.  
2. Maximum value is for extreme cases using high Q, low frequency crystals  
108  
MC9S12H256 Device User Guide — V01.20  
3. XCLKS =1 during reset  
A.4.3 Phase Locked Loop  
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)  
is also the system clock source in self clock mode.  
A.4.3.1 XFC Component Selection  
This section describes the selection of the XFC components to achieve a good filter characteristics.  
VDDPLL  
C
C
s
p
R
Phase  
VCO  
f
f
vco  
f
1
ref  
osc  
K
K
Φ
V
refdv+1  
Detector  
f
cmp  
Loop Divider  
1
1
synr+1  
2
Figure A-2 Basic PLL functional diagram  
The following procedure can be used to calculate the resistance and capacitance values using typical  
values for K , f and i from Table A-15.  
1
1
ch  
The VCO Gain at the desired VCO output frequency is approximated by:  
(f1 fvco  
)
-----------------------  
K1 1V  
K = K e  
V
1
The phase detector relationship is given by:  
K = i K  
V
Φ
ch  
i is the current in tracking mode.  
ch  
109  
MC9S12H256 Device User Guide — V01.20  
The loop bandwidth f should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,  
C
typical values are 50. ζ = 0.9 ensures a good transient response.  
2 ⋅ ζ ⋅ f  
f
ref  
1
ref  
f < ------------------------------------------  
f < ------------- ;= 0.9)  
------  
50  
C
C
4 50  
2
π ⋅ ζ + 1 + ζ  
And finally the frequency relationship is defined as  
f
VCO  
n = ------------- = 2 ⋅ (s y n r + 1 )  
f
ref  
With the above inputs the resistance can be calculated as:  
2 ⋅ π ⋅ n f  
C
R = ----------------------------  
K
Φ
The capacitance C can now be calculated as:  
s
2
0.516  
2 ⋅ ζ  
C =  
--------------;= 0.9)  
---------------------  
s
f R  
π ⋅ f R  
C
C
The capacitance C should be chosen in the range of:  
p
C 20 C C 10  
s
p
s
The stabilization delays shown in Table A-15 are dependant on PLL operational settings and external  
component selection (e.g. crystal, XFC filter).  
A.4.3.2 Jitter Information  
The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock f , the  
cmp  
deviation from the reference clock f is measured and input voltage to the VCO is adjusted  
ref  
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.  
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock  
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3.  
110  
MC9S12H256 Device User Guide — V01.20  
1
2
3
N–1  
N
0
t
min1  
t
nom  
t
max1  
t
minN  
t
maxN  
Figure A-3 Jitter Definitions  
is at its maximum for one clock period, and decreases towards zero for larger  
The relative deviation of t  
nom  
number of clock periods (N).  
Defining the jitter as:  
t
(N)  
t
(N)  
min  
max  
J(N) = max 1 –  
, 1 –  
--------------------  
---------------------  
N t  
N t  
nom  
nom  
For N < 100, the following equation is a good fit for the maximum jitter:  
j
1
J(N) =  
+ j  
-------  
2
N
J(N)  
1
5
10  
20  
N
Figure A-4 Maximum bus clock jitter approximation  
111  
MC9S12H256 Device User Guide — V01.20  
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the  
effect of the jitter to a large extent.  
Table A-15 PLL Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
fSCM  
Min  
1
Typ  
Max  
5.5  
Unit  
MHz  
MHz  
1
2
P Self Clock Mode frequency  
D VCO locking range  
fVCO  
8
32  
Lock Detector transition from Acquisition to Tracking  
mode  
1
|∆trk  
|
3
D
3
4
%
1
|∆Lock  
|
4
5
D Lock Detection  
0
1.5  
2.5  
%
1
|∆unl  
|
D Un-Lock Detection  
0.5  
%
Lock Detector transition from Tracking to Acquisition  
mode  
1
|∆unt  
|
6
D
6
8
%
PLLON Total Stabilization delay (Auto Mode) 2  
C
tstab  
tacq  
tal  
7
8
0.5  
0.3  
ms  
ms  
PLLON Acquisition mode stabilization delay 2  
D
PLLON Tracking mode stabilization delay 2  
D
9
0.2  
ms  
Fitting parameter VCO loop gain3  
P
K1  
f1  
10  
–120  
75  
-224  
MHz/V  
MHz  
µA  
11 D Fitting parameter VCO loop frequency  
| ich  
| ich  
j1  
|
12  
13  
14  
15  
P Charge pump current acquisition mode  
P Charge pump current tracking mode  
20  
2
38.5  
3.5  
60  
6
|
µA  
Jitter fit parameter 12  
C
1.1  
0.13  
%
Jitter fit parameter 22  
C
j2  
%
NOTES:  
1. % deviation from target frequency  
2. fREF = 4MHz, fBUS = 16MHz equivalent fVCO = 32MHz: REFDV = #$03, SYNR = #$0F, Cs = 4.7nF, Cp = 470pF, Rs = 10K.  
3. K1 is measured with VXFC = 1.4V and VXFC = 1.7V @ VDD5 = 5.25V  
112  
MC9S12H256 Device User Guide — V01.20  
A.5 MSCAN  
Table A-16 MSCAN Wake-up Pulse Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
tWUP  
Min  
Typ  
Max  
Unit  
µs  
1
2
P MSCAN Wake-up dominant pulse filtered  
P MSCAN Wake-up dominant pulse pass  
2
tWUP  
5
µs  
113  
MC9S12H256 Device User Guide — V01.20  
114  
MC9S12H256 Device User Guide — V01.20  
A.6 SPI  
A.6.1 Master Mode  
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-17.  
SS1  
(OUTPUT)  
2
1
11  
12  
3
SCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
1. If configured as output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-5 SPI Master Timing (CPHA = 0)  
115  
MC9S12H256 Device User Guide — V01.20  
SS1  
(OUTPUT)  
1
12  
11  
11  
12  
3
2
SCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT2  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
1. If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-6 SPI Master Timing (CPHA =1)  
1
Table A-17 SPI Master Mode Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
Rating  
Symbol  
Min  
DC  
Typ  
Max  
1/4  
Unit  
fbus  
tbus  
tsck  
fop  
tsck  
tlead  
tlag  
twsck  
tsu  
thi  
1
1
2
3
4
5
6
9
P Operating Frequency  
SCK Period tsck = 1./fop  
P
4
2048  
D Enable Lead Time  
1/2  
tsck  
D Enable Lag Time  
1/2  
tbus 30  
1024 tbus  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
D Data Valid (after SCK Edge)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
25  
0
tv  
25  
tho  
tr  
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
12 D Fall Time Inputs and Outputs  
NOTES:  
0
25  
25  
tf  
1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the  
Master and the Slave timing shown in Table A-18.  
116  
MC9S12H256 Device User Guide — V01.20  
A.6.2 Slave Mode  
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-18.  
SS  
(INPUT)  
1
12  
11  
11  
12  
3
SCK  
(CPOL = 0)  
(INPUT)  
4
4
2
SCK  
(CPOL = 1)  
(INPUT)  
8
7
9
10  
10  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
Figure A-7 SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
3
1
12  
11  
12  
2
SCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
10  
SCK  
(CPOL = 1)  
(INPUT)  
8
9
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
7
5
6
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
Figure A-8 SPI Slave Timing (CPHA =1)  
117  
MC9S12H256 Device User Guide — V01.20  
Table A-18 SPI Slave Mode Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
Rating  
Symbol  
fop  
Min  
Typ  
Max  
1/4  
Unit  
fbus  
tbus  
tcyc  
1
1
2
3
4
5
6
7
8
9
P Operating Frequency  
SCK Period tsck = 1./fop  
DC  
tsck  
tlead  
tlag  
twsck  
tsu  
P
4
2048  
D Enable Lead Time  
1
1
tcyc  
D Enable Lag Time  
tcyc 30  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
D Slave Access Time  
ns  
ns  
25  
25  
thi  
ns  
ta  
tcyc  
tcyc  
1
1
tdis  
tv  
D Slave MISO Disable Time  
D Data Valid (after SCK Edge)  
25  
ns  
ns  
ns  
ns  
tho  
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
12 D Fall Time Inputs and Outputs  
0
tr  
25  
25  
tf  
118  
MC9S12H256 Device User Guide — V01.20  
A.7 LCD_32F4B  
Table A.7-19 LCD_32F4B Driver Electrical Characteristics  
Characteristic  
Symbol  
Min.  
Typ.  
Max.  
Unit  
LCD Supply Voltage  
VLCD  
-0.25  
-
VDDX + 0.25  
V
LCD Output Impedance(BP[3:0],FP[31:0])  
for outputs to charge to higher voltage level or to  
GND 1  
ZBP/FP  
-
-
-
5.0  
-
kOhm  
uA  
LCD Output Current (BP[3:0],FP[31:0])  
for outputs to discharge to lower voltage level  
except GND 2  
IBP/FP  
50  
NOTES:  
1. Outputs measured one at a time, low impedance voltage source connected to the VLCD pin.  
2. Outputs measured one at a time, low impedance voltage source connected to the VLCD pin.  
119  
MC9S12H256 Device User Guide — V01.20  
120  
MC9S12H256 Device User Guide — V01.20  
A.8 External Bus Timing  
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing values  
shown on table Table A-20. All major bus signals are included in the diagram. While both a data write  
and data read cycle are shown, only one or the other would occur on a particular bus cycle.  
A.8.1 General Muxed Bus Timing  
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown  
assume a balanced load across all outputs.  
121  
MC9S12H256 Device User Guide — V01.20  
1, 2  
3
4
ECLK  
PE4  
5
9
6
16  
10  
15  
11  
Addr/Data  
(read)  
PA, PB  
data  
data  
addr  
7
8
12  
14  
data  
13  
Addr/Data  
(write)  
PA, PB  
data  
addr  
17  
19  
23  
26  
18  
Non-Multiplexed  
Addresses  
PK5:0  
20  
21  
22  
ECS  
PK7  
24  
25  
28  
R/W  
PE2  
27  
29  
32  
LSTRB  
PE3  
31  
34  
30  
NOACC  
PE7  
35  
36  
33  
IPIPO0  
IPIPO1, PE6,5  
Figure A-9 General External Bus Timing  
122  
MC9S12H256 Device User Guide — V01.20  
Table A-20 Expanded Bus Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF  
Num C  
Rating  
Symbol  
fo  
Min  
0
Typ  
Max  
Unit  
MHz  
ns  
1
2
3
4
5
6
7
8
9
P Frequency of operation (E-clock)  
P Cycle time  
16.0  
tcyc  
62.5  
30  
PWEL  
D Pulse width, E low  
ns  
Pulse width, E high1  
D
PWEH  
tAD  
30  
ns  
D Address delay time  
8
ns  
Address valid time to E rise (PWEL–tAD  
)
tAV  
D
22  
2
ns  
tMAH  
tAHDS  
tDHA  
tDSR  
tDHR  
tDDW  
tDHW  
tDSW  
D Muxed address hold time  
D Address hold to data valid  
D Data hold to address  
ns  
7
ns  
2
ns  
10 D Read data setup time  
11 D Read data hold time  
12 D Write data delay time  
13 D Write data hold time  
24  
0
ns  
ns  
7
ns  
2
23  
30  
6
ns  
Write data setup time1 (PWEH–tDDW  
)
14  
15  
16  
D
D
D
ns  
ns  
Address access time1 (tcyc–tAD–tDSR  
E high access time1 (PWEH–tDSR  
)
tACCA  
tACCE  
tNAD  
tNAV  
tNAH  
tCSD  
tACCS  
tCSH  
tCSN  
tRWD  
tRWV  
tRWH  
tLSD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
17 D Non-multiplexed address delay time  
Non-muxed address valid to E rise (PWEL–tNAD  
6
)
18  
D
26  
2
19 D Non-multiplexed address hold time  
20 D Chip select delay time  
6 + tcyc/4  
Chip select access time1 (tcyc–tCSD–tDSR  
D
)
tcyc/4 – 2  
21  
22 D Chip select hold time  
23 D Chip select negated time  
24 D Read/write delay time  
2
8
7
7
7
Read/write valid time to E rise (PWEL–tRWD  
)
25  
D
25  
2
26 D Read/write hold time  
27 D Low strobe delay time  
Low strobe valid time to E rise (PWEL–tLSD  
)
tLSV  
28  
D
25  
2
tLSH  
29 D Low strobe hold time  
tNOD  
tNOV  
30 D NOACC strobe delay time  
NOACC valid time to E rise (PWEL–tNOD  
)
31  
D
25  
123  
MC9S12H256 Device User Guide — V01.20  
Table A-20 Expanded Bus Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF  
Num C  
Rating  
Symbol  
tNOH  
Min  
2
Typ  
Max  
Unit  
ns  
32 D NOACC hold time  
33 D IPIPO[1:0] delay time  
tP0D  
2
7
ns  
IPIPO[1:0] valid time to E rise (PWEL–tP0D  
)
tP0V  
34  
35  
D
D
22  
ns  
IPIPO[1:0] delay time1 (PWEH–tP1V  
)
tP1D  
tP1V  
2
25  
ns  
ns  
36 D IPIPO[1:0] valid time to E fall  
22  
NOTES:  
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.  
124  
MC9S12H256 Device User Guide — V01.20  
Appendix B Package Information  
B.1 General  
This section provides the physical dimensions of the MC9S12H256 and MC9S12H128 packages.  
125  
MC9S12H256 Device User Guide — V01.20  
B.2 112-pin LQFP package  
4X  
0.20 T L-M N  
4X 28 TIPS  
0.20 T L-M N  
4X  
P
J1  
J1  
PIN 1  
IDENT  
112  
85  
C
1
84  
L
VIEW Y  
X
108X  
G
X=L, M OR N  
VIEW Y  
V
B
L
M
AA  
J
B1  
V1  
28  
57  
BASE  
METAL  
F
D
29  
56  
M
0.13  
T L-M N  
N
SECTION J1-J1  
A1  
S1  
ROTATED 90 COUNTERCLOCKWISE  
°
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
A
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, M AND N TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
S
4. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B INCLUDE MOLD MISMATCH.  
6. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE D  
DIMENSION TO EXCEED 0.46.  
C2  
VIEW AB  
θ2  
C
0.050  
112X  
0.10  
T
SEATING  
PLANE  
MILLIMETERS  
DIM MIN  
MAX  
20.000 BSC  
10.000 BSC  
θ3  
A
A1  
B
B1  
C
T
20.000 BSC  
10.000 BSC  
---  
1.600  
C1 0.050  
C2 1.350  
0.150  
1.450  
0.370  
0.750  
0.330  
θ
D
E
F
0.270  
0.450  
0.270  
G
J
K
0.650 BSC  
0.090  
0.170  
R R2  
0.500 REF  
0.325 BSC  
P
R1 0.100  
R2 0.100  
0.200  
0.200  
0.25  
R R1  
S
S1  
V
V1  
Y
22.000 BSC  
11.000 BSC  
GAGE PLANE  
22.000 BSC  
11.000 BSC  
0.250 REF  
1.000 REF  
Z
(K)  
C1  
θ1  
AA 0.090  
0.160  
8 °  
E
0 °  
θ
θ1  
θ2  
θ3  
3 °  
11 °  
11 °  
7 °  
(Y)  
(Z)  
13 °  
13 °  
VIEW AB  
Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)  
126  
MC9S12H256 Device User Guide — V01.20  
B.3 144-pin LQFP package  
0.20 T L-M N  
0.20 T L-M N  
4X  
4X 36 TIPS  
PIN 1  
IDENT  
144  
109  
1
108  
4X  
P
J1  
J1  
L
M
C
L
V
B
X
X=L, M OR N  
140X  
G
B1  
V1  
VIEW Y  
VIEW Y  
NOTES:  
36  
73  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, M, N TO BE DETERMINED AT THE  
SEATING PLANE, DATUM T.  
4. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B DO INCLUDE MOLD MISMATCH  
AND ARE DETERMINED AT DATUM PLANE H.  
6. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE D  
DIMENSION TO EXCEED 0.35.  
37  
72  
N
A1  
S1  
A
S
VIEW AB  
C
144X  
MILLIMETERS  
DIM MIN MAX  
0.1 T  
θ2  
θ2  
A
A1  
B
B1  
C
C1  
C2  
D
20.00 BSC  
10.00 BSC  
20.00 BSC  
10.00 BSC  
SEATING  
PLANE  
1.40  
0.05  
1.35  
0.17  
0.45  
0.17  
1.60  
T
0.15  
1.45  
0.27  
0.75  
0.23  
E
F
PLATING  
G
J
0.50 BSC  
J
C2  
AA  
F
0.09  
0.20  
0.05  
K
P
0.50 REF  
0.25 BSC  
R2  
R1  
R2  
S
S1  
V
V1  
Y
Z
0.13  
0.13  
0.20  
0.20  
θ
R1  
22.00 BSC  
11.00 BSC  
22.00 BSC  
11.00 BSC  
0.25 REF  
1.00 REF  
BASE  
METAL  
0.25  
D
GAGE PLANE  
M
0.08  
T L-M N  
AA  
θ
θ1  
θ2  
0.09  
0
0.16  
°
SECTION J1-J1  
(ROTATED 90  
144 PL  
(K)  
E
0
7
13  
°
°
°
°
)
°
11  
C1  
θ 1  
(Y)  
VIEW AB  
CASE 918-03  
ISSUE C  
(Z)  
Figure B-2 144-pin LQFP mechanical dimensions (case no. 918-03)  
127  
MC9S12H256 Device User Guide — V01.20  
128  
MC9S12H256 Device User Guide — V01.20  
User Guide End Sheet  
129  
MC9S12H256 Device User Guide — V01.20  
How to Reach Us:  
Home Page:  
www.freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
1-800-521-6274 or 480-768-2130  
Europe, Middle East, and Africa:  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-0047, Japan  
0120-191014 or +81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.  
© Freescale Semiconductor, Inc. 2005,2006,2007. All rights reserved.  
130  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY