TLC320AD535PM [ROCHESTER]

SPECIALTY TELECOM CIRCUIT, PQFP64, PLASTIC, TQFP-64;
TLC320AD535PM
型号: TLC320AD535PM
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY TELECOM CIRCUIT, PQFP64, PLASTIC, TQFP-64

文件: 总43页 (文件大小:887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Manual  
2000  
Mixed Signal Products  
SLAS202B  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Voice Channel Codec Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
Data Channel Codec Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5  
2
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1  
2.2  
2.3  
2.4  
2.5  
Device Requirements and System Overview . . . . . . . . . . . . . . . . . . . . 2–1  
Codec Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Hybrid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Voice Channel Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Miscellaneous Logic and Other Circuitry . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Codec Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
ADC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
DAC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Sigma-Delta DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Analog and Digital Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Software Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.10 Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.11 Test Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4
5
4.1  
Primary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1.1  
4.1.2  
FS High Mode Primary Communication Timing . . . . . . . . . 4–2  
FS Low Mode Primary Communication Timing . . . . . . . . . . 4–2  
4.2  
Secondary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4.2.1  
4.2.2  
FS High Mode Secondary Communication Timing . . . . . . . 4–4  
FS Low Mode Secondary Communication Timing . . . . . . . 4–4  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5.1  
Absolute Maximum Ratings Over Operating Free-Air  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5.2  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
iii  
5.3  
Electrical Characteristics Over Operating Free-Air Temperature  
Range, DV = 5 V/3.3 V, xAV = 5 V/3.3 V,  
DD  
DD  
MV  
= 5 V/3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
DD  
5.3.1  
Digital Inputs and Outputs, f = 8 kHz,  
s
Outputs Not Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5.3.2  
5.3.3  
ADC Channel, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
s
ADC Dynamic Performance, f = 8 kHz . . . . . . . . . . . . . . . . 5–2  
s
5.3.3.1  
5.3.3.2  
5.3.3.3  
ADC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . 5–2  
ADC Signal-to-Distortion . . . . . . . . . . . . . . . . . . 5–2  
ADC Signal-to-Distortion + Noise . . . . . . . . . . 5–2  
5.3.4  
5.3.5  
5.3.6  
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
DAC Channel, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
s
DAC Dynamic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
5.3.6.1  
5.3.6.2  
5.3.6.3  
DAC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . 5–3  
DAC Signal-to-Distortion . . . . . . . . . . . . . . . . . . 5–3  
DAC Signal-to-Distortion + Noise . . . . . . . . . . 5–3  
5.3.7  
5.3.8  
5.3.9  
5.3.10  
5.3.11  
5.3.12  
5.3.13  
DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Logic DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 5–4  
Power Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
Flash Write Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
8-Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
5.4  
5.5  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
5.4.1  
5.4.2  
Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
A Programmable Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1  
B Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1  
iv  
List of Illustrations  
Figure  
Title  
Page  
4–1 Primary Communication DIN and DOUT Data Format . . . . . . . . . . . . . . . . . 4–1  
4–2 FS High Mode Primary Serial Communication Timing . . . . . . . . . . . . . . . . . . 4–2  
4–3 FS Low Mode Primary Serial Communication Timing . . . . . . . . . . . . . . . . . . 4–2  
4–4 Secondary Communication DIN and DOUT Data Format . . . . . . . . . . . . . . . 4–3  
4–5 FS Output During Software Secondary Serial Communication Request  
(FS High Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–6 FS Output During Software Secondary Serial Communication Request  
(FS Low Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
5–1 Serial Communication Timing for FS High Mode . . . . . . . . . . . . . . . . . . . . . . 5–6  
5–2 ADC Decimation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
5–3 ADC Decimation Filter Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
5–4 DAC Interpolation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
5–5 DAC Interpolation Filter Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8  
6–1 Functional Block of a Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
6–2 Voice Channel Codec Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
6–3 Data Channel Codec Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3  
List of Tables  
Table  
Title  
Page  
4–1 Least-Significant-Bit Control Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
v
vi  
1 Introduction  
The TLC320AD535 dual channel voice/data codec is a mixed-signal broadband connectivity device. The  
TLC320AD535 is comprised of a two-channel codec and analog hybrid circuitry with two independent serial ports for  
communication with the host processor and external resistors and capacitors for setting gain and filter poles. The  
device also contains microphone bias and amplification, audio mixing capabilities in the voice channel,  
programmable gain control, and three (SPKR_LEFT, SPKR_RIGHT, and MONOUT) speaker drivers.The device  
operates with either a 5-V analog, a 5-V digital, and a 5-V monitor power supply or a 3.3-V analog, a 3.3-V digital,  
and a 5-V monitor power supply or 5-V analog, 3.3-V digital, and 5-V monitor power supply. It is available in a single  
64-pin PM (QFP) package.  
1.1 Features  
Analog, Digital, and Monitor Amp Power Supplies: 5 V or 3.3 V  
Separate Software Power-Down Modes for Data and Voice Channels  
Independent Voice and Data Channel Sample Rates up to 11.025 kHz  
16-Bit Signal Processing  
Dynamic Range of 80 dB in the Data and Voice Channels  
Total Signal-to-Noise + Distortion of 77 dB for the ADCs  
Total Signal-to-Noise + Distortion of 74 dB for the DACs  
Programmable Gain Amplifiers  
600-TAPI Audio and Data Channel Drivers  
60-Headphone Driver With Programmable Gain Amplifier  
8-AT41 Differential Speaker Driver With Programmable Gain Amplifier  
Maximum Microphone Bias of 5 mA at 2.5 V/1.5 V  
Maximum Handset Reference of 2.5 mA at 2.5 V/1.5 V  
Maximum Data Channel Reference of 10 mA at 2.5 V/1.5 V  
5-V MV  
Power Reset Circuit  
DD  
Flash Write Enable Circuit, for Writing the Flash Memory Device  
Available in a 64-Pin PM (QFP) Package Operating From –40°C to 85°C  
1–1  
1.2 Functional Block Diagram  
H
Y
B
R
I
Data  
Channel  
Serial  
Port  
Data Channel  
Codec  
D
A
M
P
Power  
Reset  
Circuit  
DRVR  
Control  
Logic  
Flash  
Write  
Enable  
DRVR  
Voice Channel  
Codec  
Voice  
Channel  
Serial  
Port  
BIAS/  
AMPL  
1–2  
1.3 Voice Channel Codec Logic Diagram  
+
TAPI_IN  
TAPI Preamp  
20/0 dB Gain  
2.5 V/1.5 V  
MIC_AUDIO  
MIC_BIAS  
M
I
X
E
R
+
+
16-Bit  
ADC  
Mic Preamp  
20/0 dB Gain  
–1  
2.5 V/1.5 V  
2.5 V/1.5 V  
Line_In PGA  
12 to –36 dB  
1.5 dB Noiseless Steps  
31 Steps and Mute  
+
Phantom Power  
2.5 V/1.5 V @ 5 mA  
SPKR_LEFT  
HSRX_FB  
60-Pwr Spkr Buffer  
0 dB or Mute  
( Same Polarity)  
+
HSRXM  
HSRXP  
Handset RX (Hybrid)  
+
SPKR_RIGHT  
TAPI_OUT  
16-Bit  
DAC  
HS_REF  
2.5 V/1.5 V  
HSTX_OUT  
+
2.5 V/1.5 V  
+
Line_Out PGA  
12 to –36 dB  
1.5 dB Noiseless Steps  
31 Steps and Mute  
HSTX_IN  
+
2.5 V/1.5 V  
Internal  
Handset TX (Hybrid)  
600-Ω  
Out Buffer  
0 dB or Mute  
+
HS_BUF  
600-Handset Out Buffer  
0 dB or Mute  
1–3  
1.4 Data Channel Codec Logic Diagram  
DTRX_FB  
+
DTRXM  
DTRXP  
+
16-Bit  
ADC  
Mon_Out PGA  
0-3-6-9-12 dB Gain  
with Mute  
Data (Hybrid)  
–1  
Data_In PGA  
2.5 V/1.5 V  
2.5 V/1.5 V  
@ 10 mA  
DT_REF  
0/6/12/18 dB Gain  
with Mute  
DTTX_OUT  
+
16-Bit  
DAC  
M
U
X
+
DTTX_IN  
2.5 V/1.5 V  
Data (Hybrid)  
MONOUTP  
MONOUTM  
+
DT_BUF  
+
2.5 V/1.5 V  
8 Speaker Buffer  
0/–6/–12/–18 dB or Mute  
600-Data_Out PGA  
0 dB or Mute  
1.5 Terminal Assignments  
6463 62 61 60 59 58 57 56 55 5453 5251 50 49  
V
DAV  
DREFP_DAC  
DREFM_DAC  
1
2
3
4
5
SS  
DD  
VAV  
VREFP_ADC  
VREFM_ADC  
VAV  
48  
47  
46  
45  
DD  
SS  
DAV  
SS  
VREFP_DAC  
VREFM_DAC  
NC  
HSRX_FB  
HSRXM  
44  
43  
42  
DREFP_ADC  
DREFM_ADC  
NC  
6
7
8
9
41  
40  
39  
TLC320AD535C/I  
DTRX_FB  
DTRXM  
10  
HSRXP  
DTRXP 11  
38 HS_REF  
DT_REF  
DTTX_OUT  
DTTX_IN  
DT_BUF  
NC  
12  
13  
14  
15  
16  
37 HSTX_OUT  
36  
35  
34  
33  
HSTX_IN  
HS_BUF  
NC  
SI_SEL  
1718 19 20 21 22 23 2425 26 27 282930 31 32  
NC–Make no external connection  
1–4  
1.6 Ordering Information  
1.7 Terminal Functions  
PACKAGE  
PLASTIC QUAD FLATPACK (PM)  
TLC320AD535  
T
A
0°C to 70°C  
–40°C to 85°C  
TLC320AD535I  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
2
DAV  
I
I
Data channel analog power supply (5 V/3.3 V)  
Data channel analog ground  
DD  
DAV  
5
SS  
DREFM_ADC  
DREFM_DAC  
DREFP_ADC  
7
O
Data channel ADC voltage reference filter output. DREFM_ADC provides low-pass filtering for the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between DREFM_ADC  
and DREFP_ADC. The nominal DC voltage at this terminal is 0 V.  
4
6
O
O
Data channel DAC voltage reference filter output. DREFM_DAC provides low-pass filtering for the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between DREFM_DAC  
and DREFP_DAC. The nominal dc voltage at this terminal is 0 V.  
Data channel ADC voltage reference filter output. DREFP_ADC provides low-pass filtering for the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between DREFM_ADC  
and DREFP_ADC. The dc voltage at this terminal is 3.375 V at 5-V DAV  
supply.  
supply and 2.25 V at 3.3-V DAV  
DD  
DD  
DREFP_DAC  
3
O
Data channel DAC voltage reference filter output. DREFP_DAC provides low-pass filtering for the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between DREFM_DAC  
andDREFP_DAC. Thedcvoltageatthisterminalis3.375Vat5-DAV  
supplyand2.25Vat3.3-DAV supply.  
DD  
DD  
DT_BUF  
DT_DIN  
DT_DOUT  
DT_FS  
15  
26  
22  
21  
O
I
Data channel buffer amp analog output. DT_BUF is programmed for 0-dB gain or is muted using the control  
registers. This output is normally fed to the DTTX_IN terminal through an input resistor.  
Data channel digital data input. DT_DIN handles DAC input data as well as control register programming  
information during the data channel frame sync interval and is synchronized to DT_SCLK.  
O
O
Data channel digital data output. Data channel ADC output bits are transmitted during the data channel frame  
sync period that is synchronized to DT_SCLK. DT_DOUT is at high impedance when DT_FS is not activated.  
Data channel serial port frame sync signal. DT_FS signals the beginning of transmit for ADC data and receiving  
of DAC data in the data channel. This signal can be active high (FS high mode) or active low (FS low mode)  
depending on the voltage applied to SI_SEL (See Section 4, Serial Communications for more details).  
DT_MCLK  
DT_REF  
27  
12  
I
Data channel master clock input. All of the internal clocks for the data channel are derived from this clock.  
O
Handset amplifier reference voltage. The voltage at this pin is set at 2.5 V for a 5-V DAV supply and 1.5 V for  
DD  
a 3.3-V DAV  
supply. The maximum source current at this terminal is 2.5 mA.  
DD  
DTRX_FB  
9
O
Datachannel receive path amplifier feedback node. DTRX_FB connects to the output of the data channel receive  
path amplifier and allows a parallel resistor/capacitor to be placed in the amplifier feedback path for setting gain  
and filter poles.  
DTRXM  
DTRXP  
10  
11  
25  
I
I
Data channel receive path amplifier analog inverting input  
Data channel receive path amplifier analog noninverting input.  
DT_SCLK  
O
Data channel shift clock signal. This signal clocks serial data into DT_DIN and out of DT_DOUT during the data  
channel frame-sync interval. DT_SCLK = DT_MCLK/2  
DTTX_IN  
14  
I
Data channel transmit amplifier analog inverting input. This node is normally fed by the DT_BUF output through  
an input resistor. The noninverting input of the amplifier is connected internally to 2.5 V for 5 V supply and 1.5  
V for 3.3 V supply.  
DTTX_OUT  
13  
24  
23  
O
I
Data channel transmit amplifier analog output  
Digital power supply (5 V/3.3 V).  
Digital ground  
DV  
DV  
DD  
SS  
I
FILT  
57  
O
Bandgap filter node. FILT provides decoupling of the 3.375-V bandgap reference. The optimal capacitor value  
is 0.1 µF (ceramic). This node should not be used as a voltage source.  
1–5  
1.7 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
FLSH_IN  
NO.  
18  
I
External logic input. When brought low FLSH_IN enables the FLSH_OUT output.  
FLSH_OUT  
17  
O
Power output to write/erase flash EEPROM device (such as Intel 28F400B or AMD Am29F400). Outputs 5 V  
(± 10%) at 45 mA maximum when FLSH_IN is brought low. FLSH_OUT does not go to a logic high state when  
off. ThereisaninternalNMOSpulldowntomaintainthespecifiedvoltage. Anexternalpulldownisnotrequired.  
HS_BUF  
HS_REF  
HSRX_FB  
35  
38  
41  
O
O
O
Handset buffer amplifier analog output. HS_BUF can be programmed for 0-dB gain or muted using the control  
registers. This output is normally fed to the HSTX_IN terminal through an input resistor.  
Handset amplifier reference voltage HS_REF is set at 2.5 V for 5-V supply and 1.5 V for 3.3-V supply. The  
maximum source current at this terminal is 2.5 mA.  
Feedback node for handset receive path amplifier. HSRX_FB is connected to the output of the handset receive  
path amplifier and allows a parallel resistor/capacitor to be placed in the amplifier feedback path for setting gain  
and filter poles.  
HSRXM  
HSRXP  
HSTX_IN  
40  
39  
36  
I
I
I
Handset receive path amplifier analog inverting input  
Handset receive path amplifier analog noninverting input  
Handset transmit amplifier analog inverting input. This node is normally fed by the HSBUF output through an  
input resistor. The noninverting input of the amplifier is connected internally to 2.5 V for 5 V supply and 1.5 V  
for 3.3 V supply.  
HSTX_OUT  
MIC_AUDIO  
37  
55  
O
I
Handset transmit amplifier analog output  
Microphonepreamplifier analog input. MIC_AUDIO can be programmed to add either 0-dB or 20-dB gain using  
the control registers.  
MIC_BIAS  
MONOUTM  
MONOUTP  
56  
60  
62  
O
O
O
Output that provides 2.5 V/1.5 V bias for electret microphone. The maximum source current at this terminal  
is 5 mA.  
8 monitor speaker amplifier analog output. MONOUTM is set for 0-dB gain or is muted using the control  
registers.  
8 monitor speaker amplifier analog output. MONOUTP is set for 0-dB gain or is muted using the control  
registers.  
MV  
MV  
NC  
61  
59  
I
I
Monitor amplifier supply (5 V/3.3 V)  
Monitor amplifier ground  
DD  
SS  
All terminals marked NC should be left unconnected.  
POR  
20  
19  
33  
51  
O
I
Power on reset signal. POR remains low while the 5-V supply at MV  
40 ms after it rises above the reset threshold.  
is below its threshold voltage and for  
DD  
RESET  
SI_SEL  
SPKR_LEFT  
Codec device reset. RESET initializes all device internal registers to their default values. This signal is active  
low.  
I
Serial interface mode select. When SI_SEL is tied to DV the serial port is in FS high mode. When SI_SEL  
DD,  
is tied to DV , the serial port is in FS low mode (See Section 4, Serial Communications for more details).  
SS  
O
Analog output from 60-speaker line amplifier. SPKR_LEFT is set for 0-dB gain or is muted using the control  
registers.  
SPKR_RIGHT  
TAPI_IN  
52  
50  
49  
O
I
Analog output from 60-speaker line amplifier. SPKR_RIGHT is set for 0-dB gain or is muted using the control  
registers.  
Analog input to the TAPI (or sound card) preamplifier which can be programmed to add either 0 dB or 20 dB  
gain via the control registers.  
TAPI_OUT  
O
TAPI buffer amplifier analog output. This 600-amplifier is set for 0-dB gain or is muted using the control  
registers.  
TEST1  
TEST2  
54  
53  
48  
45  
28  
I/O Test input/output port. TEST1 is for factory testing only and should be left unconnected.  
I/O Test input/output port. TEST2 is for factory testing only and should be left unconnected.  
VAV  
VAV  
I
I
I
Voice channel analog power supply (5 V/3.3 V)  
Voice channel analog ground  
DD  
SS  
VC_DIN  
Voice channel digital data input. VC_DIN handles DAC input data as well as control register programming  
information during the voice channel frame sync interval. VC_DIN is synchronized to VC_SCLK.  
1–6  
1.7 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
VC_DOUT  
29  
O
O
Voicechanneldigitaldataoutput. VoicechannelADCoutputbitsaretransmittedduringthevoicechannelframe  
sync period synchronized to VC_SCLK. VC_DOUT is at high impedance when VC_FS is not activated.  
VC_FS  
32  
Voice channel serial port frame sync signal. VC_FS signals the beginning of transmit for ADC data and receive  
of DAC data in the voice channel. This signal can be active high (FS high mode) or active low (FS low mode)  
depending on the voltage applied to SI_SEL (see Section 4, Serial Communication for more details).  
VC_MCLK  
VC_SCLK  
30  
31  
I
Voice channel master clock input. All internal clocks for the voice channel are derived from this clock.  
O
Voice channel shift clock signal. VC_SCLK clocks serial data into VC_DIN and out of VC_DOUT during the  
voice channel frame-sync interval. VC_SCLK = VC_MCLK/2  
VREFM_ADC  
VREFM_DAC  
VREFP_ADC  
46  
43  
47  
O
O
O
Voice channel ADC voltage reference filter output. VREFM_ADC provides low-pass filtering of the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between VREFM_ADC  
and VREFP_ADC. The nominal dc voltage at this terminal is 0 V.  
Voice channel DAC voltage reference filter output. VREFM_DAC provides low-pass filtering of the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between VREFM_DAC  
and VREFP_DAC. The nominal dc voltage at this terminal is 0 V.  
Voice channel ADC voltage reference filter output. VREFP_ADC provides low-pass filtering the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between VREFM_ADC  
and VREFP_ADC. The dc voltage at this terminal is 3.375 V with a 5-V VAV  
supply and 2.25 V with a 3.3-V  
DD  
VAV  
DD  
supply.  
VREFP_DAC  
44  
1
O
I
Voice channel DAC voltage reference filter output. VREFP_DAC provides low-pass filtering the internal  
bandgap reference. The optimal ceramic capacitor value is 0.1 µF, which is connected between VREFM_DAC  
and VREFP_DAC. The dc voltage at this terminal is 3.375 V with a 5-V VAV  
supply and 2.25 V with a 3.3-V  
DD  
VAV  
DD  
supply.  
V
SS  
Internal substrate connection. V  
SS  
should be tied to either DAV or VAV  
SS  
for normal operation.  
SS  
1–7  
1–8  
2 Functional Description  
2.1 Device Requirements and System Overview  
The TLC320AD535 device consists of two codec channels, a hybrid circuit with external resistors and capacitors for  
setting gain and filter poles, two independent serial ports, and other miscellaneous logic functions.  
2.2 Codec Functions  
The codec portion of the TLC320AD535 device performs the functions required for two channels of analog-to-digital  
conversion, digital-to-analog conversion, lowpass filtering, control of analog input and output gains, internal  
oversampling coupled with internal decimation and interpolation, and two 16-bit serial port interfaces to the host  
processor. The two serial ports operate independently and are capable of operating at different sample rates. The  
maximum sample rate of either codec channel is 11.025 kHz.  
2.3 Hybrid Functions  
The hybrid circuitry in the data channel includes integrated amplifiers whose gains and filter pole frequencies are set  
by external resistors and capacitors. This allows maximum flexibility to make adjustments for board variations and  
international standards while providing integration of the function. The filter amplifier stages in the data channel are  
followed by a programmable gain amplifier, which feeds 8-differential speaker drivers for the AT41 call progress  
monitor speakers. The monitor speaker driver can be programmed for 0-dB gain or muted through the control 2  
register. The source for the monitor speaker input can be either the output of the amplified DAC output (Data_Out  
PGA) or the ADC input signal through control register 1 (See Appendix A).  
A 2.5 V/1.5 V reference voltage (DT_REF) is provided as a reference for the transformer. It is necessary to reference  
to 2.5 V/1.5 V (rather than ground), since the amplifiers are powered off by single-rail supplies. DT_REF is 2.5 V when  
DAV  
is 5 V and 1.5 V when DAV  
is 3.3 V.  
DD  
DD  
2.4 Voice Channel Analog  
The analog circuitry in the voice channel includes a microphone bias, which sources a maximum of 5 mA at 2.5 V/  
1.5 V, and preamplifiers for the microphone, which can be selected for 0-dB or 20-dB gain. The device also has a  
handset interface with receive and transmit amplifiers. These three inputs can be summed in any combination and  
the result sent to a Line_In programmable gain amplifier (PGA) stage with gain range from 12 dB to –36 dB in 1.5  
dB noiseless steps. This feeds the voice channel ADC. In the DAC path, the output of the DAC is sent to a Line-Out  
PGA with gain range from 12 dB to –36 dB in 1.5 dB noiseless steps. This feeds both a 600-TAPI output driver and  
a 60-mono speaker driver that can be muted or programmed for 0-dB gain. The time-out for noiseless gain change  
or the maximum time the system can wait for a zero crossing of a signal before it will effect the gain change request  
is approximately 9 ms.  
2.5 Miscellaneous Logic and Other Circuitry  
The logic functions include the circuitry required to implement two independent serial ports and control register  
programming through secondary communication on those serial ports. There are five control registers that are  
programmed during secondary communications from either the data channel serial port or the voice channel serial  
port. These control registers set amplifier gains, choose multiplexer inputs, select loopback functions, and read the  
ADC overflow flags. The device also includes a power-on reset (POR) circuit to monitor the 5-V MV  
power supply  
DD  
inthesystemandprovidesaresetsignalwhenthesupplyMV voltagedropsbelowitsthresholdvoltage. Inaddition,  
DD  
there is a flash write enable (FWE) circuit that takes an external logic input and provides 40 mA of current to power  
the write enable circuit of an external memory device. The flash write enable circuit is powered from the digital power  
supply.  
2–1  
2–2  
3 Codec Functional Description  
3.1 Operating Frequencies  
The TLC320AD535 is capable of supporting any sample rate up to the maximum sample rate of 11.025 kHz in either  
the data channel or voice channel. The sample rate is set by the frequency of the codec master clock that is input  
to the serial port for that channel.  
The sampling (conversion) frequency is derived from the internally-generated codec master clock divider circuit by  
the following equation:  
f
Sampling (conversion) frequency  
XX_SCLK XX_MCLK 2  
XX_MCLK 512  
(1)  
s
Where XX_MCLK refers to either the voice channel or data channel codec clock (VC_MCLK or DT_MCLK) fed to  
the codec externally by the clock rate divider circuit. The clock rate divider circuit divides the system master clock  
to obtain the necessary clock frequency to feed the codecs.  
The inverse of the sampling frequency is the conversion period. The sample rates of the voice and data channels  
can be set independently by their respective codec master clocks. The two codec channels can be sampled at  
different rates simultaneously.  
3.2 ADC Signal Channel  
The input signals are amplified and filtered by on-chip buffers before being applied to their respective ADC input. In  
the case of the voice channel, inputs from a microphone input and the handset input may be summed together before  
being amplified/attenuated by the ADC line PGA. The ADC converts the signal into discrete output digital words in  
2s-complement format, corresponding to the analog signal value at the sampling time. These 16-bit digital words,  
representing sampled values of the analog input signal, are sent to the host through the serial port interface for their  
respective channels. If the ADC reaches its maximum value, a control register flag is set. This overflow bit resides  
at D0 in the data channel control register 2 or the voice channel control register 5. These bits can only be read from  
their respective serial ports, and the overflow flag is cleared only if it is read through the voice channel serial port,  
and similarly for the data channel. The ADC and DAC conversions are synchronous and phase-locked.  
3.3 DAC Signal Channel  
The DAC receives the 16-bit data words (2s complement) from the host through the serial port interface for each  
channel. The data is converted to analog voltages by their respective sigma-delta DACs comprised of a digital  
interpolation filter and a digital modulator. The outputs of the DACs are each then passed to internal low pass filters  
to complete the signal reconstruction resulting in an analog signal. Those analog signals are then buffered and  
amplified by an output driver capable of driving the required load. The gain of these output amplifiers is programmed  
by the  
+codec control registers, as shown in Appendix A.  
3.4 Sigma-Delta ADC  
Each ADC is an oversampling sigma-delta modulator. The ADC provides high resolution and low noise performance  
using oversampling techniques and the noise shaping advantages of sigma-delta modulators.  
3.5 Decimation Filter  
Each decimation filter reduces the digital data rate to the sampling rate. This is accomplished by decimating with a  
ratio equal to the oversampling ratio. The output of this filter is a 16-bit 2s-complement data word clocking at the  
selected sample rate.  
3–1  
3.6 Sigma-Delta DAC  
Each DAC is an oversampling sigma-delta modulator. The DAC performs high-resolution, low-noise digital-to-analog  
conversion using oversampling sigma-delta techniques.  
3.7 Interpolation Filter  
Each interpolation filter resamples the digital data at a rate of N times the incoming sample rate, where N is the  
oversampling ratio. The high-speed data output from this filter is then applied to the sigma-delta DAC.  
3.8 Analog and Digital Loopbacks  
The test capabilities include an analog loopback and digital loopback. The loopbacks provide a means of testing the  
ADC/DAC channels and are used for in-circuit system-level tests. The loopback feeds the ADC output to the DAC  
input on the IC for each individual channel. The analog loopback functions test only the codec portions of the device  
and do not include the hybrid amplifiers.  
Analog loopback loops the DAC output back into the ADC input of the same channel. Digital loopback loops the ADC  
output back into the DAC input of the respective channel. Analog loopback is enabled by setting the D4 bit in the  
control register 1 for the data channel or control register 3 for the voice channel. Digital loopback is enabled by setting  
the D5 bit high in control register 1 for the data channel or control register 3 for the voice channel.  
3.9 Software Power Down  
The software power down resets all internal counters, but leaves the contents of the programmable control registers  
unchanged for the selected channel. The device has separate and independent software power down bits for the  
voice and data channels. The software power down feature is invoked by setting the D6 bit high in control register  
1 for the data channel or setting the D6 bit in control register 3 for the voice channel. There is no hardware power  
down function in the TLC320AD535.  
3.10 Reset Circuit  
This circuit monitors the 5-V MV  
power supply coming into the device from the bus and asserts an active low  
DD  
power-on-reset ( POR) signal whenever this supply voltage drops below its threshold voltage. The reset signal  
remainslowwhilethesupplyvoltageisbelowthethresholdvoltage. Itremainslowfor40ms(nominal)afterthesupply  
voltage has risen above the reset threshold voltage. Once the voltage rises above the threshold, an internal counter  
is activated and holds the POR signal low for an additional 40 ms (nominal). The signal then goes high and remains  
high as long as the MV  
supply remains in the acceptable voltage range. This circuit is, in effect, on initial power  
DD  
up of the device and POR is held low until the supply voltage rises above the threshold. In addition, a reset is triggered  
if a transient spike of sufficient magnitude and duration occurs. The supply must drop below the threshold voltage  
for a period of time greater than the delay time shown in the following table (delay time, MV  
to reset). If a spike  
DD  
occurs that drops below the threshold, but the supply voltage returns above the threshold within the delay time, POR  
remains in the high state.  
3–2  
V
MV  
0 V  
(TO)  
DD  
POR  
40 ms  
20 µs  
20 µs  
40 ms  
Detection of Threshold  
Detection of Threshold  
Detection of Threshold  
Crossing as MV  
DD  
Goes Low  
Crossing as MV  
DD  
Goes High  
Crossing as MV  
Goes High  
DD  
PARAMETER  
MIN  
10  
NOM MAX UNIT  
Delay time, MV  
DD  
to reset  
20  
40  
40  
80  
µs  
ms  
V
Delay time reset pulse (POR)  
Threshold voltage V  
20  
5-V MV  
DD  
4.5  
4.63  
4.75  
(TO)  
3.11 Test Module  
Thetestmoduleservesthepurposeoffacilitatingdesignverificationtestingandsimplifyingfactoryproductiontesting.  
There are two input/output terminals (TEST1 and TEST2) dedicated to implementing the test functions. The function  
of these terminals is for factory self-test only, and no connection (NC) should be made to either of these terminals.  
3–3  
3–4  
4 Serial Communications  
DT_DOUT, DT_DIN, DT_SCLK, and DT_FS are the serial communication signals for the data channel serial port,  
while VC_DOUT, VC_DIN, VC_SCLK, and VC_FS are the serial communication signals for the voice channel serial  
port. The digital output data from the ADC is taken from DT_DOUT (or VC_DOUT). The digital input data for the DAC  
is applied to DT_DIN (or VC_DIN). The synchronization clock for the serial communication data and the frame-sync  
is taken from DT_SCLK and VC_SCLK for the data and voice channels, respectively. The frame-sync pulse which  
signals the beginning of the ADC and DAC data transfer interval is taken from DT_FS and VC_FS for the data and  
voice channels, respectively.  
For signal data transmitted from the ADC or to the DAC, a primary serial communication is used. A secondary  
communication reads or writes words to the control registers, which control both the options and the circuit  
configurations of the device.  
The purpose of primary and secondary communications is to allow conversion data and control data to be transferred  
across the same serial port. A primary transfer is always dedicated to conversion data. A secondary transfer is used  
to set up or read the control register values described in Appendix A, Programmable Register Set. A primary transfer  
occurs for every conversion period. A secondary transfer occurs only when requested. Secondary serial  
communication is requested by software - D0 of the primary data input to DT_DIN for the data channel serial port or  
to VC_DIN for the voice channel serial port. A secondary request can be made for the voice channel without making  
a secondary request for the data channel, or vice versa. Control registers 1 and 2 can only be written to or read from  
the data channel serial port. Control registers 3 through 6 can only be written to or read from the voice channel serial  
port.  
4.1 Primary Serial Communication  
Primary serial communication transmits and receives conversion signal data. The DAC word length is 15 bits and  
the last bit of the primary 16-bit serial communication word is a control bit used to request secondary serial  
communication. For all serial communications, the most significant bit is transferred first. For the 16-bit ADC word,  
D15 is the most significant bit, and D0 is the least significant bit. For the 15-bit DAC data word in a primary  
communication, D15 is the most significant bit, D1 is the least significant bit, and D0 is used for the secondary  
communication request control. All digital data values are in 2s-complement data format. Refer to Figure 4–1.  
XX_DIN  
D15–D1  
D0  
Secondary  
Communication Request  
D/A Data  
A/D Data  
D15–D0  
XX_DOUT  
Figure 4–1. Primary Communication DIN and DOUT Data Format  
4–1  
4.1.1 FS High Mode Primary Communication Timing  
There are two possible modes for serial data transfer. One mode is the FS high mode which is selected by tying the  
SI_SEL pin to DV . Figure 4–2 shows the timing relationship for XX_SCLK, XX_FS, XX_DOUT and XX_DIN in a  
DD  
primary communication for either the voice or data channel when in FS high mode. The timing sequence for this  
operation is as follows:  
1. XX_FS is brought high and remains high for one XX_SCLK period, then goes low.  
2. A16-bitwordistransmittedfromtheADC(DT_DOUTandVC_DOUT)anda16-bitwordisreceivedforDAC  
conversion (DT_DIN and VC_DIN).  
XX_SCLK  
XX_FS  
XX_DIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
XX_DOUT  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 4–2. FS High Mode Primary Serial Communication Timing  
4.1.2 FS Low Mode Primary Communication Timing  
The second possible serial interface mode is the FS low mode, which is selected by tying the SI_SEL pin to DV  
.
SS  
This mode differs from the FS high mode in that the frame sync signal (FS) is active low, data transfer starts on the  
falling edge of XX_FS, and XX_FS remains low throughout the data transfer. Figure 4–3 shows the timing relationship  
for XX_SCLK, XX_FS, XX_DOUT and XX_DIN in a primary communication for either the voice or data channel when  
in FS low mode. The timing sequence for this operation is as follows:  
1. XX_FS is brought low by the TLC320AD535.  
2. A16-bitwordistransmittedfromtheADC(DT_DOUTandVC_DOUT)anda16-bitwordisreceivedforDAC  
conversion (DT_DIN and VC_DIN).  
3. XX_FS is brought high signaling the end of the data transfer.  
XX_SCLK  
XX_FS  
XX_DIN  
D15 D14 D13 D12  
D15 D14 D13 D12  
D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D11  
XX_DOUT  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D11 D10  
Figure 4–3. FS Low Mode Primary Serial Communication Timing  
4–2  
4.2 Secondary Serial Communication  
Secondary serial communication reads or writes 16-bit words that program both the options and the circuit  
configurations of the device for either the voice channel or the data channel. Register programming always occurs  
during secondary communication for that channel. Control registers 1 and 2 can only be written to or read from the  
data channel serial port. Control registers 3 through 6 can only be written to or read from the voice channel serial port.  
Four primary and secondary communication cycles are required to program the four voice channel registers. In the  
same manner, two primary and secondary communication cycles are necessary to program the data channel control  
registers. If the default value for a particular register is desired, then the register addressing can be omitted during  
secondary communications. The NOOP (no operation) command addresses a pseudo-register, register 0, and no  
register programming takes place during this secondary communication. This can be used for either the data channel  
or the voice channel serial port.  
During a secondary communication, a register is written to or read from. When writing a value to a register, the  
DT_DIN (or VC_DIN) line contains the value to be written. The data returned on DT_DOUT (or VC_DOUT) is 00h.  
The method for requesting a secondary communication is by asserting the least significant bit (D0) of DT_DIN (or  
VC_DIN) high as shown in Table 4–1.  
Table 4–1. Least-Significant-Bit Control Function  
CONTROL BIT D0  
CONTROL BIT FUNCTION  
No secondary communication request  
Secondary communication request  
0
1
Figure 4–4 shows the data format XX_DIN and XX_DOUT during secondary communication.  
Don’t Care  
D15  
XX_DIN  
(Read)  
––  
––  
1
0
D12 D11 D10 D9 D8  
D7–D0  
R/W  
––  
Register Address  
D12 D11 D10 D9 D8  
AII 0  
Register Data  
D7–D0  
D15  
––  
XX_DIN  
(Write)  
Register Data  
D7–D0  
XX_DOUT  
(Read)  
D15–D8  
AII 0  
XX_DOUT  
(Write)  
D15–D0  
Figure 4–4. Secondary Communication DIN and DOUT Data Format  
4–3  
4.2.1 FS High Mode Secondary Communication Timing  
On the rising edge of SCLK, coinciding with the falling edge of FS for that channel, D15–D0 is input serially to DT_DIN  
(or VC_DIN), and D15–D0 is output serially on DT_DOUT (or VC_DOUT). If a secondary communication request is  
made, FS goes high again 128 SCLKs after the beginning of the primary frame to signal the beginning of the  
secondary frame one SCLK period later. See Figure 4–5.  
128 XX_SCLKs  
P
S
P
P
XX_FS  
Data (D0=1)  
Register R/W  
Data (D0=0)  
XX_DIN  
Secondary Communication  
Request  
No Secondary  
Communication Request  
Figure 4–5. FS Output During Software Secondary Serial Communication Request (FS High Mode)  
4.2.2 FS Low Mode Secondary Communication Timing  
On the falling edge of XX_FS for that channel, D15–D0 is input serially to XX_DIN and D15–D0 is output serially on  
XX_DOUT. XX_FS remains low during the data transfer and then returns high. If a secondary communication request  
ismade, XX_FSgoeslow128SCLKsafterthebeginningoftheprimaryframetosignalthebeginningofthesecondary  
frame. See Figure 4–6.  
128 XX_SCLKs  
XX_FS  
P
S
P
XX_DIN  
Data (D0=1)  
Register R/W  
Data (D0=0)  
Secondary Communication  
Request  
No Secondary  
Communication Request  
Figure 4–6. FS Output During Software Secondary Serial Communication Request (FS Low Mode)  
4–4  
5 Specifications  
5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, DV , AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
DD  
DD  
Output voltage range, all digital output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Input voltage range, all digital input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Case temperature for 10 seconds: PM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
5.2 Recommended Operating Conditions  
MIN NOM  
MAX  
3.6  
5.5  
2
UNIT  
3.3-V supply  
5-V supply  
3.3-V supply  
5-V supply  
3
3.3  
5
Supply voltage, DAV , VAV , MV , DV  
DD DD DD  
(see Note 2)  
V
DD  
4.5  
V
V
Analog signal peak-to-peak input voltage , DT_RXM, DT_RXP, MIC_AUDIO, TAPI_IN,  
HS_RXM, HS_RXP, V  
I(analog)  
3
Differential output load resistance, TAPI_OUT, DT_BUF, HS_BUF, R  
600  
8
L
Differential output load resistance, MONOUTP, MONOUTM, R  
L
Differential output load resistance, SPKR_RIGHT, SPKR_LEFT, R  
60  
L
Input impedance, MIC_AUDIO  
50  
8
kΩ  
MHz  
pF  
kHz  
°C  
Master clock  
5.645  
20  
Load capacitance, C  
L
ADC or DAC conversion rate  
Operating free-air temperature, T  
11.025  
85  
–40  
A
Preamplifier gain set to 0 dB  
NOTE 2: Voltages at analog inputs and outputs and xV  
are with respect to the xV  
SS  
terminal.  
DD  
5.3 Electrical Characteristics Over Operating Free-Air Temperature Range,  
DV = 5 V/3.3 V, xAV = 5 V/3.3 V, MV =5 V/3.3 V  
DD  
DD  
DD  
5.3.1 Digital Inputs and Outputs, f = 8 kHz, Outputs Not Loaded  
s
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage, any digital output  
Low-level output voltage, any digital output  
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance, any digital input  
I
I
= –360 µA  
2.4  
DV +0.5  
DD  
OH  
O
= 2 mA  
DV –0.5  
SS  
0.4  
10  
10  
V
OL  
O
I
I
V
V
= 5 V  
µA  
µA  
pF  
pF  
µA  
µA  
IH  
IH  
= 0.6 V  
IL  
IL  
C
C
10  
10  
i
Output capacitance, any digital output  
Input leakage current, any digital input  
Output leakage current, any digital output  
o
I
30  
30  
I(lkg)  
OZ  
I
5–1  
5.3.2 ADC Channel, f = 8 kHz (see Note 3)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
–0.5  
–0.5  
–0.5  
TYP  
MAX UNIT  
0.2  
0.25  
0.3  
dB  
–3  
Filter gain relative to gain at 1020 Hz  
3.6 kHz  
4 kHz  
–35  
–74  
4.4 kHz  
NOTE 3: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The analog input test signal is a sine wave with  
0 dB = 3 V at 5-V supply and 0 dB = 2 V at 3.3-V supply voltage as the reference level for the ADC analog input signal. The  
I(PP)  
I(PP)  
–3-dB passband is 0 to 3600 Hz for an 8-kHz sample rate. This pass-band scales linearly with the sample rate.  
5.3.3 ADC Dynamic Performance, f = 8 kHz  
s
5.3.3.1 ADC Signal-to-Noise (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –1 dB  
MIN  
75  
TYP MAX  
UNIT  
80  
72  
36  
I
Signal-to-noise ratio (SNR)  
V = –9 dB  
I
67  
dB  
V = –40 dB  
I
36  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output are referred to 2.5 V for 5-V supply and  
1.5 V for 3.3-V supply. The output configuration is in a 3.3 V single ended mode.  
5.3.3.2 ADC Signal-to-Distortion (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
73  
TYP  
78  
MAX  
UNIT  
I
Signal-to-total harmonic distortion (THD)  
V = –9 dB  
I
77  
82  
dB  
V = –40 dB  
I
56  
61  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output are referred to 2.5 V for 5-V supply and  
1.5 V for 3.3-V supply. The output configuration is in a 3.3 V single ended mode.  
5.3.3.3 ADC Signal-to-Distortion + Noise (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –3dB  
MIN  
72  
TYP  
77  
MAX  
UNIT  
I
Signal-to-total harmonic distortion + noise (THD + N)  
V = –9 dB  
I
68  
73  
dB  
V = –40 dB  
I
37  
42  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output are referred to 2.5 V for 5-V supply and  
1.5 V for 3.3-V supply. The output configuration is in a 3.3 V single ended mode.  
5–2  
5.3.4 ADC Characteristics  
PARAMETER  
TEST CONDITIONS  
Preamp gain = 0 dB  
MIN  
TYP  
MAX  
UNIT  
V
V
I(PP)  
Peak-input voltage, TAPI_IN, MIC_AUDIO  
Dynamic range  
3
80  
85  
dB  
dB  
dB  
Intrachannel isolation  
Gain error  
E
E
V = –1 dB at 1020 kHz  
I
±0.6  
G
With a 0.1-µF capacitor between  
CAP_D and DTRX_FB  
ADC channel offset error including hybrid amplifiers  
ADC channel offset error including hybrid amplifiers  
5
mV  
mV  
O(ADC)  
With no capacitor between CAP_D  
and DTRX_FB  
E
20  
26  
O(ADC)  
Idle channel noise (on-chip reference)  
Channel delay  
75 µV rms  
17/f  
s
s
5.3.5 DAC Channel, f = 8 kHz (see Note 5)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
–0.5  
TYP  
MAX  
UNIT  
0.3  
0.25  
0.3  
–0.25  
–0.35  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
–3  
4 kHz  
–35  
–70  
4.4 kHz  
NOTE 5: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The input signal is the digital equivalent of a  
sine wave (digital full scale = 0 dB). The –3 dB passband is 0 to 3600 Hz for an 8-kHz sample rate. This pass band scales linearly with  
the sample rate.  
5.3.6 DAC Dynamic Performance  
5.3.6.1 DAC Signal-to-Noise (see Note 6)  
PARAMETER  
TEST CONDITIONS  
V = 0 dB  
MIN  
71  
TYP  
76  
MAX  
UNIT  
I
Signal-to-noise ratio (SNR)  
V = –9 dB  
I
62  
67  
dB  
V = –40 dB  
I
31  
36  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 3.3 V single ended mode.  
5.3.6.2 DAC Signal-to-Distortion (see Note 6)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
78  
TYP  
83  
MAX  
UNIT  
I
Signal-to-total harmonic distortion (THD)  
V = –9 dB  
I
70  
75  
dB  
V = –40 dB  
I
56  
61  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 3.3 V single ended mode.  
5.3.6.3 DAC Signal-to-Distortion + Noise (see Note 6)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
69  
TYP MAX  
UNIT  
74  
68  
35  
I
Signal-to-total harmonic distortion + noise (THD + N)  
V = –9 dB  
I
63  
dB  
V = –40 dB  
I
30  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 3.3 V single ended mode.  
5–3  
5.3.7 DAC Characteristics  
PARAMETER  
Dynamic range  
TEST CONDITIONS  
MIN  
TYP  
79  
MAX  
UNIT  
dB  
Intrachannel isolation  
85  
dB  
E
G
Gain error  
V = –1 dB at 1020 kHz  
I
±0.7  
dB  
Idle channel narrow-band noise  
Channel delay  
0 kHz to 4 kHz (see Note 7)  
125 µV rms  
18/f  
s
s
V
V
Output offset voltage, HS_BUF, DT_BUF  
DIN = All zeros  
25  
mV  
OO  
Differential with respect to MV /2  
DD  
and full-scale digital input  
(see Note 8)  
5 V  
–1.78  
1.78  
V
Analog output voltage, MONOUTP-MONOUTM  
O
3.3 V  
5 V  
–1.2  
–2  
1.2  
2
V
V
Analog output voltage, TAPI_OUT, SPKR_LEFT, Single-ended with respect to  
SPKR_RIGHT HS_REF and full-scale digital input  
V
O
3.3 V  
–1.5  
1.5  
NOTES: 7. The conversion rate is 8 kHz.  
8. This amplifier should only be used in differential mode. Common mode: 2.5 V in 5 V supply and 1.5 V in 3.3 V supply.  
5.3.8 Logic DC Electrical Characteristics  
PARAMETER  
MIN  
–0.3  
2.4  
TYP  
MAX  
UNIT  
V
V
V
Low-level input voltage  
High-level input voltage  
Input leakage current  
Output leakage current  
1.5  
IL  
DV  
0.3  
DD+  
10  
V
IH  
I
I
µA  
µA  
V
I(lkg)  
O(lkg)  
10  
V
High-level output voltage at rated load current  
Low-level output voltage at rated load current  
2.4  
DV –0.5  
DD  
OH  
OL  
V
DV –0.5  
SS  
0.4  
V
5.3.9 Power Supply Rejection (see Note 9)  
PARAMETER  
TEST CONDITIONS  
f = 0 to f /2  
MIN  
TYP  
MAX  
UNIT  
V
DD1  
V
DD2  
V
DD3  
V
DD4  
Supply-voltage rejection ratio, ADC channel DAV  
and VAV  
DD  
50  
40  
50  
50  
DD  
i
s
Supply-voltage rejection ratio, ADC channel, DV  
f = 0 to f /2  
i s  
DD  
dB  
Supply-voltage rejection ratio, DAC channel, DAV  
DD  
and VAV  
DD  
f = 0 to f /2  
i s  
Supply-voltage rejection ratio, DAC channel, DV  
DD  
f = 0 to 30 kHz  
i
NOTE 9: Power supply rejection measurements are made with both the ADC and the DAC channels idle and a 200 mV peak-to-peak signal  
applied to the appropriate supply.  
5.3.10 Power Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
40  
MAX  
UNIT  
mA  
I
I
I
Codec power supply current, analog (including hybrid and drivers) Operating  
60  
DD(analog)  
DD(digital)  
DD(monitor)  
Codec power supply current, digital  
Operating  
Operating  
10  
mA  
Power supply current, 8 monitor speaker driver  
135  
315  
mA  
5–4  
5.3.11 Reset Circuit  
PARAMETER  
Reset threshold voltage  
TEST CONDITIONS  
T = –40°C to 85°C for 5 V  
MIN  
TYP  
MAX  
4.75  
0.3  
UNIT  
V
V
V
V
V
4.50  
(TO)  
A
POR output low-level voltage  
I
I
= 1.2 mA  
= 3.2 mA  
V
OL  
(SINK)  
POR output low-level voltage  
0.4  
V
OL  
(SINK)  
POR output high-level voltage  
I = –500 µA  
0.8 DV  
V
OH  
DD  
20  
t
POR low delay time after threshold exceeded  
Delay time after threshold crossed before POR activates  
40  
20  
80  
40  
ms  
µs  
d(RPD)  
d(RDD)  
t
10  
5.3.12 Flash Write Enable Circuit  
PARAMETER  
TEST CONDITIONS  
MIN  
4.5  
2.5  
0
TYP  
5
MAX  
5.5  
3.5  
1.5  
45  
UNIT  
FLSH_IN low (5 V supply)  
FLSH_IN low (3.3 V supply)  
FLSH_IN high  
V
V
Output high-level voltage, FLSH_OUT  
Output low-level voltage, FLSH_OUT  
Output current, FLSH_OUT  
V
OH(FLSH_OUT)  
OL(FLSH_OUT)  
O(FLSH_OUT)  
3
V
FLSH_IN low (5 V supply)  
40  
25  
mA  
I
FLSH_IN low (3.3 V supply)  
mA  
5.3.13 8-Drive  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–96  
0.7  
MAX  
UNIT  
Output gain when PGA gain is mute  
Output gain when PGA gain is 0 dB  
Output gain when PGA gain is 12 dB  
–12 dB (input)  
–1.5  
10.5  
1.5  
dB  
12.5  
13.5  
5.4 Timing Characteristics (see Parameter Measurement Information)  
5.4.1 Timing Requirements  
PARAMETER  
Delay time, XX_SCLKto XX_FS↓  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
0
d1  
Setup time, XX_DIN, before XX_SCLK low  
Hold time, XX_DIN, after XX_SCLK high  
Delay time, XX_MCLKto XX_SCLK↑  
Pulse duration, XX_MCLK high  
25  
ns  
su1  
h1  
20  
50  
ns  
ns  
d3  
32  
20  
ns  
wH  
wL  
Pulse duration, XX_MCLK low  
ns  
t
RESET input pulse width  
10MCLKS  
ns  
pW  
5.4.2 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
20  
UNIT  
t
t
t
Delay time, XX_SLCKto XX_DOUT  
Enable time, XX_FSto XX_DOUT  
Disable time, XX_FSto XX_DOUT Hi-Z  
d2  
C
= 20 pF  
L
25  
ns  
en1  
dis1  
20  
5–5  
5.5 Parameter Measurement Information  
t
wH  
XX_MCLK  
XX_SCLK  
t
t
d3  
wL  
t
d1  
XX_FS  
XX_DOUT  
XX_DIN  
t
dis1  
t
d2  
D15  
D14  
D14  
t
en1  
t
su1  
D15  
t
h1  
Figure 5–1. Serial Communication Timing for FS High Mode  
0
–20  
–40  
–60  
–80  
–100  
– 120  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
f – Input Frequency – kHz  
I
Figure 5–2. ADC Decimation Filter Response  
5–6  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
f – Input Frequency – kHz  
I
Figure 5–3. ADC Decimation Filter Passband Ripple  
0
–20  
–40  
–60  
–80  
–100  
– 120  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
f – Input Frequency – kHz  
I
Figure 5–4. DAC Interpolation Filter Response  
5–7  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
f – Input Frequency – kHz  
I
Figure 5–5. DAC Interpolation Filter Passband Ripple  
5–8  
6 Application Information  
H
Y
B
R
I
Data  
Channel  
Serial  
Port  
Matching  
Network  
Data Channel  
Codec  
POTS  
D
A
M
P
Power  
Reset  
Circuit  
AT41  
SPKR  
DRVR  
Control  
Logic  
Headset I/F  
Flash  
Write  
Enable  
SPKR  
DRVR  
Voice Channel  
Codec  
TAPI I/F  
MIC  
Voice  
Channel  
Serial  
Port  
BIAS/  
AMPL  
Figure 6–1. Functional Block of a Typical Application  
6–1  
+
TAPI_IN  
TAPI Preamp  
20/0 dB Gain  
2.5 V/1.5 V  
Voice Channel Codec  
MIC_AUDIO  
MIC_BIAS  
M
I
X
E
R
+
0.33 µF  
2.2 kΩ  
+
16-Bit  
ADC  
Mic Preamp  
20/0 dB Gain  
2.5 V/1.5 V  
2.5 V/1.5 V  
–1  
Line_In PGA 12 to –36 dB  
1.5 dB Noiseless Steps  
31 Steps and Mute  
Phantom Power  
2.5 V/1.5 V @ 5 mA  
HSRX_FB  
+
SPKR_LEFT  
2.2 µF  
HSRXM  
From  
Hand Set  
60 Pwr Spkr Buffer  
0 dB or Mute  
( Same Polarity)  
+
HSRXP  
Handset RX (Hybrid)  
+
SPKR_RIGHT  
TAPI_OUT  
16-Bit  
DAC  
+
2.2 µF  
2.2 µF  
HS_REF  
2.5 V/1.5 V  
2.5 V/1.5 V  
+
HSTX_OUT  
Line_Out PGA 12 to –36 dB  
1.5 dB Noiseless Steps  
31 Steps and Mute  
600 TPI Out Buffer  
0 dB or Mute  
HSTX_IN  
+
Handset TX (Hybrid)  
2.5 V/1.5 V  
Internal  
HS_BUF  
+
600 Handset Out Buffer  
0 dB or Mute  
Required to meet communication standards  
Figure 6–2. Voice Channel Codec Typical Application  
6–2  
DTRXM  
T1  
+
+
Primary  
(Line)  
16-Bit  
ADC  
DTRXP  
Data (Hybrid)  
2.5 V/1.5 V  
Mon_Out PGA  
0-3-6-9-12 dB Gain  
with Mute  
Data_In PGA  
0/6/12/18 dB Gain  
With Mute  
–1  
DTREF (2.5 V @ 10 mA)  
+
16-Bit  
DAC  
M
U
X
DTTX_OUT  
2.5 V/1.5 V  
DTTX_IN  
MONOUTP  
AT41  
+
+
Data (Hybrid)  
2.5 V/1.5 V  
MONOUTM  
8 Speaker Buffer  
0 dB or Mute  
DT_BUF  
+
2.5 V/1.5 V  
0/-6/-12/-18 dB or Mute  
600 Data_Out PGA  
Required to meet communication standards  
Figure 6–3. Data Channel Codec Typical Application  
6–3  
6–4  
Appendix A  
Programmable Register Set  
Bits D12–D8 in a secondary serial communication comprise the address of the register that is written with data carried  
in bits D7–D0. D13 determines a read or write cycle to the addressed register. When low (0), a write cycle is selected.  
Table A–1 shows the register map.  
Table A–1. Register Map  
REGISTER NO. D15 D14 D13 D12 D11 D10  
D9  
0
D8  
0
REGISTER NAME  
No operation  
Control 1  
0
1
2
3
4
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
Control 2  
1
1
Control 3  
0
0
Control 4  
0
1
Control 5  
1
0
Control 6  
Table A–2. Control Register 1, Data Channel Control  
D7  
1
D6  
1
D5  
1
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D3  
D2  
1
D1  
D0  
1
DESCRIPTION  
Software reset for data channel asserted  
1
0
Software reset for data channel not asserted  
S/W power down for data channel enabled  
S/W power down for data channel disabled  
Data channel digital loopback asserted  
Data channel digital loopback not asserted  
Select data_in PGA for monitor amp input  
Select DAC output for monitor amp input  
Monitor amp PGA gain = 12 dB  
0
0
0
1
0
Monitor amp PGA gain = 9 dB  
0
1
1
0
0
1
Monitor amp PGA gain = 6 dB  
0
0
Monitor amp PGA gain = 3 dB  
0
1
Monitor amp PGA gain = 0 dB  
0
0
Monitor amp PGA gain = mute  
D4 = reserved  
Default value: 00000000  
A–1  
Table A–3. Control Register 2, Data Channel Control  
D7  
1
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
DESCRIPTION  
Data in (DTRX) PGA gain = mute  
Data in (DTRX) PGA gain = 18 dB  
Data in (DTRX) PGA gain = 12 dB  
Data in (DTRX) PGA gain = 6 dB  
Data in (DTRX) PGA gain = 0 dB  
0
1
1
0
1
0
0
0
1
0
0
0
1
0
0
1
0
1
1
X
DAC data out PGA gain = mute  
DAC data out PGA gain = –18 dB  
DAC data out PGA gain = –12 dB  
DAC data out PGA gain = –6 dB  
DAC data out PGA gain = 0 dB  
0
1
0
0
0
1
0
0
0
8 ohm monitor speaker driver gain = 0 dB  
0
8 ohm monitor speaker driver gain = mute  
Data channel ADC overflow indicator: 1 = overflow  
Default value: 00000000  
Table A–4. Control Register 3, Voice Channel Control  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
DESCRIPTION  
Voice channel software reset  
0
Voice channel software reset not asserted  
Software power down for voice channel enabled  
Software power down for voice channel disabled  
Voice channel digital loopback  
0
0
Voice channel digital loopback not asserted  
Voice channel digital loopback  
0
Voice channel digital loopback not asserted  
TAPI preamp seleted for ADC input  
0
TAPI preamp not selected for ADC input  
Microphone preamp selected for ADC input  
Microphone preamp not selected for ADC input  
Handset preamp not selected for ADC input  
Handset preamp selected for ADC input  
TAPI output buffer gain = mute  
0
0
0
TAPI output buffer gain = 0 dB  
Default value: 00000000  
A–2  
Table A–5. Control Register 4, Voice Channel Control  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
DESCRIPTION  
TAPI_IN preamp gain = 20 dB  
TAPI preamp gain = 0 dB  
0
Microphone preamp gain = 20 dB  
Microphone preamp gain = 0 dB  
Voice ADC input PGA gain = mute  
0
1
0
0
0
0
1
Voice ADC input PGA gain = 12 dB  
Voice ADC input PGA gain = 10.5 dB  
Voice ADC input PGA gain = 9 dB  
Voice ADC input PGA gain = 7.5 dB  
Voice ADC input PGA gain = 6 dB  
Voice ADC input PGA gain = 4.5 dB  
Voice ADC input PGA gain = 3 dB  
Voice ADC input PGA gain = 1.5 dB  
Voice ADC input PGA gain = 0 dB  
Voice ADC input PGA gain = –1.5 dB  
Voice ADC input PGA gain = –3 dB  
Voice ADC input PGA gain = –4.5 dB  
Voice ADC input PGA gain = –6 dB  
Voice ADC input PGA gain = –7.5 dB  
Voice ADC input PGA gain = –9 dB  
Voice ADC input PGA gain = –10.5 dB  
Voice ADC input PGA gain = –12 dB  
Voice ADC input PGA gain = –13.5 dB  
Voice ADC input PGA gain = –15 dB  
Voice ADC input PGA gain = –16.5 dB  
Voice ADC input PGA gain = –18 dB  
Voice ADC input PGA gain = –19.5 dB  
Voice ADC input PGA gain = –21 dB  
Voice ADC input PGA gain = –22.5 dB  
Voice ADC input PGA gain = –24 dB  
Voice ADC input PGA gain = –25.5 dB  
Voice ADC input PGA gain = –27 dB  
Voice ADC input PGA gain = –28.5 dB  
Voice ADC input PGA gain = –30 dB  
Voice ADC input PGA gain = –31.5 dB  
Voice ADC input PGA gain = –33 dB  
Voice ADC input PGA gain = –34.5 dB  
Voice ADC input PGA gain = –36 dB  
Voice ADC input PGA gain = 0 dB  
1
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
0
1
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
0
1
1
0
0
1
0
1
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
Default value: 00000000  
A–3  
Table A–6. Control Register 5, Voice Channel Control  
D7  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D6  
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D5  
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
D4  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
D3  
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
D2  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
D1  
1
D0  
X
DESCRIPTION  
Voice DAC output PGA gain = mute  
Voice DAC output PGA gain = 12 dB  
Voice DAC output PGA gain = 10.5 dB  
Voice DAC output PGA gain = 9 dB  
Voice DAC output PGA gain = 7.5 dB  
Voice DAC output PGA gain = 6 dB  
Voice DAC output PGA gain = 4.5 dB  
Voice DAC output PGA gain = 3 dB  
Voice DAC output PGA gain = 1.5 dB  
Voice DAC output PGA gain = 0 dB  
Voice DAC output PGA gain = –1.5 dB  
Voice DAC output PGA gain = –3 dB  
Voice DAC output PGA gain = –4.5 dB  
Voice DAC output PGA gain = –6 dB  
Voice DAC output PGA gain = –7.5 dB  
Voice DAC output PGA gain = –9 dB  
Voice DAC output PGA gain = –10.5 dB  
Voice DAC output PGA gain = –12 dB  
Voice DAC output PGA gain = –13.5 dB  
Voice DAC output PGA gain = –15 dB  
Voice DAC output PGA gain = –16.5 dB  
Voice DAC output PGA gain = –18 dB  
Voice DAC output PGA gain = –19.5 dB  
Voice DAC output PGA gain = –21 dB  
Voice DAC output PGA gain = –24 dB  
Voice DAC output PGA gain = –25.5 dB  
Voice DAC output PGA gain = –27 dB  
Voice DAC output PGA gain = –28.5 dB  
Voice DAC output PGA gain = –30 dB  
Voice DAC output PGA gain = –31.5 dB  
Voice DAC output PGA gain = –33 dB  
Voice DAC output PGA gain = –34.5 dB  
Voice DAC output PGA gain = –36 dB  
Voice DAC output PGA gain = 0 dB  
60 Spkr_L/R buffer gain = 0 dB  
0
60 Spkr_L/R buffer gain = mute  
Voice channel ADC overflow: 1 = overflow  
Default value: 00000000  
Table A–7. Control Register 6, Voice Channel Control  
D7  
1
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
DESCRIPTION  
Handset out buffer gain = mute  
Handset out buffer gain = 0 dB  
Reserved  
0
Default value: 00000000  
A–4  
Appendix B  
Mechanical Data  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,50  
48  
M
0,08  
0,17  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
9,80  
SQ  
SQ  
0,25  
12,20  
11,80  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
1,60 MAX  
0,08  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
B–1  
B–2  

相关型号:

TLC320AD545

具有混合运算放大器和扬声器驱动器的单通道编解码器
TI

TLC320AD545IPT

Single Channel Data/Fax Codec
TI

TLC320AD545PT

Single Channel Data/Fax Codec
TI

TLC320AD545PTG4

IC SPECIALTY TELECOM CIRCUIT, PQFP48, GREEN, PLASTIC, LQFP-48, Telecom IC:Other
TI

TLC320AD545PTR

具有混合运算放大器和扬声器驱动器的单通道编解码器 | PT | 48 | 0 to 70
TI

TLC320AD545PTRG4

SPECIALTY TELECOM CIRCUIT, PQFP48, GREEN, PLASTIC, LQFP-48
TI

TLC320AD55

Sigma-Delta Analog Interface Circuit
TI

TLC320AD55CDWR

Single Channel Codec 28-SOIC
TI

TLC320AD56

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56C

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFN

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFNR

Single Channel Codec With 85-87 dB Dynamic Range 28-PLCC 0 to 70
TI