MPC870ZT80 [ROCHESTER]

32-BIT, 80MHz, RISC PROCESSOR, PBGA256, PLASTIC, BGA-256;
MPC870ZT80
型号: MPC870ZT80
厂家: Rochester Electronics    Rochester Electronics
描述:

32-BIT, 80MHz, RISC PROCESSOR, PBGA256, PLASTIC, BGA-256

外围集成电路
文件: 总85页 (文件大小:1745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC875EC  
Rev. 4, 08/2007  
Freescale Semiconductor  
Technical Data  
MPC875/MPC870 PowerQUICC™  
Hardware Specifications  
Contents  
This hardware specification contains detailed information on  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MPC875/MPC870. The  
CPU on the MPC875/MPC870 is a 32-bit core built on  
Power Architecture™ technology that incorporates memory  
management units (MMUs) and instruction and data caches.  
Forfunctional characteristics of the MPC875/MPC870, refer  
to the MPC885 PowerQUICC™ Family Reference Manual.  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 9  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . 10  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7. Thermal Calculation and Measurement . . . . . . . . . . 12  
8. Power Supply and Power Sequencing . . . . . . . . . . . 14  
9. Mandatory Reset Configurations . . . . . . . . . . . . . . . 15  
10. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
11. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
12. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 45  
13. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 47  
14. USB Electrical Characteristics . . . . . . . . . . . . . . . . . 67  
15. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 67  
16. Mechanical Data and Ordering Information . . . . . . . 71  
17. Document Revision History . . . . . . . . . . . . . . . . . . . 80  
To locate published errata or updates for this document, refer  
to the MPC875/MPC870 product summary page on our  
website listed on the back cover of this document or, contact  
your local Freescale sales office.  
© Freescale Semiconductor, Inc., 2003–2007. All rights reserved.  
Overview  
1 Overview  
The MPC875/MPC870 is a versatile single-chip integrated microprocessor and peripheral combination  
that can be used in a variety of controller applications and communications and networking systems. The  
MPC875/MPC870 provides enhanced ATM functionality over that of other ATM-enabled members of the  
MPC860 family.  
Table 1 shows the functionality supported by the MPC875/MPC870.  
Table 1. MPC875/MPC870 Devices  
Cache (Kbytes)  
I Cache D Cache  
Ethernet  
Security  
Engine  
Part  
SCC  
SMC  
USB  
10BaseT  
10/100  
MPC875  
8
8
1
2
2
1
1
1
1
1
Yes  
No  
MPC870  
8
8
2 Features  
The MPC875/MPC870 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx  
core, a system integration unit (SIU), and a communications processor module (CPM).  
The following list summarizes the key MPC875/MPC870 features:  
Embedded MPC8xx core up to 133 MHz  
Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)  
— The 133-MHz core frequency supports 2:1 mode only  
— The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes  
Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two  
32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch and without conditional  
execution  
— 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)  
– Instruction cache is two-way, set-associative with 256 sets in 2 blocks  
– Data cache is two-way, set-associative with 256 sets  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)  
cache blocks  
– Caches are physically addressed, implement a least recently used (LRU) replacement  
algorithm, and are lockable on a cache block basis  
— MMUs with 32-entry TLB, fully associative instruction and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address  
spaces and 16 protection groups  
— Advanced on-chip emulation debug mode  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
2
Freescale Semiconductor  
Features  
Thirty-two address lines  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank  
— Up to 30 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory  
devices  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbytes–256 Mbytes)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture  
Two Fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE Std. 802.3® CDMA/CS  
that interface through MII and/or RMII interfaces  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Clock synthesizer  
— Decrementer and time base  
— Reset controller  
— IEEE 1149.1™ Std. test access port (JTAG)  
Security engine is optimized to handle all the algorithms associated with IPsec, SSL/TLS, SRTP,  
IEEE 802.11i® standard, and iSCSI processing. Available on the MPC875, the security engine  
contains a crypto-channel, a controller, and a set of crypto hardware accelerators (CHAs). The  
CHAs are:  
— Data encryption standard execution unit (DEU)  
– DES, 3DES  
– Two key (K1, K2, K1) or three key (K1, K2, K3)  
– ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
– Implements the Rijndael symmetric key cipher  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
3
Features  
– ECB, CBC, and counter modes  
– 128-, 192-, and 256-bit key lengths  
— Message digest execution unit (MDEU)  
– SHA with 160- or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either algorithm  
— Master/slave logic, with DMA  
– 32-bit address/32-bit data  
– Operation at MPC8xx bus frequency  
— Crypto-channel supporting multi-command descriptors  
– Integrated controller managing crypto-execution units  
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes  
Interrupts  
— Six external interrupt request (IRQ) lines  
— Twelve port pins with interrupt capability  
— Twenty-three internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
Communications processor module (CPM)  
— RISC controller  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT  
MODE, and RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— 8-Kbytes of dual-port RAM  
— Several serial DMA (SDMA) channels to support the CPM  
— Three parallel I/O registers with open-drain capability  
On-chip 16 × 16 multiply accumulate controller (MAC)  
— One operation per clock (two-clock latency, one-clock blockage)  
— MAC operates concurrently with other instructions  
— FIR loop—Four clocks per four multiplies  
Four baud-rate generators  
— Independent (can be connected to SCC or SMC)  
— Allows changes during operation  
— Autobaud support option  
SCC (serial communication controller)  
— Ethernet/IEEE 802.3® standard, supporting full 10-Mbps operation  
— HDLC/SDLC  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
4
Freescale Semiconductor  
Features  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support point-to-point protocol (PPP)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC))  
SMC (serial management channel)  
— UART (low-speed operation)  
— Transparent  
Universal serial bus (USB)—Supports operation as a USB function endpoint, a USB host  
controller, or both for testing purposes (loopback diagnostics)  
— USB 2.0 full-/low-speed compatible  
— The USB function mode has the following features:  
– Four independent endpoints support control, bulk, interrupt, and isochronous data transfers  
– CRC16 generation and checking  
– CRC5 checking  
– NRZI encoding/decoding with bit stuffing  
– 12- or 1.5-Mbps data rate  
– Flexible data buffers with multiple buffers per frame  
– Automatic retransmission upon transmit error  
— The USB host controller has the following features:  
– Supports control, bulk, interrupt, and isochronous data transfers  
– CRC16 generation and checking  
– NRZI encoding/decoding with bit stuffing  
– Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and  
data rate configuration). Note that low-speed operation requires an external hub.  
– Flexible data buffers with multiple buffers per frame  
– Supports local loopback mode for diagnostics (12 Mbps only)  
Serial peripheral interface (SPI)  
— Supports master and slave modes  
— Supports multiple-master operation on the same bus  
2
Inter-integrated circuit (I C) port  
— Supports master and slave modes  
— Supports a multiple-master environment  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
5
Features  
The MPC875 has a time-slot assigner (TSA) that supports one TDM bus (TDMb)  
— Allows SCC and SMC to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
— Allows dynamic changes  
— Can be internally connected to two serial channels (one SCC and one SMC)  
PCMCIA interface  
— Master (socket) interface, release 2.1-compliant  
— Supports one independent PCMCIA socket on the MPC875/MPC870  
— Eight memory or I/O windows supported  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two  
operate on data  
— Supports conditions: = < >  
— Each watchpoint can generate a break point internally  
Normal high and normal low power modes to conserve power  
1.8-V core and 3.3-V I/O operation with 5-V TTL compatibility  
The MPC875/MPC870 comes in a 256-pin ball grid array (PBGA) package  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
6
Freescale Semiconductor  
Features  
The MPC875 block diagram is shown in Figure 1.  
8-Kbyte  
Instruction Cache  
Instruction  
Bus  
System Interface Unit (SIU)  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Unified  
Bus  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
Load/Store  
Bus  
PCMCIA-ATA Interface  
Slave/Master IF  
Security Engine  
Fast Ethernet  
Controller  
Controller  
Channel  
AESU DEU  
MDEU  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface  
Port  
Timers  
MIII/RMII  
SCC4 SMC1  
2
USB  
SPI  
I
C
Time-Slot Assigner  
Serial Interface  
Figure 1. MPC875 Block Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
7
Features  
The MPC870 block diagram is shown in Figure 2.  
8-Kbyte  
Instruction Cache  
Instruction  
Bus  
System Interface Unit (SIU)  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Unified  
Bus  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
Load/Store  
Bus  
PCMCIA-ATA Interface  
Slave/Master IF  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface  
Port  
Timers  
MIII/RMII  
2
USB  
SMC1  
SPI  
I
C
Serial Interface  
Figure 2. MPC870 Block Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
8
Freescale Semiconductor  
Maximum Tolerated Ratings  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC875/MPC870.  
Table 2 displays the maximum tolerated ratings and Table 3 displays the operating temperatures.  
Table 2. Maximum Tolerated Ratings  
Rating  
Symbol  
Value  
Unit  
1
Supply voltage  
V
(core voltage)  
–0.3 to 3.4  
–0.3 to 4  
–0.3 to 3.4  
<100  
V
V
DDL  
V
(I/O voltage)  
DDH  
V
V
DDSYN  
Difference between  
and V  
mV  
V
DDL  
DDSYN  
2
Input voltage  
V
GND – 0.3 to V  
V
in  
DDH  
Storage temperature range  
T
–55 to +150  
°C  
stg  
1
2
The power supply of the device must start its ramp from 0.0 V.  
Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are  
stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device  
reliability or cause permanent damage to the device.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V  
. This restriction applies to power up and  
DDH  
normal operation (that is, if the MPC875/MPC870 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).  
Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC875/MPC870.  
V
/V  
+ 20%  
DDH DDL  
V
/V  
+ 5%  
/V  
DDH DDL  
V
V
DDH DDL  
IH  
GND  
GND – 0.3 V  
V
IL  
GND – 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. t  
refers to the clock period associated with the bus clock interface.  
interface  
Figure 3. Undershoot/Overshoot Voltage for V  
and V  
DDL  
DDH  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
9
Thermal Characteristics  
Table 3. Operating Temperatures  
Rating  
Symbol  
Value  
Unit  
1
Temperature (standard)  
T
0
°C  
°C  
°C  
°C  
A(min)  
T
95  
J(max)  
Temperature (extended)  
T
–40  
100  
A(min)  
T
J(max)  
1
Minimum temperatures are guaranteed as ambient temperature, T . Maximum temperatures are guaranteed as junction  
A
temperature, T .  
J
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for example, either GND or V  
).  
DDH  
4 Thermal Characteristics  
Table 4 shows the thermal characteristics for the MPC875/MPC870.  
Table 4. MPC875/MPC870 Thermal Resistance Data  
Rating  
Environment  
Single-layer board (1s)  
Symbol  
Value  
Unit  
1
2
Junction-to-ambient  
Natural convection  
Airflow (200 ft/min)  
R
43  
29  
36  
26  
20  
10  
2
°C/W  
θJA  
3
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
R
R
R
θJMA  
θJMA  
θJMA  
3
3
4
Junction-to-board  
R
θJB  
θJC  
5
Junction-to-case  
R
6
Junction-to-package top  
Natural convection  
Airflow (200 ft/min)  
Ψ
JT  
JT  
Ψ
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where  
the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the  
exposed pad without contact resistance.  
2
3
4
5
6
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
10  
Freescale Semiconductor  
Power Dissipation  
5 Power Dissipation  
Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are  
equal, and 2:1, where CPU frequency is twice bus speed.  
Table 5. Power Dissipation (P )  
D
1
2
Die Revision  
Bus Mode  
Frequency  
Typical  
Maximum  
Unit  
0
1:1  
66 MHz  
80 MHz  
133 MHz  
310  
350  
430  
390  
430  
495  
mW  
mW  
mW  
2:1  
1
2
Typical power dissipation is measured at V  
= V  
= 1.8 V, and V  
is at 3.3 V.  
DDH  
DDL  
DDSYN  
Maximum power dissipation at V  
= V  
= 1.9 V, and V is at 3.5 V.  
DDL  
DDSYN  
DDH  
NOTE  
-based power dissipation and do not  
The values in Table 5 represent V  
DDL  
include I/O power dissipation over V  
. I/O power dissipation varies  
DDH  
widely by application due to buffer current, depending on external circuitry.  
The V power dissipation is negligible.  
DDSYN  
6 DC Characteristics  
Table 6 provides the DC electrical characteristics for the MPC875/MPC870.  
Table 6. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Operating voltage  
V
(I/O)  
3.135  
1.7  
3.465  
1.9  
V
V
DDH  
V
(core)  
DDL  
1
V
1.7  
1.9  
V
DDSYN  
Difference  
between V  
and V  
100  
mV  
DDL  
DDSYN  
2
Input high voltage (all inputs except EXTAL and EXTCLK)  
V
2.0  
GND  
3.465  
0.8  
V
V
IH  
3
Input low voltage  
V
IL  
EXTAL, EXTCLK input high voltage  
V
0.7 × V  
V
V
IHC  
DDH  
DDH  
Input leakage current, V = 5.5 V (except TMS, TRST, DSCK, and  
DSDI pins) for 5-V tolerant pins  
I
100  
µA  
in  
in  
In  
In  
1
Input leakage current, V = V  
(except TMS, TRST, DSCK, and  
DDH  
I
10  
µA  
µA  
pF  
in  
DSDI)  
Input leakage current, V = 0 V (except TMS, TRST, DSCK, and DSDI  
I
10  
in  
pins)  
4
Input capacitance  
C
20  
in  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
11  
Thermal Calculation and Measurement  
Table 6. DC Electrical Specifications (continued)  
Characteristic Symbol  
= –2.0 mA, V  
Min  
Max  
Unit  
Output high voltage, I  
open-drain pins)  
= 3.0 V (except XTAL and  
V
OH  
2.4  
V
OH  
DDH  
Output low voltage  
V
0.5  
V
OL  
I
I
I
I
I
= 2.0 mA (CLKOUT)  
= 3.2 mA  
= 5.3 mA  
= 7.0 mA (TXD1/PA14, TXD2/PA12)  
= 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)  
OL  
OL  
OL  
OL  
OL  
5
6
1
The difference between V  
and V cannot be more than 100 mV.  
DDL  
DDSYN  
2
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], PE(14:31), TDI, TDO, TCK, TRST, TMS, MII1_TXEN, and MII_MDIO are  
5-V tolerant. The minimum voltage is still 2.0 V.  
3
4
5
2
2
V (max) for the I C interface is 0.8 V rather than the 1.5 V as specified in the I C standard.  
IL  
Input capacitance is periodically sampled.  
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(0:1), PA(0:4), PA(6:7), PA(10:11), PA15, PB19,  
PB(23:31), PC(6:7), PC(10:13), PC15, PD8, PE(14:31), MII1_CRS, MII_MDIO, MII1_TXEN, and MII1_COL.  
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:7), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,  
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, OP(0:3), and  
BADDR(28:30).  
6
7 Thermal Calculation and Measurement  
For the following discussions, P = (V  
drivers.  
× I  
) + P , where P is the power dissipation of the I/O  
D
DDL  
DDL I/O I/O  
NOTE  
power dissipation is negligible.  
The V  
DDSYN  
7.1  
Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation:  
T = T + (R × P )  
J
A
θJA  
D
where:  
T = ambient temperature (°C)  
A
R
= package junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated  
that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
12  
Freescale Semiconductor  
Thermal Calculation and Measurement  
7.2  
Estimation with Junction-to-Case Thermal Resistance  
Historically, thermal resistance has frequently been expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to-ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user adjusts the thermal environment to  
θJC  
affect the case-to-ambient thermal resistance, R  
. For instance, the user can change the airflow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the  
thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful  
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink  
to the ambient environment. For most packages, a better model is required.  
7.3  
Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor  
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case  
thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is  
dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal  
performance when most of the heat is conducted to the printed-circuit board. It has been observed that the  
thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the  
board temperature. If the board temperature is known, an estimate of the junction temperature in the  
environment can be made using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (°C/W)  
θJB  
T = board temperature (°C)  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored,  
acceptable predictions of junction temperature can be made. For this method to work, the board and board  
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,  
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground  
plane.  
7.4  
Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple  
two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and  
complex model of the package can be used in the thermal simulation.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
13  
Power Supply and Power Sequencing  
7.5  
Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
Ψ = thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC  
using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple  
should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is  
placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The  
thermocouple wire is placed flat against the package case to avoid measurement errors caused by the  
cooling effects of the thermocouple wire.  
7.6  
References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd  
(415) 964-5111  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an  
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. 2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal  
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego,  
1999, pp. 212–220.  
8 Power Supply and Power Sequencing  
This section provides design considerations for the MPC875/MPC870 power supply. The  
MPC875/MPC870 has a core voltage (V  
) and PLL voltage (V  
), which both operate at a lower  
DDL  
DDSYN  
voltage than the I/O voltage (V  
). The I/O section of the MPC875/MPC870 is supplied with 3.3 V  
DDH  
across V  
and V (GND).  
DDH  
SS  
The signals PA[0:3], PA[8:11], PB15, PB[24:25], PB[28:31], PC[4:7], PC[12:13], PC15, PD[3:15], TDI,  
TDO, TCK, TRST, TMS, MII_TXEN, and MII_MDIO are 5 V tolerant. No input can be more than 2.5 V  
greater than V  
. In addition, 5-V tolerant pins cannot exceed 5.5 V, and remaining input pins cannot  
DDH  
exceed 3.465 V. This restriction applies to power up, power down, and normal operation.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
14  
Freescale Semiconductor  
Mandatory Reset Configurations  
One consequence of multiple power supplies is that when power is initially applied, the voltage rails ramp  
up at different rates. The rates depend on the nature of the power supply, the type of load on each power  
supply, and the manner in which different voltages are derived. The following restrictions apply:  
V
V
must not exceed V  
during power up and power down  
DDL  
DDH  
must not exceed 1.9 V, and V  
must not exceed 3.465 V  
DDL  
DDH  
These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic  
discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these  
diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in  
Figure 4 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum  
potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes  
regulate the maximum potential difference on power down.  
V
V
DDL  
DDH  
MUR420  
1N5820  
Figure 4. Example Voltage Sequencing Circuit  
9 Mandatory Reset Configurations  
The MPC875/MPC870 requires a mandatory configuration during reset.  
If hardware reset configuration word (HRCW) is enabled, the HRCW[DBGC] value needs to be set to  
binary X1 in the HRCW and the SIUMCR[DBGC] should be programmed with the same value in the boot  
code after reset. This can be done by asserting the RSTCONF during HRESET assertion.  
If HRCW is disabled, the SIUMCR[DBGC] should be programmed with binary X1 in the boot code after  
reset by negating the RSTCONF during the HRESET assertion.  
The MBMR[GPLB4DIS], PAPAR, PADIR, PBPAR, PBDIR, PCPAR, and PCDIR need to be configured  
with the mandatory values in Table 7 in the boot code after the reset is negated.  
Table 7. Mandatory Reset Configuration of MPC875/MPC870  
Value  
(Binary)  
Register/Configuration  
HRCW (Hardware reset configuration word)  
Field  
HRCW[DBGC]  
X1  
X1  
0
SIUMCR (SIU module configuration register)  
MBMR (Machine B mode register)  
SIUMCR[DBGC]  
MBMR[GPLB4DIS}  
PAPAR (Port A pin assignment register)  
PAPAR[5:9]  
0
PAPAR[12:13]  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
15  
Layout Practices  
Table 7. Mandatory Reset Configuration of MPC875/MPC870 (continued)  
Register/Configuration Field  
PADIR[5:9]  
Value  
(Binary)  
PADIR (Port A data direction register)  
PBPAR (Port B pin assignment register)  
PBDIR (Port B data direction register)  
PCPAR (Port C pin assignment register)  
0
0
0
0
PADIR[12:13]  
PBPAR[14:18]  
PBPAR[20:22]  
PBDIR[14:8]  
PBDIR[20:22]  
PCPAR[4:5]  
PCPAR[8:9]  
PCPAR[14]  
PCDIR (Port C data direction register)  
PCDIR[4:5]  
PCDIR[8:9]  
PCDIR[14]  
0
PDPAR (Port D pin assignment register)  
PDDIR (Port D data direction register)  
PDPAR[3:7]  
PDPAR[9:5]  
0
0
PDDIR[3:7]  
PDDIR[9:15]  
10 Layout Practices  
Each V pin on the MPC875/MPC870 should be provided with a low-impedance path to the board’s  
DD  
supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power  
supply pins drive distinct groups of logic on chip. The VDD power supply should be bypassed to ground  
using at least four 0.1-µF bypass capacitors located as close as possible to the four sides of the package.  
Each board designed should be characterized and additional appropriate decoupling capacitors should be  
used if required. The capacitor leads and associated printed-circuit traces connecting to chip V and  
DD  
GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board  
employing two inner layers as V and GND planes should be used.  
DD  
All output pins on the MPC875/MPC870 have fast rise and fall times. Printed circuit (PC) trace  
interconnection length should be minimized in order to minimize undershoot and reflections caused by  
these fast output switching times. This recommendation particularly applies to the address and data buses.  
Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all  
device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and  
bypassing becomes especially critical in systems with higher capacitive loads because these loads create  
higher transient currents in the V and GND circuits. Pull up all unused inputs or signals that will be  
DD  
inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For  
more information, refer to Section 14.4.3, “Clock Synthesizer Power (V  
, V  
, V  
),” in  
DDSYN  
SSSYN  
SSSYN1  
the MPC885 PowerQUICC™ Family Reference Manual.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
16  
Freescale Semiconductor  
Bus Signal Timing  
11 Bus Signal Timing  
The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be  
operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured  
for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and  
Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.  
Table 8. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)  
66 MHz  
80 MHz  
Part Frequency  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
40  
66.67  
66.67  
40  
40  
80  
80  
Table 9. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)  
66 MHz 80 MHz  
133 MHz  
Part Frequency  
Min  
Max  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
20  
66.67  
33.33  
40  
20  
80  
40  
40  
20  
133  
66  
Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.  
The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and  
a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay  
Table 10. Bus Operation Timings  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B1  
Bus period (CLKOUT), see Table 8  
–2  
–2  
ns  
ns  
B1a EXTCLK to CLKOUT phase skew—If  
CLKOUT is an integer multiple of EXTCLK,  
then the rising edge of EXTCLK is aligned with  
the rising edge of CLKOUT. For a non-integer  
multiple of EXTCLK, this synchronization is  
lost, and the rising edges of EXTCLK and  
CLKOUT have a continuously varying phase  
skew.  
+2  
–2  
+2  
+2  
–2  
+2  
B1b CLKOUT frequency jitter peak-to-peak  
B1c Frequency jitter on EXTCLK  
1
0.50  
4
1
0.50  
4
1
0.50  
4
1
0.50  
4
ns  
%
B1d CLKOUT phase jitter peak-to-peak for  
ns  
OSCLK 15 MHz  
CLKOUT phase jitter peak-to-peak for  
OSCLK < 15 MHz  
5
5
5
5
ns  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
17  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B2  
B3  
CLKOUT pulse width low (MIN = 0.4 × B1,  
MAX = 0.6 × B1)  
12.1  
12.1  
18.2  
10.0  
10.0  
15.0  
6.1  
6.1  
9.1  
5.0  
5.0  
7.5  
ns  
ns  
CLKOUT pulse width high (MIN = 0.4 × B1,  
MAX = 0.6 × B1)  
18.2  
15.0  
9.1  
7.5  
B4  
B5  
B7  
CLKOUT rise time  
CLKOUT fall time  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
ns  
ns  
ns  
CLKOUT to A(0:31), BADDR(28:30), RD/WR, 7.60  
6.30  
3.80  
3.13  
BURST, D(0:31) output hold (MIN = 0.25 × B1)  
B7a CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR 7.60  
6.30  
6.30  
3.80  
3.80  
3.13  
3.13  
ns  
ns  
output hold (MIN = 0.25 × B1)  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2) 7.60  
IWP(0:2), LWP(0:1), STS output hold  
(MIN = 0.25 × B1)  
B8  
CLKOUT to A(0:31), BADDR(28:30), RD/WR,  
BURST, D(0:31) valid (MAX = 0.25 × B1 + 6.3)  
13.80  
13.80  
13.80  
12.50  
12.50  
12.50  
10.00  
10.00  
10.00  
9.43  
9.43  
9.43  
ns  
ns  
ns  
B8a CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR  
valid (MAX = 0.25 × B1 + 6.3)  
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2),  
2
IWP(0:2), FRZ, LWP(0:1), STS valid  
(MAX = 0.25 × B1 + 6.3)  
B9  
CLKOUT to A(0:31), BADDR(28:30), RD/WR, 7.60 13.80 6.30 12.50 3.80 10.00 3.13  
BURST, D(0:31), TSIZ(0:1), REG, RSV, PTR  
9.43  
ns  
High-Z (MAX = 0.25 × B1 + 6.3)  
B11 CLKOUT to TS, BB assertion  
7.60 13.60 6.30 12.30 3.80  
9.80  
9.80  
3.13  
2.5  
9.13  
9.3  
ns  
ns  
(MAX = 0.25 × B1 + 6.0)  
B11a CLKOUT to TA, BI assertion (when driven by  
the memory controller or PCMCIA interface)  
2.50  
9.30  
2.50  
9.30  
2.50  
1
(MAX = 0.00 × B1 + 9.30 )  
B12 CLKOUT to TS, BB negation  
7.60 12.30 6.30 11.00 3.80  
8.50  
9.00  
3.13  
2.5  
7.92  
9.00  
ns  
ns  
(MAX = 0.25 × B1 + 4.8)  
B12a CLKOUT to TA, BI negation (when driven by  
the memory controller or PCMCIA interface)  
(MAX = 0.00 × B1 + 9.00)  
2.50  
9.00  
2.50  
9.00  
2.50  
B13 CLKOUT to TS, BB High-Z (MIN = 0.25 × B1) 7.60 21.60 6.30 20.30 3.80 14.00 3.13 12.93  
ns  
ns  
B13a CLKOUT to TA, BI High-Z (when driven by the 2.50 15.00 2.50 15.00 2.50 15.00  
memory controller or PCMCIA interface)  
2.5  
15.00  
(MIN = 0.00 × B1 + 2.5)  
B14 CLKOUT to TEA assertion  
2.50  
9.00  
2.50  
9.00  
2.50  
9.00  
2.50  
9.00  
ns  
(MAX = 0.00 × B1 + 9.00)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00  
66 MHz  
Min Max  
80 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
B15 CLKOUT to TEA High-Z  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 2.50)  
B16 TA, BI valid to CLKOUT (setup time)  
6.00  
6.00  
4.50  
4.00  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
6.00  
4.50  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
6
(MIN = 0.00 × B1 + 6.00)  
B16a TEA, KR, RETRY, CR valid to CLKOUT (setup 4.50  
4.50  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
time) (MIN = 0.00 × B1 + 4.5)  
2
B16b BB, BG, BR, valid to CLKOUT (setup time)  
4.00  
1.00  
(4MIN = 0.00 × B1 + 0.00)  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid  
3
(hold time) (MIN = 0.00 × B1 + 1.00 )  
B17a CLKOUT to KR, RETRY, CR valid (hold time) 2.00  
(MIN = 0.00 × B1 + 2.00)  
B18 D(0:31) valid to CLKOUT rising edge (setup  
6.00  
1.00  
4.00  
2.00  
4
time) (MIN = 0.00 × B1 + 6.00)  
B19 CLKOUT rising edge to D(0:31) valid (hold  
4
5
time) (MIN = 0.00 × B1 + 1.00 )  
B20 D(0:31) valid to CLKOUT falling edge (setup  
6
time) (MIN = 0.00 × B1 + 4.00)  
B21 CLKOUT falling edge to D(0:31) valid (hold  
6
time) (MIN = 0.00 × B1 + 2.00)  
B22 CLKOUT rising edge to CS asserted GPCM  
7.60 13.80 6.30 12.50 3.80 10.00 3.13  
9.43  
8.00  
9.43  
ACS = 00 (MAX = 0.25 × B1 + 6.3)  
B22a CLKOUT falling edge to CS asserted GPCM  
8.00  
8.00  
8.00  
ACS = 10, TRLX = 0 (MAX = 0.00 × B1 + 8.00)  
B22b CLKOUT falling edge to CS asserted GPCM  
ACS = 11, TRLX = 0, EBDF = 0  
7.60 13.80 6.30 12.50 3.80 10.00 3.13  
(MAX = 0.25 × B1 + 6.3)  
B22c CLKOUT falling edge to CS asserted GPCM 10.90 18.00 10.90 16.00 5.20 12.30 4.69 10.93  
ns  
ns  
ACS = 11, TRLX = 0, EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
B23 CLKOUT rising edge to CS negated GPCM  
read access, GPCM write access ACS = 00,  
TRLX = 0 and CSNT = 0  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
(MAX = 0.00 × B1 + 8.00)  
B24 A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 10, TRLX = 0  
5.60  
4.30  
1.80  
5.60  
1.13  
4.25  
ns  
ns  
(MIN = 0.25 × B1 – 2.00)  
B24a A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 11, TRLX = 0  
13.20  
10.50  
(MIN = 0.50 × B1 – 2.00)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
19  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B25 CLKOUT rising edge to OE,  
WE(0:3)/BS_B[0:3] asserted  
(MAX = 0.00 × B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
ns  
B26 CLKOUT rising edge to OE negated  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
ns  
ns  
(MAX = 0.00 × B1 + 9.00)  
B27 A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 10, TRLX = 1  
35.90  
29.30  
16.90  
13.60  
(MIN = 1.25 × B1 – 2.00)  
B27a A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 11, TRLX = 1  
43.50  
35.50  
20.70  
16.75  
ns  
ns  
ns  
(MIN = 1.50 × B1 – 2.00)  
B28 CLKOUT rising edge to WE(0:3)/BS_B[0:3]  
negated GPCM write access CSNT = 0  
(MAX = 0.00 × B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
9.93  
B28a CLKOUT falling edge to WE(0:3)/BS_B[0:3]  
negated GPCM write access TRLX = 0,  
CSNT = 1, EBDF = 0  
7.60 14.30 6.30 13.00 3.80 10.50 3.13  
(MAX = 0.25 × B1 + 6.80)  
B28b CLKOUT falling edge to CS negated GPCM  
write access TRLX = 0, CSNT = 1 ACS = 10 or  
ACS = 11, EBDF = 0  
14.30  
13.00  
10.50  
9.93  
11.29  
11.30  
ns  
ns  
ns  
(MAX = 0.25 × B1 + 6.80)  
B28c CLKOUT falling edge to WE(0:3)/BS_B[0:3]  
negated GPCM write access TRLX = 0,  
CSNT = 1 write access TRLX = 0, CSNT = 1,  
EBDF = 1 (MAX = 0.375 × B1 + 6.6)  
10.90 18.00 10.90 18.00 5.20 12.30 4.69  
B28d CLKOUT falling edge to CS negated GPCM  
write access TRLX = 0, CSNT = 1, ACS = 10  
or ACS = 11, EBDF = 1  
18.00  
18.00  
12.30  
(MAX = 0.375 × B1 + 6.6)  
B29 WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z 5.60  
GPCM write access, CSNT = 0, EBDF = 0  
(MIN = 0.25 × B1 – 2.00)  
4.30  
10.50  
4.30  
1.80  
5.60  
1.80  
5.60  
1.13  
4.25  
1.13  
4.25  
ns  
ns  
ns  
ns  
B29a WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z 13.20  
GPCM write access, TRLX = 0, CSNT = 1,  
EBDF = 0 (MIN = 0.50 × B1 – 2.00)  
B29b CS negated to D(0:31) High-Z GPCM write  
access, ACS = 00, TRLX = 0 and CSNT = 0  
(MIN = 0.25 × B1 – 2.00)  
5.60  
B29c CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 0, CSNT = 1, ACS = 10 or  
ACS = 11, EBDF = 0 (MIN = 0.50 × B1 – 2.00)  
13.20  
10.50  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
20  
Freescale Semiconductor  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B29d WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z 43.50  
GPCM write access, TRLX = 1, CSNT = 1,  
EBDF = 0 (MIN = 1.50 × B1 – 2.00)  
35.50  
35.50  
3.00  
20.70  
20.70  
0.00  
16.75  
16.75  
0.00  
ns  
ns  
ns  
ns  
B29e CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 1, CSNT = 1, ACS = 10 or  
ACS = 11, EBDF = 0 (MIN = 1.50 × B1 – 2.00)  
43.50  
B29f WE(0:3/BS_B[0:3]) negated to D(0:31) High-Z 5.00  
GPCM write access, TRLX = 0, CSNT = 1,  
7
EBDF = 1 (MIN = 0.375 × B1 – 6.30)  
B29g CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 0, CSNT = 1 ACS = 10 or  
ACS = 11, EBDF = 1  
5.00  
3.00  
0.00  
0.00  
7
(MIN = 0.375 × B1 – 6.30)  
B29h WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z 38.40  
GPCM write access, TRLX = 1, CSNT = 1,  
EBDF = 1 (MIN = 0.375 × B1 – 3.30)  
31.10  
31.10  
17.50  
17.50  
13.85  
13.85  
ns  
ns  
B29i CS negated to D(0:31) (0:3) High-Z GPCM  
write access, TRLX = 1, CSNT = 1, ACS = 10  
or ACS = 11, EBDF = 1  
38.40  
(MIN = 0.375 × B1 – 3.30)  
B30 CS, WE(0:3)/BS_B[0:3] negated to A(0:31),  
5.60  
4.30  
1.80  
5.60  
1.13  
4.25  
ns  
ns  
8
BADDR(28:30) invalid GPCM write access  
(MIN = 0.25 × B1 – 2.00)  
B30a WE(0:3)/BS_B[0:3] negated to A(0:31),  
BADDR(28:30) invalid GPCM, write access,  
TRLX = 0, CSNT = 1, CS negated to A(0:31),  
invalid GPCM write access TRLX = 0,  
CSNT = 1, ACS = 10 or ACS == 11, EBDF = 0  
(MIN = 0.50 × B1 – 2.00)  
13.20  
10.50  
B30b WE(0:3)/BS_B[0:3] negated to A(0:31), invalid 43.50  
GPCM BADDR(28:30), invalid GPCM write  
access, TRLX = 1, CSNT = 1. CS negated to  
A(0:31), invalid GPCM write access TRLX = 1,  
CSNT = 1, ACS = 10 or ACS == 11, EBDF = 0  
(MIN = 1.50 × B1 – 2.00)  
35.50  
6.40  
20.70  
2.70  
16.75  
1.70  
ns  
ns  
B30c WE(0:3)/BS_B[0:3] negated to A(0:31),  
BADDR(28:30) invalid GPCM write access,  
TRLX = 0, CSNT = 1. CS negated to A(0:31)  
invalid GPCM write access, TRLX = 0,  
CSNT = 1 ACS = 10 or ACS == 11, EBDF = 1  
(MIN = 0.375 × B1 – 3.00)  
8.40  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
21  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
38.67  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B30d WE(0:3)/BS_B[0:3] negated to A(0:31),  
BADDR(28:30) invalid GPCM write access  
TRLX = 1, CSNT =1, CS negated to A(0:31)  
invalid GPCM write access TRLX = 1,  
31.38  
17.83  
14.19  
ns  
CSNT = 1, ACS = 10 or 11, EBDF = 1  
B31 CLKOUT falling edge to CS valid as requested 1.50  
by control bit CST4 in the corresponding word  
in the UPM (MAX = 0.00 × B1 + 6.00)  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
ns  
ns  
ns  
ns  
B31a CLKOUT falling edge to CS valid as requested 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00  
by control bit CST1 in the corresponding word  
in the UPM (MAX = 0.25 × B1 + 6.80)  
B31b CLKOUT rising edge to CS valid, as requested 1.50  
by control bit CST2 in the corresponding word  
in the UPM (MAX = 0.00 × B1 + 8.00)  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
9.40  
B31c CLKOUT rising edge to CS valid, as requested 7.60 13.80 6.30 12.50 3.80 10.00 3.13  
by control bit CST3 in the corresponding word  
in the UPM (MAX = 0.25 × B1 + 6.30)  
B31d CLKOUT falling edge to CS valid as requested 13.30 18.00 11.30 16.00 7.60 12.30 4.69 11.30  
by control bit CST1 in the corresponding word  
in the UPM EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
B32 CLKOUT falling edge to BS valid as requested 1.50  
by control bit BST4 in the corresponding word  
in the UPM (MAX = 0.00 × B1 + 6.00)  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
ns  
B32a CLKOUT falling edge to BS valid as requested 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00  
by control bit BST1 in the corresponding word  
in the UPM, EBDF = 0  
(MAX = 0.25 × B1 + 6.80)  
B32b CLKOUT rising edge to BS valid, as requested 1.50  
by control bit BST2 in the corresponding word  
in the UPM (MAX = 0.00 × B1 + 8.00)  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
ns  
ns  
B32c CLKOUT rising edge to BS valid, as requested 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00  
by control bit BST3 in the corresponding word  
in the UPM (MAX = 0.25 × B1 + 6.80)  
B32d CLKOUT falling edge to BS valid as requested 13.30 18.00 11.30 16.00 7.60 12.30 4.49 11.30  
by control bit BST1 in the corresponding word  
in the UPM, EBDF = 1  
(MAX = 0.375 × B1 + 6.60)  
B33 CLKOUT falling edge to GPL valid as  
requested by control bit GxT4 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 6.00)  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
22  
Freescale Semiconductor  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00  
66 MHz  
Min Max  
80 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
B33a CLKOUT rising edge to GPL valid as  
requested by control bit GxT3 in the  
corresponding word in the UPM  
(MAX = 0.25 × B1 + 6.80)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B34 A(0:31), BADDR(28:30), and D(0:31) to CS  
valid, as requested by control bit CST4 in the  
corresponding word in the UPM  
5.60  
13.20  
20.70  
5.60  
4.30  
10.50  
16.70  
4.30  
1.80  
5.60  
9.40  
1.80  
5.60  
9.40  
1.80  
1.13  
4.25  
6.80  
1.13  
4.25  
7.40  
1.13  
(MIN = 0.25 × B1 – 2.00)  
B34a A(0:31), BADDR(28:30), and D(0:31) to CS  
valid, as requested by control bit CST1 in the  
corresponding word in the UPM  
(MIN = 0.50 × B1 – 2.00)  
B34b A(0:31), BADDR(28:30), and D(0:31) to CS  
valid, as requested by CST2 in the  
corresponding word in UPM  
(MIN = 0.75 × B1 – 2.00)  
B35 A(0:31), BADDR(28:30) to CS valid as  
requested by control bit BST4 in the  
corresponding word in the UPM  
(MIN = 0.25 × B1 – 2.00)  
B35a A(0:31), BADDR(28:30), and D(0:31) to BS  
valid as requested by BST1 in the  
corresponding word in the UPM  
13.20  
20.70  
5.60  
10.50  
16.70  
4.30  
(MIN = 0.50 × B1 – 2.00)  
B35b A(0:31), BADDR(28:30), and D(0:31) to BS  
valid as requested by control bit BST2 in the  
corresponding word in the UPM  
(MIN = 0.75 × B1 – 2.00)  
B36 A(0:31), BADDR(28:30), and D(0:31) to GPL  
valid as requested by control bit GxT4 in the  
corresponding word in the UPM  
(MIN = 0.25 × B1 – 2.00)  
9
B37 UPWAIT valid to CLKOUT falling edge  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 6.00)  
9
B38 CLKOUT falling edge to UPWAIT valid  
(MIN = 0.00 × B1 + 1.00)  
10  
B39 AS valid to CLKOUT rising edge  
(MIN = 0.00 × B1 + 7.00)  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST valid to  
CLKOUT rising edge  
(MIN = 0.00 × B1 + 7.00)  
B41 TS valid to CLKOUT rising edge (setup time)  
7.00  
7.00  
7.00  
7.00  
ns  
(MIN = 0.00 × B1 + 7.00)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
23  
Bus Signal Timing  
Table 10. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B42 CLKOUT rising edge to TS valid (hold time)  
2.00  
2.00  
2.00  
2.00  
ns  
ns  
(MIN = 0.00 × B1 + 2.00)  
B43 AS negation to memory controller signals  
negation (MAX = TBD)  
TBD  
TBD  
TBD  
TBD  
1
2
For part speeds above 50 MHz, use 9.80 ns for B11a.  
The timing required for BR input is relevant when the MPC875/MPC870 is selected to work with the internal bus arbiter. The  
timing for BG input is relevant when the MPC875/MPC870 is selected to work with the external bus arbiter.  
For part speeds above 50 MHz, use 2 ns for B17.  
The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.  
For part speeds above 50 MHz, use 2 ns for B19.  
The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses  
controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats  
where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
This formula applies to bus operation up to 50 MHz.  
3
4
5
6
7
8
9
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and  
B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified  
in Figure 23.  
10  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
24  
Freescale Semiconductor  
Bus Signal Timing  
Figure 5 provides the control timing diagram.  
.
CLKOUT  
A
B
Outputs  
A
B
Outputs  
D
C
Inputs  
D
C
Inputs  
A
B
C
D
Maximum output delay specification.  
Minimum output hold time.  
Minimum input setup time specification.  
Minimum input hold time specification.  
Figure 5. Control Timing  
Figure 6 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 6. External Clock Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
25  
Bus Signal Timing  
Figure 7 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
B9  
Output  
Signals  
Output  
Signals  
Figure 7. Synchronous Output Signals Timing  
Figure 8 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
TS, BB  
TA, BI  
TEA  
B13a  
B12a  
B11  
B14  
B15  
Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
26  
Freescale Semiconductor  
Bus Signal Timing  
Figure 9 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B17a  
TEA, KR,  
RETRY, CR  
B16b  
B17  
BB, BG, BR  
Figure 9. Synchronous Input Signals Timing  
Figure 10 provides normal case timing for input data. It also applies to normal read accesses under the  
control of the user-programmable machine (UPM) in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31]  
Figure 10. Input Data Timing in Normal Case  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
27  
Bus Signal Timing  
Figure 11 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in  
the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31]  
Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 12 through Figure 15 provide the timing for the external bus read controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
WE[0:3]  
D[0:31]  
B28  
B18  
Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
28  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B22a  
B23  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31]  
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
B23  
CSx  
OE  
B24a  
B25  
B26  
B19  
B18  
D[0:31]  
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
29  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B22a  
B23  
B27  
B26  
B19  
OE  
B27a  
B22b B22c  
B18  
D[0:31]  
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
30  
Freescale Semiconductor  
Bus Signal Timing  
Figure 16 through Figure 18 provide the timing for the external bus write controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
B30  
A[0:31]  
B22  
B23  
CSx  
B25  
B28  
WE[0:3]  
B29b  
B26  
OE  
B29  
B8  
B9  
D[0:31]  
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
31  
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
B30a B30c  
A[0:31]  
B28b B28d  
B22  
B23  
CSx  
B29c B29g  
B25  
WE[0:3]  
B29a B29f  
B26  
OE  
B28a B28c  
B8  
B9  
D[0:31]  
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
32  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B30b B30d  
B8  
A[0:31]  
B28b B28d  
B22  
B23  
CSx  
WE[0:3]  
OE  
B29e B29i  
B29d B29h  
B25  
B26  
B29b  
B28a B28c  
B8  
B9  
D[0:31]  
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
33  
Bus Signal Timing  
Figure 19 provides the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31b  
B31  
CSx  
B34  
B34a  
B34b  
B32a B32d  
B32c  
B32b  
B32  
BS_A[0:3]  
B35 B36  
B35a  
B33a  
B35b  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 19. External Bus Timing (UPM Controlled Signals)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
34  
Freescale Semiconductor  
Bus Signal Timing  
Figure 20 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 21 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
35  
Bus Signal Timing  
Figure 22 provides the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
Figure 23 provides the timing for the asynchronous external master memory access controlled by the  
GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 24 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 24. Asynchronous External Master—Control Signals Negation Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
36  
Freescale Semiconductor  
Bus Signal Timing  
Table 11 provides the interrupt timing for the MPC875/MPC870.  
Table 11. Interrupt Timing  
All Frequencies  
Min Max  
1
Num  
Characteristic  
Unit  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
3.00  
3.00  
ns  
ns  
ns  
ns  
IRQx pulse width high  
IRQx edge-to-edge time  
4 × T  
CLOCKOUT  
1
The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level  
sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.  
The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct  
relation with the total system interrupt latency that the MPC875/MPC870 is able to support.  
Figure 25 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 25. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
37  
Bus Signal Timing  
Table 12 shows the PCMCIA timing for the MPC875/MPC870.  
Table 12. PCMCIA Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
A(0:31), REG valid to PCMCIA strobe  
asserted (MIN = 0.75 × B1 – 2.00)  
20.70  
28.30  
7.60  
8.60  
7.60  
7.60  
16.70  
9.40  
13.20  
3.80  
4.80  
3.80  
3.80  
7.40  
10.50  
3.13  
4.125  
3.13  
3.13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
1
1
A(0:31), REG valid to ALE negation  
23.00  
6.30  
7.30  
6.30  
6.30  
11.13  
(MIN = 1.00 × B1 – 2.00)  
CLKOUT to REG valid  
(MAX = 0.25 × B1 + 8.00)  
15.60  
14.30  
11.80  
CLKOUT to REG invalid  
(MIN = 0.25 × B1 + 1.00)  
CLKOUT to CE1, CE2 asserted  
(MAX = 0.25 × B1 + 8.00)  
15.60  
15.60  
11.00  
11.00  
13.80  
15.60  
14.30  
14.30  
11.00  
11.00  
12.50  
14.30  
11.80  
11.80  
11.00  
11.00  
10.00  
11.80  
11.13  
11.13  
11.00  
11.00  
9.40  
11.13  
CLKOUT to CE1, CE2 negated  
(MAX = 0.25 × B1 + 8.00)  
CLKOUT to PCOE, IORD, PCWE, IOWR  
assert time (MAX = 0.00 × B1 + 11.00)  
CLKOUT to PCOE, IORD, PCWE, IOWR 2.00  
negate time (MAX = 0.00 × B1 + 11.00)  
2.00  
6.30  
2.00  
3.80  
2.00  
3.13  
CLKOUT to ALE assert time  
(MAX = 0.25 × B1 + 6.30)  
7.60  
CLKOUT to ALE negate time  
(MAX = 0.25 × B1 + 8.00)  
PCWE, IOWR negated to D(0:31)  
5.60  
8.00  
2.00  
4.30  
8.00  
2.00  
1.80  
8.00  
2.00  
1.125  
8.00  
2.00  
1
invalid (MIN = 0.25 × B1 – 2.00)  
WAITA and WAITB valid to CLKOUT  
1
rising edge (MIN = 0.00 × B1 + 8.00)  
CLKOUT rising edge to WAITA and  
1
WAITB invalid (MIN = 0.00 × B1 + 2.00)  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITA signals are detected in order to freeze (or relieve) the PCMCIA current  
cycle. The WAITA assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16,  
“PCMCIA Interface,” in the MPC885 PowerQUICC™ Family Reference Manual.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
38  
Freescale Semiconductor  
Bus Signal Timing  
Figure 27 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 27. PCMCIA Access Cycles Timing External Bus Read  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
39  
Bus Signal Timing  
Figure 28 provides the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
PCWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 28. PCMCIA Access Cycles Timing External Bus Write  
Figure 29 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITA  
Figure 29. PCMCIA WAIT Signals Detection Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
40  
Freescale Semiconductor  
Bus Signal Timing  
Table 13 shows the PCMCIA port timing for the MPC875/MPC870.  
Table 13. PCMCIA Port Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
CLKOUT to OPx valid  
(MAX = 0.00 × B1 + 19.00)  
19.00  
19.00  
19.00  
19.00  
ns  
ns  
ns  
ns  
P57  
P58  
P59  
P60  
1
HRESET negated to OPx drive  
(MIN = 0.75 × B1 + 3.00)  
25.70  
5.00  
1.00  
21.70  
5.00  
1.00  
14.40  
5.00  
1.00  
12.40  
5.00  
1.00  
IP_Xx valid to CLKOUT rising edge  
(MIN = 0.00 × B1 + 5.00)  
CLKOUT rising edge to IP_Xx invalid  
(MIN = 0.00 × B1 + 1.00)  
1
OP2 and OP3 only.  
Figure 30 provides the PCMCIA output port timing for the MPC875/MPC870.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 30. PCMCIA Output Port Timing  
Figure 31 provides the PCMCIA input port timing for the MPC875/MPC870.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 31. PCMCIA Input Port Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
41  
Bus Signal Timing  
Table 14 shows the debug port timing for the MPC875/MPC870.  
Table 14. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
D61 DSCK cycle time  
3 × T  
ns  
ns  
ns  
ns  
ns  
CLOCKOUT  
D62 DSCK clock pulse width  
D63 DSCK rise and fall times  
D64 DSDI input data setup time  
D65 DSDI data hold time  
1.25 × T  
CLOCKOUT  
0.00  
3.00  
8.00  
5.00  
0.00  
0.00  
D66 DSCK low to DSDO data valid  
D67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 32 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
Figure 32. Debug Port Clock Input Timing  
D63  
Figure 33 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 33. Debug Port Timings  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
42  
Freescale Semiconductor  
Bus Signal Timing  
Table 15 shows the reset timing for the MPC875/MPC870.  
Table 15. Reset Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
CLKOUT to HRESET high impedance  
(MAX = 0.00 × B1 + 20.00)  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
ns  
R69  
R70  
CLKOUT to SRESET high impedance  
(MAX = 0.00 × B1 + 20.00)  
20.00  
20.00  
20.00  
20.00  
RSTCONF pulse width  
(MIN = 17.00 × B1)  
515.20  
425.00  
257.60  
212.50  
R71  
R72  
ns  
Configuration data to HRESET rising  
504.50  
425.00  
277.30  
237.50  
R73 edge setup time  
(MIN = 15.00 × B1 + 50.00)  
Configuration data to RSTCONF rising 350.00  
R74 edge setup time  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 350.00)  
Configuration data hold time after  
R75 RSTCONF negation  
0.00  
0.00  
(MIN = 0.00 × B1 + 0.00)  
Configuration data hold time after  
R76 HRESET negation  
(MIN = 0.00 × B1 + 0.00)  
HRESET and RSTCONF asserted to  
25.00  
25.00  
25.00  
25.00  
R77 data out drive  
(MAX = 0.00 × B1 + 25.00)  
RSTCONF negated to data out high  
impedance (MAX = 0.00 × B1 + 25.00)  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
ns  
ns  
R78  
CLKOUT of last rising edge before chip  
R79 three-states HRESET to data out high  
impedance (MAX = 0.00 × B1 + 25.00)  
R80 DSDI, DSCK setup (MIN = 3.00 × B1)  
90.90  
0.00  
75.00  
0.00  
45.50  
0.00  
37.50  
0.00  
ns  
ns  
DSDI, DSCK hold time  
R81  
(MIN = 0.00 × B1 + 0.00)  
SRESET negated to CLKOUT rising  
R82 edge for DSDI and DSCK sample  
(MIN = 8.00 × B1)  
242.40  
200.00  
121.20  
100.00  
ns  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
43  
Bus Signal Timing  
Figure 34 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
D[0:31] (IN)  
R73  
R74  
R75  
Figure 34. Reset Timing—Configuration from Data Bus  
Figure 35 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 35. Reset Timing—Data Bus Weak Drive During Configuration  
Figure 36 provides the reset timing for the debug port configuration.  
CLKOUT  
R70  
R82  
R80  
SRESET  
R80  
R81  
R81  
DSCK, DSDI  
Figure 36. Reset Timing—Debug Port Configuration  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
44  
Freescale Semiconductor  
IEEE 1149.1 Electrical Specifications  
12 IEEE 1149.1 Electrical Specifications  
Table 16 provides the JTAG timings for the MPC875/MPC870 shown in Figure 37 through Figure 40.  
Table 16. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
TCK  
J82  
J82  
J83  
J83  
J84  
J84  
Figure 37. JTAG Test Clock Input Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
45  
IEEE 1149.1 Electrical Specifications  
TCK  
J85  
J86  
TMS, TDI  
J87  
J88  
J89  
TDO  
TCK  
Figure 38. JTAG Test Access Port Timing Diagram  
J91  
J90  
TRST  
TCK  
Figure 39. JTAG TRST Timing Diagram  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 40. Boundary Scan (JTAG) Timing Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
46  
Freescale Semiconductor  
CPM Electrical Characteristics  
13 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module  
(CPM) of the MPC875/MPC870.  
13.1 Port C Interrupt AC Electrical Specifications  
Table 17 provides the timings for Port C interrupts.  
Table 17. Port C Interrupt Timing  
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
Figure 41 shows the Port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 41. Port C Interrupt Detection Timing  
13.2 IDMA Controller AC Electrical Specifications  
Table 18 provides the IDMA controller timings as shown in Figure 42 through Figure 45.  
Table 18. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
42  
43  
44  
45  
46  
DREQ setup time to clock high  
DREQ hold time from clock high  
7
TBD  
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to rising edge of the clock setup time (applies to external TA)  
7
1
Applies to high-to-low mode (EDM = 1).  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
47  
CPM Electrical Characteristics  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 42. IDMA External Requests Timing Diagram  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 43. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
48  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 44. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 45. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
49  
CPM Electrical Characteristics  
13.3 Baud Rate Generator AC Electrical Specifications  
Table 19 provides the baud rate generator timings as shown in Figure 46.  
Table 19. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 46. Baud Rate Generator Timing Diagram  
13.4 Timer AC Electrical Specifications  
Table 20 provides the general-purpose timer timings as shown in Figure 47.  
Table 20. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
25  
ns  
clk  
clk  
clk  
ns  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
50  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 47. CPM General-Purpose Timers Timing Diagram  
13.5 Serial Interface AC Electrical Specifications  
Table 21 provides the serial interface (SI) timings as shown in Figure 48 through Figure 52.  
Table 21. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1, 2  
70  
71  
71a  
72  
73  
74  
75  
76  
77  
78  
L1RCLKB, L1TCLKB frequency (DSC = 0)  
SYNCCLK/2.5  
MHz  
ns  
2
L1RCLKB, L1TCLKB width low (DSC = 0)  
P + 10  
P + 10  
3
L1RCLKB, L1TCLKB width high (DSC = 0)  
ns  
L1TXDB, L1ST1 and L1ST2, L1RQ, L1CLKO rise/fall time  
L1RSYNCB, L1TSYNCB valid to L1CLKB edge (SYNC setup time)  
L1CLKB edge to L1RSYNCB, L1TSYNCB, invalid (SYNC hold time)  
L1RSYNCB, L1TSYNCB rise/fall time  
15.00  
ns  
20.00  
35.00  
ns  
ns  
15.00  
ns  
L1RXDB valid to L1CLKB edge (L1RXDB setup time)  
L1CLKB edge to L1RXDB invalid (L1RXDB hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
ns  
ns  
4
L1CLKB edge to L1ST1 and L1ST2 valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
ns  
78A L1SYNCB valid to L1ST1 and L1ST2 valid  
ns  
79  
80  
L1CLKB edge to L1ST1 and L1ST2 invalid  
ns  
L1CLKB edge to L1TXDB valid  
ns  
4
80A L1TSYNCB valid to L1TXDB valid  
ns  
81  
82  
L1CLKB edge to L1TXDB high impedance  
L1RCLKB, L1TCLKB frequency (DSC = 1)  
ns  
16.00 or  
MHz  
SYNCCLK/2  
83  
L1RCLKB, L1TCLKB width low (DSC = 1)  
P + 10  
ns  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
51  
CPM Electrical Characteristics  
Table 21. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
3
83a  
84  
85  
86  
87  
88  
L1RCLKB, L1TCLKB width high (DSC = 1)  
P + 10  
30.00  
ns  
ns  
L1CLKB edge to L1CLKOB valid (DSC = 1)  
4
L1RQB valid before falling edge of L1TSYNCB  
1.00  
42.00  
42.00  
L1TCLK  
ns  
2
L1GRB setup time  
L1GRB hold time  
ns  
L1CLKB edge to L1SYNCB valid (FSD = 00) CNT = 0000, BYT = 0,  
DSC = 0)  
0.00  
ns  
1
2
3
4
The ratio SYNCCLK/L1RCLKB must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after the L1CLKB edge or L1SYNCB, whichever comes later.  
L1RCLKB  
(FE = 0, CE = 0)  
(Input)  
71  
70  
71a  
72  
L1RCLKB  
(FE = 1, CE = 1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNCB  
(Input)  
73  
77  
L1RXDB  
(Input)  
BIT0  
76  
78  
79  
L1ST(2–1)  
(Output)  
Figure 48. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
52  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLKB  
(FE = 1, CE = 1)  
(Input)  
72  
83a  
82  
L1RCLKB  
(FE = 0, CE = 0)  
(Input)  
RFSD=1  
75  
74  
L1RSYNCB  
(Input)  
73  
77  
L1RXDB  
(Input)  
BIT0  
76  
78  
79  
L1ST(2–1)  
(Output)  
84  
L1CLKOB  
(Output)  
Figure 49. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
53  
CPM Electrical Characteristics  
L1TCLKB  
(FE = 0, CE = 0)  
(Input)  
71  
70  
72  
L1TCLKB  
(FE = 1, CE = 1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNCB  
(Input)  
80a  
BIT0  
80  
81  
L1TXDB  
(Output)  
79  
78  
L1ST(2–1)  
(Output)  
Figure 50. SI Transmit Timing Diagram (DSC = 0)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
54  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLKB  
(FE = 0, CE = 0)  
(Input)  
72  
83a  
82  
L1RCLKB  
(FE = 1, CE = 1)  
(Input)  
TFSD=0  
75  
L1RSYNCB  
(Input)  
73  
74  
81  
L1TXDB  
(Output)  
BIT0  
80  
78a  
79  
L1ST(2–1)  
(Output)  
78  
84  
L1CLKOB  
(Output)  
Figure 51. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
55  
CPM Electrical Characteristics  
Figure 52. IDL Timing  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
56  
Freescale Semiconductor  
CPM Electrical Characteristics  
13.6 SCC in NMSI Mode Electrical Specifications  
Table 22 provides the NMSI external clock timing.  
Table 22. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
RCLK3 and TCLK3 width high  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK3 and TCLK3 width low  
1/SYNCCLK + 5  
RCLK3 and TCLK3 rise/fall time  
15.00  
50.00  
50.00  
TXD3 active delay (from TCLK3 falling edge)  
RTS3 active/inactive delay (from TCLK3 falling edge)  
CTS3 setup time to TCLK3 rising edge  
RXD3 setup time to RCLK3 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
2
RXD3 hold time from RCLK3 rising edge  
CD3 setup time to RCLK3 rising edge  
1
2
The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as external SYNC signals.  
Table 23 provides the NMSI internal clock timing.  
Table 23. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
102  
103  
104  
105  
106  
107  
108  
RCLK3 and TCLK3 frequency  
0.00  
SYNCCLK/3  
MHz  
ns  
RCLK3 and TCLK3 rise/fall time  
30.00  
30.00  
TXD3 active delay (from TCLK3 falling edge)  
RTS3 active/inactive delay (from TCLK3 falling edge)  
CTS3 setup time to TCLK3 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
RXD3 setup time to RCLK3 rising edge  
ns  
2
RXD3 hold time from RCLK3 rising edge  
ns  
CD3 setup time to RCLK3 rising edge  
ns  
1
2
The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as external SYNC signals.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
57  
CPM Electrical Characteristics  
Figure 53 through Figure 55 show the NMSI timings.  
RCLK3  
102  
102  
101  
106  
100  
RxD3  
(Input)  
107  
108  
CD3  
(Input)  
107  
CD3  
(SYNC Input)  
Figure 53. SCC NMSI Receive Timing Diagram  
TCLK3  
102  
102  
101  
100  
TxD3  
(Output)  
103  
105  
RTS3  
(Output)  
104  
104  
CTS3  
(Input)  
107  
CTS3  
(SYNC Input)  
Figure 54. SCC NMSI Transmit Timing Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK3  
102  
102  
101  
100  
TxD3  
(Output)  
103  
RTS3  
(Output)  
104  
107  
104  
105  
CTS3  
(Echo Input)  
Figure 55. HDLC Bus Timing Diagram  
13.7 Ethernet Electrical Specifications  
Table 24 provides the Ethernet timings as shown in Figure 56 through Figure 58.  
Table 24. Ethernet Timing  
All Frequencies  
Unit  
Num  
Characteristic  
Min  
Max  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
CLSN width high  
RCLK3 rise/fall time  
RCLK3 width low  
RCLK3 clock period  
RXD3 setup time  
RXD3 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
1
120  
RENA active delay (from RCLK3 rising edge of the last data bit)  
10  
100  
RENA width low  
TCLK3 rise/fall time  
TCLK3 width low  
15  
40  
99  
1
TCLK3 clock period  
101  
50  
50  
50  
50  
TXD3 active delay (from TCLK3 rising edge)  
TXD3 inactive delay (from TCLK3 rising edge)  
TENA active delay (from TCLK3 rising edge)  
TENA inactive delay (from TCLK3 rising edge)  
6.5  
10  
10  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
59  
CPM Electrical Characteristics  
Table 24. Ethernet Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
2
138  
139  
CLKO1 low to SDACK asserted  
20  
20  
ns  
ns  
2
CLKO1 low to SDACK negated  
1
2
The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 56. Ethernet Collision Timing Diagram  
RCLK3  
121  
121  
124  
123  
Last Bit  
RxD3  
(Input)  
125  
126  
127  
RENA(CD3)  
(Input)  
Figure 57. Ethernet Receive Timing Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
60  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK3  
128  
128  
129  
131  
121  
TxD3  
(Output)  
132  
133  
134  
TENA(RTS3)  
(Input)  
RENA(CD3)  
(Input)  
(Note 2)  
Notes:  
1.  
Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is negated before TENA or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 58. Ethernet Transmit Timing Diagram  
13.8 SMC Transparent AC Electrical Specifications  
Table 25 provides the SMC transparent timings as shown in Figure 59.  
Table 25. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
150  
151  
SMCLK clock period  
SMCLK width low  
100  
50  
50  
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
151A SMCLK width high  
152  
153  
154  
155  
SMCLK rise/fall time  
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
10  
20  
5
RXD1/SMSYNC hold time  
1
SYNCCLK must be at least twice as fast as SMCLK.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
61  
CPM Electrical Characteristics  
SMCLK  
152  
152  
151  
151  
150  
SMTXD  
(Output)  
Note 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
Note:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 59. SMC Transparent Timing Diagram  
13.9 SPI Master AC Electrical Specifications  
Table 26 provides the SPI master timings as shown in Figure 60 and Figure 61.  
Table 26. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160  
161  
162  
163  
164  
165  
166  
167  
Master cycle time  
4
2
1024  
512  
t
t
cyc  
cyc  
Master clock (SCK) high or low time  
Master data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
10  
15  
Fall time output  
15  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
62  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPICLK  
(CI = 0)  
(Output)  
161  
163  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI = 1)  
(Output)  
162  
SPIMISO  
(Input)  
msb  
Data  
165  
lsb  
164  
msb  
msb  
167  
msb  
166  
SPIMOSI  
(Output)  
Data  
lsb  
Figure 60. SPI Master (CP = 0) Timing Diagram  
SPICLK  
(CI = 0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI = 1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
Data  
lsb  
164  
msb  
msb  
165  
167  
msb  
Figure 61. SPI Master (CP = 1) Timing Diagram  
166  
SPIMOSI  
(Output)  
Data  
lsb  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
63  
CPM Electrical Characteristics  
13.10 SPI Slave AC Electrical Specifications  
Table 27 provides the SPI slave timings as shown in Figure 62 and Figure 63.  
Table 27. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170  
171  
172  
173  
174  
175  
176  
177  
Slave cycle time  
2
15  
15  
1
50  
t
cyc  
Slave enable lead time  
Slave enable lag time  
ns  
ns  
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
t
cyc  
cyc  
1
t
20  
20  
ns  
ns  
ns  
Slave data hold time (inputs)  
Slave access time  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
181  
173  
170  
SPICLK  
(CI = 1)  
(Input)  
177  
182  
180  
Data  
179  
178  
Undef  
SPIMISO  
(Output)  
msb  
lsb  
msb  
175  
176  
msb  
181 182  
lsb  
SPIMOSI  
(Input)  
Data  
msb  
Figure 62. SPI Slave (CP = 0) Timing Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
64  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI = 1)  
(Input)  
177  
182  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
181 182  
Data  
SPIMOSI  
(Input)  
msb  
lsb  
Figure 63. SPI Slave (CP = 1) Timing Diagram  
2
13.11 I C AC Electrical Specifications  
2
Table 28 provides the I C (SCL < 100 kHz) timings.  
2
Table 28. I C Timing (SCL < 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
SCL clock frequency (slave)  
SCL clock frequency (master)  
0
100  
100  
1
kHz  
kHz  
μs  
1
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
Bus free time between transmissions  
Low period of SCL  
μs  
High period of SCL  
μs  
Start condition setup time  
Start condition hold time  
Data hold time  
μs  
μs  
μs  
Data setup time  
250  
ns  
SDL/SCL rise time  
μs  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
65  
CPM Electrical Characteristics  
2
Table 28. I C Timing (SCL < 100 kHZ) (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
210  
211  
SDL/SCL fall time  
300  
ns  
Stop condition setup time  
4.7  
μs  
1
SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scalar × 2).  
The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.  
2
Table 29 provides the I C (SCL > 100 kHz) timings.  
2
Table 29. I C Timing (SCL > 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (slave)  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
1
SCL clock frequency (master)  
BRGCLK/16512  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
0
BRGCLK/48  
Bus free time between transmissions  
Low period of SCL  
s
High period of SCL  
s
Start condition setup time  
Start condition hold time  
Data hold time  
s
s
s
Data setup time  
1/(40 × fSCL)  
s
SDL/SCL rise time  
1/(10 × fSCL)  
1/(33 × fSCL)  
s
SDL/SCL fall time  
s
Stop condition setup time  
1/2(2.2 × fSCL)  
s
1
SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scalar × 2).  
The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.  
2
Figure 64 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 64. I C Bus Timing Diagram  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
66  
Freescale Semiconductor  
USB Electrical Characteristics  
14 USB Electrical Characteristics  
This section provides the AC timings for the USB interface.  
14.1 USB Interface AC Timing Specifications  
The USB Port uses the transmit clock on SCC1. Table 30 lists the USB interface timings.  
Table 30. USB Interface AC Timing Specifications  
All Frequencies  
Name  
Characteristic  
Unit  
Min  
Max  
1
US1 USBCLK frequency of operation  
MHz  
Low speed  
Full speed  
6
48  
US4 USBCLK duty cycle (measured at 1.5 V)  
45  
55  
%
1
USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.  
15 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the  
timing specifications for the MII signals are independent of system clock frequency (part speed  
designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or  
3.3 V.  
15.1 MII and Reduced MII Receive Signal Timing  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The  
reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz  
+ 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must  
exceed the MII_RX_CLK frequency – 1%.  
Table 31 provides information on the MII receive signal timing.  
Table 31. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
35%  
4
65%  
65%  
MII_RX_CLK period  
MII_RX_CLK period  
ns  
MII_RX_CLK pulse width low  
M1_RMII RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK  
setup  
M2_RMII RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR  
hold  
2
ns  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
67  
FEC Electrical Characteristics  
Figure 65 shows MII receive signal timing.  
M3  
MII_RX_CLK (Input)  
M4  
MII_RXD[3:0] (Inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 65. MII Receive Signal Timing Diagram  
15.2 MII and Reduced MII Transmit Signal Timing  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz + 1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_TX_CLK frequency – 1%.  
Table 32 provides information on the MII transmit signal timing.  
Table 32. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
MII_TX_CLK pulse width high  
5
25  
ns  
ns  
35%  
35%  
4
65%  
65%  
MII_TX_CLK period  
MII_TX_CLK pulse width low  
MII_TX_CLK period  
M20_RMII RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup  
ns  
ns  
M21_RMII RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising  
edge  
2
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
68  
Freescale Semiconductor  
FEC Electrical Characteristics  
Figure 66 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (Input)  
M5  
M8  
MII_TXD[3:0] (Outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 66. MII Transmit Signal Timing Diagram  
15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 33 provides information on the MII async inputs signal timing.  
Table 33. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK period  
Figure 67 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 67. MII Async Inputs Timing Diagram  
15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 34 provides information on the MII serial management channel signal timing. The FEC functions  
correctly with a maximum MDC frequency in excess of 2.5 MHz.  
Table 34. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum propagation  
delay)  
0
ns  
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
M12 MII_MDIO (input) to MII_MDC rising edge setup  
M13 MII_MDIO (input) to MII_MDC rising edge hold  
M14 MII_MDC pulse width high  
10  
25  
ns  
ns  
0
ns  
40%  
40%  
60%  
60%  
MII_MDC period  
MII_MDC period  
M15 MII_MDC pulse width low  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
69  
FEC Electrical Characteristics  
Figure 68 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (Output)  
MII_MDIO (Output)  
M10  
M11  
MII_MDIO (Input)  
M12  
Figure 68. MII Serial Management Channel Timing Diagram  
M13  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
70  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
16 Mechanical Data and Ordering Information  
Table 35 identifies the packages and operating frequencies available for the MPC875/MPC870.  
Table 35. Available MPC875/MPC870 Packages/Frequencies  
Package Type  
Temperature (T )  
Frequency (MHz)  
Order Number  
J
Plastic ball grid array  
ZT suffix—Leaded  
VR suffix—Lead-Free are available as needed  
0°C to 95°C  
66  
KMPC875ZT66  
KMPC870ZT66  
MPC875ZT66  
MPC870ZT66  
80  
133  
66  
KMPC875ZT80  
KMPC870ZT80  
MPC875ZT80  
MPC870ZT80  
KMPC875ZT133  
KMPC870ZT133  
MPC875ZT133  
MPC870ZT133  
Plastic ball grid array  
CZT suffix—Leaded  
CVR suffix—Lead-Free are available as needed  
-40°C to 100°C  
KMPC875CZT66  
KMPC870CZT66  
MPC875CZT66  
MPC870CZT66  
133  
KMPC875CZT133  
KMPC870CZT133  
MPC875CZT133  
MPC870CZT133  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
71  
Mechanical Data and Ordering Information  
16.1 Pin Assignments  
Figure 69 shows the JEDEC pinout of the PBGA package as viewed from the top surface. For additional  
information, see the MPC885 PowerQUICC Family Users Manual.  
NOTE  
The pin numbering starts with B2 in order to conform to the JEDEC standard for  
23-mm body size using a 16 × 16 array.  
NOTE: This is the top view of the device.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
B
C
D
E
F
MODCK2 TEXP EXTCLK MODCK1 OP0  
ALEA  
AS  
IPB0  
BURST  
IRQ2  
IRQ6  
BB  
BR  
TEA  
BI  
CS0  
CS3  
CS5  
N/C  
RSTCONF  
IPA2  
IPA7  
SRESET BADDR29 OP1  
WAITA PORESET XTAL  
ALEB  
TS  
TA  
BDIP  
CS2  
CE1A GPLAB3 GPLA0  
IPA4  
D31  
D29  
EXTAL BADDR30 IPB1  
BG  
GPLA4 GPLA5  
WR  
CS4  
OE  
CE2A  
GPLAB2  
BSA0  
CS7  
WE0  
BSA3  
WE2  
BSA1  
TSIZ0  
WE1  
BSA2  
A31  
IPA5  
D30  
IPA3 VSSSYN VDDSYN HRESET BADDR28 IRQ4  
IRQ3  
VDDL  
CS1  
GPLB4  
CS6  
VDDL  
VDDH  
IPA6  
IPA1 VSSSYN1  
G
H
J
VDDH  
VDDH  
D28  
D7  
CLKOUT  
D24  
D26  
D25  
D21  
IPA0  
WE3  
TSIZ1  
A28  
A26  
A30  
A21  
A22  
A25  
A20  
A18  
A24  
A29  
VDDL  
GND  
VDDH  
VDDL  
D22  
D18  
D6  
D19  
D20  
A23  
GND  
K
L
GND  
VDDL  
D5  
D3  
D15  
D2  
D16  
D27  
D14 VDDL  
A14  
A10  
A19  
A12  
A27  
A15  
A17  
A16  
GND  
VDDH  
D0  
VDDH  
M
N
P
R
VDDH  
VDDH  
A2  
A8  
A6  
A3  
A11  
A7  
A13  
A9  
D11  
D10  
D23  
D9  
D1  
D12  
D13  
PE18  
IRQ7  
IRQ1  
IRQ0  
PA2  
PA0  
MII_MDIO  
PB27  
VDDL  
PC6  
VDDL  
PE14  
PB26  
PC11  
A1  
D17  
PE22  
PE25  
PA1  
PA4  
PE31  
PA6  
PA7  
TDO  
TCK  
PA15  
A5  
A4  
D4  
D8  
PA3  
PE19  
PE27  
PE28  
PE30  
PA11 MII_COL  
PA10  
PB28  
PC15  
A0  
PB29  
T
PD8  
PE26  
N/C  
PB31  
PE15  
PE29  
PE17  
PE24  
PE21  
PC7  
PB19  
PB24  
PB23  
TDI  
TMS  
PC12  
GND  
N/C  
PB30  
N/C  
U
PE20  
PE23 MII-TX-EN PE16  
PC13 MII-CRS PC10  
PB25  
PA14  
TRST  
Figure 69. Pinout of the PBGA PackageJEDEC Standard  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
72  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 36 contains a list of the MPC875/MPC870 input and output signals and shows multiplexing and pin  
assignments.  
Table 36. Pin AssignmentsJEDEC Standard  
Name  
Pin Number  
Type  
Bidirectional  
A[0:31]  
R16, N14, M14, P15, P17, P16, N15, N16, M15, N17, L14, M16,  
L15, M17, K14, L16, L17, K17, G17, K15, J16, J15, G16, J14, H17, Three-state (3.3 V only)  
H16, G15, K16, H14, J17, H15, F17  
TSIZ0, REG  
TSIZ1  
F16  
G14  
D13  
B9  
Bidirectional  
Three-state (3.3 V only)  
Bidirectional  
Three-state (3.3 V only)  
RD/WR  
Bidirectional  
Three-state (3.3 V only)  
BURST  
Bidirectional  
Three-state (3.3 V only)  
BDIP, GPL_B5  
TS  
C13  
C11  
Output  
Bidirectional  
Active pull-up (3.3 V only)  
TA  
C12  
Bidirectional  
Active pull-up (3.3 V only)  
TEA  
BI  
B12  
B13  
Open-drain  
Bidirectional  
Active pull-up (3.3 V only)  
IRQ2, RSV  
C9  
E9  
Bidirectional  
Three-state (3.3 V only)  
IRQ4, KR, RETRY,  
SPKROUT  
Bidirectional  
Three-state (3.3 V only)  
D[0:31]  
L5, N3, L3, L2, R2, K2, H3, G2, R3, M3, N2, M2, M4, N4, K5, K3, K4, Bidirectional  
P3, J2, J3, J4, J5, H2, P2, H4, H5, G5, L4, G3, F2, F3, E2  
Three-state (3.3 V only)  
CR, IRQ3  
E10  
B10  
Input  
FRZ, IRQ6  
Bidirectional  
Three-state (3.3 V only)  
BR  
BG  
BB  
B11  
D10  
C10  
Bidirectional (3.3 V only)  
Bidirectional (3.3 V only)  
Bidirectional  
Active pull-up (3.3 V only)  
IRQ0  
M6  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
Output  
IRQ1  
P5  
IRQ7  
N5  
CS[0:5]  
B14, E11, C14, B15, E13, B16  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
73  
Mechanical Data and Ordering Information  
Table 36. Pin AssignmentsJEDEC Standard (continued)  
Pin Number  
Name  
CS6, CE1_B  
Type  
F12  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CS7, CE2_B  
D15  
WE0, BS_B0, IORD  
WE1, BS_B1, IOWR  
WE2, BS_B2, PCOE  
WE3, BS_B3, PCWE  
BS_A[0:3]  
E15  
D17  
D16  
G13  
F14, E16, E17, F15  
GPL_A0, GPL_B0  
OE, GPL_A1, GPL_B1  
C17  
F13  
GPL_A[2:3], GPL_B[2:3],  
CS[2–3]  
E14, C16  
UPWAITA, GPL_A4  
UPWAITB, GPL_B4  
GPL_A5  
PORESET  
RSTCONF  
HRESET  
SRESET  
XTAL  
D11  
E12  
D12  
D5  
C3  
E7  
Bidirectional (3.3 V only)  
Bidirectional  
Output  
Input (3.3 V only)  
Input (3.3 V only)  
Open-drain  
C4  
D6  
D7  
G4  
B4  
Open-drain  
Analog output  
Analog input (3.3 V only)  
Output  
EXTAL  
CLKOUT  
EXTCLK  
TEXP  
Input (3.3 V only)  
Output  
B3  
ALE_A  
B7  
Output  
CE1_A  
C15  
D14  
D4  
G6  
F5  
Output  
CE2_A  
Output  
WAIT_A  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
Input (3.3 V only)  
IP_A0  
IP_A1  
IP_A2, IOIS16_A  
IP_A3  
D3  
E4  
IP_A4  
D2  
E3  
IP_A5  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
74  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 36. Pin AssignmentsJEDEC Standard (continued)  
Pin Number  
Name  
Type  
IP_A6  
IP_A7  
F4  
C2  
C8  
Input (3.3 V only)  
Input (3.3 V only)  
ALE_B, DSCK  
Bidirectional  
Three-state (3.3 V only)  
IP_B[0:1], IWP[0:1],  
VFLS[0:1]  
B8, D9  
Bidirectional (3.3 V only)  
OP0  
B6  
Bidirectional (3.3 V only)  
Output  
OP1  
C6  
OP2, MODCK1, STS  
OP3, MODCK2, DSDO  
BADDR[28:29]  
BADDR30, REG  
AS  
B5  
Bidirectional (3.3 V only)  
Bidirectional (3.3 V only)  
Output  
B2  
E8, C5  
D8  
Output  
C7  
Input (3.3 V only)  
Bidirectional  
PA15, USBRXD  
PA14, USBOE  
P14  
U16  
Bidirectional  
(Optional: open-drain)  
PA11, RXD4, MII1-TXD0,  
RMII1-TXD0  
R9  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PA10, MII1-TXERR, TIN4,  
CLK7  
R12  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PA7, CLK1, BRGO1, TIN1  
PA6, CLK2, TOUT1  
R11  
P11  
P7  
Bidirectional  
Bidirectional  
Bidirectional  
PA4, CTS4, MII1-TXD1,  
RMII-TXD1  
PA3, MII1-RXER,  
RMII1-RXER, BRGO3  
R5  
N6  
T4  
P6  
Bidirectional  
(5-V tolerant)  
PA2, MII1-RXDV,  
RMII1-CRS_DV, TXD4  
Bidirectional  
(5-V tolerant)  
PA1, MII1-RXD0,  
RMII1-RXD0, BRGO4  
Bidirectional  
(5-V tolerant)  
PA0, MII1-RXD1,  
RMII1-RXD1, TOUT4  
Bidirectional  
(5-V tolerant)  
PB31, SPISEL, MII1-TXCLK, T5  
RMII1-REFCLK  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
75  
Mechanical Data and Ordering Information  
Table 36. Pin AssignmentsJEDEC Standard (continued)  
Pin Number  
Name  
PB30, SPICLK  
Type  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
T17  
R17  
R14  
PB29, SPIMOSI  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PB28, SPIMISO, BRGO4  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PB27, I2CSDA, BRGO1  
PB26, I2CSCL, BRGO2  
PB25, SMTXD1  
N13  
N12  
U13  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PB24, SMRXD1  
T12  
Bidirectional  
(Optional: open-drain)  
(5-V tolerant)  
PB23, SDACK1, SMSYN1  
PB19, MII1-RXD3, RTS4  
PC15, DREQ0, L1ST1  
U12  
T11  
R15  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(5-V tolerant)  
PC13, MII1-TXD3, SDACK1 U9  
Bidirectional  
(5-V tolerant)  
PC12, MII1-TXD2, TOUT1  
T15  
Bidirectional  
(5-V tolerant)  
PC11, USBRXP  
P12  
U11  
T10  
Bidirectional  
Bidirectional  
PC10, USBRXN, TGATE1  
PC7, CTS4, L1TSYNCB,  
USBTXP  
Bidirectional  
(5-V tolerant)  
PC6, CD4, L1RSYNCB,  
USBTXN  
P10  
T3  
Bidirectional  
(5-V tolerant)  
PD8, RXD4, MII-MDC,  
RMII-MDC  
Bidirectional  
(5-V tolerant)  
PE31, CLK8, L1TCLKB,  
MII1-RXCLK  
P9  
Bidirectional  
(Optional: open-drain)  
PE30, L1RXDB, MII1-RXD2 R8  
Bidirectional  
(Optional: open-drain)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
76  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 36. Pin AssignmentsJEDEC Standard (continued)  
Pin Number  
Name  
Type  
Bidirectional  
PE29, MII2-CRS  
U7  
R7  
(Optional: open-drain)  
PE28, TOUT3, MII2-COL  
Bidirectional  
(Optional: open-drain)  
PE27, L1RQB, MII2-RXERR, T6  
RMII2-RXERR  
Bidirectional  
(Optional: open-drain)  
PE26, L1CLKOB,  
MII2-RXDV, RMII2-CRS_DV  
T2  
R4  
U8  
U4  
P4  
T9  
U3  
Bidirectional  
(Optional: open-drain)  
PE25, RXD4, MII2-RXD3,  
L1ST2  
Bidirectional  
(Optional: open-drain)  
PE24, SMRXD1, BRGO1,  
MII2-RXD2  
Bidirectional  
(Optional: open-drain)  
PE23, TXD4, MII2-RXCLK,  
L1ST1  
Bidirectional  
(Optional: open-drain)  
PE22, TOUT2, MII2-RXD1,  
RMII2-RXD1, SDACK1  
Bidirectional  
(Optional: open-drain)  
PE21, TOUT1, MII2-RXD0,  
RMII2-RXD0  
Bidirectional  
(Optional: open-drain)  
PE20, MII2-TXER  
Bidirectional  
(Optional: open-drain)  
PE19, L1TXDB, MII2-TXEN, R6  
RMII2-TXEN  
Bidirectional  
(Optional: open-drain)  
PE18, SMTXD1, MII2-TXD3 M5  
Bidirectional  
(Optional: open-drain)  
PE17, TIN3, CLK5, BRGO3, T8  
SMSYN1, MII2-TXD2  
Bidirectional  
(Optional: open-drain)  
PE16, L1RCLKB, CLK6,  
U6  
Bidirectional  
MII2-TXCLK, RMII2-REFCLK  
(Optional: open-drain)  
PE15, TGATE1, MII2-TXD1, T7  
RMII2-TXD1  
Bidirectional  
Bidirectional  
PE14, MII2-TXD0,  
RMII2-TXD0  
P8  
TMS  
T14  
T13  
R13  
U14  
Input  
(5-V tolerant)  
TDI, DSDI  
TCK, DSCK  
TRST  
Input  
(5-V tolerant)  
Input  
(5-V tolerant)  
Input  
(5-V tolerant)  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
77  
Mechanical Data and Ordering Information  
Table 36. Pin AssignmentsJEDEC Standard (continued)  
Pin Number  
Name  
TDO, DSDO  
Type  
P13  
Output  
(5-V tolerant)  
MII1_CRS  
MII_MDIO  
U10  
M13  
Input  
Bidirectional  
(5-V tolerant)  
MII1_TX_EN, RMII1_TX_EN U5  
Output  
(5-V tolerant)  
MII1_COL  
R10  
Input  
V
V
V
E5  
F6  
E6  
PLL analog GND  
PLL analog GND  
SSSYN  
SSSYN1  
DDSYN  
PLL analog V  
DD  
GND  
H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10, Power  
L11, U15  
V
V
F7, F8, F9, F10, F11, H6, H13, J6, J13, K6, K13, L6, L13, N7, N8, Power  
N9, N10, N11  
DDL  
DDH  
G7, G8, G9, G10, G11, G12, H7, H12, J7, J12, K7, K12, L7, L12, M7, Power  
M8, M9, M10, M11, M12  
N/C  
B17, T16, U2, U17  
No connect  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
78  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
16.2 Mechanical Dimensions of the PBGA Package  
Figure 70 shows the mechanical dimensions of the PBGA package.  
.
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M—1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
Note: Solder sphere composition is 95.5%Sn 45%Ag 0.5%Cu for MPC875/MPC870VRXXX.  
Solder sphere composition is 62%Sn 36%Pb 2%Ag for MPC875/MPC870ZTXXX.  
Figure 70. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
79  
Document Revision History  
17 Document Revision History  
Table 37 lists significant changes between revisions of this hardware specification.  
Table 37. Document Revision History  
Revision  
Number  
Date  
Changes  
0
2/2003  
3/2003  
5/2003  
Initial release.  
0.1  
0.2  
Took out the time-slot assigner and changed the SCC for SCC3 to SCC4.  
Changed the package drawing, removed all references to Data Parity. Changed the SPI Master Timing  
Specs. 162 and 164. Added the RMII and USB timing. Added the 80-MHz timing.  
0.3  
0.4  
0.5  
0.6  
0.7  
5/2003  
5/2003  
5/2003  
5/2003  
6/2003  
Made sure the pin types were correct. Changed the Features list to agree with the MPC885.  
Corrected the signals that had overlines on them. Made corrections on two pins that were typos.  
Changed the pin descriptions for PD8 and PD9.  
2
Changed a few typos. Put back the I C. Put in the new reset configuration, corrected the USB timing.  
Changed the pin descriptions per the June 22 spec, removed Utopia from the pin descriptions,  
changed PADIR, PBDIR, PCDIR and PDDIR to be 0 in the Mandatory Reset Config.  
0.8  
0.9  
1.0  
8/2003  
8/2003  
9/2003  
Added the reference to USB 2.0 to the Features list and removed 1.1 from USB on the block diagrams.  
Changed the USB description to full-/low-speed compatible.  
Added the DSP information in the Features list.  
Put a new sentence under Mechanical Dimensions.  
Fixed table formatting.  
Nontechnical edits.  
Released to the external web.  
1.1  
2.0  
10/2003 Added TDMb to the MPC875 Features list, the MPC875 Block Diagram, added 13.5 Serial Interface  
AC Electrical Specifications, and removed TDMa from the pin descriptions.  
12/2003 Changed DBGC in the Mandatory Reset Configuration to X1.  
Changed the maximum operating frequency to 133 MHz.  
Put the timing in the 80 MHz column.  
Put in the orderable part numbers.  
Rounded the timings to hundredths in the 80 MHz column.  
Put the pin numbers in footnotes by the maximum currents in Table 6.  
Changed 22 and 41 in the Timing.  
Put TBD in the Thermal table.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
80  
Freescale Semiconductor  
Document Revision History  
Table 37. Document Revision History (continued)  
Changes  
Revision  
Number  
Date  
3.0  
1/07/2004 • Added sentence to Spec B1A about EXTCLK and CLKOUT being in alignment for integer values.  
7/19/2004 • Added a footnote to Spec 41 specifying that EDM = 1.  
• Added the thermal numbers to Table 4.  
• Added RMII1_EN under M1II_EN in Table 36, Pin Assignments.  
• Added a table footnote to Table 6, DC Electrical Specifications, about meeting the V Max of the  
IL  
2
I C Standard.  
• Put the new part numbers in the Ordering Information Section.  
4
08/2007  
• Updated template.  
• On page 1, updated first paragraph and added a second paragraph.  
• After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and  
renumbered the rest of the figures.  
• In Table 10, for reset timings B29f and B29g added footnote indicating that the formula only applies  
to bus operation up to 50 MHz.  
• In Figure 5, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level.  
• In Table 18, changed num 46 description to read, “TA assertion to rising edge ...”  
• In Figure 43, changed TA to reflect the rising edge of the clock.  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
81  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
82  
Freescale Semiconductor  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4  
Freescale Semiconductor  
83  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org. IEEE  
802.3, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of  
Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or  
approved by the IEEE. All other product or service names are the property of their  
respective owners.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
+1-800 441-2447 or  
© Freescale Semiconductor, Inc., 2003–2007. All rights reserved.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC875EC  
Rev. 4  
08/2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY