TCM4400EPNR [ROCHESTER]

TELECOM, CELLULAR, BASEBAND CIRCUIT, PQFP80, PLASTIC, LQFP-80;
TCM4400EPNR
型号: TCM4400EPNR
厂家: Rochester Electronics    Rochester Electronics
描述:

TELECOM, CELLULAR, BASEBAND CIRCUIT, PQFP80, PLASTIC, LQFP-80

蜂窝 电信 电信集成电路
文件: 总73页 (文件大小:1088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCM4400  
Data Manual  
GSM/DCS Baseband and Voice A/D D/A Interface  
Circuit  
SLWS029B  
January 1998  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1998, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.4 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4  
2
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . 2–1  
2.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.3 Electrical Characteristics Over Recommended Operating Free-Air Temperature  
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.3.1 Digital Inputs And Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.3.2 Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.3.3 Master Clock Input (MCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.3.4 Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2.3.5 dc Accuracy – Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2.3.6 Dynamic Parameters – Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2.3.7 Smoothing Filters Characteristics – Baseband Uplink Path . . . . . . . . . . . . 2–3  
2.3.8 I and Q Channels Gain and Phase Matching – Baseband Uplink Path . . 2–3  
2.3.9 Baseband Uplink Path Global Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4 Timing Requirements of Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.1 Programmable Delays – Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.2 Fixed Delays – Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.3 Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.4 dc Accuracy – Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.5 Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.5.1 Frequency Response – Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . 2–5  
2.5.2 SNR vs Signal Level-baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.5.3 Gain Characteristics of the Baseband Downlink Path . . . . . . . . . . . . . . . . . 2–5  
2.5.4 Group Delay – Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.5.5 I and Q Channels Matching – Baseband Downlink Path . . . . . . . . . . . . . . . 2–6  
2.5.6 Baseband Downlink Path Global Characteristics . . . . . . . . . . . . . . . . . . . . . 2–6  
2.6 Timing Requirements of Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.7 Automatic Power Control (APC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.7.1 APC Level (8-bit DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.7.2 APC Shaper (5-bit DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.7.3 APC Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
2.8 Monitoring ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
2.8.1 10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
2.9 Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
2.9.1 AGC 10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
iii  
2.9.2 AGC Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
2.10 Automatic Frequency Control (AFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
2.10.1 AFC 13-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
2.10.2 AFC Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
2.11 Voice Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.11.1 Global Characteristics of Voice Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.11.2 Frequency Response of the Voice Band Uplink Path . . . . . . . . . . . . . . . . . 2–10  
2.11.3 Psophometric SNR vs Signal Level of the Voice Band Uplink Path . . . . . 2–10  
2.11.4 Gain Characteristics of the Voice Band Uplink Path . . . . . . . . . . . . . . . . . . 2–10  
2.12 Voice Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.12.1 Global Characteristics of Voice Downlink Path . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.12.2 Frequency Response of the Voice Band Downlink Path . . . . . . . . . . . . . . 2–12  
2.12.3 Psophometric SNR vs Signal Level Downlink Path . . . . . . . . . . . . . . . . . . 2–12  
2.12.4 Gain Characteristics of the Voice Band Downlink Path . . . . . . . . . . . . . . . 2–13  
2.13 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.13.1 Consumption by Circuit Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.13.2 Current Consumption for Typical Configurations . . . . . . . . . . . . . . . . . . . . 2–14  
2.13.3 MCU Serial Interface Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2.13.4 DSP Serial Interface Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2.13.5 Voice Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
3
4
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1 Uplink Timing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.2 Downlink Timing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.3 Microcontroller Unit Serial Interface Timing Considerations . . . . . . . . . . . . . . . . . . 3–3  
3.4 DSP Serial Port Timing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
3.5 Voice Band Serial Interface Timing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1 Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.2 Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4.3 Auxiliary RF Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.3.1 Automatic Frequency Control (AFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.3.2 Auxiliary Analog Converter (Automatic Gain Control (AGC)) . . . . . . . . . . . 4–6  
4.3.3 RF Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4.3.4 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4.4 Voice Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4.4.1 Voice Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.4.2 Voice Downlink Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.5 DAI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.6 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.6.1 Standard User Instructions Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.7 JTAG Interface Scan Chain Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.7.1 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.7.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.7.3 Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.7.4 Boundary-Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.8 Power-Down Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.8.1 Direct Control with Internal Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
iv  
4.8.2 Radio Window Activation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.8.3 External Terminal PWRDN Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.9 DSP Voice Band Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.10 Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.10.1 MCU Serial Baseband Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.10.2 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.10.3 DSP/MCU Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16  
4.10.4 DSP Serial Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16  
4.10.5 DSP/MCU Serial Interface Operation and Format . . . . . . . . . . . . . . . . . . 4–17  
4.10.6 DSP/MCU Serial Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4.10.7 Baseband Uplink Ramp-delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4.10.8 Baseband Uplink Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
4.10.9 Baseband Uplink I and Q Offset Registers . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4.10.10 Baseband Uplink I and Q D/A Conversion Registers . . . . . . . . . . . . . . . 4–20  
4.10.11 Power-Down Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4.10.12 Power-Down Register No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.10.13 Baseband Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.10.14 MCU Clocking Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.10.15 Voice Band Uplink Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.10.16 Voice Band Downlink Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4.10.17 Voice Band Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.10.18 Auxiliary Functions Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.10.19 Automatic Frequency Control Registers (1 and 2) . . . . . . . . . . . . . . . . . . 4–28  
4.10.20 Automatic Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.11 Automatic Frequency Control Registers (1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.11.1 AGC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.11.2 Auxiliary Functions Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.11.3 Auxiliary A/D Converter Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4.11.4 Baseband Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4.11.5 Voice Band Control Register 4 (Address 23) . . . . . . . . . . . . . . . . . . . . . . 4–31  
4.11.6 Baseband Uplink Register (Address 24) . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.11.7 Power-On Status Register (Address 25) . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.11.8 Timing and Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
5
MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
v
List of Illustrations  
Figure  
Title  
Page  
3–1 Uplink Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3–2 Downlink Timing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3–3 Microcontroller Unit Serial Interface Timing Waveforms . . . . . . . . . . . . . . . . . . . . . 3–3  
3–4 DSP Serial Port Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
3–5 Voice Band Serial Interface Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
4–1 Typical GSM Modulation Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4–2 Functional Structure of The Baseband Uplink Path . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4–3 Antialiasing Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4–4 Functional Structure of the Baseband Downlink Path . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–5 Downlink Digital Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
4–6 Downlink Digital Filter In-band Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
4–7 APC Output When APCMODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4–8 APC Output When APCMODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4–9 Uplink Path Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4–10 Downlink Path Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4–11 DSP Serial Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
4–12 Timing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33  
vi  
List of Tables  
Table  
Title  
Page  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
Microcontroller Clocking Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16  
Read/Write Data Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
16-Bit Word Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
Format of 16-Bit Word Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
Uplink Ramp-Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
Uplink Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
Uplink I Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
Uplink Q Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4–10 Uplink I DAC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4–11 Uplink Q DAC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4–12 PWDNRG2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4–13 PWDNRG1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4–14 Baseband Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4–15 MCU Clocking Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–16 Voice Band Uplink Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–17 Uplink PGA Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4–18 Voice Band Downlink Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–19 Downlink PGA Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–20 Volume Control Gain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–21 Voice Band Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–22 DAI Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–23 AUX Functions Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–24 ADC Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–25 AFC Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–26 AFC Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–27 AFC Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–28 APC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–29 APC Ramp Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–30 Shape DAC Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–31 Analog AGC Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–32 AUX Functions Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4–33 AUX A/D Converter Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4–34 Baseband Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4–35 Voice Band Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4–36 VDLST Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4–37 Uplink Register BULCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4–38 BLKCTL Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4–39 Power-On Status Register PWONCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4–40 6-Bit TR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
vii  
viii  
1 Introduction  
The TCM4400 global system for mobile communication (GSM) baseband RF interface circuit is designed  
for GSM 900 and DCS 1800 European digital cellular systems (DCS), and PCS 1900 North America  
personal communications systems (PCS). It includes a complete set of functions to perform the interface  
and processing of voice signals, generate baseband in-phase (I) and quadrature (Q) signals, and control  
the signals between a digital signal processor (DSP) and associated RF circuits.  
The TCM4400 includes a second serial interface for use with a microcontroller. Through this interface, a  
microcontroller can access all the internal registers that can be accessed through the DSP digital serial  
interface.ThisoptionisforapplicationsinwhichpartoftheL1softwareisimplementedinthemicrocontroller.  
A 4-pin parallel port is dedicated to the full control of the digital audio interface (DAI) to the GSM system  
simulator;theDAIconsistsofsystemsimulatorreset(SSRST)control, clockgeneration, andrateadaptation  
with the DSP.  
The voice processing portion of the device includes microphone and earphone amplifiers, analog-to-digital  
converter (ADC) and digital-to-analog converter (DAC), speech digital filtering, and a serial port.  
The baseband processing portion of the device includes a two-channel uplink path, a two-channel downlink  
path, a serial port, and a parallel port. The uplink path performs Gaussian minimum shift keying (GMSK)  
modulation, D/A conversion, and has smoothing filters to provide the external RF circuit with I and Q  
baseband signals. The downlink path performs antialiasing, analog/digital (A/D) conversion, and channel  
separation filtering of the baseband I and Q signals. The serial port allows baseband data exchange with  
the DSP, and the parallel port controls precise timing signals.  
Auxiliary RF functions such as automatic frequency control (AFC), automatic gain control (AGC), power  
control, and analog monitoring are also implemented in the TCM4400. Internal functional blocks of the  
device can be separately and automatically powered down with GSM RF windows.  
1.1 Features  
Applications Include GSM 900, DCS 1800, and PCS 1900 Cellular Telephones  
80-Pin TQFP Package  
Single 3-V Supply Voltage  
Internal Voltage Reference  
Extended RF Control Voltages  
Advanced Power Management  
GSM-Digital Audio Interface (DAI)  
MCU and DSP Serial Interface  
Five-Port Auxiliary A/D  
Meets JTAG Testability Standard (IEEE Std 1131.1-1990)  
Baseband Codec-GMSK Modulator with On-Chip Burst Buffer  
Voice Codec Features: Microphone Amplifier and Bias Source, Programmable Gain Amplifiers,  
Volume Control, and Sidetone Control  
1–1  
1.2 Functional Block Diagram  
45  
47  
Auxiliary DAC  
Analog AGC  
AGC  
APC  
Main Clock  
JTAG  
GSM Windows  
Timing  
Interface  
Power  
Management  
Generator  
Interface  
APC (D/A)  
RF TX Ramp  
60  
75  
BULIP  
USEL  
Baseband Uplink GMSK Modulator  
Internal Burst RAM  
Automatic Offset Compensation  
8-Bit DAC and Smoothing Filter  
MCU  
78  
59  
57  
UCLK  
BULIN  
BULQN  
Serial  
Interface  
76  
77  
UDX  
UDR  
58  
BULQP  
Bus  
Controller  
1
3
2
6
4
BFSX  
BDX  
53  
54  
52  
51  
BDLIP  
BDLIN  
BDLQN  
BDLQP  
DSP  
Serial  
Interface  
Baseband Downlink I/Q Path  
Automatic Offset Compensation  
10-Bit ADC and Antialiasing Filter  
BCLKX  
BFSR  
BDR  
5
BCLKR  
AGC, AFC  
APC Output  
Swing Control  
43  
46  
AV  
DD3/5  
16  
13  
14  
15  
VCLK  
VFS  
Voice Band  
Serial  
Interface  
Voice Uplink 13-Bit ADC  
Two Analog Inputs  
Programmable Gain  
Band-Pass Digital Filter  
VDX  
VDR  
AFC (D/A)  
VTCXO Control  
AFC  
Sidetone  
36  
37  
38  
39  
40  
ADIN1  
ADIN2  
ADIN3  
ADIN4  
ADIN5  
Voice Downlink 13-Bit DAC  
Auxiliary Earphone Output  
Programmable Volume  
Smoothing Filter  
20  
17  
18  
19  
SSCLK  
SSRST  
SSDX  
Auxiliary  
10 Bits  
5-Input ADC  
I
-V  
VMID  
Bias  
REF REF  
DAI  
Interface  
SSDR  
Band-Pass Digital Filter  
7
11  
56  
35  
25  
22  
21  
49  
AV  
GNDA2  
GNDA1  
DD1  
AV  
SS1  
Supply and  
Ground  
Terminals  
AV  
DV  
DD2  
SS4  
55  
41  
DV  
AV  
DD4  
SS2  
DD3  
DV  
AV  
AV  
SS3  
48  
42  
DV  
DD3  
SS3  
1–2  
1.3 Terminal Assignments  
80-PIN TQFP PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
BFSX  
BCLKX  
BDX  
BDR  
BCLKR  
BFSR  
BULIP  
BULIN  
BULQP  
BULQN  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
2
3
4
AV  
5
DD2  
AV  
6
SS2  
AV  
BDLIN  
BDLIP  
BDLQN  
BDLQP  
VMID  
7
DD1  
VREF  
IBIAS  
VGAP  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AV  
SS1  
RESET  
DV  
SS3  
VFS  
VDX  
VDR  
AV  
SS3  
APC  
AFC  
AGC  
ADCMID  
VCLK  
SSRST  
SSDX  
SSDR  
SSCLK  
AV  
DD3/5  
DV  
DD3  
AV  
DD3  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
1–3  
1.4 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
ADCMID  
ADIN1  
ADIN2  
ADIN3  
ADIN4  
ADIN5  
AFC  
NO.  
44  
36  
37  
38  
39  
40  
46  
45  
47  
29  
34  
7
I/O  
I
Reference voltage of auxiliary A/D converters; decoupling only (analog)  
Auxiliary 10-bit ADC input 1 (analog)  
I
Auxiliary 10-bit ADC input 2 (analog)  
I
Auxiliary 10-bit ADC input 3 (analog)  
I
Auxiliary 10-bit ADC input 4 (analog)  
I
Auxiliary 10-bit ADC input 5 (analog)  
O
O
O
I
Automatic frequency control DAC output (analog)  
AGC  
Automatic gain control DAC output (analog)  
APC  
Automatic power control DAC output (analog)  
AUXI  
Auxiliary (high-level) speech signal input (analog)  
AUXO  
O
Auxiliary downlink (voice codec) amplifier output – single-ended (analog)  
Analog positive power supply (band gap, internal common-mode generator, bias current generator)  
Analog positive power supply (baseband codec)  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
DD1  
DD2  
DD3  
DD3/5  
DD4  
SS1  
SS2  
SS3  
SS4  
56  
41  
43  
30  
11  
55  
48  
31  
72  
5
Analog positive power supply (auxiliary RF functions)  
Analog positive power supply (auxiliary RF functions) – can be in the 3-V to 5-V range  
Analog positive power supply (voice codec)  
Analog negative power supply (band gap, internal common-mode generator, bias current generator)  
Analog negative power supply (baseband codec)  
Analog negative power supply (auxiliary RF functions)  
Analog negative power supply (voice codec)  
BCAL  
I
I/O  
O
I
Baseband uplink or downlink offset calibration enable (timing interface)  
DSP serial interface clock input. This clock signal is provided by the DSP or the TCM4400 (digital).  
DSP serial interface clock output. The frequency is the same as MCLK (digital/3-state).  
DSP serial interface serial data input (digital)  
BCLKR  
BCLKX  
BDR  
2
4
BDX  
3
O
I
DSP serial interface serial data output (digital/3-state)  
Burst transmit or receive enable (depends on status of BULON and BDLON) (digital)  
Power on of baseband downlink (timing interface)  
BENA  
BDLON  
BFSR  
71  
74  
6
I
I
DSP serial interface receive frame synchronization input (digital)  
DSP serial interface transmit frame synchronization output (digital/3-state)  
In-phase baseband input (–) – downlink path (analog)  
In-phase baseband input (+) – downlink path (analog)  
Quadrature baseband input (–) – downlink path (analog)  
Quadrature baseband input (+) – downlink path (analog)  
In-phase baseband output (–) – uplink path (analog)  
BFSX  
1
O
I
BDLIN  
BDLIP  
BDLQN  
BDLQP  
BULIN  
BULIP  
BULON  
BULQN  
BULQP  
54  
53  
52  
51  
59  
60  
73  
57  
58  
80  
66  
42  
21  
I
I
I
O
O
I
In-phase baseband output (+) – uplink path (analog)  
Serial clock input (serial interface) (digital)  
O
O
Quadrature baseband output (–) – uplink path (analog)  
Quadrature baseband output (+) – uplink path (analog)  
Digital positive power supply (baseband and timing serial interfaces)  
Digital positive power supply (baseband codec)  
DV  
DV  
DV  
DV  
DD1  
DD2  
DD3  
DD4  
Digital positive power supply (auxiliary RF functions)  
Digital positive power supply (voice band codec and serial interface)  
1–4  
1.4 Terminal Functions (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
79  
65  
49  
22  
33  
32  
25  
35  
9
DV  
Digital negative power supply (baseband and timing serial interfaces)  
Digital negative power supply (baseband codec)  
Digital negative power supply (auxiliary RF functions)  
Digital negative power supply (voice band codec and serial interface)  
Earphone amplifier output (–) (analog)  
SS1  
SS2  
SS3  
SS4  
DV  
DV  
DV  
EARN  
EARP  
GNDA1  
GNDA2  
IBIAS  
MCLK  
MICBIAS  
MICIP  
MICIN  
PWRDN  
RESET  
SSCLK  
SSDR  
SSDX  
SSRST  
TCK  
O
O
Earphone amplifier output (+) (analog)  
Analog signal ground for the microphone amplifier and auxiliary input  
Signal return (ground) for AUXO output  
I/O  
Internal bias reference current adjust – adjust with external resistor (analog)  
Master system clock input (13 MHz )  
70  
26  
27  
28  
23  
12  
20  
19  
18  
17  
64  
63  
62  
69  
68  
67  
61  
24  
78  
77  
76  
75  
16  
15  
14  
13  
10  
50  
I
I
Microphonebiassupplyoutputalsousedtodecouplebiassupplywithexternalcapacitor(analog)  
Microphone amplifier input (+) (analog)  
I
I
Microphone amplifier input (–) (analog)  
I
Power-down mode control input (digital) – active high  
Device global hardware reset (digital) – active low  
DAI external 104-kHz clock output (digital)  
I
O
I
DAI data transfer input – connect to GSM-SS TDAI (digital/pullup)  
DAI data transfer output – connect to GSM-SS RDAI (digital)  
DAI reset input (digital/pullup)  
O
I
I
Scan test clock (digital/pulldown)  
TDI  
I
Scan path input (for testing purposes) (digital/pullup)  
Scan path output (for testing purposes) (digital/3-state)  
Test I/O (digital/3-state and pullup)  
TDO  
I
TEST1  
TEST2  
TEST3  
TMS  
I/O  
I/O  
O
I
Test I/O (digital/3-state and pullup)  
Test output (digital)  
JTAG test mode select (digital/pullup)  
TRST  
UCLK  
UDR  
I
JTAG serial interface and boundary-scan register reset (digital/pullup) – active low  
Microcontroller unit (MCU) interface clock input (digital)  
MCU interface data transfer input (digital)  
I
I
UDX  
O
I
MCU interface data transfer output (digital/3-state)  
MCU serial interface select (digital)  
USEL  
VCLK  
VDR  
O
I
Voice band serial interface clock output (digital/3-state)  
Voice band serial interface receive data input (digital)  
Voice band serial interface transmit data output (digital/3-state)  
Voice band serial interface transmit frame synchronization output (digital/3-state)  
Band gap reference voltage – decouple with external capacitor (analog)  
VDX  
O
O
I/O  
O
VFS  
VGAP  
VMID  
Basebanduplink midrail voltage output – serves as reference common-mode voltage for RFdevice  
when directly dc coupled (analog)  
V
REF  
8
I/O  
Reference voltage – decouple with external capacitor (analog)  
1–5  
1–6  
2 Electrical Specifications  
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, AV , DV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . 0.3 to 6 V  
DD  
DD  
Maximum voltage on any input, V max . . . . . . . . . . . . . . . . . . . V  
+0.3 V / V 0.3 V  
SS  
I
DD  
Storage temperature, T  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These  
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
NOTE 1: Voltage measurements in respect to GND  
2.2 Recommended Operating Conditions  
MIN NOM  
MAX  
3.3  
UNIT  
Vdc  
Vdc  
Vdc  
°C  
Supply voltage range (AV , DV  
DD DD  
)
2.7  
2.7  
3.0  
3.0  
5.0  
Supply extended voltage range for RF blocks (AV 3/5) – 3-V supply  
DD  
3.3  
Supply extended voltage range for RF blocks (AV 3/5) – 5-V supply  
DD  
4.75  
25  
0.3  
0.3  
5.25  
85  
Operating temperature range  
Digital I/O voltage with respect to DV  
SS  
DV  
AV  
+ 0.3  
Vdc  
V
DD  
Analog I/O voltage with respect to AV  
+ 0.3  
SS  
DD  
Difference between any AV  
DD  
or DV  
0.3  
V
DD  
2.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range (Unless Otherwise Noted)  
2.3.1  
Digital Inputs And Outputs  
PARAMETER  
MIN  
0
TYP  
MAX  
40  
1
UNIT  
µA  
Low-level output current with digital pad lower than 0.1 V (CMOS)  
Low-level output current with digital pad lower than 0.4 V (TTL)  
0
mA  
µA  
High-level output current with digital pad higher than V  
(CMOS)  
0.1 V  
40  
0
DD  
High-level output current with digital pad higher than V  
0.4 V (TTL)  
–1  
0
mA  
V
DD  
Minimum high-level input voltage, V  
V
0.3  
IH  
DD  
Maximum low-level input voltage, V  
V
+0.3  
V
IL  
SS  
+15  
Output current on high-impedance state outputs  
Input current (any input) when input high  
15  
–1  
µA  
µA  
µA  
µA  
Input current (standard inputs) when input low  
1
Input current (inputs with pullup TMS, TDI, TEST1, TEST2) when input  
low  
15  
2–1  
2.3.2  
Voltage References  
REFERENCE  
MIN  
TYP  
1.22  
200  
0.1  
MAX  
UNIT  
Vdc  
kΩ  
VGAP  
Voltage on band gap (used for all other references)  
Band gap output resistance  
1.16  
1.28  
Band gap external decoupling capacitance  
Band gap start time (bit CHGUP = 0)  
µF  
100  
2.5  
ms  
Band gap start time (bit CHGUP = 1)  
ms  
VREF  
VMID  
Voltage reference of GMSK internal ADC and DAC: V  
Voltage reference output resistance  
1.66  
1.75  
200  
0.1  
1.84  
Vdc  
kΩ  
VREF  
Voltage reference external decoupling capacitance  
Voltage reference start time (bit CHGUP = 0)  
Voltage reference start time (bit CHGUP = 1)  
µF  
300  
10  
ms  
ms  
Common-mode reference for baseband uplink: V  
MID = 0)  
(bit SELV-  
–10%  
1.25  
V
DD  
/2  
10%  
1.45  
Vdc  
VMID  
Common-mode reference for baseband uplink: V  
MID = 1)  
(bit SELV-  
1.35  
Vdc  
VMID  
Load resistance on VMID output  
10  
1.80  
2.25  
450  
kΩ  
Vdc  
Vdc  
µA  
MICBIAS Microphone-driving voltage (bit MICBIAS = 0)  
Microphone-driving voltage (bit MICBIAS = 1)  
2
2.5  
2.20  
2.75  
Microphone-bias current drive capability (bit MICBIAS = 1)  
Microphone-bias current drive capability (bit MICBIAS = 0)  
ADCMID DC bias reference of the auxiliary ADCs  
ADCMID external decoupling capacitance  
500  
400  
350  
µA  
–10%  
V
DD  
/2  
10%  
Vdc  
µF  
0.1  
IBIAS  
Bias current adjust external resistance  
100  
kΩ  
2.3.3  
Master Clock Input (MCLK)  
MIN  
40  
NOM  
MAX  
UNIT  
MHz  
%
Master clock signal frequency  
13  
Master clock duty cycle (sine wave)  
Maximum peak-to-peak amplitude  
Minimum peak-to-peak amplitude  
Common-mode input voltage  
60  
1.3  
Vpp  
Vpp  
Vdc  
kΩ  
0.5  
V
+0.5  
V
0.5  
SS  
DD  
Input resistance at 13 MHz (MCLK to ground)  
Input capacitance at 13 MHz (MCLK to ground)  
4.1  
5
6.5  
18  
12.5  
15  
pF  
2–2  
2.3.4  
Baseband Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bit  
I and Q DAC resolution  
8
Dynamic range on each output  
Differential output dynamic range  
Centered on V  
V
Vpp  
Vpp  
kΩ  
VMID  
VREF  
BULQP-BULQN or BULIP-BULIN  
2×V  
VREF  
Output load resistance, differential  
Output load capacitance, differential  
Output common-mode voltage  
10  
50  
pF  
Programmable by bit SELVMID  
V
V
VMID  
HiZ  
I and Q output state in power down  
InitialvaluesafterresetandatbeginningofeachburstareBULIP–BULIN=V  
to a phase angle of 0°.  
andBULQP–BULQN=0corresponding  
REF  
2.3.5  
dc Accuracy – Baseband Uplink Path  
PARAMETER  
MIN  
90  
–5  
TYP  
MAX  
90  
UNIT  
mV  
Offset error before calibration  
Offset error after calibration  
Offset correction range  
0
0
0
5
mV  
100  
100  
mV  
2.3.6  
Dynamic Parameters – Baseband Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1
UNIT  
dB  
Absolute gain error relative to V  
Measured with 67.7-kHz sine wave  
–1  
0
VREF  
100 kHz  
200 kHz  
250 kHz  
400 kHz  
600 kHz  
800 kHz  
–3  
dB  
Maximum output random modulation  
spectrum relative to in-band average  
level. Measured by average fast Fourier  
transforms (FFTs) of random bursts  
using a flat top window with 30-kHz  
bandwidth.  
– 34  
– 37  
– 65  
72  
72  
dB  
dB  
dB  
dB  
dB  
Π
Π
Flat top window is defined as: Dw(i)=D(i) × wf0 × (wf1 + wf2 × cos (2 × i × /n) + wf3 × cos ( 4 × i × /n)). With  
wf0=2.0660373, wf1 = 0.2810639, wf2 = 0.5208972, wf3 = 0.1980399.  
2.3.7  
Smoothing Filters Characteristics – Baseband Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Group delay  
0 Hz to 100 kHz  
1.5  
µs  
2.3.8  
I and Q Channels Gain and Phase Matching – Baseband Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured on 67.7 kHz sine wave  
before calibration  
–1  
0
1
Gain matching between  
channels  
0 Hz to 96 kHz  
0 Hz to 96 kHz  
dB  
Measured on 67.7 kHz sine wave  
after calibration  
0.3  
0
0.3  
Phase matching between  
channels  
0.5°  
0
0.5°  
0.15  
0.0  
0.15  
0.42 0.27 0.12  
Programmable with bits IQSEL,  
G1, and G0  
I and Q gain imbalance  
dB  
0.68 0.53 0.38  
0.93 0.78 0.63  
2–3  
2.3.9  
Baseband Uplink Path Global Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
6°  
UNIT  
peak  
rms  
GMSK phase trajectory error  
1.5°  
Power supply rejection  
46  
dB  
2.4 Timing Requirements of Baseband Uplink Path  
2.4.1  
Programmable Delays – Baseband Uplink Path (See Figure 3–1)  
MIN NOM  
MAX  
UNIT  
t
t
Setup time, BENAbefore APC↑  
Bits DELU of register BULRUDEL  
Bits DELD of register BULRUDEL  
0
0
15 1/4-bit  
15 1/4-bit  
su1  
Hold time, ramp-down from BENA  
low  
h1  
Bit APCSPD = 0  
Bit APCSPD = 1  
1/16-bit  
64  
t , t  
r f  
Transition time, APC  
0
1/8-bit  
2.4.2  
Fixed Delays – Baseband Uplink Path (See Figure 3–1)  
MIN NOM  
MAX UNIT  
t
t
t
Setup time, BULONto BCAL↑  
Pulse duration, BCAL high  
15  
132  
0
µs  
µs  
µs  
su2  
w1  
Setup time, BCAL low before BENA↑  
su3  
N effective duration of burst  
Pulse duration, BENA high  
t
t
N32  
32  
1/4-bit  
bit  
w2  
h2  
controlled by BENA  
Hold time, modulation low after  
BENA low  
t
t
Hold time, BULONafter APC low  
1
bit  
bit  
h3  
Input-to-output modulator delay  
Digital delay of modulator  
1.5  
dd(mod)  
Bit is relative to GSM bit = 1/270 kHz. Units can be a fractional part of the GSM bit as noted. Values in the above table  
are given for system information only.  
2.4.3  
Baseband Downlink Path  
PARAMETER  
TEST CONDITIONS  
Centered on external common  
mode (V  
MIN  
TYP  
MAX  
UNIT  
Vpp  
Vpp  
kΩ  
Dynamic range on each input  
V
VREF  
)
BDLCOM  
Differential input dynamic range  
DLQP–DLQN or DLIP–DLIN  
2×V  
VREF  
Differential input resistance at  
BDLQP–BDLQN or BDLIP–BDLIN  
130  
1.5  
200  
4
270  
6.5  
Differential input capacitance at  
BDLQP–BDLQN or BDLIP–BDLIN  
pF  
Single-ended input resistance at  
BDLQP or BDLQN or BDLIP or BDLIN  
to ground  
90  
130  
8
180  
12  
kΩ  
Single-ended input capacitance at  
BDLQP or BDLQN or BDLIP or BDLIN  
to ground  
6
pF  
V
External common-mode input voltage:  
0.8  
V
/2  
V
0.8  
DD  
DD  
V
BDLCOM  
Maximum digital code value  
on 16-bit I and Q samples  
Range of digital output data  
2–4  
± 21060  
2.4.4  
dc Accuracy – Baseband Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
60  
–2  
TYP  
MAX  
60  
UNIT  
LSB  
LSB  
Offset error before calibration  
Offset error after calibration  
Offset correction range  
0
0
±21 on 16-bit I and Q words  
2
full scale  
The LSB corresponds to the one of the ADC which is specified with 66-dB dynamic range (±1024), which means 11-bit,  
but the output data bits are transmitted through the serial interface with 16-bit words. The decimation ratio of 24 (6.5  
MHz/270 kHz) makes the maximum code on a 16-bit word 21060 instead of 32767. Therefore, one LSB of the ADC  
corresponds to a value of 21060/1024 = 20.57 on the 16-bit output serial words on I and Q.  
2.5 Channel Characteristics  
2.5.1  
Frequency Response – Baseband Downlink Path  
PARAMETER  
MIN  
0.2  
0.3  
–4  
TYP  
MAX  
0.2  
UNIT  
< 0 Hz  
67.5 kHz  
0.25  
0.3  
96 kHz  
Frequency response of the total path with values  
referenced to 18 kHz  
dB  
135 kHz  
200 kHz  
400 kHz  
40  
40  
40  
2.5.2  
SNR vs Signal Level-baseband Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
21  
26  
36  
46  
50  
57  
30  
TYP  
MAX  
UNIT  
dB  
45 dBm0  
200-kHz bandwidth  
40 dBm0  
30 dBm0  
20 dBm0  
10 dBm0  
–3 dBm0  
0 dBm0  
Signal level  
Idle channel noise, 0 Hz200 kHz  
66  
dBm0  
2.5.3  
Gain Characteristics of the Baseband Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
at –10 dBm0 and  
18 kHz  
Absolute gain error relative to V  
–11  
–10  
–9  
dB  
VREF  
3 dBm0  
0 dBm0  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.50  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.50  
– 5 dBm0  
Gain tracking error over the range 3 dBm0  
to – 50 dBm0 at 18 kHz with reference  
–10 dBm0  
10 dBm0 Reference level  
20 dBm0  
dB  
30 dBm0  
40 dBm0  
50 dBm0  
2.5.4  
Group Delay – Baseband Downlink Path  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Group delay  
0 Hz to 100 kHz  
28  
µs  
2–5  
2.5.5  
I and Q Channels Matching – Baseband Downlink Path  
PARAMETER  
TEST CONDITIONS  
18-kHz sine wave  
18-kHz sine wave  
MIN  
0.5  
–5  
TYP  
TYP  
MAX  
0.5  
5
UNIT  
dB  
Gain matching between channels  
Delay matching between channels  
0 Hz to 96 kHz  
0 Hz to 96 kHz  
ns  
2.5.6  
Baseband Downlink Path Global Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
Power supply rejection, 0 Hz –100 kHz band  
60  
dB  
2.6 Timing Requirements of Baseband Downlink Path (See Figure 3–2)  
MIN NOM  
MAX UNIT  
t
t
t
Setup time, BDLONto BCAL↑  
Pulse duration, BCAL  
5
60  
0
µs  
µs  
µs  
su4  
w3  
Setup time BCAL low before BENA↑  
su5  
N effective duration of burst  
controlled by BENA  
t
Pulse duration, BENA high  
N
1/4-bit  
w4  
t
t
t
Setup time, BENAbefore DATAOUT valid  
Hold time, DATAOUT valid after BENA↓  
Hold time, BDLON low after BENA low  
24.3  
28  
µs  
µs  
µs  
su6  
3.7  
h4  
0
h5  
Value given is for system information only.  
2.7 Automatic Power Control (APC)  
2.7.1  
APC Level (8-bit DAC)  
PARAMETER  
TEST CONDITIONS  
MIN  
–1  
TYP  
TYP  
MAX  
1
UNIT  
LSB  
LSB  
µs  
Integral nonlinearity (best fitting)  
Differential nonlinearity  
Settling time  
Shaper at maximum  
full-scale load 10 kΩ, 50 pF  
–1  
1
10  
2.7.2  
APC Shaper (5-bit DAC)  
PARAMETER  
MIN  
–1  
MAX  
UNIT  
LSB  
LSB  
µs  
Integral nonlinearity (best fitting)  
Differential nonlinearity  
1
1
1
–1  
Settling time  
Value given is for system information only.  
2–6  
2.7.3  
APC Output Stage  
PARAMETER  
TEST CONDITIONS  
Bit APCSWG = 0  
MIN  
TYP  
MAX  
UNIT  
Output voltage at shape = 3 and  
level = 255 (AV = 3 V)  
2
2.2  
2.4  
V
DD3/5  
Output voltage at shape = 31 and  
level = 255 (AV = 5 V)  
Bit APCSWG = 1  
4
0
4.4  
4.8  
15  
V
DD3/5  
Output voltage at shape = 0 and  
level = xx (AV = 3 V)  
Bit APCSWG = 0, Bit APCMODE = 0  
Bit APCSWG = 1, Bit APCMODE = 0  
Bit APCSWG = 0, Bit APCMODE = 1  
Bit APCSWG = 1, Bit APCMODE = 1  
mV  
mV  
mV  
mV  
mV  
DD3/5  
Output voltage at shape = 0 and  
level = xx (AV = 5 V)  
0
30  
DD3/5  
Ouptut voltage at shape = 0 and  
80  
160  
120  
240  
0
160  
320  
5
level = xx (AV  
= 3 V)  
DD3/5  
Output voltage at shape = 0 and  
= 5 V)  
level = xx (AV  
DD3/5  
Output voltage at shape = xx and  
level = 0  
Output voltage in power down  
DC power supply sensitivity  
Output impedance in power down  
Load resistance  
0
V
%
1
20  
10  
kΩ  
pF  
Load capacitance  
50  
Temperature variations of these voltages are ±1% from 50°C to +100°C and ±0.6% from 0°C to 70°C.  
2.8 Monitoring ADC  
2.8.1  
10-bit ADC  
PARAMETER  
TEST CONDITIONS  
MIN  
–4  
TYP MAX  
UNIT  
LSB  
LSB  
µs  
Integral nonlinearity (best fitting)  
Differential nonlinearity  
Input signal range < 0.95 V  
Input signal range < 0.95 V  
4
2
VREF  
–2  
VREF  
Conversion time  
Input range  
10  
0
V
VREF  
10  
V
Input leakage current  
Input capacitance  
10  
µA  
25  
pF  
Value given is for system information only.  
2.9 Automatic Gain Control (AGC)  
2.9.1  
AGC 10-bit DAC  
PARAMETER  
TEST CONDITIONS  
Best fitting line  
MIN  
TYP  
MAX  
1
UNIT  
LSB  
LSB  
µs  
Integral nonlinearity  
Differential nonlinearity  
Settling time  
–1  
–1  
1
From AUXAGC load  
100  
2–7  
2.9.2  
AGC Output Stage  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage with code  
max  
(AV /5 = 3 V ± 10%)  
DD3  
Bit AGCSWG = 0  
2
2.2  
2.4  
V
Offset voltage with code 000 (AV  
Output swing with code max (AV  
Offset voltage with code 000 (AV  
Output voltage in power down  
DC power supply sensitivity  
Output impedance in power down  
Load resistance  
= 3 V ± 10%)  
= 5 V ± 5%)  
= 5 V ± 5%)  
Bit AGCSWG = 0  
Bit AGCSWG = 1  
Bit AGCSWG = 1  
0.18  
4
0.24  
4.4  
0.48  
0
0.30  
4.8  
V
V
DD3/5  
DD3/5  
DD3/5  
0.36  
0.60  
V
V
1
%
kΩ  
kΩ  
pF  
200  
10  
Load capacitance  
50  
2.10 Automatic Frequency Control (AFC)  
2.10.1 AFC 13-bit DAC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
UNIT  
MHz  
MHz  
MHz  
MHz  
LSB  
AFCCK1 = 1, AFCCK0 = 1  
AFCCK1 = 1, AFCCK0 = 0  
AFCCK1 = 0, AFCCK0 = 1  
AFCCK1 = 0, AFCCK0 = 0  
1
Sampling frequency, f  
s
0.5  
0.25  
±1  
Integral nonlinearity from 0 to 75% output range Best fitting line  
Differential nonlinearity from 0 to 75% output  
range  
±1  
LSB  
Settling time  
1
1
µs  
Over power supply range:  
at 2.0 V for AFCZ = 0 or  
at 4.0V for AFCZ = 1  
DC power-supply sensitivity  
%
2.10.2 AFC Output Stage  
PARAMETER  
TEST CONDITIONS  
Bit AFCZ = 0  
MIN  
TYP  
25  
50  
33  
2.5  
4.7  
3
MAX  
UNIT  
kΩ  
kΩ  
nF  
V
Internal output resistance (±30% tolerance)  
Internal output resistance (±30% tolerance)  
External filtering capacitance  
Bit AFCZ = 1  
Bit AFCZ = 1  
Output voltage with code max (AV  
Output voltage with code max (AV  
= 3 V)  
= 5 V)  
= 3 V)  
= 5 V)  
Bit AFCZ = 0  
2
4
0
0
2.8  
5.1  
6
DD3/5  
DD3/5  
DD3/5  
DD3/5  
Bit AFCZ = 1  
V
Output voltage with code min  
Output voltage with code min  
Output voltage in power down  
(AV  
(AV  
Bit AFCZ = 0  
mV  
mV  
V
Bit AFCZ = 1  
5
10  
0
25  
50  
Output impedance in power down  
Bit AFCZ= 0, Bit AFCZ=1  
kΩ  
2–8  
2.11 Voice Uplink Path  
2.11.1 Global Characteristics of Voice Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Inputs 3 dBm0 (maximum digital sample  
amplitude) with PGA gain. Set to 0dB  
(default value).  
Maximum input range  
(MICP – MICN)  
32.5  
mVrms  
Nominal reference level  
(MICP – MICN)  
10  
dBm0  
Differential input resistance  
(MICP – MICN)  
90  
140  
27  
200  
kΩ  
Micro amplifier gain  
dB  
Inputs 3 dBm0 (maximum digital sample  
amplitude) with PGA gain. Set to 0dB  
(default value).  
Maximum input range at AUXI  
365  
mVrms  
Nominal reference level at AUXI  
Input resistance at AUXI  
Auxiliary amplifier gain  
PGA absolute gain  
10  
220  
6
dBm0  
kΩ  
140  
300  
dB  
4.6  
dB  
VULPGA code =10000  
VULPGA code = 10111  
VULPGA code = 11000  
VULPGA code = 11001  
VULPGA code = 11010  
VULPGA code = 11011  
VULPGA code = 00000 (default)  
VULPGA code = 00001  
VULPGA code = 00010  
VULPGA code = 00011  
VULPGA code = 00100  
VULPGA code = 00101  
VULPGA code = 00110 (ref)  
VULPGA code = 00111  
VULPGA code = 01000  
VULPGA code = 01001  
VULPGA code = 01010  
VULPGA code = 01011  
VULPGA code = 01100  
VULPGA code = 10001  
VULPGA code = 10010  
VULPGA code = 10011  
VULPGA code = 10100  
VULPGA code = 10101  
VULPGA code = 10110  
12 dB  
12.7 12.2 11.7  
11.3 10.8 10.3  
11 dB  
10 dB  
–9 dB  
– 8 dB  
–7 dB  
– 6 dB  
–5 dB  
–4 dB  
–3 dB  
–2 dB  
–1 dB  
0 dB  
10.6 10.1  
9.6  
– 8.5  
7.5  
– 6.5  
– 5.7  
– 4.6  
– 3.6  
2.5  
1.4  
– 0.5  
9.5  
– 8.5  
7.5  
– 6.7  
– 5.6  
– 4.6  
– 3.5  
2.4  
1.5  
9.0  
– 8.0  
7.0  
– 6.2  
– 5.1  
– 4.1  
– 3.0  
1.9  
1.0  
0
PGA gain step  
dB  
1 dB  
0.7  
1.4  
2.6  
3.6  
4.5  
5.3  
6.4  
7.4  
8.6  
9.6  
10.5  
11.5  
1.2  
1.7  
2.4  
2 dB  
1.9  
3 dB  
3.1  
3.6  
4 dB  
4.1  
4.6  
5 dB  
5.0  
5.5  
6 dB  
5.8  
6.3  
7 dB  
6.9  
7.4  
8 dB  
7.9  
8.4  
9 dB  
9.1  
9.6  
10 dB  
11 dB  
12 dB  
10.1  
11.0  
12.0  
10.6  
11.5  
12.5  
Power supply rejection,  
0-Hz 100-kHz band  
52  
dB  
2–9  
2.11.2 Frequency Response of the Voice Band Uplink Path  
PARAMETER  
MIN  
TYP  
37.4  
25.9  
16.5  
MAX  
20  
15  
10  
1.0  
UNIT  
TEST CONDITIONS  
100 Hz  
150 Hz  
200 Hz  
300 Hz  
2.0 1.46  
–1.0  
1000 Hz  
2000 Hz  
3000 Hz  
3400 Hz  
3600 Hz  
3800 Hz  
4000 Hz  
> 4600 Hz  
Reference point is 1000 Hz  
0
1.0  
1.0 0.58  
1.0 0.77  
1.0  
Frequency response (gain relative  
to reference gain at 1 kHz)  
dB  
1.0  
2.0  
–1  
12.4  
23.3  
35  
1.0  
–6  
18  
30  
40  
>–52  
2.11.3 Psophometric SNR vs Signal Level of the Voice Band Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
35  
40  
42  
45  
42  
40  
30  
25  
TYP  
MAX  
UNIT  
3 dBm0  
0 dBm0  
–5 dBm0  
10 dBm0  
20 dBm0  
30 dBm0  
40 dBm0  
45 dBm0  
Signal to noise + distortion  
dB  
Maximum idle channel  
noise  
300 Hz–3 kHz  
72 dBm0  
Crosstalk with the downlink path  
Downlink path loaded with 33 Ω  
66  
dB  
2.11.4 Gain Characteristics of the Voice Band Uplink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.2  
UNIT  
at 0 dBm 0 and 1 kHz  
1.8  
Absolute gain error  
dB  
at 10 dBm 0 and 1 kHz 11.8  
10  
9.8  
0.25  
0.25  
0.25  
3 dBm0  
0 dBm0  
0.25  
0.25  
0.25  
–5 dBm0  
Gain tracking error over the range 3  
dBm0 to – 45 dBm0 at 1 kHz with  
reference –10 dBm0  
10 dBm0 Reference level  
20 dBm0  
0
dB  
0.25  
0.25  
0.35  
0.50  
0.25  
0.25  
0.35  
0.50  
30 dBm0  
40 dBm0  
45 dBm0  
2–10  
2.12 Voice Downlink Path  
2.12.1 Global Characteristics of Voice Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Maximum  
5% distortion and 150 Ω  
3.1  
3.92  
Vpp  
output swing  
(EARP_ EARN) 5% distortion and 33 Ω  
1.2  
1.5  
Vpp  
Output swing 3.9 Vpp  
120  
30  
150  
33  
Minimum output resistive load at  
EARP_EARN  
Output swing 1.5 Vpp  
Maximum output capacitive load at  
EARP_EARN  
100  
pF  
dB  
Earphone amplifier gain  
0
Earphone amplifier state in power down  
HiZ  
Maximum output swing (AUXO), 5%  
distortion, maximum  
Load = 1 kΩ  
1.6  
1.0  
1.96  
1.2  
Vpeak  
Minimum output resistive load at AUXO  
Maximum output capacitive load at AUXO  
Auxo amplifier gain  
AC coupled  
kΩ  
pF  
dB  
100  
6dB  
HiZ  
0
Auxo amplifier state in power down  
VOLCTL code = 010  
VOLCTL code = 110  
–1  
–7  
1
–6  
–5  
VOLCTL code=000 (default and  
reference)  
12  
Volume control gains  
dB  
VOLCTL code = 100  
VOLCTL code = 011  
19  
25  
18  
24  
17  
23  
VOLCTL code = 101 or 001 or  
111 (mute)  
40  
VDLPGA code = 0000  
(default)  
6dB  
6.5  
6.0  
5.5  
VDLPGA code = 0001  
VDLPGA code = 0010  
VDLPGA code = 0011  
VDLPGA code = 0100  
VDLPGA code = 0101  
5dB  
4dB  
3dB  
2dB  
–1dB  
5.5  
4.5  
3.7  
2.3  
1.7  
5.0  
4.0  
3.2  
1.8  
1.2  
4.5  
3.5  
2.7  
1.3  
0.7  
PGA gain steps  
VDLPGA code = 0110  
(ref)  
dB  
0dB  
0
VDLPGA code = 0111  
VDLPGA code = 1000  
VDLPGA code = 1001  
VDLPGA code = 1010  
VDLPGA code = 1011  
VDLPGA code = 1100  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
0.5  
1.4  
2.6  
3.4  
4.3  
5.5  
1.0  
1.9  
3.1  
3.9  
4.8  
6.0  
1.5  
2.4  
3.6  
4.4  
5.3  
6.5  
2–11  
2.12.1 Global Characteristics of Voice Downlink Path (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDLST code = 1101  
VDLST code = 1100  
VDLST code = 0110  
VDLST code = 0010  
VDLST code = 0111  
VDLST code = 0011  
23dB 24.6 24.1 23.6  
20dB 21.1 20.6 20.1  
–17dB 18.3 17.8 17.3  
–14dB 14.8 14.3 13.8  
–11dB 12.3 11.8 11.3  
Sidetone gain steps  
dB  
8dB  
5dB  
8.8  
5.3  
8.3  
4.8  
7.8  
4.3  
VDLST code = 0000  
(ref)  
VDLST code = 0100  
VDLST code = 0001  
VDLST code = 1000  
In the band  
2dB  
1dB  
2.1  
0.7  
1.6  
1.2  
1.1  
1.7  
Mute  
60  
55  
Power supply rejection, 0 Hz 100 kHz  
48  
dB  
2.12.2 Frequency Response of the Voice Band Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5.8  
3.6  
2.5  
–1.4  
0
MAX  
–5  
–2  
1
UNIT  
100 Hz  
150 Hz  
200 Hz  
300 Hz  
1000 Hz  
2000 Hz  
3000 Hz  
3400 Hz  
–3  
–1  
1
Reference point  
0.6  
1
1
Frequency response (gain relative to  
reference gain at 1 kHz)  
dB  
–1 0.15  
–3 –0.35  
9.0  
1
–6  
3600 Hz  
21.0  
32.0  
60.0  
–15  
28  
3800 Hz  
4000 Hz  
>4600 Hz  
2.12.3 Psophometric SNR vs Signal Level Downlink Path  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
45 dBm0  
40 dBm0  
30 dBm0  
20 dBm0  
10 dBm0  
–3 dBm0  
0 dBm0  
25  
30  
40  
42  
45  
42  
35  
Signal level  
dB  
Idle channel noise, 0 Hz30 kHz  
Crosstalk with the uplink path  
71  
66  
dBm  
dB  
2–12  
2.12.4 Gain Characteristics of the Voice Band Downlink Path  
PARAMETER  
TEST CONDITIONS  
at 0 dbm0 and 1 kHz  
at –10 dbm0 and 1 kHz  
MIN  
–1  
TYP  
0
MAX  
1
UNIT  
Absolute gain error  
dB  
11  
10  
– 9  
3 dBm0  
0 dBm0  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
–5 dBm0  
10 dBm0  
20 dBm0  
30 dBm0  
40 dBm0  
45 dBm0  
Gain tracking error over the range  
3 dBm0 to – 45 dBm0 at 1 kHz with  
reference –10 dBm0  
Reference level  
0
dB  
0.25  
0.25  
0.35  
0.50  
0.25  
0.25  
0.35  
0.50  
PGA gain = 0dB.  
Volume control = –12 dB.  
2–13  
2.13 Power Consumption  
2.13.1 Consumption by Circuit Block  
CIRCUIT BLOCK  
TEST CONDITIONS  
MIN  
TYP  
0.013  
0.021  
0.027  
0.054  
0.683  
0.133  
0.108  
0.442  
2.240  
1.550  
0.163  
2.810  
9.310  
0.460  
4.910  
1.490  
0.122  
0.204  
0.181  
0.144  
0.183  
4.170  
3.000  
1.380  
2.990  
1.200  
0.115  
MAX  
UNIT  
DV  
DD3  
AFC  
AGC  
APC  
AV  
AV  
AV  
AV  
mA  
DD3  
DD3/5  
DD3  
mA  
DD3/5  
DV  
DD3  
DD3  
DD3/5  
DD4  
DD4  
DD1  
AV  
AV  
AV  
AV  
AV  
mA  
mA  
Auxiliary input stage  
Auxiliary output stage  
Band gap  
mA  
mA  
DV  
DD2  
DD2  
Baseband downlink  
Baseband uplink  
AV  
DV  
DD2  
DD2  
mA  
AV  
BBIF  
DV  
DV  
DV  
DV  
DV  
DV  
BDL active  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD1  
DD1  
DD1  
DD1  
DD4  
DD4  
DD4  
Clock generator BBIF  
Clock generator idle  
Clock generator TIIF  
Clock generator VBIF  
Digital modulator  
Earphone output stage  
Microphone input stage  
AV  
AV  
DV  
DD4  
Voice band downlink  
Voice band uplink  
mA  
mA  
AV  
DV  
DD4  
DD4  
DD4  
AV  
2.13.2 Current Consumption for Typical Configurations  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
13-MHz clock applied; PWRDN active;  
band-gap voltage reference off.  
Deep power down  
250  
µA  
AFC programmed with internal 50-kand  
1-MHz clock  
Power down with AFC active  
AFC + GMSK – Rx  
0.7  
1.1  
mA  
Paging  
14  
19  
27  
16  
21  
30  
mA  
mA  
mA  
Audio + GMSK – Tx + APC + AFC Transmit burst  
Audio + GMSK – Rx +AGC+ AFC Receive burst  
2–14  
2.13.3 MCU Serial Interface Timing Requirements (See Figure 3–3)  
MIN NOM  
MAX  
UNIT  
ns  
t
t
t
Setup time, UCLK stable before USEL↓  
Hold time, UDX valid after USEL↓  
Hold time, UDX valid after UCLK↑  
20  
su10  
20  
20  
ns  
v1  
ns  
v2  
Sequential transfer delay between 16-bit word acquisition t pulse  
w
duration, USEL high  
t
h9  
3000  
ns  
t
t
t
t
t
Hold time, UCLKafter USEL↓  
Hold time, UCLK unknown after USEL↑  
Setup time, data valid before UCLK↓  
Hold time, data valid after UCLK↓  
Cycle time, ULCK  
20  
20  
ns  
ns  
ns  
ns  
ns  
h10  
h11  
su11  
h12  
c
20  
20  
154  
2.13.4 DSP Serial Interface Timing Requirements (See Figure 3–4)  
MIN NOM  
MAX  
UNIT  
BCLKX BCLKX signal frequency (burst mode or continuous mode depending  
on bit BCLKMODE)  
13  
MHz  
BCLKX BCLKX duty cycle  
45  
20  
20  
20  
20  
50  
55  
%
ns  
ns  
ns  
ns  
t
t
t
t
Setup time, BFSX high before BCLKX ↓  
Hold time, BFSX high after BCLKX ↓  
Setup time, BDX valid before BCLKX ↓  
Hold time, BDX valid after BCLKX ↓  
su12  
h12  
su13  
h13  
(Output BCLKDIR = 0)  
(Input BCLKDIR = 1)  
4.33  
50  
BCLKR BCLKR signal frequency  
MHz  
13  
55  
BCLKR BCLKR duty cycle  
45  
20  
20  
20  
20  
%
ns  
ns  
ns  
ns  
t
t
t
t
Setup time, BFSR high before BCLKR ↓  
Hold time, BFSR high after BCLKR ↓  
Setup time, BDR valid before BCLKR ↓  
Setup time, BDR valid after BCLKR ↓  
su14  
h14  
su16  
h15  
2.13.5 Voice Timing Requirements (See Figure 3–5)  
MIN NOM  
MAX  
UNIT  
VCLK  
VCLK signal frequency (burst mode or continuous mode depending  
on bit VCLKMODE)  
520  
kHz  
VCLK  
VCLK duty cycle  
45  
100  
100  
100  
100  
100  
100  
50  
55  
%
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
Setup time, VFS high before VCLK ↓  
Hold time, VFS high after VCLK ↓  
Setup time, VDX valid before VCLK ↓  
Hold time, VDX valid after VCLK ↓  
Setup time, VDR valid before VCLK ↓  
Hold time, VDR valid after VCLK ↓  
su7  
h6  
su8  
h8  
su9  
h7  
2–15  
2–16  
3 Parameter Measurement Information  
3.1 Uplink Timing Considerations  
Figure 3–1 shows the timing diagram for the uplink operation.  
Timing for power up, offset calibration, data transmission, and power ramp up are driven by control bits  
applied to BULON (base uplink on), BCAL (calibration), and BENA (enable). The burst content including  
guard bits, tail bits, and data bits, is sent by the DSP by way of the DSP interface and then stored by the  
TCM4400 in a burst buffer. Transmission start is indicated by the control bit BENA when the BULON is  
active. Thetransmission, sequencing, andpowerrampuparethencontrolledbyanon-chipburstsequencer  
with a one-quarter-bit timing accuracy. For a detailed description of the baseband in-length path, see the  
functional description of the baseband uplink path in the principles of operation section.  
BULON  
t
su2  
BCAL  
BENA  
t
w1  
t
h2  
t
su3  
t
w2  
MODULATION  
APC  
t
h1  
t
r1  
t
f1  
t
su1  
t
h3  
Figure 3–1. Uplink Timing Diagram  
3–1  
3.2 Downlink Timing Considerations  
Figure 3–2 shows the timing diagram for downlink operation.  
Timing of the baseband downlink path is controlled by bits DLON (downlink on), BCAL (calibration), and  
BENA (enable) when BDLON is active (see the topic, timing and interface). BDLON controls the power up  
of the baseband downlink path; BCAL controls the start and duration of the autocalibration sequence; and  
BENA controls the beginning and the duration of data transmission to the DSP using the DSP serial  
interface.  
The power-down sequence is controlled with two bits. The first bit (BBDLW of PWDNRG1 register)  
determines whether the baseband downlink path can be powered down with external GSM receive window  
activation (BDLON); the second bit (BBDLPD of PWDNRG1 register) controls the activation of the  
baseband downlink path. For more information about power down control, see Section 4.8 in this document.  
BDLON  
t
su4  
BCAL  
t
w3  
t
t
h5  
su5  
BENA  
t
w4  
DATAOUT  
t
t
h4  
su6  
Figure 3–2. Downlink Timing Sequence  
3–2  
3.3 Microcontroller Unit Serial Interface Timing Considerations  
Figure 3–3 shows the timing diagram for the microcontroller unit (MCU) serial interface.  
The MCU is compliant with 8-bit standard synchronous serial ports. The microcontroller operates on 16-bit  
words; this interface consists of four pins.  
UCLK: A clock provided by the microcontroller to control access to baseband, voice band, and  
auxiliary functions registers  
UDR:  
An input terminal to control read and write access to baseband, voice band, and auxiliary  
functions registers  
UDX:  
An output terminal to transmit data from read access of baseband, voice band, and auxiliary  
functions registers  
USEL: An input terminal to enable read and write access to baseband, voice band, and auxiliary  
functions registers through the microcontroller interface  
t
h10  
USEL  
UCLK  
t
su10  
t
h11  
t
c
t
h10  
t
h9  
t
v2  
t
su11  
UDR  
UDX  
t
t
h12  
v1  
Hi-Z  
Hi-Z  
Figure 3–3. Microcontroller Unit Serial Interface Timing Waveforms  
(Mode Rising Edge Without Delay)  
3–3  
3.4 DSP Serial Port Timing Considerations  
Figure 3–4 shows the timing diagram for DSP serial port operation.  
Six terminals are used for the serial port interface. The terminal BCLKR is an I/O port for the serial clock used  
to control the reception of the data BDR. At reset BCLKR is configured as an output and the clock frequency  
issettoMCLK/3(4.333MHzwithMCLK=13MHz);theclocksignalisrunningpermanently. TheportBCLKR  
can be reconfigured as an input by programming an internal register. In this case BCLKR is provided by the  
DSP and can run in burst mode to reduce power consumption. The receive frame synchronization (BFSR)  
identifies the beginning of a data packet transfer on port BDR.  
Thetransmittedserialdata(BDX)istheserialdatainput;thetransmitframesynchronization(BFSX)initiates  
the transmission of data. The transmit clock (BCLKX) is provided by the GSM baseband and voice A/D and  
D/A converters with a frequency of MCLK. The downlink data bus (BFSX, BCLKX, BDX) can be driven to  
V
or placed in high-impedance state when no data is to be transferred to the DSP. The bit BCLKDIR of  
SS  
the register BCTLREG controls the direction of the BCLKR clock.  
As with the voice serial interface, an extra clock cycle must be generated because the last 16-bit word  
received on the DSP serial interface is latched on the next two falling BCLKR edges, following the least  
significant bit (LSB). As for the voice serial interface, one extra clock period is generated on the BCLKX  
before the first synchronization BFSX of downlink data sequence.  
BCLKX  
t
t
su13  
su12  
t
t
h14  
h13  
BFSX  
BDX  
A15  
A14  
A13  
A12  
A3  
A2  
A1  
A0  
LSB  
MSB  
a. Burst-Mode Serial-Port Transmit Operation  
BCLKR  
t
t
su15  
su14  
t
t
h15  
h14  
BFSR  
BDR  
A15  
A14  
A13  
A12  
A3  
A2  
A1  
LSB  
A0  
B15  
B14  
B13  
MSB  
b. Burst-Mode Serial-Port Receive Operation  
Figure 3–4. DSP Serial Port Timings  
3–4  
3.5 Voice Band Serial Interface Timing Considerations  
Figure 3–5 shows the timing diagram for both transmit and receive voice band serial interface operation.  
The signal VCLK is the output serial clock used to control the transmission or reception of the data. The  
transmitted serial data (VDX) is the serial data output; the frame synchronization (VFS) initiates the transfer  
of transmit and receive data. The received data (VDR) is the serial data input.  
Each serial port includes four registers: the data transmit register (DXR), the data receive register (DRR),  
the transmit shift register (XSR), and the receive shift register (RSR).  
The voice serial interface has the same structure and timing diagram as the serial interface; one extra cycle  
is generated before VFS and two extra cycles are generated after the LSB.  
XLOAD and RLOAD are internal signals.  
VCLK  
t
t
su7  
su8  
h6  
t
t
h8  
VFS  
VDX  
A15  
A14  
A13  
A12  
A3  
A2  
A1  
A0  
MSB  
LSB  
XLOAD  
DXR  
XSR  
Loaded  
Loaded  
a. Audio-Serial-Port Transmit Operation  
VCLK  
t
su9  
t
h7  
VFS  
VDR  
A15  
MSB  
A14  
A13  
A12  
A3  
A2  
A1  
LSB  
A0  
RLOAD  
DDR  
Loaded  
b. Audio-Serial-Port Receive Operation  
Figure 3–5. Voice Band Serial Interface Timing Waveforms  
3–5  
3–6  
4 Principles of Operation  
4.1 Baseband Uplink Path  
Instead of the traditional transmit and receive terms, which can be confusing when describing a cellular  
telephone two-way communication, the terms uplink, which means from a user device to a remote station,  
and downlink, which means from a remote station, whether earthbound or satellite, are used to indicate the  
signal flow direction.  
The modulator circuit in the baseband uplink path performs the Gaussian minimum shift keying (GMSK) in  
accordance with the GSM Specification, Section 05.04, Digital Cellular Telecommunication System;  
Modulation. The data to be modulated flows from the DSP through the serial interface. It is differentially  
encoded, and it is applied to the input of the GMSK modulator. The GMSK modulator is implemented with  
digital logic and a sin/cos look-up table in ROM, and it generates the I and Q components (words) with an  
interpolation ratio of 16.  
These digital I and Q words are sampled at a 4.33-MHz rate and applied to the inputs of a pair of high-speed  
8-bit DACs. The analog outputs are then processed by second-order Bessel filters to reduce image  
frequencies due to sampling and to obtain a spectrum consistent with GSM Specification, Section 05.05,  
Digital Cellular Telecommunications System (Phase 2+); Radio Transmission and Reception (see  
Figure 4–1).  
MAGNITUDE  
vs  
FREQUENCY  
0
20  
40  
60  
80  
100  
120  
6
10  
6
2×10  
6
3×10  
6
4×10  
6
5×10  
6
6×10  
0
Frequency – MHz  
NOTE: Conformance with GSM Specification, Section 05.5:  
simulated spectrum of an infinite modulation of random  
data with a Blackman Harris analysis window  
Figure 4–1. Typical GSM Modulation Spectrum  
4–1  
Full-differential buffered signals are available at ULIP, ULIN, ULQP, and ULQN. These signals are suitable  
for use in the RF circuit for generating a phase-modulated signal of the form:  
s(t) = A Cos (2 Pi fc t + Phi (t, alpha))  
(1)  
where:  
fc = the RF carrier frequency,  
Phi (t, alpha) = the phase component generated by the GMSK modulator from the differential  
encoded data  
Timing for power up, offset calibration, data transmission, and power ramp up are driven by control bits  
applied to BULON (base uplink on), BCAL (calibration), and BENA (enable) (see Figure 4–1). The entire  
content of a burst, including guard bits, tail bits, and data bits, is sent by the DSP using the DSP interface  
and then stored by the TCM4400 in a burst buffer. Transmission start is indicated by the control bit BENA  
when BULON is active. The transmission, sequencing, and power ramp up are then controlled by an on-chip  
burst timing control circuit having a one-quarter-bit timing accuracy (see Figure 4–2). All data related to a  
burst to be transmitted (such as bit data, ramp-up, and ramp-down delay programmation) have to be loaded  
before the rising edge of BENA.  
The burst length is determined by the time during which the BENA signal is active. Effective burst length  
is equal to the duration of BENA plus 32 one-quarter bits. The tail of the burst is controlled internally, which  
means that the modulation is maintained for 32 one-quarter bits after BENA turns off to generate the  
ramp-down sequence and complete modulation.  
For each burst, the power control level can be controlled by writing the power level value, using the serial  
interfaces, into the power register of the auxiliary RF power control circuitry. The power ramp-up and  
ramp-down sequences are controlled by the burst sequencer while the shape of the power control is  
generated internally by dedicated circuitry, which drives the power control 5-bit and 8-bit D/A converters.  
To minimize phase error, the I and Q channel dc-offset can be minimized using offset calibration. Each  
channel includes an offset register in which a value corresponding to the required dc offset is stored,  
controlling the dc offset of the I channel and Q channel D/A converters. This value is set by a calibration  
sequence. Starting and stopping the calibration sequence is controlled by the control bit BCAL using the  
timing interface when BULON is active. During the calibration sequence, the digital value of I and Q is forced  
to zero so that only the offset register value drives the D/A converters and a low-offset comparator senses  
the dc level at the BULIP/BULIN and BULQP/BULQN outputs and modifies the content of the offset registers  
to minimize the dc offset (see Figure 4–2).  
Gain imbalance can be introduced between I and Q channels to allow compensation of imperfections in RF  
circuits. This gain imbalance is controlled through the mean of three programmation bits (IQSEL, G1, and  
G0 of baseband uplink register BULCTL).  
The power-down function is controlled with two bits. The first bit (BBULW of the PWDNRG1 register),  
determines whether the baseband uplink path can be powered down with external GSM transmit window  
activation (BULON). The second bit (BBULPD of the PWDNREG1 register) controls the activation of the  
baseband uplink path. For more information about power-down control, see Section 4.8 in this document.  
4–2  
+
Timing Interface  
Offset  
Register  
Din  
Burst  
Register  
Burst Timing  
Control  
Cosine  
Table  
8-Bit  
DAC  
Low-Pass  
Filter  
270 kHz  
BULI  
P
BULIN  
Differential  
Encoder  
Gaussian  
Filter  
Integrator  
fs = 16 x 270 kHz  
I/Q Gain Unbalance  
Sine  
Table  
Low-Pass  
Filter  
BULQP  
BULQN  
8-Bit  
DAC  
Power  
Register  
Ramp-Up  
Shaper  
Offset  
Register  
+
To Power  
Control DAC  
Figure 4–2. Functional Structure of The Baseband Uplink Path  
4.2 Baseband Downlink Path  
The baseband downlink path includes two identical circuits for processing the baseband I and Q  
components generated by the RF circuits. The first stage of the downlink path is a continuous-time  
second-order antialiasing filter (see Figure 4–3) that prevents aliasing due to sampling in the ADC. This filter  
also serves as an adaptation stage (input impedance and common-mode level) between external-world and  
on-chip circuitry.  
TYPICAL FREQUENCY RESPONSE OF THE  
ANTIALIASING FILTER  
10  
0
10  
20  
30  
40  
50  
60  
70  
2
10  
3
10  
4
10  
5
10  
6
10  
7
10  
f – Frequency – Hz  
Figure 4–3. Antialiasing Filter  
4–3  
The antialiasing filter is followed by a third-order sigma-delta modulator that performs A/D conversion at a  
sampling rate of 6.5 MHz. The ADC provides 3-bit words that are fed to a digital filter (see Figure 4–4) that  
performs the decimation by a ratio of 24 to lower the sampling rate to 270.8 kHz and the channel separation  
by providing enough rejection of the adjacent channels to allow the demodulation performances required  
by the GSM Specification. Figure 4–5 shows the frequency response curve for the downlink digital filter and  
Figure 4–6 shows the in-band response curve for the same digital filter.  
Thebasebanddownlinkpathincludesanoffsetregisterinwhichthevaluerepresentingthechanneldcoffset  
is stored; this value is subtracted from the output of the digital filter before the digital samples are transmitted  
to the DSP using the serial interface. Upon reset, the offset register is loaded with 0 and updated with the  
BCAL calibrating signal (see Figure 3–2).  
The content of the offset register results from a calibration sequence. The input BDLIP is shorted with the  
input BDLIN, and the input BDLQP is shorted with the input BDLQN. The digital outputs are evaluated and  
the values are stored in the corresponding offset registers in accordance with the dc offset of the GSM  
baseband and voice A/D and D/A downlink path. When the external autocalibration sequence is selected,  
the inputs BDLIP and BDLIN and the inputs BDLQP and BDLQN remain connected to the external circuitry.  
The digital outputs are evaluated, and the values stored in the corresponding offset registers take into  
account the dc offset of the external circuitry.  
Timingcontrol of the baseband downlink path is controlled by bits BDLON (downlink on), BCAL (calibration),  
and BENA (enable) when BDLON is active (see topic, timing and interface). BDLON controls the power up  
of the baseband downlink path; BCAL controls the start and duration of the autocalibration sequence (which  
can be internal or external depending on bit EXTCAL of PWDNRG1 register); and BENA controls the  
beginning and the duration of data transmission to the DSP by using the DSP serial interface. To avoid  
transmission of irrelevant data corresponding to the settling time of the digital filter. The first eight I and Q  
computed samples are not sent to the DSP. First, data are transmitted though the DSP interface about 30  
µs after the BENA rising edge.  
The power-down sequence is controlled with two bits. The first bit (BBDLW of PWDNRG1 register)  
determines whether the baseband downlink path can be powered down with external GSM receive window  
activation (BDLON). The second bit, BBDLPD of register PWDNRG1, controls the activation of the  
basebanddownlinkpath. Formoreinformationaboutpower-downcontrol, seeSection4.8inthisdocument.  
Offset  
Offset  
Register  
Calibration  
SUB  
FIR  
Filter  
Antialiasing  
Filter  
Sigma-Delta  
Modulator  
SINC  
Filter  
BDLIP  
BDLIN  
To Baseband  
Serial Interface  
fs1 = 6.5 MHz  
fs2 = 1.08 MHz  
fs3 = 270.8 kHz  
FIR  
Filter  
BDLQP  
BDLQN  
Antialiasing  
Filter  
SINC  
Filter  
Sigma-Delta  
Modulator  
SUB  
Offset  
Offset  
Register  
Calibration  
Figure 4–4. Functional Structure of the Baseband Downlink Path  
4–4  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
50  
100  
150  
200  
f – Frequency – kHz  
Figure 4–5. Downlink Digital Filter Frequency Response  
0.4  
0.2  
0
0.2  
0.4  
0
10  
20  
30  
40  
50  
60  
70  
80  
f – Frequency – kHz  
Figure 4–6. Downlink Digital Filter In-band Response  
4–5  
4.3 Auxiliary RF Functions  
The auxiliary RF functions include the following:  
Automatic frequency control  
Auxiliary analog converter (automatic gain control)  
RF power control  
Monitoring  
Each of these functions is discussed in the following paragraphs.  
4.3.1  
Automatic Frequency Control (AFC)  
The automatic frequency control function consists of a DAC optimized for high-resolution dc conversion.  
The AFC digital interface includes two registers that can be written to using the serial interfaces. The content  
of these registers controls a 13-bit DAC whose purpose is to correct frequency shifts of the oscillator to  
maintain the master clock frequency in a 0.1 ppm range.  
To optimize the AFC function depends on the type of oscillator used and whether its sampling frequency  
is programmable. This means that the lower the selected frequency, the lower the resolution and power  
consumption. Using a high-quality resonance oscillator filter permits the AFC circuit to operate at low  
frequency. Thus, a low-cost oscillator permits operation at a higher internal frequency to ensure 13-bit  
resolution.  
TheAFCvalueisprogrammedwithregistersAUXAFC1(whichcontainsthe10LSBs)andAUXAFC2(which  
contains the three MSBs). The three MSBs are sent to the DAC through a shadow register whose content  
is updated when LSBs are written in AUXAFC1. Proper operation of the AFC is ensured by writing the MSBs  
first and then the LSBs.  
The internal resistance and output voltage swing selection is controlled with bit AFZ of the AUXCTL2  
register. Power down is controlled with two bits: the first bit, AFCPN of the AUXCTL1 register, determines  
whether the AFC can be powered down from the external PWRDN terminal; the second bit, AFCPD of the  
AUXCTL1 register, controls the activation of the the AFC function. For more information about power-down  
control, see Section 4.8 in this document.  
The auxiliary analog functions of the GSM baseband A/D and D/A conversions are independently powered  
from the AV  
external terminal. The AFC output voltage swing is programmable to provide the largest  
DD3/5  
possible voltage range. This configuration is programmed with bit AFCZ of the AUXCTRL2 register.  
4.3.2  
Auxiliary Analog Converter (Automatic Gain Control (AGC))  
The auxiliary analog converter control function includes a register which can be written to using the serial  
interfaces and a 10-bit DAC that provides a control signal to set the gain of the RF section receive amplifier.  
The 10-bit DAC is accessed through the internal register AUXAGC.  
Power down is controlled with two bits. The first bit (AGCW of the AUXCTL2 register) determines whether  
the AGC can be powered down with the external GSM receive window activation (BDLON). The second bit  
(AGCPD of the AUXCTL2 register) controls the activation of AGC function. For more information about  
power-down control, see Section 4.8 in this document.  
The auxiliary analog functions of the GSM baseband A/D and D/A conversions are independently powered  
from the AV  
external terminal. The AGC output voltage swing is programmable to provide the largest  
DD3/5  
possible voltage range. This configuration is programmed with bit AGCSWG of the AUXCTL2 register.  
4–6  
4.3.3  
RF Power Control  
The RF power control section includes a register that is written to using the serial interfaces. An 8-bit DAC  
processes the content of this register, which determines the gain of the RF section power amplifier.  
The reference of the 8-bit DAC (accessed by register AUXAPC) is provided by the ramp-up-shaper DAC  
which is a 5-bit DAC controlled by the APCRAM registers located in random-access memory (RAM). This  
area of RAM contains sixty-four 10-bit words which are read from address 0 through address 62 during the  
ramp-up sequence and from 63 through 1 during the ramp-down sequence at a rate of 4 MHz when bit  
APCSPD is at zero or at a rate of 2 MHz when bit APCSPD is at 1. The ramp-up parameters are obtained  
from the five least significant bits of the RAM words. The ramp-down parameters are obtained from the most  
significant bits of the RAM words. Content of address 0 must be identical with the content of address 1. The  
content of address 62 must be identical with the content of address 63.  
This RAM is loaded once and its content determines the shape of the ramp-up and ramp-down control  
signal, which means these control signals can be adapted to the response of the power amplifier used in  
the RF section. The shape and timing of ramp-up and ramp-down waveforms are independent.  
Timing of the ramp-up and ramp-down sequences is controlled internally; however, programming of the  
delay register allows adjusting the power-control start time in a 4-bit range in 1/4-bit steps. The contents of  
the delay register are referenced to the BENA signal, which determines the beginning of the burst-signal  
modulation. This feature allows adjusting the timing of the control signal versus the I and Q components  
within 1/4-bit accuracy, as defined in the specification GSM 05.05.  
When APC is in power-down mode or when APC level is zero, the analog output is driven to V  
(see  
SS  
Figure 4–7). During inactivity periods, the APC output is switched to V to give low-current consumption  
SS  
to the power amplifier (drain cutoff current of the RF amplifier).  
BULON  
BENA  
Level 255  
Level 1  
Level 0  
APC OUT  
Offset = 120mV  
Figure 4–7. APC Output When APCMODE = 0  
Typically, an offset of 120 mV (2-V swing) is added to the APC output to ensure level DAC linearity. Bit  
APCMODE controls how this offset is added. When APCMODE is zero, the APC output is given by  
APCout = Shape value × (Level value + Offset)  
(2)  
When APCMODE is one (see Figure 4–8), the APC output is given by formula  
APCout = (Shape value × Level value) + Offset  
(3)  
4–7  
BULON  
BENA  
Level 255  
Level 1  
Level 0  
APC OUT  
Offset = 120 mV  
Figure 4–8. APC Output When APCMODE = 1  
Power down is controlled with two bits. The first bit (APCW of the AUXCTL2 register) determines whether  
the APC canbepowereddownbyactivatingexternalGSMtransmitwindowactivation(BULON);thesecond  
bit (APCPD of the AUXCTL2 register) controls the activation of APC function. For more information about  
power-down control, see Section 4.8 in this document. The auxiliary analog functions of the GSM baseband  
A/D and D/A conversions are independently powered from the AV  
terminal. The APC output voltage  
DD3/5  
swing is programmable to provide the largest voltage range. This configuration is programmed with bit  
APCSWG of the AUXCTRL2 register.  
4.3.4  
Monitoring  
The monitoring section includes a 10-bit A/D converter and one result register that allow monitoring of five  
external analog values, such as the temperature and the battery voltage. The selection of the input and  
reading of the control registers is done using the serial interfaces.  
The selection of the input channel is done with the bits ADCCH0 – ADCCH2 of the AUXCTL1 register; the  
data is read from the AUXADC register. Power down is controlled with two bits. The first bit (ADCPN of the  
AUXCTL1 register) determines whether the A/D converter can be powered down from the external PWRDN  
terminal; the second bit (ADCPD of the AUXCTL1 register) controls the activation of the A/D conversion  
function. For more information about power-down control, see Section 4.8 in this document.  
Conversion is started with a write access to the AUXCTL1 register. During the conversion, the ADCEOC  
bit of BSTATUS register stays at 1 and resets to 0 when the converted data is loaded into the AUXADC  
register. The power consumption of the main parts of the converter is limited to the useful part of the  
conversion time.  
4.4 Voice Codec  
The voice coder/decoder (codec) circuitry processes analog audio components in the uplink path and  
applies this signal to the voice signal interface for eventual baseband modulation. In the downlink path, the  
codec circuitry changes voice-component data received from the voice serial interface into analog audio.  
The following paragraphs describe these uplink/downlink functions in more detail.  
4–8  
4.4.1  
Voice Uplink Path  
The voice uplink path includes two input stages (see Figure 4–9). The first is a microphone amplifier  
compatible with an electret microphone containing an field-effect transistor (FET) buffer with open-drain  
output. It has a gain of typically 27 dB and provides an external voltage of 2 V to 2.5 V to bias the microphone.  
The auxiliary audio input can be used as an alternative source for a higher level speech signal. This stage  
performs single-ended-to-differential conversion and provides a gain of 6 dB. When auxiliary audio input  
is used, the microphone input is disabled and powered down. If both microphone and auxiliary amplifiers  
arepoweredupatthesametime, onlythesignalofthemicrophoneamplifieristransmittedtothevoiceuplink  
path.  
The resulting fully differential signal is fed to a programmable gain amplifier that allows adjustment of the  
level of the speech signal to the dynamic range of the ADC, which is determined by the value of the internal  
voltage reference. Programmable gain can be set from –12 dB to 12 dB in 1-dB steps and is programmed  
with bits VULPG to VULPG4 of the VBCTL1 register.  
Analog-to-digital conversion is made with a third-order sigma-delta modulator whose sampling rate is 1  
MHz. Output of the A/D converter is fed to a speech digital filter which performs the decimation down to 8  
kHz and limits the band of the signal with both low-pass and high-pass transfer functions. The speech  
samples are then transmitted to the DSP using the voice serial interface at a rate of 8 kHz.  
Programmable functions of the voice uplink path, power up, input selection, and gain are controlled by the  
DSP or the MCU using the serial interfaces. The uplink voice path can be powered down with the bit VULON  
of the VBCTL1 internal register.  
Bias  
MICBIAS  
Generator  
Sidetone  
to Voice  
Downlink  
Microphone  
Amplifier  
27 dB  
MICIP  
MICIN  
IIR  
SINC  
Filter  
To Voice  
Serial Interface  
PGA  
+16.6 7.4 dB  
Sigma-Delta  
Modulator  
Band Pass  
Filter  
Auxiliary  
Amplifier  
6 dB  
f
s1  
= 1 MHz  
f
s2  
= 40 KHz  
f
s3  
= 8 kHz  
AUXI  
Figure 4–9. Uplink Path Block Diagram  
4.4.2  
Voice Downlink Path  
The voice downlink path receives speech samples at an 8-kHz rate from the voice serial interface and  
converts them to analog signals to drive the external speech transducer.  
The digital speech coming from the voice serial interface is first fed to a speech-digital infinite-duration  
impulse response (IIR) filter, which has two functions (see Figure 4–10). The first function is to interpolate  
the input signal and increase the sampling rate from 8 kHz up to 1 MHz to permit D/A conversion by an  
oversampling digital modulator. The second function is to limit the band of the speech signal using both  
low-pass and high-pass transfer functions.  
The interpolated and band-limited signal is fed to a second-order sigma-delta modulator and sampled at 1  
MHz to generate a 1-bit oversampled signal that drives a 1-bit DAC.  
Due to the oversampling conversion, the analog signal obtained at the output of the one-bit DAC is mixed  
with high frequency noise. This noise is filtered by a switched-capacitor third-order low-pass filter and the  
remaining signal is fed to a programmable gain amplifier (PGA) to adjust the volume control. Volume control  
is done in 6-dB steps from 0 dB through 24 dB; in the mute state, attenuation is higher than 40 dB. A fine  
adjustment of gain is possible from 6 to 6 dB in 1-dB steps to calibrate the system, depending on the  
earphone characteristics. This configuration is programmed using the VBCTL2 register.  
4–9  
The PGA output is fed to two output stages: the earphone amplifier that provides a full differential signal on  
theterminalsEARP/EARN, andanauxiliaryamplifierthatprovidesasingle-endedsignalonterminalAUXO.  
Both earphone and auxiliary amplifiers can be active at the same time. The downlink voice path can be  
powered down with bit VDLON of the VBCTL2 internal register.  
A sidetone path is connected between the output of the voice uplink PGA and the input of the voice downlink  
PGA. This path provides seven programmable gains (1 dB, 2dB, – 5 dB, 8 dB, 11 dB, 14 dB, 17 dB,  
20 dB, 23 dB) and one mute position. Sidetone path gain can be selected by programming bit at register  
address 23.  
Auxiliary  
Sidetone  
From Voice Uplink PGA  
From Voice  
Serial Interface  
AUXO  
Amplifier  
– 23 to 1dB  
– 6 dB  
Smoothing  
Filter  
Volume Count  
and PGA  
Sigma-Delta  
Modulator  
– 3 dB  
Earphone  
Amplifier  
0 dB  
SINC  
Interpolation  
Filter  
IIR  
1-Bit DAC  
Low-Pass Filter  
3 dB  
EARP  
EARN  
Band Pass  
Filter  
0 + 24 dB and  
– 6 + 6 dB  
f
s1  
= 1 MHz  
f
s2  
= 40 KHz  
f
s3  
= 8 KHz  
Figure 4–10. Downlink Path Block Diagram  
4.5 DAI Interface  
This digital audio interface (DAI) consists of four terminals: SSRST, SSCLK, SSDR, and SSDX. It is  
compatible with the digital audio interface described in the GSM Recommendation 11.10. This interface  
offers minimum CPU overhead during audio tests and speech transcoding tests, and minimizes the extra  
hardware and the number of external terminals of the mobile system (MS). With this interface, the DSP does  
not have to deal with rate adaptation. In normal operation, the DSP works with an 8-kHz sampling rate with  
a 16-bit word format and frame synchronization, but the DAI interface works with an 8-kHz sampling rate  
with a 13-bit word format without frame synchronization. The DSP (or the MCU) does not have real time  
constraints with SSRST because the reset of the internal transmitters is automatic.  
The DAI is controlled with four internal bits of VBCTL3 register:  
DAION:  
VDAI:  
When 0, the DAI block is put in low power. When 1, the DAI block is active.  
This bit controls the start of the clock SSCLK. The falling edges of SSRST automatically  
reset the VDAI.  
DAIMD 0/1: These two bits are used to switch the internal data path of the three types of DAI tests:  
Tests of acoustic performance of the uplink/downlink voice path  
Tests of speech decoder/DTX functions (downlink path)  
Tests of speech encoder/DTX functions (uplink path)  
In order to correctly execute these tests, the bits DAION/VULON/VDLON must be reset before starting the  
DAI test. In the case of acoustic tests, the following must be set in sequence: DAION, VDAI, VULON, and  
VDLON. In case of vocoder tests, when the speech samples are ready to be exchanged with the system  
simulator, the bits DAION and VDAI must be set at the same time.  
4–10  
4.6 JTAG Interface  
TCM4400 provides a JTAG interface according to IEEE Std 1149.1. This interface uses five dedicated I/Os:  
TCK (test clock), TMS (test mode select), TDI (scan input), TDO (scan output), and TRST (test reset). Inputs  
TMS,TDI, and TRST contain a pullup device which makes their state high when they are not driven. Output  
TDO is a three-state output which is Hi-Z except when data are shifted between TDI and TDO. TRST input  
is intended for proper initialization of the state machine test access port (TAP) and boundary-scan cells.  
System RESET is sent into the device through a boundary-scan register which has to be initialized by TRST  
to allow the RESET signal to be propagated into the device; a good practice should be to connect RESET  
and TRST terminals together.  
4.6.1  
Standard User Instructions Available  
NAME  
OPCODE  
DESCRIPTION  
BYPASS  
11111  
Connects the bypass register between TDI and TDO.  
SAMPLE/PRELOAD  
EXTEST  
00010  
Connects the boundary-scan register between TDI and TDO. This  
mode captures a snapshot of the state of the digital I/Os of the device.  
00000  
Connects the boundary-scan register between TDI and TDO. This  
mode captures the state of the input terminals and forces the state of  
the output pins. This mode is for testing printed-circuit board  
connections between devices.  
IDCODE  
INTEST  
00001  
00011  
Connects the identification register between TDI and TDO. This is the  
default configuration at reset.  
Connects the boundary-scan register between TDI and TDO. This  
mode forces the internal system input signals via the parallel latches of  
the boundary-scan register and captures internal system outputs. The  
purpose of this mode is to perform internal device tests independently  
ofthestateofitsinputterminals. Inthismodetheinternalsystemmaster  
clock is derived from TCK and is active in the run-test-idle state of the  
state machine to allow step-by-step operation of the device.  
4.7 JTAG Interface Scan Chain Descriptions  
The JTAG interface scan chains are described in the following sections.  
4.7.1  
Bypass Register  
0
1
TDI  
TDO  
4.7.2  
Instruction Register  
0
0
0
0
0
5
4
3
2
1
TDI  
TDO  
4.7.3  
Identification Register  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
1
1
TDI  
32  
16  
31  
30  
29  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
0
1
0
1
0
0
0
1
15  
14  
7
13  
12  
TDO  
4–11  
4.7.4  
Boundary-Scan Register  
PWRDN  
SSCLK  
SSDR  
SSDX  
OUT  
SSRST  
IN  
VCLK  
OUT  
VDR  
IN  
TDI  
IN  
OUT  
IN  
CTL  
VDX  
OUT  
VFS  
OUT  
RESET  
IN  
BFSR  
IN  
BCLKR  
OUT  
CTL  
CTL  
CTL  
IN  
BDR  
IN  
BDX  
OUT  
BCLKX  
OUT  
BFSX  
OUT  
UCLKR  
IN  
CTL  
CTL  
CTL  
UCDR  
IN  
UCDX  
OUT  
UCSEL  
IN  
BDLON  
IN  
BULON  
IN  
BCAL  
IN  
BENA  
IN  
CTL  
TDO  
4.8 Power-Down Functional Description  
During certain mobile activity (such as paging, conversation mode, or idle), it is possible to disable some  
TCM4400 functions in order to lower the power consumption. For example, it is possible to disable the  
internal functions dedicated to radio transmission during GSM-idle mode. It is also possible to disable the  
internal demodulator path during the transmit window.  
There are three ways to control the power consumption of the internal blocks as described in the following  
paragraphs.  
4.8.1  
Direct Control with Internal Register  
With this method, the following internal blocks are powered down:  
DAI GSM tests: bit DAION of register VBCTL3  
Transmit and receive voice path: bit VULON of register VBCTL1 and bit VDLON of register  
VBCTL2  
4–12  
4.8.2  
Radio Window Activation Control  
With this method, the following internal blocks are powered up with the control of two bits. The first bit  
enables the window control of the block activity; the second bit enables the power down.  
First bit: If cleared to 0, the function is powered down with the control of the corresponding GSM  
window (BDLON/BULON terminal) and with the control of the second bit. If this first bit is  
set to 1, the power down is controlled only by the second bit.  
Second bit: This bit is functionally associated with the first one. When this bit is 0, the function is in  
power down mode.  
During transmit, the following windows are designated by the activity of the BULON terminal:  
Automatic power control (APC): bits APCW and APCPD of register AUXCTL2 are paired.  
Baseband uplink path: bits BBULW and BBULPD of register PWDNRG1 are paired.  
External reference voltage buffers VMID: bits VMIDW and VMIDPD are paired.  
During receive, the following windows are designated by the activity of the BDLON terminal:  
Automatic gain control (AGC): bits AGCW and AGCPD of register AUXCTL2 are paired.  
Baseband downlink path: bits BBDLW and BBDLPD of register PWDNRG1 are paired.  
4.8.3  
External Terminal PWRDN Control  
With this method, the internal blocks are powered under the control of two bits. The first bit enables the  
external terminal PWRDN control of the block activity. The second bit enables the power down. Terminal  
PWRDN is active high.  
First bit: If cleared to 0, the function is powered down under the control of the PWRDN terminal and  
under the control of the second bit. If this first bit is set to 1, the power down is controlled only  
by the second bit.  
Second bit: This bit is functionally associated with the first one. When this bit is loaded with 0, the  
function is in power down mode.  
For the digital serial interface to the DSP, bits BBSIPN and BBSIPD of register PWDNRG2  
are paired.  
For the timing interface, bits TIMGPN and TIMGPD of register PWDNRG2 are paired.  
For the auxiliary A/D converters, bits ADCPN and ADCPD of register AUXCTL1 are paired.  
For the automatic frequency control (AFC) block, bits AFCPN and AFCPD of register  
AUXCTL1 are paired.  
For the external reference voltage buffers MICBIAS, bits VREFPN and VREFPD of register  
PWDNRG2 are paired.  
For the internal reference band gap buffers, bit VGAPPN determines whether the band gap  
power down is under control of the PWRDN bit.  
4.9 DSP Voice Band Serial Interface  
Voice band serial digital interface consists of a bidirectional serial port. Both receive and transmit operations  
are double buffered, which allows a continuous communication stream. The serial port is fully static and,  
thus, functions with any arbitrary low clocking frequency.  
The transfer mode available on this port is:  
Clock frequency  
520 kHz  
16-bit data packet  
frame synchronization  
4–13  
VCLK is the output serial clock used to control the transmission or reception of the data, (see Figure 3–5).  
VCLK can run in burst mode or continuous mode, depending on the VCLKMODE bit. The transmitted serial  
data (VDX) is the serial data output; the frame synchronization (VFS) initiates the transfer of transmit and  
receive data. The received data (VDR) is the serial data input.  
Each serial port includes four registers: the data transmit register (DXR), the data receive register (DRR),  
the transmit shift register (XSR), and the receive shift register (RSR).  
The voice serial interface has the same structure and timing diagram as the serial interface. One extra cycle  
is generated before VFS, and two extra cycles are generated after the least significant bit (see Figure 3–5).  
4.10 Voltage References  
Voltage and current generators are integrated inside the GSM converter. Some additional components are  
required for the decoupling and regulation of the internal references. In addition, the internal buffers are  
automatically shut down with the corresponding functions being powered down.  
The following six terminals are reserved for voltage references decoupling and use: VGAP, IBIAS, VREF,  
MICBIAS, and VMID (see Table 4–1):  
VGAP: This terminal is connected to the internal band gap reference voltage. It must be externally  
connected to a 0.1-µF capacitor. The band gap drives the current generator and the voltage  
reference. This band gap may be powered down by the PWRDN pin, depending on bit  
VGAPPN of register PWDNRG2.  
IBIAS: This terminal is connected to the current reference. It must be externally connected to a  
100-kresistor. Because this block is connected to the AFC function, the power down is  
controlled by similar means. The current generator is shut down with the same bits of the  
band gap: one bit for the power down selection of a hardware solution (with the external  
PWRDN terminal).  
VREF: This terminal is connected to the internal reference voltage. It must be externally connected  
toa0.1-µFcapacitor. ThisbandgapmaybedownpoweredunderthecontrolofbitsVREFPN  
and VREFPD of register PWDNRG2. This voltage reference is internally connected to three  
bufferscorrespondingtotheblocksofspeechdownlink, speechuplink, andGMSKdownlink.  
The two first blocks are powered down with the inactivity of the corresponding speech  
blocks. This last block is shut down outside the radio downlink activations.  
VMID: This buffer gives the V /2- or 1.35-V common-mode output voltage of the baseband uplink  
DD  
path. This voltage value is selected with the SELVMID bit.  
MICBIAS: This buffer is destined to drive an electret-type microphone. The output voltage can be  
chosen by software (bit MICBIAS of the VBCTL1 register) from 2 V to 2.5 V.  
ADCMID: For decoupling purposes, the ADCMID terminal is connected to the internal comparison  
threshold of the ADC. Setup time before the ADC is powered on depends on the value of the  
external decoupling capacitor.  
Table 4–1. Voltage References  
REFERENCE  
VGAP  
VOLTAGE  
1.22 V  
DEFINITION  
Band gap used for all other references  
VREF  
1.75 V  
Voltage reference of GMSK internal ADC and DAC  
Common-mode reference for uplink/downlink GMSK  
Microphone-driving voltage  
VMID  
AV /2  
DD2  
MICBIAS  
ADCMID  
2 V/2.5 V  
/2  
A
Voltage dc biasing of the auxiliary ADCs  
VDD3  
4–14  
4.10.1 MCU Serial Baseband Digital Interface  
The GSM baseband and voice A/D and D/A conversion provide two digital serial 16-bit interfaces for use  
with the DSP and a microcontroller device. Through this interface, a microcontroller can access all the  
internal registers that can be accessed through the DSP digital serial interface.  
This option is for applications in which part of layer-1 software is implemented into the microcontroller and  
needs access to some functions implemented into the GSM baseband and voice A/D and D/A conversion  
circuitry.  
4.10.2 Serial Interface  
The microcontroller serial interface is compliant with 8-bit standard synchronous serial ports. This interface  
consists of four terminals (see Figure 3–4 for timing diagram).  
UCLK: A clock provided by the microcontroller to GSM baseband and voice A/D and D/A conversion  
UDR:  
An input terminal of the GSM baseband and voice A/D and D/A components for reception of  
data  
UDX:  
An output terminal of the GSM baseband and voice A/D and D/A components for  
transmission of data  
USEL: An input terminal of GSM baseband and voice A/D and D/A components for activation of the  
serial interface  
When USEL = V , the serial interface is deactivated and UDX is placed in a high-impedance state. A high  
DD  
level on USEL resets the internal serial interface; the 16-bit transfers must be completed with USEL = V  
.
SS  
The external MCU initiates data transfer by driving the selection terminal and sending a clock signal. For  
both the GSM baseband and voice A/D and D/A components, the MCU data is shifted out of the shift  
registers on one edge of the clock and latched into the shift registers on the opposite clock edge.  
As a result, both controllers send and receive data simultaneously. For the MCU portion, the software  
determines whether the data is meaningful or dummy data. On the GSM baseband and voice A/D and D/A  
conversion portion, dummy data is data with all zeroes.  
The 16-bit word data format is identical to the DSP data format. After a read-register command, there is a  
sequential transfer delay between two 16-bit word acquisitions to let the internal sequencer extract the data  
going from internal registers to the serial shift register.  
Three internal bits control the data serial flow as follows:  
UDIR determines whether data is transferred with MSB or LSB first.  
UPOL determines the polarity of the clock.  
UPHA determines the insertion of a half-clock period in the data serial flow.  
With UPOL and UPHA, there are four clock schemes (see Table 4–2):  
Falling edge without delay. The MCU serial interface transmits data on the falling edge of the  
UCLK and receives data on the rising edge of the UCLK.  
Falling edge with delay. The MCU serial interface transmits data one half-cycle ahead of the  
falling edge of the UCLK and receives data on the falling edge of the UCLK.  
Rising edge without delay. The MCU serial interface transmits data on the rising edge of the  
UCLK and receives data on the falling edge of the UCLK.  
Rising edge with delay. The MCU serial interface transmits data one half-cycle ahead of the  
rising edge of the UCLK and receives data on the rising edge of the UCLK.  
4–15  
Table 4–2. Microcontroller Clocking Schemes  
UPOL  
UPHA  
MCU Clocking Scheme  
Falling edge without delay  
Falling edge with delay  
1
1
0
0
1
0
1
0
Rising edge without delay  
Rising edge with delay  
4.10.3 DSP/MCU Serial Interface  
The DSP/MCU serial interface not only configures the GSM baseboard and voice A/D and D/A conversion  
but also transmits data to the DSP during downlink burst reactions. The following paragraphs describe the  
operation of the serial interface in more detail.  
4.10.4 DSP Serial Digital Interface  
The DSP serial digital interface (see Figure 4–11) transfers the baseband transmit and receive data, and  
also accesses all internal programming registers of the device (baseband codec, voice codec, and auxiliary  
RF functions). The format for the serial interface is 16 bits.  
The baseband serial digital interface is a bidirectional (transmit/receive) serial port. Both receive and  
transmit operations are double buffered and permit a continuous communication stream (16-bit data  
packets). The serial port is fully static and functions with any arbitrary, low clocking frequency.  
Six terminals are used for the serial port interface (see Figure 3–4 for timing diagram). BCLKR is an I/O port  
for the serial clock used to control the reception of the data BDR. At reset BCLKR is configured as an output  
and the clock frequency is set to MCLK/3 (4.333 MHz with MCLK = 13 MHz); the clock signal is running  
continuously. The port BCLKR can be reconfigured as an input by programming an internal register. In this  
case BCLKR is provided by the DSP and can run in burst mode to reduce power consumption. The receive  
frame synchronization (BFSR) is used to identify the beginning of a data packet transfer on port BDR.  
Thetransmittedserialdata(BDX)istheserialdatainput;thetransmitframesynchronization(BFSX)initiates  
the transmission of data. The transmit clock (BCLKX) is provided by the GSM baseband and voice ADCs  
and DACs with a MCLK frequency. The clock signal BCLKX can run in burst mode or continuous mode,  
depending on the BCLKMODE bit. The downlink data bus (BFSX, BCLKX, BDX) can be driven to V or  
SS  
placed in a high-impedance state when no data is to be transferred to the DSP. The BCLKDIR bit of the  
BCTLREG register controls the direction of the BCLKR clock.  
As with the voice serial interface, one extra clock cycle must be generated because the last 16-bit word  
received on the DSP serial interface is latched on the next two falling BCLKR edges following the LSB. As  
for the voice serial interface, one extra clock period is generated on the BCLKX before the first  
synchronization BFSX of the downlink data sequence.  
4–16  
Data Bus  
16  
16  
Load  
Load  
DRR  
DXR  
Control  
Logic  
Control  
Logic  
16  
16  
RSR  
XSR  
Clear  
Clock  
Clear  
Clock  
Byte/Word  
Counter  
Byte/Word  
Counter  
BDR  
BFSR BCLKR BCLKX BFSX  
BDX  
Figure 4–11. DSP Serial Digital Interface  
4.10.5 DSP/MCU Serial Interface Operation and Format  
The DSP/MCU serial interface configures the GSM baseband and voice ADCs and DACs (read and write  
operation in internal registers), and transmits RF data to the DSP during reception of a burst by the downlink  
path of the GSM baseband and voice A/D and D/A circuitry.  
During reception of a burst (bit DLR of the status register is 1), the DSP serial interface and associated  
internal bus are dedicated to the transfer of RF data from the GSM baseband ADCs and DACs to the DSP.  
During this period, only a write operation of internal registers can be done through the DSP serial interface.  
However, all registers can be accessed by the MCU serial interface.  
During transmission of a burst (bit ULX of the status register is 1), no read or write operation can be done  
in the registers of the baseband uplink part of the GSM baseband, APC RAM, and APC shape register.  
Writing or reading registers using the serial interface is done by transferring 16-bit words to the serial  
interface. Each word is split into three fields as shown in Table 4–3.  
Table 4–3. Read/Write Data Word  
DATA  
11 10  
ADDRESS  
R/W  
15  
14  
13  
12  
9
8
7
6
5
4
3
2
1
1 / 0  
When writing to internal registers observe the following convention:  
Bit 0: This bit indicates a write operation at zero.  
Bits 1 – 5: This field contains the address of the register to be accessed.  
Bits 6 – 15: This field contains the data to be written into the internal register.  
When reading from internal registers observe the following convention:  
Bit 0:  
At 1, this bit indicates a read operation.  
Bits 1 – 5: This field contains the address of the register to be accessed.  
Bits 6 – 15: This field is an irrelevant status in a read request operation.  
4–17  
Read operation from the downlink baseband codec is done using the TX part of the DSP/MCU serial  
interface in the 16-bit word format defined in Table 4–4.  
Table 4–4. 16-Bit Word Format  
DATA  
ADDRESS  
15  
14  
13  
12  
11  
D5  
10  
9
8
7
6
5
4
3
2
1
0
0
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
A4  
A3  
A2  
A1  
A0  
During reception of a burst, transfer of RF data from the downlink baseband codec is done using the transmit  
part of the DSP serial interface in the 16-bit word format, defined in Table 4–5. Because the I and Q samples  
are coded with 16-bit words, the data rate is 270833 × 16 × 2, which equals 8.66 Mbps. I and Q samples  
are differentiated by setting the LSB to zero for I samples and to one for Q samples. Because the digital clock  
MCLK is 13 MHz, transfer is done at 13 Mbps in burst mode. During burst reception, the DSP serial interface  
is idle about 33 percent of the time.  
Table 4–5. Format of 16-Bit Word Transfer  
DATA  
8
I/Q  
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
4.10.6 DSP/MCU Serial Interface Registers  
The following internal register buffers are accessed using the DSP/MCU serial interface during manual  
operation of the TCM4400.  
4.10.7 Baseband Uplink Ramp-delay Register  
Each bit position of the baseband uplink ramp-delay register is defined in Table 4–6.  
Table 4–6. Uplink Ramp-Delay Register  
BULRUDEL: BASEBAND UPLINK RAMP-DELAY REGISTER  
ADDRESS: 1 R/W  
0 0 0 0 1 1 / 0  
RESERVD IBUFPTR DELD DELD DELD DELD DELU DELU DELU DELU  
3
R/W  
0
2
R/W  
0
1
R/W  
0
0
R/W  
0
3
R/W  
0
2
R/W  
0
1
R/W  
0
0
R/W  
0
R = 0  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
DELU0 to DELU3: Value of the delay of ramp-up start versus the rising edge of BENA  
DELD0 to DELD3: Value of the delay of ramp-down start versus the falling edge of BENA  
IBUFPTR:  
Writing a 1 in this bit initializes the pointer of the burst buffer to the base  
address. This is not a toggle bit and has to be set back to 0 to allow writing  
into the burst buffer.  
RESERVD:  
R/W:  
Reserved bits for testing purposes  
A 1 indicates a read operation; a 0 indicates a write operation.  
4–18  
4.10.8 Baseband Uplink Data Buffer  
The baseband uplink data buffer is used to transmit the uplink burst data. The uplink data buffer contents  
are defined in Table 4–7.  
Table 4–7. Uplink Data Buffer  
ADDRESS: 2  
BULDATA: BASEBAND UPLINK DATA BUFFER  
W
(16 WORDS)  
BIT0  
BIT1  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
BIT8  
BIT9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT10  
BIT20  
BIT30  
BIT40  
BIT50  
BIT60  
BIT70  
BIT80  
BIT90  
BIT11  
BIT21  
BIT31  
BIT41  
BIT51  
BIT61  
BIT71  
BIT81  
BIT91  
BIT12  
BIT22  
BIT32  
BIT42  
BIT52  
BIT62  
BIT72  
BIT82  
BIT92  
BIT13  
BIT23  
BIT33  
BIT43  
BIT53  
BIT63  
BIT73  
BIT83  
BIT93  
BIT14  
BIT24  
BIT34  
BIT44  
BIT54  
BIT64  
BIT74  
BIT84  
BIT94  
BIT15  
BIT25  
BIT35  
BIT45  
BIT55  
BIT65  
BIT75  
BIT85  
BIT95  
BIT16  
BIT26  
BIT36  
BIT46  
BIT56  
BIT66  
BIT76  
BIT86  
BIT96  
BIT17  
BIT27  
BIT37  
BIT47  
BIT57  
BIT67  
BIT77  
BIT87  
BIT97  
BIT18  
BIT28  
BIT38  
BIT48  
BIT58  
BIT68  
BIT78  
BIT88  
BIT98  
BIT19  
BIT29  
BIT39  
BIT49  
BIT59  
BIT69  
BIT79  
BIT89  
BIT99  
BIT100 BIT101 BIT102 BIT103 BIT104 BIT105 BIT106 BIT107 BIT108 BIT109  
BIT110 BIT111 BIT112 BIT113 BIT114 BIT115 BIT116 BIT117 BIT118 BIT119  
BIT120 BIT121 BIT122 BIT123 BIT124 BIT125 BIT126 BIT127 BIT128 BIT129  
BIT130 BIT131 BIT132 BIT133 BIT134 BIT135 BIT136 BIT137 BIT138 BIT139  
BIT140 BIT141 BIT142 BIT143 BIT144 BIT145 BIT146 BIT147 BIT148 BIT149  
BIT150 BIT151 BIT152 BIT153 BIT154 BIT155 BIT156 BIT157 BIT158 BIT159  
ACCESS  
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
TYPE  
VALUE AT  
RESET  
Bit 0 through Bit 159 are the bits composing the sequence of the transmitted burst. Bit 0 is transmitted first.  
For a normal burst, the uplink data buffer is loaded as follows:  
Bits 0 to 3:  
4 guard bits  
Bits 4 to 6:  
3 tail bits  
Bits 7 to 66:  
Bits 67 to 92:  
Bits 93 to 92:  
58 data bits  
26 training sequence bits  
58 training sequence bits  
Bits 151 to 153: 3 tail bits  
Bits 154 to 159: 8 guard bits  
At reset and after each transmission, the burst buffer is reinitialized with guard bits (all bits = 1). An address  
pointer is incremented after each word written into the buffer so that the next write operation affects the next  
word of the buffer. This address pointer is set to the base address (word 0) by a RESET after transmission  
of a burst or by setting the IBUFPTR bit to 1. This bit has to be set back to zero to release the address pointer.  
4–19  
4.10.9 Baseband Uplink I and Q Offset Registers  
The baseband uplink I and Q offset registers contain the offset values for the I and Q components,  
respectively, as given in Table 4–8 and Table 4–9.  
Table 4–8. Uplink I Offset Register  
BULIOFF: BASEBAND UPLINK I OFFSET REGISTER  
ADDRESS: 3  
R/W  
RESERVD  
ULI-  
OFF  
8
ULI-  
OFF  
7
ULI-  
OFF  
6
ULI-  
OFF  
5
ULI-  
OFF  
4
ULI-  
OFF  
3
ULI-  
OFF  
2
ULI-  
OFF  
1
ULI-  
OFF  
0
0
0
1
1
1/0  
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
ACCESS TYPE  
VALUE AT RESET  
ULIOFF0 to ULIOFF1: Integration bits during calibration (to minimize sensitivity to noise)  
ULIOFF2 to ULIOFF8: Value of the offset on I channel  
RESERVD:  
R/W:  
Reserved bits for testing purposes  
A 1 indicates a read operation; a 0 indicates a write operation.  
Table 4–9. Uplink Q Offset Register  
BULQOFF: BASEBAND UPLINK Q OFFSET REGISTER  
ADDRESS: 4  
R/W  
RESERVD ULQ  
ULQ  
OFF  
7
ULQ  
OFF  
6
ULQ  
OFF  
5
ULQ  
OFF  
4
ULQ  
OFF  
3
ULQ  
OFF  
2
ULQ  
OFF  
1
ULQ  
OFF  
0
0
0
1
0
0
1/0  
OFF  
8
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
ACCESS TYPE  
VALUE AT RESET  
ULQOFF0 to ULQOFF1: Integration bits during calibration (to minimize sensitivity to noise)  
ULQOFF2 to ULQOFF8: Value of the offset on Q channel  
RESERVD:  
R/W:  
Reserved bits for testing purposes  
A 1 indicates a read operation; a 0 indicates a write operation.  
4.10.10 Baseband Uplink I and Q D/A Conversion Registers  
The I and Q component values generated by the I and Q uplink DAC during the conversion of analog data  
are written to and read from the uplink I and Q DAC registers as defined in Table 4–10 and Table 4–11,  
respectively.  
Table 4–10. Uplink I DAC Register  
BULIDAC: BASEBAND UPLINK I DAC REGISTER  
ADDRESS: 6 R/W  
0 0 1 1 0 1/0  
RESERVD RESERVD ULI-  
ULI-  
ULI-  
ULI-  
ULI-  
DAC  
3
ULI-  
DAC  
2
ULI-  
DAC  
1
ULI-  
DAC  
0
DAC DAC DAC DAC  
7
R/W  
1
6
R/W  
1
5
R/W  
1
4
R/W  
1
R
0
R
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
ACCESS TYPE  
VALUE AT RESET  
ULIDAC0 to ULIDAC7: Data applies to the DAC of I channel.  
RESERVD:  
R/W:  
Bits are reserved for testing purposes.  
A 1 indicates a read operation; a 0 indicates a write operation.  
4–20  
Table 4–11. Uplink Q DAC Register  
BULQDAC: BASEBAND UPLINK Q DAC REGISTER  
ULD- ULQ- ULQ- ULQ- ULQ- ULQ- ULQ- ULQ-  
ADDRESS: 5  
R/W  
DAC DAC DAC DAC DAC DAC DAC DAC  
RESERVD  
RESERVD  
0
0
1
0
1
1/0  
7
6
5
4
3
2
1
0
R
0
R
0
R/W R/W  
R/W R/W  
R/W R/W R/W R/W  
ACCESS TYPE  
0
0
0
0
0
0
0
0
VALUE AT RESET  
ULQDAC0 to ULQDAC7: Data applies to D/A converter of I channel.  
RESERVD:  
R/W:  
Bits are reserved for testing purposes.  
A 1 indicates a read operation; a 0 indicates a write operation.  
4.10.11 Power-Down Register 2  
The values in each bit position of power-down register 2 are defined in Table 4–12.  
Table 4–12. PWDNRG2 Register  
PWDNRG2: REGISTER FOR POWERING DOWN  
ADDRESS: 8  
R/W  
RESERVD RESERVD TIM  
TIM  
BBS BBS VGA CHG VREF VREF  
0
1
0
0
0
1/0  
GPN GPD  
IPN  
IPD  
PPN  
UP  
PN  
R/W  
0
PD  
R/W  
0
R = 0  
0
R = 0  
0
R/W R/W  
R/W R/W R/W R/W  
ACCESS TYPE  
0
0
0
0
0
0
VALUE AT RESET  
VREFPN:  
If this bit is cleared to 0, the internal reference voltage is powered down under the  
control of terminal PWRDN and bit VREFPD. If bit VREFPN is set to 1, the power  
down is controlled only by bit VREFPD.  
VREFPD:  
VGAPPN:  
This bit is functionally associated with bit VREFPN.  
If this bit is cleared to 0, the internal reference VGAP is powered down under the  
control of terminal PWRDN. If this bit is set to 1, the VGAP is not placed in  
power-down mode.  
TIMGPN:  
If this bit is cleared to 0, the timing interface is powered down under the control  
of terminal PWRDN. If this bit is set to 1, the power down is controlled only by  
bit TIMPGD.  
TIMGPD:  
BBSIPN:  
This bit is functionally associated with bit TIMGPN.  
If this bit is cleared to 0, the baseband serial interface is powered down under the  
control of terminal PWRDN. If this bit is set to 1, the power down is controlled only  
by bit BBSIPD.  
BBSIPD:  
This bit is functionally associated with bit BBSIPN. When this bit is set to 1, the  
baseband serial interface is in power-down mode.  
CHGUP:  
This bit is used for testing purposes to accelerate the band gap settling time.  
Bits are reserved for testing purpose.  
RESRVD:  
4–21  
4.10.12 Power-Down Register No. 1  
The values in each bit position of power-down register 1 are defined in Table 4–13.  
Table 4–13. PWDNRG1 Register  
PWDNRG1: REGISTER FOR POWERING DOWN  
ADDRESS: 7  
R/W  
SEL  
BA  
VMID VMID BBUL BBUL BBDL BBDL EXT  
BBR  
ST  
0
0
1
1
1
1/0  
VMID LOOP  
W
R/W  
0
PD  
R/W  
0
W
R/W  
0
PD  
R/W  
0
W
R/W  
0
PD  
R/W  
0
CAL  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
BBRST:  
This is the digital reset of the baseband codec (active at 1); the uplink burst buffer is  
loaded with all 1s, and the memory and registers of the downlink digital filter is  
cleared to 0. This is not a toggle bit; it has to be set to 0 to remove the reset condition.  
EXTCAL: Downlink autocalibration mode (0 = autocalibration; 1 = external calibration)  
BBULW:  
If this bit is cleared to 0, the baseband uplink path is powered down under the control  
oftheGSMtransmitwindow(BULONterminal). Ifthisbitissetto1, thepowerdownis  
controlled only by bit BBULPD.  
BBULPD: This bit is functionally associated with bit BBULW. When this bit is set to 1, the  
baseband uplink path is in power-down mode.  
BBDLW:  
If this bit is cleared to 0, the baseband downlink path is powered down under the  
control of the GSM receive window (BDLON terminal). If this bit is set to 1, the power  
down is controlled only by bit BBDLPD.  
BBDLPD: This bit is functionally associated with bit BBDLW. When this bit is set to 1, the  
baseband downlink path is in power-down mode.  
VMIDW:  
If this bit is cleared to 0, the VMID output driver is powered down under the control of  
the GSM transmit window (BULON terminal). If this bit is set to 1, the power down is  
controlled only by bit VMIDPD.  
VMIDPD: This bit is functionally associated with and paired with bit VMIDW. When VMIDW bit  
is set to 1, the VMID output driver is active. When VMIDPD bit is set to 1, the VMID  
output driver is in power-down mode.  
BALOOP: When this bit is set to 1, the internal analog loop of I and Q uplink terminals are  
connected to I and Q downlink terminals.  
SELVMID: When this bit is cleared to 0, this sets the common-mode voltage of the baseband  
uplink and VMID at V /2; when set to 1, these voltages are set to 1.35 V.  
DD  
4.10.13 Baseband Control Register  
The values in the baseband control register bit positions determine whether the data is shifted left or right  
(see Table 4–14). Note that the MCU clocking scheme determines the edge of the clock on which that data  
is received or transmitted using the serial interface (see Table 4–15).  
Table 4–14. Baseband Control Register  
BCTLREG: BASEBAND CONTROL REGISTER  
ADDRESS: 9 R/W  
0 1 0 0 1 1/0  
RE-  
SERVD  
RE-  
SERVD  
RE-  
MCL BCLK  
BIZ-  
BCL UDIR UPHA UPOL  
SERVD  
KBP MODE BUS KDIR  
R = 0  
0
R = 0  
0
R = 0  
0
R /W  
0
R /W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
4–22  
UDIR:  
This bit determines whether the data is shifted in from right (see serial register  
description)toleft, MSBfirst(bitvalue0), orfromlefttoright, LSBfirst(bitvalue1).  
BCLKMODE: When this bit is cleared to 0, BLCKX runs in burst mode; when set to 1, BCLKX is  
continuous.  
MCLKBP:  
When this bit is cleared to 0, the MCLK signal passes through the clock slicer;  
when set to 1, the clock slicer is bypassed (in this case, the signal at the MCLK  
terminal must be digital).  
4.10.14 MCU Clocking Schemes  
Falling edge without delay: The MCU serial interface transmits data on the falling edge of UCLK  
and receives data on the rising edge of UCLK.  
Falling edge with delay:  
The MCU serial interface transmits data one half-cycle ahead of the  
falling edge of UCLK and receives data on the falling edge of UCLK.  
Rising edge without delay: The MCU serial interface transmits data on the rising edge of UCLK  
and receives data on the falling edge of UCLK.  
Rising edge with delay:  
The MCU serial interface transmits data one half-cycle ahead of the  
rising edge of the UCLK and receives data on the rising edge of  
UCLK.  
Table 4–15. MCU Clocking Schemes  
UPOL  
UPHA  
MCU CLOCKING SCHEME  
Falling edge without delay  
1
1
0
0
1
0
1
0
Falling edge with delay  
Rising edge without delay  
Rising edge with delay  
BCLKDIR: Direction of the BCLKR port ( 0 Output, 1 Input).  
BIZBUS: When this bit is set to 1, BDX, BCLKX, BFSX are in hi-Z when there is nothing to  
transfer to the DSP; when it is cleared to 0, DBX, BCLKX, and BFSX are set to V  
when there is nothing to transfer to the DSP.  
SS  
RESRVD: Bits are reserved for testing purpose.  
4.10.15 Voice Band Uplink Control Register  
The values in the voice band uplink control register bit positions control not only the power level of the audio  
in the uplink path but also set the gain of the PGA from –12 dB to 12 dB in 1-dB steps. Bit MICBIAS and  
VULMIC and VULAUX are shifted by one position to the left. This is defined in Table 4–16.  
Table 4–16. Voice Band Uplink Control Register  
VBCTL1: VOICE BAND UPLINK CONTROL REGISTER  
ADDRESS: 10  
R/W  
RESERVD MIC-  
VUL VUL VUL VUL VUL VUL VUL VULON  
0
1
0
1
0
1/0  
BIAS MIC AUX PG4 PG3 PG2 PG1 PG0  
R = 0  
0
R /W R/W  
R/W R/W R/W  
R/W R/W R/W  
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
0
0
0
0
0
0
0
0
4–23  
VULON:  
Power on the uplink path of the audio codec  
VULAUX:  
VULMICL:  
MICBIAS:  
Enables the auxiliary input amplifier if bit VULON is 1  
Enables the microphone input amplifier if bit VULON is 1  
When MICBIAS = 0, the analog bias for the electric microphone and external  
decoupling is driven to 2 V; when the value is 1, the bias is 2.5 V.  
RESERVD:  
Reserved for testing  
VULPG (04):Gain of the voice uplink programmable gain amplifier (–12 dB to 12 dB in 1 dB  
step). See Table 4–17.  
Table 4–17. Uplink PGA Gain  
VULPG 4 VULPG 3 VULPG 2 VULPG 1 VULPG 0  
RELATIVE GAIN  
12 dB  
11 dB  
10 dB  
–9 dB  
–8 dB  
–7 dB  
–6 dB  
–5 dB  
–4 dB  
–3 dB  
–2 dB  
–1 dB  
0 dB  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
11 dB  
12 dB  
4–24  
4.10.16 Voice Band Downlink Control Register  
The values in the voice band downlink control register bit positions control the audio power level in the  
downlink path. Earphone volume is set (three bits VOLCTL0 –VOLCTL2), and PGA gain is set from 6 dB  
to 6 dB in 1-dB steps. This is defined in Table 4–18.  
Table 4–18. Voice Band Downlink Control Register  
ADDRESS: 11  
R/W  
VBCTL2: VOICE BAND DOWNLINK CONTROL REGISTER  
VDLAUX VDLEAR  
VOL  
CTL2  
VOL  
VOL VDLG VDLG VDLG VDLG VDL  
0
1
0
1
1
1 / 0  
CTL1 CTL0  
3
2
1
0
ON  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
VDLON:  
VDLEAR:  
VDLAUX:  
Power on of the downlink path of the audio codec  
Enables the earphone amplifier if the VDLON bit is 1  
Enables the auxiliary output amplifier if the VDLON bit is 1  
VGLG (03) 1 dB: Gain of the voice downlink programmable gain amplifier (6 dB to 6 dB in  
1-dB steps). See Table 4–19.  
Table 4–19. Downlink PGA Gain  
VDLG3 VDLG2 VDLG1 VDLG0 RELATIVE GAIN  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–6 dB  
–5 dB  
–4 dB  
–3 dB  
–2 dB  
–1 dB  
0 dB  
2
3
4
5
6
7
1 dB  
8
2 dB  
9
3 dB  
10  
11  
12  
13  
14  
15  
4 dB  
5 dB  
6 dB  
–6 dB  
–6 dB  
–6 dB  
VOLCTL (02): Volume control (0, 6 ,–12, 18, 24, Mute). See Table 4–20.  
4–25  
Table 4–20. Volume Control Gain Settings  
VOLCTL2 VOLCTL1 VOLCTL0 RELATIVE GAIN  
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
0
0
1
1
1
1
0 dB  
–6 dB  
12 dB  
18 dB  
24 dB  
Mute  
Mute  
Mute  
4.10.17 Voice Band Control Register  
The values in the voice band control register are defined in Table 4–21.  
Table 4–21. Voice Band Control Register  
VBCTL3: VOICE BAND CONTROL REGISTER  
ADDRESS: 12 R/W  
1 / 0  
VCLK  
DAI  
DAI  
DAI  
ON  
VA  
VIZ-  
RESERVD RESERVD  
VDAI  
VRST  
0
1
1
0 0  
MODE MD1 MD0  
LOOP BUS  
R = 0  
0
R = 0  
0
R /W  
0
R/W R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
0
0
VALOOP:  
When this bit is set to 1, the internal analog loop of output samples is sent to the  
audio input terminal; standard audio paths are connected together; and auxiliary  
audio paths are connected together.  
VIZBUS:  
When this bit is set to 1, VFS, VCLK, and VDX are put in a hi-Z state when there is  
nothing to transfer to the DSP. When it is cleared to 0, VFS and VCLK are put in  
V
when there is nothing to transfer to the DSP, and the VDX bus drives an  
SS  
undefined value (value depends on the previous serial data transfers).  
VRST:  
When this bit is 1, resets the digital parts of the audio codec (digital filter and  
modulator). This is not a toggle bit and has to be set to 0 to remove the reset  
condition.  
DAION:  
VDAI:  
When this bit is cleared to 0, the DAI block is in power down; when it is set to 1, the  
DAI block is active.  
Writinga 1 to this bit starts the SSCLK (104 kHz DAI clock) on reception of the first  
sample. This bit is automatically reset to 0 by SSRST after reception of the last  
sample.  
RESERVD:  
Reserved bits for testing  
DAIMD (01): DAI mode selection as defined in Table 4–22.  
VCLKMODE: When cleared to 0, this bit allows selection of VCLK in burst mode. When set to 1,  
this bit allows selection of VCLK in continuous mode.  
Table 4–22. DAI Mode Selection  
DAIMD1 DAIMD0  
DAI MODE  
0
0
1
1
0
1
0
1
Normal operation (no tested device using DAI)  
Test of speech decoder / DTX functions (downlink)  
Test of speech encoder / DTX functions (uplink)  
Test of acoustic devices and A/D and D/A (voice path)  
4–26  
4.10.18 Auxiliary Functions Control Register 1  
The bit values in the auxiliary functions control register 1 reset the APC generator or the AFC modulator,  
select the A/D counter input, and select the AFC sampling frequency. This is defined in Table 4–23.  
Table 4–23. AUX Functions Control Register 1  
UXCTL1: AUXILIARY FUNCTIONS CONTROL REGISTER 1  
ADDRESS: 13  
R/W  
AFCPN AFCPD ADC ADC AFCC AFCC ADCC ADCC ADCC ARST  
0
1
1
0
1
1/0  
PN  
R/W  
0
PD  
R/W  
0
K1  
R/W  
0
K0  
R/W  
0
H2  
R/W  
0
H1  
R/W  
0
H0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
ARST:  
This bit resets the digital parts for the auxiliary function (APC generator and  
AFC modulator). This is not a toggle bit and has to be set to 0 to remove the  
reset condition.  
ADCCH (02): This bit selects the input of the ADC (see Table 4–24).  
Table 4–24. ADC Selection  
ADCCH2  
ADCCH1  
ADCCH0 A/D CONVERTER INPUT SELECTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A/D conversion of ADIN1  
A/D conversion of ADIN2  
A/D conversion of ADIN3  
A/D conversion of ADIN4  
A/D conversion of ADIN5  
A/D conversion of ADIN5  
A/D conversion of ADIN5  
A/D conversion of ADIN5  
AFCCK (01): This bit selects the sampling frequency of the AFC (see Table 4–25).  
Table 4–25. AFC Selection  
AFCCK1  
AFCCK0  
AFC INTERNAL FREQUENCY  
0
0
1
1
0
1
0
1
0.25 MHz  
0.50 MHz  
1 MHz  
2 MHz  
AFCPN:  
AFCPD:  
ADCPN:  
ADCPD:  
If this bit is cleared to 0, the AFC block is powered down under the control of the  
PWRDN terminal. If this bit is set to 1, the power down is controlled only by bit  
AFCPD.  
This bit is functionally associated with and paired with bit AFCPN. When the AFCPN  
bitis1, theAFCblockisactive. WhentheAFCPDbitissetto1, theAFCPDblockisin  
power-down mode.  
If this bit is cleared to 0, the auxiliary ADC block is powered down when under the  
control of PWRDN. If this bit is set to 1, the power down is controlled only by bit  
ADCPD.  
This bit is functionally associated with and paired with bit ADCPN. When the ADCPN  
bit is set to 1, an auxiliary ADC is active. When the ADCPD bit is set to 1, the auxiliary  
ADCPD is in power-down mode.  
4–27  
4.10.19 Automatic Frequency Control Registers (1 and 2)  
TherearetwoAFCcontrolregisters;eachis10bitswide. AFCcontrolregister1containstheleastsignificant  
bit of the AFC D/A converter output. AFC control register 2 contains the most significant bit of the AFC DAC  
input. See Table 4–26 and Table 4–27. The AFC value is loaded after writing to the AFC MSB register (first)  
and then the LSB register (second).  
Table 4–26. AFC Control Register 1  
AUXAFC1: AUTOMATIC FREQUENCY CONTROL REG1  
ADDRESS: 14  
R/W  
BIT9  
R/W  
0
BIT8  
R/W  
0
BIT7  
R/W  
0
BIT6  
R/W  
0
BIT5  
R/W  
0
BIT4  
R/W  
0
BIT3  
R/W  
0
BIT2  
R/W  
0
BIT1  
R/W  
0
BIT0  
R/W  
0
0
1
1
1
0
1/0  
ACCESS TYPE  
VALUE AT RESET  
Bits 90: LSB input of the 13-bit AFC DAC in 2s complement  
Table 4–27. AFC Control Register 2  
AUXAFC2: AUTOMATIC FREQUENCY CONTROL REG2  
ADDRESS:  
15  
R/W  
RE  
RE  
RE  
RE  
RE  
RE  
RE  
BIT12 BIT11 BIT10  
0
1
1
1
1
1/0  
SRVD SRVD SRVD SRVD SRVD SRVD SRVD  
R = 0 R = 0 R = 0 R = 0 R = 0 R = 0 R = 0  
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
0
0
0
0
0
0
0
VALUE AT RESET  
Bits 1210: MSB input of the 13-bit AFC DAC in 2s complement  
4.10.20 Automatic Power Control Register  
The values in the automatic power control (APC) register set the operating conditions for the APC circuit  
(see Table 4–28).  
Table 4–28. APC Register  
AUXAPC: AUTOMATIC POWER CONTROL REGISTER  
ADDRESS: 16 R/W  
1/0  
ACCESS TYPE  
VALUE AT RESET  
RESERVD RESERVD BIT7  
BIT6  
R/W  
0
BIT5 BIT4 BIT3 BIT2 BIT1 BIT0  
1
0
0
0 0  
R = 0  
0
R = 0  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bits 70: Input of the 8-bit level APC DAC  
RESERVD: Reserved bits for testing  
4–28  
4.11 Automatic Frequency Control Registers (1 and 2)  
The content of the APC RAM describes the shape of the ramp-up and ramp-down control; as defined in  
Table 4–29.  
Table 4–29. APC Ramp Control  
APCRAM: AUTOMATIC POWER CONTROL RAM  
ADDRESS: 17 (64 Words)  
W
0
RDWN WORD0 (5 BIT)  
RDWNWORD1 (5 BIT)  
RUP WORD0 (5 BIT)  
RUP WORD1 (5 BIT)  
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
RDWNWORD2 TO 61 (5 BIT)  
RDWNWORD62 (5 BIT)  
RDWNWORD63 (5 BIT)  
RUP WORD2 TO 61 (5 BIT)  
RUP WORD 62 (5 BIT)  
RUP WORD 63 (5 BIT)  
0
0
0
W
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
ACCESS TYPE  
VALUE AT RESET  
Actual shape values (five bits long) are contained in the shape DAC input register, as defined in Table 4–30.  
Table 4–30. Shape DAC Input Register  
APCSHAP: SHAPE DAC INPUT REGISTER  
ADDRESS: 18  
R/W  
RE  
RE  
RE RE RE BIT4 BIT3 BIT2 BIT1 BIT0  
1
0
0
1
0
1/0  
SRVD SRVD SRVD SRVD SRVD  
R = 0 R = 0 R = 0 R = 0 R = 0 R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
0
0
0
0
0
0
VALUE AT RESET  
Bits 4 – 0: Input of the 5-bit APC DAC  
RESERVD: Reserved bits for testing  
4.11.1 AGC Control Register  
The AGC control register is 10 bits wide and controls operations of the analog AGC circuit, as defined in  
Table 4–31.  
Table 4–31. Analog AGC Gain Control Register  
AUXAGC: AUTOMATIC GAIN CONTROL REGISTER  
ADDRESS: 19  
R/W  
BIT9  
R/W  
0
BIT8  
R/W  
0
BIT7  
R/W  
0
BIT6  
R/W  
0
BIT5  
R/W  
0
BIT4  
R/W  
0
BIT3  
R/W  
0
BIT2  
R/W  
0
BIT1  
R/W  
0
BIT0  
R/W  
0
1
0
0
1
1
1/0  
ACCESS TYPE  
VALUE AT RESET  
Bits 9 – 0: Input of the 10-bit AAGC DAC  
RESERVD: Reserved bits for testing  
4.11.2 Auxiliary Functions Control Register 2  
The values in the auxiliary function control register 2 set the operation parameters as defined in Table 4–32.  
AFCZ:  
This bit selects the internal resistance of the AFC driver. When AFCZ is 1, the  
resistance is 50 k. When AFZ is 0, the resistance is 25 k. The largest swing is  
obtained with 50 k.  
APCSPD:  
When this bit is cleared to 0, the APC clock is at 4 MHz; when set to 1, the APC  
clock is at 2 MHz.  
AGCSWG:  
This bit selects the swing of the AGC output: 0 corresponds to a 0-V to 2.0-V  
swing; 1 corresponds to 0-V to 4-V swing.  
4–29  
APCSWG:  
IAPCPTR:  
ThisbitselectstheswingoftheAPCoutput:0correspondstoa0-Vto2-Vswing;1  
corresponds to 0-V to 4-V swing.  
Settingthisbitto1initializesthepointeroftheAPCRAMtothebaseaddress. This  
is not a toggle bit and has to be set to 0 to set APC RAM operational.  
APCMODE: This bit selects the equation used for APC waveform generation.  
AGCW:  
If this bit is cleared to 0, the automatic gain control path is powered down with the  
control of the GSM receive window (BDLON terminal) and the AGCPD bit. If the  
AGCPD bit is set to 1, the power down is controlled by the AGCPD bit.  
AGCPD:  
APCW:  
This bit is functionally associated with the AGCW bit. When this bit is set to 1, the  
automatic gain control path is in power-down mode.  
If this bit is 0, the RF power control path is down powered with the control of the  
GSM transmit window (BULON) and with the control of the APCPD bit. If the  
APCPD bit is set to 1, power down is controlled only by the APCPD bit.  
APCPD:  
This bit is functionally associated with the BBULW bit. When this bit is set to 1, the  
RF power control path is in power-down mode.  
Table 4–32. AUX Functions Control Register 2  
AUXCTL2: AUXILIARY FUNCTIONS CONTROL REGISTER 2  
ADDRESS: 20  
R/W  
AGCW AGCPD APCW APC  
PD  
IAP  
CTR  
APC  
MODE  
APC  
AGC  
APC AFCZ  
SPD  
1
0
1
0
0
1/0  
SWG SWG  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
4.11.3 Auxiliary A/D Converter Output Register  
This register is read-only; however, if there is an attempt to write to it, an A/D conversion operation starts;  
see Table 4–33. When the A/D conversion is finished, the AUXADC register is loaded and the ADC is  
automatically powered down. During the conversion process, the ADCEOC bit of the BSTATUS register is  
set. This bit is reset automatically after AUXADC is loaded.  
Table 4–33. AUX A/D Converter Output Register  
AUXADC: AUXILIARY A/D CONVERTER OUTPUT REGISTER  
ADDRESS: 21  
R
BIT9  
R/W  
0
BIT8  
R/W  
0
BIT7  
R/W  
0
BIT6  
R/W  
0
BIT5  
R/W  
0
BIT4  
R/W  
0
BIT3  
R/W  
0
BIT2  
R/W  
0
BIT1  
R/W  
0
BIT0  
R/W  
0
1
0
1
0
1
1/0  
ACCESS TYPE  
VALUE AT RESET  
Bits 9 – 0: Output of the 10-bit monitoring ADC  
4.11.4 Baseband Status Register  
The baseband status register stores the baseband status as defined in Table 4–34.  
Table 4–34. Baseband Status Register  
BSTATUS: BASEBAND STATUS REGISTER  
ADDRESS: 22  
R
RESERVD ADCEOC RAM  
PTR  
BUF  
PTR  
UL  
ON  
UL  
CAL  
ULX  
DL  
ON  
DL  
CAL  
DLR  
1
0
1
1
0
1
R = 0  
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
ACCESS TYPE  
VALUE AT RESET  
DLR:  
This bit is set to 1 during conversion of a burst in the downlink path.  
4–30  
DLCAL:  
DLON:  
ULX:  
This bit is set to 1 during offset calibration of the downlink path.  
When set to 1, it indicates that the downlink path is powered on.  
This bit is set to 1 during transmission of the burst in the uplink path.  
This bit is set to 1 during offset calibration of the uplink path.  
When set to 1, it indicates that the uplink path is powered on.  
ULCAL:  
ULON:  
BUFPTR: When set to 1, it indicates that the pointer of the burst buffer is at address zero.  
RAMPTR: When set to 1, it indicates that the pointer of the APC RAM is at address zero.  
ADCEOC: (ADC-end of conversion) When this bit is set to 1, an ADC conversion is in process.  
4.11.5 Voice Band Control Register 4 (Address 23)  
Voice band control register 4 (VBCTL4) is a read/write register (see Table 4–35) and contains the four  
programming bits of VDLST, as defined in Table 4–36.  
Table 4–35. Voice Band Control Register 4  
VBCTL4: VOICE BAND CONTROL REGISTER 4  
ADDRESS:  
23  
R/W  
RE  
RE  
RE RE RE RE VDLST VDLST VDLST VDLST  
1
0
1
1
1
1/0  
SRVD SRVD SRVD SRVD SRVD SRVD  
3
R/W  
0
2
R/W  
0
1
R/W  
0
0
R/W  
0
R = 0 R = 0 R = 0 R = 0 R = 0 R = 0  
ACCESS TYPE  
0
0
0
0
0
0
VALUE AT RESET  
Table 4–36. VDLST Status  
VDLST3 VDLST2 VDLST1 VDLST0  
SIDE TONE GAIN  
Mute  
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
1
1
0
0
1
1
23 dB  
20 dB  
–17 dB  
–14 dB  
–11 dB  
–8 dB  
–5 dB (nominal)  
–2 dB  
+1 dB  
+1 dB  
4–31  
4.11.6 Baseband Uplink Register (Address 24)  
The baseband uplink register (BULCTL) is a 3-bit register (see Table 4–37) that permits mismatch  
compensation in the RF transmit mixer. Gain mismatches of 0 dB, 0.25 dB, 0.5 dB, and 0.75 dB are  
permitted between the I and Q channel, as defined in Table 4–38.  
Table 4–37. Uplink Register BULCTL  
BULCTL: BASEBAND UPLINK CONTROL REGISTER  
ADDRESS: 24  
R/W  
RE  
RE  
RE  
RE  
RE  
RE  
RE  
IQSEL  
G1  
G0  
1
1
0
0
0
1/0  
SRVD SRVD SRVD SRVD SRVD SRVD SRVD  
R = 0 R = 0 R = 0 R = 0 R = 0 R = 0 R = 0  
R/W  
0
R/W  
0
R/W  
0
ACCESS TYPE  
VALUE AT RESET  
0
0
0
0
0
0
0
Table 4–38. BLKCTL Register  
BIT2  
BIT1  
BIT0  
G0  
0
GAIN I  
GAIN Q  
IQSEL  
G1  
0
0
0
0
0
1
1
1
1
0 dB  
0.25 dB  
0.50 dB  
0.75 dB  
0 dB  
0 dB  
0 dB  
0
1
1
0
0 dB  
1
1
0 dB  
0
0
0 dB  
0
1
0 dB  
0.25 dB  
0.50 dB  
0.75 dB  
1
0
0 dB  
1
1
0 dB  
4.11.7 Power-On Status Register (Address 25)  
The power-on status register is a 9-bit, read-only register which displays the status power-on/power down  
of the functions having several power on/off controls as defined in Table 4–39. When the function is in  
power-on status, the corresponding bit is at 1.  
Table 4–39. Power-On Status Register PWONCTL  
PWONCTL: POWER-ON STATUS REGISTER  
ADDRESS: 25  
R/W  
RESRVD  
BGA VREF BBIF TIMIF VMID AFC  
ADC  
AGC  
ON  
APC  
ON  
1
1
0
0
1
1/0  
P ON  
ON  
ON  
ON  
ON  
ON  
ON  
R
R = 0  
0
R
0
R
R
R
R
R
R
0
R
0
ACCESS TYPE  
0
0
0
0
0
0
VALUE AT RESET  
(See Note 1)  
NOTE 1: PWONCTL is the power-on status register value at reset when the PWRDN terminal is set high.  
4.11.8 Timing and Interface  
Accuratetimingcontrolofbasebanduplinkanddownlinkpathsisperformedusingthetimingserialinterface.  
The timing interface is a parallel asynchronous port with four control signals (see Figure 4–12). The BDLON  
bit controls power on the downlink path of the baseband codec; the BULON bit controls power on the uplink  
path of the baseband codec; and the BCAL bit controls the calibration of the active parts of the baseband  
codec selected by BULON or BDLON.  
The BENA bit controls the transmission of the reception of burst, depending on which part of the baseband  
codec is selected by the signals BULON or BDLON. These asynchronous inputsareinternallysynchronized  
with the uplink and downlink internal clocks and stored in timing register TR. The timing register, TR, is a  
6-bit register containing the bits defined in Table 4–40.  
4–32  
Table 4–40. 6-Bit TR Register  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
ULON  
ULCAL  
ULSEND  
DLON  
DLCAL DLREC  
TR Bit Signification  
ULON:  
If set to 1, this bit turns on the uplink path of the baseband codec; if cleared to 0, the  
uplink path is in power-down mode.  
ULCAL:  
When this bit is set to 1, the uplink offset autocalibration is active.  
ULSEND: A transition from 0 to 1 of ULSEND initiates the emission of a burst. The burst  
information data, burst length, and power level need to be loaded in the  
corresponding registers using the serial interface.  
DLON:  
Ifsetat1, thisbitturnsonthedownlinkpathofthebasebandcodec;ifclearedto0, the  
downlink path is in power-down mode.  
DLCAL:  
DLREC:  
When this bit is set at 1, the downlink offset autocalibration is active.  
A transition from 0 to 1 of DLREC initiates the transmission of data from the  
baseband codec to the DSP using the serial interface.  
BDLON  
BCAL BULON  
BENA  
CKDL  
CKUL  
DLON DLCAL DLREC ULON ULCAL ULSEND  
Figure 4–12. Timing Interface  
4–33  
4–34  
5 MECHANICAL DATA  
5.1  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
11,80  
14,20  
13,80  
SQ  
SQ  
0,05 MIN  
0°7°  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
5–1  
5–2  

相关型号:

TCM4400ETQFP

GSM/DCS BASEBAND AND VOICE A/D AND D/A RF INTERFACE CIRCUIT
TI

TCM4400PN

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP80, PLASTIC, TQFP-80
TI

TCM4400PNR

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP80, PLASTIC, TQFP-80
TI

TCM4910

PCM U-LOW COMPANDING CODES
TI

TCM4910JW

IC,PCM CODEC,SINGLE,MOS,DIP,24PIN,CERAMIC
TI

TCM4910N

IC,PCM CODEC,SINGLE,MOS,DIP,24PIN,PLASTIC
TI

TCM50

TONE ENCODER
TI

TCM5000D

IC SPECIALTY ANALOG CIRCUIT, CDIP16, CERDIP-16, Analog IC:Other
TOSHIBA

TCM5003D

IC SPECIALTY ANALOG CIRCUIT, CDIP16, CERDIP-16, Analog IC:Other
TOSHIBA

TCM5020ALU

IC SPECIALTY ANALOG CIRCUIT, CQSS16, 1.60 MM PITCH, WINDOWED, CERAMIC, QFN-16, Analog IC:Other
TOSHIBA

TCM5020LU

IC SPECIALTY ANALOG CIRCUIT, CQSS16, 1.60 MM PITCH, WINDOWED, CERAMIC, QFN-16, Analog IC:Other
TOSHIBA

TCM5023ALU

IC SPECIALTY ANALOG CIRCUIT, CQSS16, 1.60 MM PITCH, WINDOWED, CERAMIC, QFN-16, Analog IC:Other
TOSHIBA