MIC39151-1.65BU [ROCHESTER]

1.65V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PSSO5, TO-263, 5 PIN;
MIC39151-1.65BU
型号: MIC39151-1.65BU
厂家: Rochester Electronics    Rochester Electronics
描述:

1.65V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PSSO5, TO-263, 5 PIN

输出元件 调节器
文件: 总15页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC39150/39151/39152  
1.5A, Low-Voltage Low-Dropout  
Regulator  
General Description  
Features  
The MIC39150, MIC39151, and MIC39152 are 1.5A LDO  
voltage regulators that provide a low voltage, high current  
output with a minimum of external components. Utilizing  
Micrel’s proprietary Super βeta PNP® pass element, the  
MIC39150/1/2 offers extremely low dropout (typically  
375mV at 1.5A) and low ground current (typically 17mA at  
1.5A).  
1.5A minimum guaranteed output current  
500mV maximum dropout voltage over temperature  
Ideal for 3.0V to 2.5V conversion  
Ideal for 2.5 to 1.8V or 1.65V conversion  
1% initial accuracy  
Low ground current  
Current limiting and Thermal shutdown  
Reversed-battery and reversed lead insertion protection  
Reversed-leakage protection  
The MIC39150/1/2 are ideal for PC add-in cards that need  
to convert from 3.3V to 2.5V or 2.5V to 1.8V with a  
guaranteed maximum dropout voltage of 500mV over all  
operating conditions. The MIC39150/1/2 exhibit fast  
transient response for heavy switching applications and  
requires only 10µF of output capacitance to maintain  
stability and achieve fast transient response.  
Fast transient response  
TTL/CMOS compatible enable pin (MIC39151/2 only)  
Error flag output (MIC39151 only)  
Adjustable output (MIC39152 only)  
Power D-Pak package (TO-252) Adjustable only  
Power D2Pak package (TO-263)  
The MIC39150/1/2 is fully protected with current limiting,  
thermal shutdown, reversed-battery protection/lead  
insertion, and reverse-leakage protection. The MIC39151  
offers a TTL-logic compatible enable pin and an error flag  
that indicates undervoltage and overcurrent conditions.  
Offered in fixed voltages of 2.5V, 1.8V and 1.65V, the  
MIC39150/1 comes in the TO-220 and TO-263 (D2Pak)  
packages. The MIC39152 adjustable option allows  
programming the output voltage anywhere between 1.24V  
and 15.5V and comes in 5-Pin, TO-263 (D2Pak) and  
TO-252 (D-Pak) packages.  
Applications  
Low-voltage digital ICs  
LDO linear regulator for PC add-in cards  
High-efficiency linear power supplies  
SMPS post regulator  
Low-voltage microcontrollers  
StrongARM™ processor supply  
For applications requiring input voltage greater than 16V or  
automotive load dump protection, see the MIC29150/1/2/3  
family.  
Typical Application**  
MIC39150  
MIC39151  
MIC39152 Adjustable Output Application  
(*See Minimum Load Current Section)  
**See Thermal Design Section  
Super ßeta PNP is a registered trademark of Micrel, Inc.  
StrongARM is a trademark of Advanced RSIC Machines, Ltd.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-102309-A  
October 2009  
Micrel, Inc.  
MIC39150/39151/39152  
Ordering Information  
Part Number  
Junction  
Temp. Range  
Voltage  
Package  
Standard  
MIC39150-1.65BT  
MIC39150-1.65BU  
MIC39150-1.8BT  
MIC39150-1.8BU  
MIC39150-2.5BT  
MIC39150-2.5BU  
MIC39151-1.65BT  
MIC39151-1.65BU  
MIC39151-1.8BT  
MIC39151-1.8BU  
MIC39151-2.5BT  
MIC39151-2.5BU  
RoHS Compliant*  
MIC39150-1.65WT  
MIC39150-1.65WU  
MIC39150-1.8WT  
MIC39150-1.8WU  
MIC39150-2.5WT  
MIC39150-2.5WU  
MIC39151-1.65WT  
MIC39151-1.65WU  
MIC39151-1.8WT  
MIC39151-1.8WU  
MIC39151-2.5WT  
MIC39151-2.5WU  
MIC39152WU  
1.65V  
1.65V  
1.8V  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
3-Pin TO-220  
3-Pin TO-263  
3-Pin TO-220  
3-Pin TO-263  
3-Pin TO-220  
3-Pin TO-263  
5-Pin TO-220  
5-Pin TO-263  
5-Pin TO-220  
5-Pin TO-263  
5-Pin TO-220  
5-Pin TO-263  
5-Pin TO-263  
5-Pin TO-252  
1.8V  
2.5V  
2.5V  
1.65V  
1.65V  
1.8V  
1.8V  
2.5V  
2.5V  
Adjustable  
Adjustable  
MIC39152WD  
Note:  
* RoHS compliant with ‘high-melting solder’ exemption.  
M9999-102309-A  
October 2009  
2
Micrel, Inc.  
MIC39150/39151/39152  
Pin Configuration  
3
2
1
OUT  
GND  
IN  
3
2
1
OUT  
GND  
IN  
MIC39150-x.xBT/WT  
MIC39150-x.xBU/WU  
TO-263-3 (U)  
TO-220-3 (T)  
5
4
3
2
1
FLG  
OUT  
GND  
IN  
EN  
MIC39151-x.xBT/WT  
TO-220-5 (T)  
MIC39151-x.xBU/WU  
TO-263-5 (D2Pak) (U)  
MIC39152WU  
MIC39152WD  
TO-252-5 (D-Pak) (D)  
TO-263-5 (D2Pak) (U))  
Pin Description  
Pin Number  
MIC39150  
Pin Number  
MIC39151  
1
Pin Number  
MIC39152  
1
Pin Name  
Pin Description  
EN  
Enable (Input): TTL/CMOS compatible input. Logic high =  
enable; logic low or open = shutdown.  
1
2, TAB  
3
2
2
3, TAB  
4
IN  
Unregulated Input: +16V maximum supply.  
Ground: Ground pin and TAB are internally connected.  
Regulator Output.  
3, TAB  
GND  
OUT  
FLG  
4
5
Error Flag (Output): Open-collector output. Active low  
indicates an output fault condition.  
5
ADJ  
Adjustable Regulator Feedback Input: Connect to the  
resistor voltage divider that is placed from OUT to GND in  
order to set the output voltage.  
M9999-102309-A  
October 2009  
3
Micrel, Inc.  
MIC39150/39151/39152  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN)....................................... –20V to +20V  
Enable Voltage (VEN)....................................................+20V  
Storage Temperature (Ts) .........................60°C to +150°C  
Lead Temperature (soldering, 5 sec.)........................ 260°C  
ESD Rating................................................................ Note 3  
Supply Voltage (VIN).................................... +2.25V to +16V  
Enable Voltage (VEN)....................................................+16V  
Maximum Power Dissipation (PD(max)) ....................... Note 4  
Junction Temperature (TJ) ........................40°C to +125°C  
Package Thermal Resistance  
TO-263 (θJC) ........................................................2°C/W  
TO-220 (θJC) ........................................................2°C/W  
TO-252 (θJC) ........................................................3°C/W  
TO-252 (θJA) ......................................................56°C/W  
Electrical Characteristics(5)  
VIN = VEN = VOUT + 1V; IOUT = 10mA; TJ = 25°C, bold values indicate –40°C< TJ < +125°C, unless noted.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOUT  
Output Voltage  
10mA  
–1  
–2  
1
2
%
%
10mA IOUT 1.5A, VOUT + 1V VIN 8V  
Line Regulation  
Load Regulation  
IOUT = 10mA, VOUT + 1V VIN 16V  
VIN = VOUT + 1V, 10mA IOUT 1.5A  
0.06  
0.2  
20  
0.5  
1
%
%
VOUT/T Output Voltage Temp.  
Coefficient, Note 6  
100  
ppm/°C  
VDO  
Dropout Voltage, Note 7  
Ground Current, Note 8  
IOUT = 100mA, VOUT = –1%  
IOUT = 750mA, VOUT = –1%  
IOUT = 1.5A, VOUT = –1%  
80  
260  
375  
4
200  
mV  
mV  
mV  
mA  
mA  
mA  
A
500  
20  
IGND  
IOUT = 750mA, VIN = VOUT + 1V  
IOUT = 1.5A, VIN = VOUT + 1V  
VIN VOUT(nominal) – 0.5V, IOUT = 10mA  
VOUT = 0V, VIN = VOUT + 1V  
17  
1.1  
2.8  
7
IGND(do)  
IOUT(lim)  
IOUT(min)  
tSTART  
Dropout Ground Pin Current  
Current Limit  
Minimum Load Current  
Start-up Time  
10  
mA  
µs  
VEN = VIN, IOUT = 10mA, COUT = 47µF  
35  
150  
Enable Input (MIC39151)  
VEN Enable Input Voltage  
logic low (off)  
logic high (on)  
VEN = 2.25V  
0.8  
V
V
2.25  
IIN  
Enable Input Current  
1
15  
10  
30  
75  
µA  
µA  
VEN = 0.8V  
2
4
µA  
µA  
IOUT(shdn)  
Shutdown Output Voltage  
Note 9  
20  
µA  
Flag Output (MIC39151)  
IFLG(leak)  
VFLG(do)  
VFLG  
Output Leakage Current  
VOH = 16V  
0.01  
180  
1
2
µA  
µA  
Output Low Voltage  
VIN = 2.250V, IOL = 250µA, Note 10  
300  
400  
mV  
mV  
Low Threshold  
High Threshold  
Hysteresis  
% of VOUT  
% of VOUT  
93  
%
%
%
99.2  
1
M9999-102309-A  
October 2009  
4
Micrel, Inc.  
MIC39150/39151/39152  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Reference (Adjust Pin) – MIC39152 Only  
VADJ  
Reference Voltage  
1.228  
1.240  
1.252  
V
V
1.215  
1.265  
VTC  
Reference Voltage Temperature Note 11  
Coefficient  
20  
40  
ppm/°C  
IADJ  
Adjust Pin Bias Current  
80  
nA  
nA  
120  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended.  
4. PD(max) = (TJ(max) – TA) ÷ θJA, where θJA depends upon the printed circuit layout. See “Applications Information.”  
5. Specification for packaged product only.  
6. Output voltage temperature coefficient is VOUT(worst case) ÷ (TJ(max) – TJ(min)) where T J(max) is +125°C and TJ(min) is –40°C.  
7. VDO = VIN – VOUT when VOUT decreases to 98% of its nominal output voltage with VIN = VOUT + 1V. For output voltages below 2.25V, dropout voltage is  
the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V.  
8. IGND is the quiescent current. IIN = IGND + IOUT  
.
9. VEN 0.8V, VIN 8V, and VOUT = 0V.  
10. For a 2.5V device, VIN = 2.250V (device is in dropout).  
11. Thermal regulation is dened as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line  
regulation effects. Specications are for a 200mA load pulse at VIN = 8V for t = 10ms.  
M9999-102309-A  
October 2009  
5
Micrel, Inc.  
MIC39150/39151/39152  
Typical Characteristics  
Power Supply  
Rejection Ratio  
60  
VIN = 3.3V  
V
OUT = 2.5V  
50  
40  
30  
20  
10  
0
ILOAD = 1.5A  
OUT = 10µF  
IN = 0  
C
C
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k  
1M  
10 100  
100k  
FREQUENCY (Hz)  
Dropout Voltage  
vs. Temperature  
Ground Current  
Dropout Characteristics  
vs. Output Current  
600  
500  
400  
300  
200  
100  
0
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
25  
20  
15  
10  
5
ILOAD = 100mA  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 1.8V  
ILOAD = 1.5A  
ILOAD = 1.5A  
ILOAD = 750mA  
VOUT = 2.5V  
0
0
250 500 750 100012501500  
OUTPUT CURRENT (mA)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE°(C)  
INPUT VOLTAGE (V)  
Ground Current  
vs. Temperature  
Ground Current  
vs. Supply Voltage  
0.36  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ILOAD = 1500mA  
VOUT = 1.8V  
ILOAD = 1000mA  
ILOAD = 750mA  
VOUT = 2.5V  
ILOAD = 10mA  
0
0
2
4
6
8
10 12  
-40 -20  
0 20 40 60 80 100120  
SUPPLY VOLTAGE (V)  
TEMPERATURE°(C)  
Ground Current  
vs. Temperature  
Short Circuit vs.  
Temperature  
25  
20  
15  
10  
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
typical 2.5V device  
VOUT = 2.5V  
typical 1.8V device  
VOUT = 1.8V  
ILOAD = 1.5A  
0
-40 -20  
0
20 40 60 80 100120  
-40 -20  
0
20 40 60 80 100120  
TEMPERATURE°(C)  
TEMPERATURE°(C)  
M9999-102309-A  
October 2009  
6
Micrel, Inc.  
MIC39150/39151/39152  
Error Flag  
Pull-Up Resistor  
6
5
4
3
2
1
0
VIN = 5V  
FLAG HIGH  
(OK)  
FLAG LOW  
(FAULT)  
0.01 0.1  
1
10 100 100010000  
RESISTANCE (k )  
M9999-102309-A  
October 2009  
7
Micrel, Inc.  
MIC39150/39151/39152  
Functional Characteristics  
M9999-102309-A  
October 2009  
8
Micrel, Inc.  
MIC39150/39151/39152  
Functional Diagram  
IN  
OUT  
O.V.  
ILIMIT  
18V  
1.180V  
1.240V  
Ref.  
FLAG*  
EN*  
Thermal  
Shut-  
down  
GND  
* MIC39151 only  
M9999-102309-A  
October 2009  
9
Micrel, Inc.  
MIC39150/39151/39152  
distribute the heat between this resistor and the  
regulator. The low dropout properties of Micrel Super  
βeta PNP® regulators allow significant reductions in  
regulator power dissipation and the associated heat sink  
without compromising performance. When this technique  
is employed, a capacitor of at least 1µF is needed  
directly between the input and regulator ground.  
Application Information  
The MIC39150/1/2 are high-performance, low-dropout  
voltage regulators suitable for moderate to high-current  
voltage regulator applications. Its 500mV dropout  
voltage at full load and overtemperature makes it  
especially valuable in battery-powered systems and as  
high-efficiency noise filters in post-regulator applications.  
Unlike older NPN-pass transistor designs, where the  
minimum dropout voltage is limited by the base-to-  
emitter voltage drop and collector-to-emitter saturation  
voltage, dropout performance of the PNP output of these  
devices is limited only by the low VCE saturation voltage.  
Refer to Application Note 9 for further details and  
examples on thermal design and heat sink specification.  
With no heat sink in the application, calculate the  
junction temperature to determine the maximum power  
dissipation that will be allowed before exceeding the  
maximum junction temperature of the MIC39152. The  
maximum power allowed can be calculated using the  
thermal resistance (θJA) of the TO-252 (D-Pak) adhering  
to the following criteria for the PCB design: 2 oz. copper  
and 100mm2 copper area for the MIC39152.  
A trade-off for the low dropout voltage is a varying base  
drive requirement. Micrel’s Super βeta PNP® process  
reduces this drive requirement to only 2% to 5% of the  
load current. The MIC39150/1/2 regulators are fully  
protected from damage due to fault conditions. Current  
limiting is provided. This limiting is linear; output current  
during overload conditions is constant. Thermal  
shutdown disables the device when the die temperature  
exceeds the maximum safe operating temperature.  
Transient protection allows device (and load) survival  
even when the input voltage spikes above and below  
nominal. The output structure of these regulators allows  
voltages in excess of the desired output voltage to be  
applied without reverse current flow.  
For example, given an expected maximum ambient  
temperature (TA) of 75°C with VIN = 2.25V, VOUT = 1.75V,  
and IOUT = 1.5A, first calculate the expected PD using  
Equation (1);  
PD = (2.25V – 1.75V)1.5A + (2.25V)(0.017A) = 0.788W  
Next, calcualte the junction temperature for the expected  
power dissipation.  
TJ = (θJA × PD) + TA = (56°C/W × 0.788W) + 75°C  
= 119.14°C  
Now determine the maximum power dissipation allowed  
that would not exceed the IC’s maximum junction  
temperature (125°C) without the use of a heat sink by  
Thermal Design  
Linear regulators are simple to use. The most  
complicated design parameters to consider are thermal  
characteristics. Thermal design requires the following  
application-specific parameters:  
PD(MAX) = (TJ(MAX) – TA)/θJA = (125°C – 75°C)/(56°C/W)  
Maximum ambient temperature (TA)  
= 0.893W  
Output Current (IOUT  
)
Output Voltage (VOUT  
Input Voltage (VIN)  
)
MIC39150-x.x  
VIN  
VOUT  
IN  
OUT  
GND  
Ground Current (IGND  
)
First, calculate the power dissipation of the regulator  
from these numbers and the device parameters from this  
datasheet.  
CIN  
COUT  
PD = (VIN VOUT )IOUT + VIN IGND  
Figure 1. Capacitor Requirements  
where the ground current is approximated by using  
numbers from the “Electrical Characteristics” or “Typical  
Characteristics.” Then the heat sink thermal resistance is  
determined with this formula:  
Output Capacitor  
The MIC39150/1/2 requires an output capacitor to  
maintain stability and improve transient response. See  
Figure 1. Proper capacitor selection is important to  
ensure proper operation. TheMIC39150/1/2 output  
capacitor selection is dependent upon the ESR  
(equivalent series resistance) of the output capacitor to  
maintain stability. When the output capacitor is 10µF or  
greater, the output capacitor should have an ESR less  
than 2. This will improve transient response as well as  
TJ(max) TA  
θSA  
=
(
θJC + θCS  
)
PD  
Where TJ(max) 125°C and θCS is between 0° and 2°C/W.  
The heat sink may be significantly reduced in  
applications where the minimum input voltage is known  
and is large compared with the dropout voltage. Use a  
series input resistor to drop excessive voltage and  
M9999-102309-A  
October 2009  
10  
Micrel, Inc.  
MIC39150/39151/39152  
promote stability. Ultralow ESR capacitors (<100m),  
such as ceramic chip capacitors may promote instability.  
These very low ESR levels may cause an oscillation  
and/or underdamped transient response. A low-ESR  
solid tantalum capacitor works extremely well and  
provides good transient response and stability over  
temperature. Aluminum electrolytics can also be used,  
as long as the ESR of the capacitor is < 2.  
Error Flag  
The MIC39151 version features an error flag circuit  
which monitors the output voltage and signals an error  
condition when the voltage 5% below the nominal output  
voltage. The error flag is an open-collector output that  
can sink 10mA during a fault condition.  
Low output voltage can be caused by a number of  
problems, including an overcurrent fault (device in  
current limit) or low input voltage. The flag is inoperative  
during overtemperature shutdown.  
The value of the output capacitor can be increased  
without limit. Higher capacitance values help to improve  
transient response and ripple rejection and reduce  
output noise.  
When the error flag is not used, it is best to leave it  
open. A pull-up resistor from FLG to either VIN or VOUT is  
required for proper operation.  
Input Capacitor  
An input capacitor of 1µF or greater is recommended  
when the device is more than 4 inches away from the  
bulk ac supply capacitance, or when the supply is a  
battery. Small, surface-mount, ceramic chip capacitors  
can be used for the bypassing. The capacitor should be  
placed within 1" of the device for optimal performance.  
Larger values will help to improve ripple rejection by  
bypassing the input to the regulator, further improving  
the integrity of the output voltage.  
Enable Input  
The MIC39151/2 features an enable input for on/off  
control of the device. The enable input’s shutdown state  
draws “zero” current (only microamperes of leakage).  
The enable input is TTL/CMOS compatible for simple  
logic interface, but can be connected to up to 20V. When  
enabled, it draws approximately 15µA.  
Adjustable Regulator Design  
Transient Response and 3.3V to 2.5Vor 2.5V to 1.8V  
Conversion  
The MIC39150/1/2 has excellent transient response to  
variations in input voltage and load current. The device  
has been designed to respond quickly to load current  
variations and input voltage variations. Large output  
capacitors are not required to obtain this performance. A  
standard 10µF output capacitor, preferably tantalum, is  
all that is required. Larger values help to improve  
performance even further.  
By virtue of its low-dropout voltage, this device does not  
saturate into dropout as readily as similar NPN-based  
designs. When converting from 3.3V to 2.5V, or 2.5V to  
1.8V, the NPN-based regulators are already operating in  
dropout, with typical dropout requirements of 1.2V or  
greater. To convert down to 2.5V without operating in  
dropout, NPN-based regulators require an input voltage  
of 3.7V at the very least. The MIC39150/1 regulator will  
provide excellent performance with an input as low as  
3.0V or 2.5V, respectively. This gives the PNP-based  
regulators a distinct advantage over older, NPN-based  
linear regulators.  
Figure 2. Adjustable Regulator with Resistors  
The MIC39152 allows programming the output voltage  
anywhere between 1.24V and 15.5V. Two resistors are  
used. The resistor values are calculated by:  
V
OUT  
R1= R2× ⎜  
1⎟  
1.240  
Where VOUT is the desired output voltage. Figure 2  
shows component denition. Applications with widely  
varying load currents may scale the resistors to draw the  
minimum load current required for proper operation (see  
Minimum Load Current section).  
Minimum Load Current  
The MIC39150 regulator is specified between finite  
loads. If the output current is too small, leakage currents  
dominate and the output voltage rises. A 10mA minimum  
load current is necessary for proper regulation.  
M9999-102309-A  
October 2009  
11  
Micrel, Inc.  
MIC39150/39151/39152  
Package Information  
3-Pin TO-220 (T)  
5-Pin TO-220 (T)  
M9999-102309-A  
October 2009  
12  
Micrel, Inc.  
MIC39150/39151/39152  
3-Pin TO-263 (U)  
θ4  
θ1  
θ2  
θ1  
θ3  
θ1  
θ2  
θ3  
θ4  
5-Pin TO-263 (U)  
M9999-102309-A  
October 2009  
13  
Micrel, Inc.  
MIC39150/39151/39152  
5-Pin TO-252 (D)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2009 Micrel, Incorporated.  
M9999-102309-A  
October 2009  
14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY