RM4136D [ROCHESTER]

Operational Amplifier, 4 Func, 6000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14;
RM4136D
型号: RM4136D
厂家: Rochester Electronics    Rochester Electronics
描述:

Operational Amplifier, 4 Func, 6000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14

放大器 CD
文件: 总18页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
RC4 1 3 6  
Ge n e ra l P e rfo rm a n c e Qu a d 7 4 1  
Op e ra t io n a l Am p lifie r  
Features  
• Large common mode and differential voltage ranges  
• Low power consumption  
• Unity gain bandwidth – 3 MHz  
• Short circuit protection  
• Parameter tracking over temperature range  
• Gain and phase match between amplifiers  
• No frequency compensation required  
• No latch-up  
Description  
The RC4136 is made up of four 741 type independent high  
gain operational amplifiers internally compensated and con-  
structed on a single silicon chip using the planar epitaxial  
process.  
of the RC4136 quad amplifier in all 741 operational ampli-  
fier applications providing the highest possible packaging  
density.  
The specially designed low noise input transistors allow the  
RC4136 to be used in low noise signal processing applica-  
tions such as audio preamplifiers and signal conditioners.  
This amplifier meets or exceeds all specifications for 741  
type amplifiers. Excellent channel separation allows the use  
Block Diagram  
Pin Assignments  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
–Input (A)  
+Input (A)  
Output (A)  
Output (B)  
+Input (B)  
–Input (B)  
–Input (D)  
+Input (D)  
Output (D)  
–Input (A)  
+Input (A)  
Output (A)  
–Input (D)  
+Input (D)  
Output (D)  
A
D
C
+
+
+
+V  
S
Output (C)  
+Input (C)  
–Input (C)  
Output (B)  
+Input (B)  
–Input (B)  
Output (C)  
+Input (C)  
–Input (C)  
8
–V  
S
+
65-4136-02  
B
65-4136-01  
Rev. 1.0.0  
PRODUCT SPECIFICATION  
RC4136  
Absolute Maximum Ratings  
(beyond which the device may be damaged)  
1
Parameter  
Min  
Typ  
Max  
±18  
±22  
±30  
30  
Units  
Supply Voltage  
RC4136  
RM4136  
V
V
V
V
Input Voltage2  
Differential Input Voltage  
Output Short Circuit Duration3  
Indefinite  
P T < 50°C  
SOIC  
300  
468  
1042  
70  
mW  
mW  
mW  
°C  
D A  
PDIP  
CerDIP  
RC4136  
RM4136  
Operating Temperature  
0
-55  
-65  
125  
150  
125  
175  
300  
260  
°C  
Storage Temperature  
Junction Temperature  
°C  
SOIC, PDIP  
CerDIP  
DIP  
°C  
°C  
Lead Soldering Temperature  
(60 seconds)  
°C  
SOIC  
°C  
Notes:  
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if  
Operating Conditions are not exceeded.  
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
3. Short circuit may be to ground, typically 45 mA.  
Operating Conditions  
Parameter  
Min  
Typ  
60  
Max  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
mW/°C  
q
JC  
q
JA  
Thermal resistance  
Thermal resistance  
SOIC  
PDIP  
200  
160  
120  
5.0  
CerDIP  
SOIC  
For T > 50°C Derate at  
A
2
RC4136  
PRODUCT SPECIFICATION  
Electrical Characteristics  
(V = ±15V and T = +25˚C, unless otherwise noted)  
S
A
RM4136  
Typ  
0.5  
RC4136  
Parameters  
Test Conditions  
£ 10kW  
Min  
Max  
5.0  
Min  
Typ  
0.5  
Max Units  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Resistance  
R
S
6.0  
200  
500  
mV  
nA  
5.0  
200  
500  
5.0  
40  
40  
nA  
0.3  
50  
5.0  
0.3  
20  
5.0  
MW  
V/mV  
V
Large Signal Voltage Gain R ³ 2kW, V  
OUT  
= ±10V  
300  
±14  
±13  
±14  
100  
300  
±14  
±13  
±14  
100  
L
Output Voltage Swing  
R ³ 10kW  
L
±12  
±10  
±12  
70  
±12  
±10  
±12  
70  
R ³ 2kW  
L
Input Voltage Range  
V
Common Mode Rejection  
Ratio  
R
R
£ 10kW  
£ 10kW  
dB  
S
Power Supply Rejection  
Ratio  
76  
100  
210  
76  
100  
210  
dB  
S
Power Consumption  
Transient Response  
Rise Time  
R = ¥ , All Outputs  
L
340  
340  
mW  
V
IN  
= 20mV, R = 2kW  
0.13  
5.0  
3.0  
1.5  
90  
0.13  
5.0  
3.0  
1.0  
90  
mS  
%
L
Overshoot  
C £ 100pF  
L
Unity Gain Bandwidth  
Slew Rate  
MHz  
V/mS  
dB  
R ³ 2kW  
L
Channel Separation  
F = 1.0kHz, R =1kW  
S
Electrical Characteristics  
(RM = -55°C £ T £ = 125°, RC = 0°C £ T £ = 70°, V = ± 15V)  
A
A
S
RM4136  
Typ  
RC4136  
Typ Max Units  
Parameters  
Test Conditions  
Min  
Max  
6.0  
Min  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
R
S
£ 10kW  
7.5  
300  
800  
mV  
nA  
500  
1500  
nA  
Large Signal Voltage Gain R ³ 2kW, V  
OUT  
= ±10V  
25  
15  
V/mV  
V
L
Output Voltage Swing  
Power Consumption  
R ³ 2kW  
L
±10  
±10  
240  
400  
240  
400  
mW  
3
PRODUCT SPECIFICATION  
RC4136  
Electrical Characteristics Comparison  
(V = ±15V and T +25˚C unless otherwise noted)  
S
A
Parameter  
RC4136 (Typ.)  
RC741 (Typ.)  
LM324 (Typ.)  
Units  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Resistance  
0.5  
5.0  
2.0  
10  
2.0  
5.0  
55  
mV  
nA  
40  
80  
nA  
5.0  
2.0  
MW  
V/mV  
V
Large Signal Voltage Gain (R = 2kW)  
300  
±13V  
200  
±13V  
100  
L
Output Voltage Swing (R = 2kW)  
|+V – 1.2V| to  
S
L
–V  
S
Input Voltage Range  
±14V  
±13V  
|+V – 1.5V| to  
V
S
–V  
S
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Transient Response  
Rise Time  
100  
100  
90  
90  
85  
dB  
dB  
100  
0.13  
5.0  
3.0  
1.0  
10  
0.3  
5.0  
mS  
%
Overshoot  
Unity Gain Bandwidth  
Slew Rate  
0.8  
0.8  
0.5  
MHz  
V/mS  
nV/ÖHz  
mA  
0.5  
Input Noise Voltage Density (F= 1kHz)  
Short Circuit Current  
22.5  
±25  
±45  
4
RC4136  
PRODUCT SPECIFICATION  
Typical Performance Characteristics  
25  
20  
15  
10  
5
100  
80  
60  
40  
20  
0
VS  
=
15V  
VS  
=
15V  
0
0
+10 +20 +30 +40 +50 +60 +70  
0
+10 +20 +30 +40 +50 +60 +70  
TA (¡C)  
TA (¡C)  
Figure 1. Input Bias Current vs. Temperature  
Figure 2. Input Offset Current vs. Temperature  
15  
15  
TA = +25 C  
10  
10  
5
T A= +25 C  
5
0
0
-5  
-5  
-10  
-10  
-15  
W
RL = 2 k  
-15  
±4  
±6  
±8  
±10 ±12 ±14 ±16 ±18  
±4  
±6  
±8  
±10 ±12 ±14 ±16 ±18  
±VS (V)  
+VS/-VS (V)  
Figure 3. Input Common Mode Voltage Range  
vs. Supply Voltage  
Figure 4. Output Voltage vs. Supply Voltage  
800K  
600K  
400K  
200K  
0
240  
VS  
=
15V  
VS  
= 15V  
220  
200  
180  
160  
RL = 2 k W  
0
+70  
+10 +20 +30 +40 +50 +60  
0
+10 +20 +30 +40 +50 +60 +70  
TA (¡C)  
TA (¡C)  
Figure 5. Open Loop Gain vs. Temperature  
Figure 6. Power Consumption vs. Temperature  
5
PRODUCT SPECIFICATION  
RC4136  
Typical Performance Characteristics (continued)  
120  
100  
80  
60  
40  
20  
0
40  
36  
32  
28  
24  
20  
16  
12  
8
VS  
= 15V  
TA = +25 C  
RL = 2 kW  
4
0
100  
-20  
1K  
10K  
100K  
1M  
1
10 100  
1K 10K 100K 1M 10M  
F (Hz)  
F (Hz)  
Figure 7. Open Loop Gain vs. Frequency  
Figure 8. Output Voltage Swing vs. Frequency  
10  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
TA = +25¡C  
VS  
=
15V  
TA = +25 C  
8
6
4
2
0
0
±3  
±6  
±9  
±12  
±15  
±18  
0.1  
1.0  
10  
+VS/-VS (V)  
RL (kW)  
Figure 9. Output Voltage Swing vs. Load Resistance  
Figure 10. Quiescent Current vs. Supply Voltage  
28  
24  
20  
16  
10  
8
VS  
=
15V  
6
4
TA = +25 C  
Output  
2
VS  
=
15V  
90%  
0
12  
8
TA = +25 C  
RL = 2 k  
CL = 100 pF  
-2  
-4  
-6  
-8  
-10  
W
Input  
4
10% Rise Time  
0
0
0.25 0.50  
0.75  
1.00 1.25  
0
10  
20  
30  
40  
Time (µS)  
Time (µS)  
Figure 11. Follower Large Signal Pulse Response  
Figure 12. Transient Response Output Voltage vs. Time  
6
RC4136  
PRODUCT SPECIFICATION  
Typical Performance Characteristics (continued)  
140  
VOUT = 1 VRMS  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
120  
100  
80  
60  
40  
20  
0
VS  
=
30V  
VS  
=
15V  
TA = +25 C  
10  
100  
1K  
F (Hz)  
Figure 14. Total Harmonic Distortion vs. Frequency  
10K  
100K  
10  
100  
1K  
10K  
100K  
F (Hz)  
Figure 13. Channel Separation vs. Frequency  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VS  
R L = 2K  
A V = 40 dB  
f = 1 kHz  
RS = 1k W  
=
15V  
4
1
2
3
6
7
8
9
10  
5
VOUT (VRMS  
)
Figure 15. Total Harmonic Distortion vs. Output Voltage  
7
PRODUCT SPECIFICATION  
RC4136  
RC4136 Versus LM324  
Although the LM324 is an excellent device for single-supply  
applications where ground sensing is important, it is a poor  
substitute for four 741s in split supply circuits. The simpli-  
fied input circuit of the RC4136 exhibits much lower noise  
than that of the LM324 and exhibits no crossover distortion  
as compared with the LM324 (see Figure 16). The LM324  
shows significant crossover distortion and pulse delay in  
attempting to handle a large signal input pulse.  
324  
4136  
F = 10 kHz  
VOUT = 8 VP-P  
F = 50 kHz  
VOUT = 8 VP-P  
RL = 2 kW  
A V = 1  
VS  
= 5V  
65-4136-18  
Figure 16. Comparative Crossover Distortion  
40  
36  
32  
28  
24  
20  
16  
12  
8
120  
100  
80  
60  
40  
20  
0
VS  
=
15V  
4136  
741  
TA = +25 C  
RL = 2 k  
W
4136  
741  
324  
4
0
100  
-20  
1
10  
100  
1K 10K 100K 1M 10M  
1K  
100K  
1M  
10K  
F (Hz)  
F (Hz)  
Figure 17. Output Voltage Swing vs. Frequency  
Figure 18. Open Loop Gain vs. Frequency  
8
RC4136  
PRODUCT SPECIFICATION  
RC4136 Versus LM324 (continued)  
+8  
+6  
16  
14  
12  
10  
8
V
=
10V  
s
RL = 2 k W  
0 C = TA < +70  
C
+4  
+2  
0
4136  
Outputs  
Input  
741  
324  
4136  
-2  
-4  
-6  
-8  
6
4
2
0
0
30  
40  
60  
80  
±5  
±20  
±10  
±15  
+VS/-VS (V)  
Time (µS)  
Figure 19. Follower Large Signal Pulse Response  
Output Voltage vs. Time  
Figure 20. Input Common Mode Voltage Range  
vs. Supply Voltage  
Typical Applications  
+V  
s
910K  
+V  
s
+V  
s
1
2
1
2
3
100W  
4136A  
3
100K  
4136A  
VOUT  
91K  
5K  
100K  
A
= 10  
V
65-0520  
65-0523  
+VIN  
Figure 21. Lamp Driver  
Figure 22. Power Amplifier  
VIN  
2
3
1
VOUT  
4136A  
10K  
1
3
4136A  
VOUT  
2
+VREF  
VIN  
10M  
65-0519  
65-0522  
Figure 23. Voltage Follower  
Figure 24. Comparator with Hysteresis  
9
PRODUCT SPECIFICATION  
RC4136  
Typical Applications (continued)  
+V  
s
0.01µF  
VIN  
100K  
1
16K  
VOUT  
0.001µF  
16K  
1
2
3
4136A  
V
oUT  
3
2
+V  
s
4136A  
0.01µF  
100K  
100K  
100K  
100K  
1
0
100K  
65-0527  
65-0521  
Figure 25. DC Coupled 1kHz Lowpass Active Filter  
Figure 26. Squarewave Oscillator  
0.01 µF  
VIN  
390K  
120K  
V
oUT  
+V  
s
390K  
1
0.01 µF  
620W  
+V  
s
39K  
3
6
620K  
4136A  
2
4
4136B  
5
10 µF  
100K  
100K  
+V  
s
65-0526  
Figure 27. 1kHz Bandpass Active Filter  
1M  
100K  
1
+V  
s
+V  
s
1
2
10K  
3
VIN  
+V  
VIN  
4136A  
3
V
4136A  
oUT  
100K  
2
V
s
oUT  
10K  
100K  
100K  
+V  
s
0.1 µF  
10K  
10 µF  
100K  
100K  
10K  
10 µF  
65-0525  
65-0524  
Figure 28. AC Coupled Non-Inverting Amplifier  
Figure 29. AC Coupled Inverting Amplifier  
10  
RC4136  
PRODUCT SPECIFICATION  
Typical Applications (continued)  
0.05 µF  
100K  
R
100K  
1
2
51K  
6
5
3
+VC*  
4136A  
51K  
4
4136B  
Output 1  
Output 2  
V+/210K  
R/2  
50K  
51K  
10K  
65-0528  
* Wide control voltage range: 0V < V < 2(+V -1.5V)  
c
s
Figure 30. Voltage Control Oscillator (VCO)  
2.5K  
Cal  
20K  
1%  
20K  
1%  
DC  
Output  
20K  
1%  
20K  
1%  
4.7 µF  
AC  
Input  
10K  
1%  
4.7 µF  
4.7 µF  
D1  
FD666  
D2  
FD666  
1
2
6
5
4
4136A  
4136B  
3
5.1K  
10K  
65-0531  
Figure 31. Full-Wave Rectifier and Averaging Filter  
R2  
30K  
R1  
30K  
10K  
1
2
3
741  
Output  
4136A  
4136B  
Input  
Trim R, such that  
1K  
100  
10  
R3  
15K  
R1  
R2  
R3  
2R4  
=
6
5
C1  
4
R4  
7.5K  
R4  
7.5K  
0.0001  
0.001  
0.001  
0.01  
1.0  
C2  
1 µF  
65-0529  
Center Frequency (Hz)  
Figure 32. Notch Filter Using the RC4136 as a Gyrator  
Figure 33. Notch Frequency vs. C1  
11  
PRODUCT SPECIFICATION  
RC4136  
Typical Applications (continued)  
2
1
VIN  
V4  
3
VIN < V4  
4136A  
4136B  
Q1  
5
6
4
V3 < VIN < V4  
V3  
V2  
V1  
Q2  
9
8
10  
V2 < VIN < V3  
4136C  
Q3  
13  
14  
12  
4136D  
VIN < V1  
65-0532  
Figure 34. Multiple Aperture Window Discriminator  
R6*  
100K  
0.1%  
R2  
10K  
0.1%  
2
1
(-)  
3
4136A  
R1  
5
6
45K  
1%  
4
VOUT  
4136B  
R3  
10K  
1%  
R1 = R4  
R2 = R5  
R6 = R7  
Inputs  
R4  
45K  
1%  
* Matching determines CMRR  
8
9
R6  
R2  
2R1  
R3  
10  
A
=
( 1 +  
)
v
4136C  
(+)  
R5*  
10K  
0.1%  
R7*  
100K  
0.1%  
65-0533  
Figure 35. Differential Input Instrumentation Amplifier with High Common Mode Rejection  
12  
RC4136  
PRODUCT SPECIFICATION  
Typical Applications (continued)  
+15V  
10K  
10K  
D4  
IN457  
10K  
Q1*  
VIN1  
10K  
1
2
1K  
6
5
3
4136A  
4
4136B  
D1  
1N457  
(VIN1) (VIN2)  
=
V
oUT  
10K  
VIN  
3
10K  
Q4*  
Q3*  
1K  
Q2*  
10K  
2
VIN 10K  
14  
13  
8
V
IN3  
10  
12  
4136D  
4136C  
9
1K  
D2  
1N457  
D3  
1N457  
10K  
10K  
65-0534  
*Matched Transistors  
Figure 36. Analog Multiplier/Divider  
DC-1HzN  
Out  
3.3M  
49.9K  
0.082  
µF  
100K  
100K  
49.9W  
49.9W  
1.0 µF  
2
1
DUT  
3
4136A  
499K  
60 dB Wideband  
Amplifier  
Compensate  
as Required  
499K  
78.7K  
10 µF  
1 Hz  
499W  
1 µF  
1000 µF  
0.1 µF  
0.01 µF  
1 kHz  
10 µF  
3.16K 1 Hz  
10K  
3.16K  
1 Hz  
499K  
6
1 µF  
0.1 µF  
0.01 µF  
Spot Noise  
Out  
499W  
8
9
31.6K  
10  
4
4136C  
4136B  
5
100K  
1 kHz  
1mV = 1nV/ Hz  
RMS  
499K  
Selectable Frequency  
Constant Q Filter  
1 kHz  
Stepped 10 dB  
Attenuator  
65-0535  
Figure 37. Spot Noise Measurement Test Circuit  
13  
RC4136  
PRODUCT SPECIFICATION  
Simplified Schematic Diagram  
+V  
s
(11)  
R1  
8.7K  
Q10  
Q5  
Q6  
Q14  
(1,6,8,14)  
Q13  
-Input  
R6  
50  
Q2  
Q1  
R8  
100  
Output  
(3,4,10,12)  
Q12  
+Input  
(2,5,9,13)  
D1  
R5  
50K  
R7  
50  
Q7  
Q15  
Q8  
15 pF  
Q9  
Q3  
Q4  
Q11  
Z1  
5.5V  
R9  
15K  
R4  
50K  
R3  
5K  
R2  
5K  
C1  
30 pF  
-V  
s
(7)  
65-0495  
14  
RC4136  
PRODUCT SPECIFICATION  
Mechanical Dimensions  
14-Lead Ceramic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.785  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 7, 8 and 14 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
19.94  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 14.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 7, 8, and 14).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Twelve spaces.  
D
1
7
8
NOTE 1  
E
14  
s1  
eA  
e
A
Q
c1  
a
L
b1  
15  
PRODUCT SPECIFICATION  
RC4136  
Mechanical Dimensions (continued)  
14-Lead Plastic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
.725  
.005  
.300  
.240  
3. Terminal numbers are shown for reference only.  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
2.93  
.36  
.195  
.022  
.070  
.015  
.795  
4.95  
.56  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
18.42  
.13  
20.19  
D1  
E
.325  
.280  
7.62  
6.10  
8.26  
7.11  
E1  
e
2
5
.100 BSC  
2.54 BSC  
eB  
L
.430  
.200  
10.92  
5.08  
.115  
2.92  
N
14  
14  
D
1
7
E1  
D1  
8
14  
E
e
A
A1  
C
L
eB  
B1  
B
16  
RC4136  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
14-Lead SOIC Package  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.053  
.004  
.013  
.008  
.336  
.150  
.069  
.010  
.020  
.010  
.345  
.158  
1.35  
0.10  
0.33  
0.19  
8.54  
3.81  
1.75  
0.25  
0.51  
0.25  
8.76  
4.01  
A1  
B
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. "C" dimension does not include solder finish thickness.  
6. Symbol "N" is the maximum number of terminals.  
C
D
E
5
2
2
e
.050 BSC  
1.27 BSC  
H
h
.228  
.010  
.016  
.244  
.020  
.050  
5.79  
0.25  
0.40  
6.20  
0.50  
1.27  
L
3
6
N
a
14  
14  
0¡  
8¡  
0¡  
8¡  
ccc  
.004  
0.10  
14  
8
E
H
1
7
h x 45¡  
D
C
A1  
A
a
SEATING  
PLANE  
– C –  
L
e
B
LEAD COPLANARITY  
ccc C  
17  
PRODUCT SPECIFICATION  
RC4136  
Ordering Information  
Product Number  
RC4136N  
Temperature Range  
Screening  
Commercial  
Commercial  
Package  
Package Marking  
0° to 70°C  
0° to 70°C  
14 Pin Plastic DIP  
14 Pin Narrow SOIC  
14 Pin Ceramic DIP  
14 Pin Ceramic DIP  
RC4136N  
RC4136M  
RC4136M  
RM4136D  
RM4136D/8831  
-55°C to +125°C  
-55°C to +125°C  
Military  
Note:  
1. /883 denotes MIL-STD-883, Par. 1.2.1 compliant device.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS30004136  
Ó 1998 Fairchild Semiconductor Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY