TLE2024ACDW [ROCHESTER]

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16;
TLE2024ACDW
型号: TLE2024ACDW
厂家: Rochester Electronics    Rochester Electronics
描述:

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16

放大器 光电二极管
文件: 总76页 (文件大小:2573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
ꢀ  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
D
D
D
D
D
D
Supply Current . . . 300 μA Max  
High Unity-Gain Bandwidth . . . 2 MHz Typ  
High Slew Rate . . . 0.45 V/μs Min  
D
High Open-Loop Gain . . . 6.5 V/μV  
(136 dB) Typ  
D
Low Offset Voltage . . . 100 μV Max  
Offset Voltage Drift With Time  
0.005 μV/mo Typ  
Low Input Bias Current . . . 50 nA Max  
D
Supply-Current Change Over Military Temp  
Range . . . 10 μA Typ at V  
=
15 V  
CC  
D
D
Specified for Both 5-V Single-Supply and  
15-V Operation  
Low Noise Voltage . . . 19 nV/Hz Typ  
Phase-Reversal Protection  
description  
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers  
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with  
highly improved slew rate and unity-gain bandwidth.  
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic  
improvement in unity-gain bandwidth and slew rate over similar devices.  
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both  
time and temperature. This means that a precision device remains a precision device even with changes in  
temperature and over years of use.  
This combination of excellent dc performance with a common-mode input voltage range that includes the  
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either  
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry  
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply  
rail.  
A variety of available options includes small-outline and chip-carrier versions for high-density systems  
applications.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
Copyright © 2010, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2021 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
IO  
SMALL  
OUTLINE  
(D)  
§
T
A
CERAMIC DIP PLASTIC DIP  
TSSOP  
(PW)  
SSOP  
(DB)  
AT 25°C  
(JG)  
(P)  
0°C to  
70°C  
200 μV  
500 μV  
TLE2021ACD  
TLE2021CD  
TLE2021ACP  
TLE2021CP  
TLE2021CDBLE  
TLE2021CPWLE TLE2021Y  
40°C  
to  
85°C  
200 μV  
500 μV  
TLE2021AID  
TLE2021ID  
TLE2021AIP  
TLE2021IP  
55°C  
to  
125°C  
100 μV  
500 μV  
TLE2021BMFK TLE2021BMJG  
TLE2021MFK TLE2021MJG  
TLE2021MD  
TLE2021MP  
§
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2022 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
SMALL  
OUTLINE  
(D)  
§
T
A
TSSOP  
(PW)  
SSOP  
(DB)  
AT 25°C  
(JG)  
(P)  
0°C  
to  
70°C  
150 μV TLE2022BCD  
300 μV TLE2022ACD  
500 μV TLE2022CD  
TLE2022ACP  
TLE2022CP  
TLE2022CPWLE TLE2022Y  
TLE2022CDBLE  
40°C  
to  
85°C  
150 μV TLE2022BID  
300 μV TLE2022AID  
500 μV TLE2022ID  
TLE2022AIP  
TLE2022IP  
55°C  
to  
125°C  
150 μV  
TLE2022BMJG  
300 μV TLE2022AMD  
500 μV TLE2022MD  
TLE2022AMFK TLE2022AMJG TLE2022AMP  
TLE2022MFK TLE2022MJG TLE2022MP  
§
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2024 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
SMALL  
OUTLINE  
(DW)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
§
T
A
AT 25°C  
(J)  
(N)  
500 μV TLE2024BCDW  
750 μV TLE2024ACDW  
1000 μV TLE2024CDW  
TLE2024BCN  
TLE2024ACN  
TLE2024CN  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
TLE2024Y  
500 μV TLE2024BIDW  
750 μV TLE2024AIDW  
1000 μV TLE2024IDW  
TLE2024BIN  
TLE2024AIN  
TLE2024IN  
500 μV TLE2024BMDW  
750 μV TLE2024AMDW  
1000 μV TLE2024MDW  
TLE2024BMFK  
TLE2024AMFK  
TLE2024MFK  
TLE2024BMJ  
TLE2024AMJ  
TLE2024MJ  
TLE2024BMN  
TLE2024AMN  
TLE2024MN  
§
Chip forms are tested at 25°C only.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2021  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
TLE2021  
FK PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN  
NC  
VCC+  
OUT  
OFFSET N2  
1
2
3
4
8
7
6
5
IN+  
V
CC /GND  
3
2
1
20 19  
18  
NC  
VCC+  
NC  
NC  
IN−  
NC  
IN+  
NC  
4
5
6
7
8
17  
16  
NC No internal connection  
15 OUT  
14  
NC  
9 10 11 12 13  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
VCC+  
2OUT  
2IN−  
2IN+  
1
2
3
4
8
7
6
5
3
2
1
20 19  
18  
NC  
2OUT  
NC  
NC  
1IN −  
NC  
1IN +  
NC  
4
5
6
7
8
V
CC /GND  
17  
16  
15 2IN −  
14  
NC No internal connection  
NC  
9 10 11 12 13  
DW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
J OR N PACKAGE  
(TOP VIEW)  
4OUT  
4IN−  
4IN+  
1OUT  
1IN−  
1IN+  
VCC+  
2IN+  
2IN−  
2OUT  
NC  
1OUT  
1IN−  
1IN+  
VCC+  
2IN+  
2IN−  
2OUT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
3
2
1
20 19  
18  
4IN+  
NC  
1IN+  
NC  
VCC+  
NC  
4
5
6
7
8
V
CC /GND  
V
CC/GND  
17  
16  
15  
14  
3IN+  
3IN−  
3OUT  
NC  
3IN+  
3IN−  
3OUT  
V
CC/GND  
NC  
3IN+  
8
2IN+  
9 10 11 12 13  
NC No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2021Y chip information  
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
(5)  
V
CC+  
(1)  
(3)  
(7)  
OFFSET N1  
IN+  
+
(6)  
OUT  
(2)  
(5)  
IN  
OFFSET N2  
(4)  
V
CC−  
/GND  
78  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T
Jmax  
= 150°C  
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(4)  
(3)  
(1)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(2)  
54  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2022Y chip information  
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
V
CC+  
(8)  
(3)  
(2)  
IN+  
+
(1)  
OUT  
IN−  
(5)  
(6)  
+
IN+  
(7)  
OUT  
(8)  
(1)  
IN−  
(5)  
(4)  
(4)  
80  
V
CC−  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(2)  
(3)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
86  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2024Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or  
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
CC+  
(4)  
(3)  
(2)  
1IN+  
+
(1)  
1OUT  
1IN−  
(5)  
(6)  
+
2IN+  
(7)  
2OUT  
2IN+  
3IN−  
2IN−  
(10)  
(9)  
+
100  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
(14)  
4OUT  
4IN−  
(11)  
V
CC/GND  
140  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
equivalent schematic (each amplifier)  
V
CC+  
Q13  
Q22  
Q3  
Q17  
Q7  
Q28  
Q29  
Q31 Q35  
Q19  
Q1  
Q32  
Q34  
Q39  
Q24  
Q20  
Q5  
Q8  
Q36  
Q38  
Q11  
D3  
D4  
Q2  
C4  
OUT  
Q40  
IN −  
Q4  
Q14  
Q12  
R7  
C3  
Q23 Q25  
C2  
IN +  
Q10  
D2  
D1  
Q21  
Q27  
R6  
R1  
C1  
Q6  
R2  
R3  
Q9  
R4  
R5  
Q15  
Q37  
Q30 Q33  
Q26  
Q18  
OFFSET N1  
OFFSET N2  
Q16  
V
CC−  
/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLE2021  
TLE2022  
TLE2024  
160  
28  
Transistors  
Resistors  
Diodes  
40  
7
80  
14  
8
4
16  
Capacitors  
4
8
16  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
CC+  
CC−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V  
ID  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
CC  
I
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
Total current into V  
Total current out of V  
CC+  
CC−  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
C
stg  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
, and V  
.
CC+  
CC−  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
600 mV is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
377 mW  
POWER RATING  
145 mW  
A
D8  
DB8  
DW16  
FK  
725 mW  
5.8 mW/°C  
4.2 mW/°C  
8.2 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
9.2 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
464 mW  
525 mW  
336 mW  
1025 mW  
1375 mW  
1375 mW  
1050 mW  
1150 mW  
1000 mW  
525 mW  
656 mW  
533 mW  
715 mW  
715 mW  
546 mW  
598 mW  
520 mW  
205 mW  
275 mW  
275 mW  
210 mW  
230 mW  
200 mW  
880 mW  
J14  
JG8  
N14  
P8  
880 mW  
672 mW  
736 mW  
640 mW  
PW8  
336 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
2
MAX  
MIN  
2
MAX  
20  
MIN  
2
MAX  
20  
Supply voltage, V  
20  
3.5  
V
CC  
V
V
=
5 V  
0
0
3.2  
0
3.2  
CC  
Common-mode input voltage, V  
V
IC  
=
15 V  
15  
0
13.5  
70  
15  
40  
13.2  
85  
15  
55  
13.2  
125  
CC  
Operating free-air temperature, T  
°C  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2021C  
TYP  
TLE2021AC  
TLE2021BC  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
200  
25°C  
120  
100  
80  
V
IO  
Input offset voltage  
μV  
Full range  
850  
600  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
μV/°C  
μV/mo  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.005  
0.2  
0.005  
0.2  
0.005  
0.2  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.5  
3.5  
3.5  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.85  
0.85  
0.85  
0.3  
0.3  
85  
1.5  
0.3  
0.3  
85  
1.5  
0.3  
0.3  
85  
1.5  
Large-signal differential  
voltage amplification  
V = 1.4 V to 4 V,  
O
R = 10 kΩ  
L
A
VD  
V/μV  
dB  
dB  
Full range  
25°C  
110  
120  
200  
110  
120  
200  
110  
120  
200  
V
IC  
= V min,  
ICR  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
R
= 50 Ω  
S
Full range  
25°C  
80  
80  
80  
105  
100  
105  
100  
105  
100  
k
V = 5 V to 30 V  
CC  
SVR  
(ΔV /ΔV  
)
IO  
CC  
Full range  
25°C  
300  
300  
300  
300  
300  
300  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 2.5 V, No load  
Supply-current change over  
operating temperature range  
ΔI  
Full range  
5
5
5
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2021C  
TYP  
TLE2021AC  
TLE2021BC  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
200  
MIN  
TYP  
MAX  
100  
25°C  
120  
80  
40  
V
IO  
Input offset voltage  
μV  
Full range  
750  
500  
200  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
μV/°C  
μV/mo  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.006  
0.2  
0.006  
0.2  
0.006  
0.2  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.5  
13.5  
13.5  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
13.9  
13.9  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.7  
13.7 14.1  
13.7  
Maximum negative peak  
output voltage swing  
OM −  
Full range 13.7  
25°C  
Full range  
25°C  
1
1
6.5  
115  
120  
240  
1
1
6.5  
115  
120  
240  
1
1
6.5  
115  
120  
240  
Large-signal differential  
voltage amplification  
V
=
10 V,  
O
A
V/μV  
dB  
dB  
VD  
R = 10 kΩ  
L
100  
96  
100  
96  
100  
96  
V
IC  
= V  
= 50 Ω  
min,  
ICR  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
R
Full range  
25°C  
S
105  
100  
105  
100  
105  
100  
V
CC  
=
2.5 V  
k
SVR  
(ΔV /ΔV  
)
IO  
to 15 V  
Full range  
25°C  
CC  
350  
350  
350  
350  
350  
350  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0, No load  
Supply-current change over  
operating temperature range  
ΔI  
Full range  
6
6
6
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2022C  
TYP  
TLE2022AC  
TLE2022BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP  
MAX  
250  
25°C  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
800  
550  
400  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.5  
3.5  
3.5  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.85  
0.85  
0.85  
0.3  
0.3  
85  
1.5  
0.4  
0.4  
87  
1.5  
0.5  
0.5  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V, R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
k
= 5 V to 30 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
600  
600  
600  
600  
600  
600  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
7
7
7
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2022C  
TYP  
TLE2022AC  
TLE2022BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
120  
70  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
700  
450  
300  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
25°C  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.5  
13.5  
13.5  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.7  
13.7 14.1  
13.7  
13.7 14.1  
13.7  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
100  
96  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
97  
93  
103  
98  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
91  
100  
95  
105  
100  
k
= 2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
700  
700  
700  
700  
700  
700  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
9
9
9
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2024C  
TYP  
TLE2024AC  
TLE2024BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.5  
3.5  
3.5  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
ICR  
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
k
= 5 V to 30 V  
SVR  
CC  
(ΔV /ΔV  
)
IO  
CC  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
15  
15  
15  
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2024C  
TYP  
TLE2024AC  
TLE2024BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
950  
700  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.5  
13.5  
13.5  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.8  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.6  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM−  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
102  
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
90  
112  
100  
95  
115  
117  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
20  
20  
20  
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2021I  
TYP  
TLE2021AI  
TLE2021BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
200  
25°C  
120  
100  
80  
V
IO  
Input offset voltage  
μV  
Full range  
950  
600  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
μV/°C  
μV/mo  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.005  
0.2  
0.005  
0.2  
0.005  
0.2  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.2  
3.2  
3.2  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
R = 10 kΩ  
L
0.8  
0.9  
0.8  
0.9  
0.8  
0.9  
OL  
Full range  
25°C  
0.3  
0.25  
85  
1.5  
0.3  
0.25  
85  
1.5  
0.3  
0.25  
85  
1.5  
Large-signal differential  
voltage amplification  
V = 1.4 V to 4 V,  
O
R = 10 kΩ  
L
A
VD  
V/μV  
dB  
dB  
Full range  
25°C  
110  
120  
200  
110  
120  
200  
110  
120  
200  
V
IC  
= V  
min,  
ICR  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
R
= 50 Ω  
Full range  
25°C  
80  
80  
80  
S
105  
100  
105  
100  
105  
100  
k
V = 5 V to 30 V  
CC  
SVR  
(ΔV /ΔV  
)
IO  
Full range  
25°C  
CC  
300  
300  
300  
300  
300  
300  
I
Supply current  
μA  
μA  
CC  
V
O
= 2.5 V,  
Full range  
No load  
Supply-current change over  
operating temperature range  
ΔI  
Full range  
6
6
6
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, VCC  
=
15 V (unless otherwise noted)  
TLE2021I  
TYP  
TLE2021AI  
TLE2021BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
200  
MIN  
TYP  
MAX  
100  
25°C  
120  
80  
40  
V
IO  
Input offset voltage  
μV  
Full range  
850  
500  
200  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
μV/°C  
μV/mo  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.006  
0.2  
0.006  
0.2  
0.006  
0.2  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input voltage range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.2  
13.2  
13.2  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM −  
Full range 13.6  
25°C  
Full range  
25°C  
1
0.75  
100  
96  
6.5  
115  
120  
240  
1
0.75  
100  
96  
6.5  
115  
120  
240  
1
0.75  
100  
96  
6.5  
115  
120  
240  
Large-signal differential  
voltage amplification  
V = 10 V,  
O
R = 10 kΩ  
L
A
V/μV  
dB  
dB  
VD  
V
IC  
= V  
min,  
ICR  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
R
= 50 Ω  
Full range  
25°C  
S
105  
100  
105  
100  
105  
100  
V
CC  
=
2. 5 V  
k
SVR  
(ΔV /ΔV  
)
IO  
to 15 V  
Full range  
25°C  
CC  
350  
350  
350  
350  
350  
350  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0 V, No load  
Supply-current change over  
operating temperature range  
ΔI  
Full range  
7
7
7
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2022I  
TYP  
TLE2022AI  
TLE2022BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP  
MAX  
250  
25°C  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
800  
550  
400  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.2  
3.2  
3.2  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
R = 10 kΩ  
L
0.8  
0.9  
0.8  
0.9  
0.8  
0.9  
OL  
Full range  
25°C  
0.3  
0.2  
85  
1.5  
0.4  
0.2  
87  
1.5  
0.5  
0.2  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
k
= 5 V to 30 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
600  
600  
600  
600  
600  
600  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
15  
15  
15  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC  
=
15 V (unless otherwise noted)  
TLE2022I  
TLE2022AI  
TLE2022BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
500  
700  
120  
70  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
450  
300  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.2  
13.2  
13.2  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak  
output voltage swing  
OM −  
Full range 13.6  
25°C  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
VD  
O
L
97  
93  
103  
98  
100  
96  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
91  
100  
95  
105  
100  
k
= 2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
Full range  
25°C  
CC  
IO  
700  
700  
700  
700  
700  
700  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
30  
30  
30  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2024I  
TYP  
TLE2024AI  
TLE2024BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.2  
3.2  
3.2  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
3.8  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
30  
30  
30  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2024I  
TYP  
TLE2024AI  
TLE2024BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
950  
700  
Temperature coefficient of input  
offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.2  
13.2  
13.2  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.7  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.8  
R = 10 kΩ  
L
13.7 14.1  
13.6  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM−  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
102  
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
90  
112  
100  
95  
115  
117  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
50  
50  
50  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2021M  
TLE2021BM  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
600  
MIN  
TYP  
MAX  
200  
25°C  
120  
80  
V
IO  
Input offset voltage  
μV  
Full range  
1100  
300  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
μV/°C  
Input offset voltage long-term drift (see Note 4)  
25°C  
25°C  
0.005  
0.2  
0.005  
0.2  
μV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
nA  
nA  
IO  
Full range  
25°C  
25  
25  
Input bias current  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
Full range  
3.2  
3.2  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
3.8  
R = 10 kΩ  
L
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.3  
0.1  
85  
1.5  
0.3  
0.1  
85  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
110  
120  
170  
110  
120  
170  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
ICR  
Full range  
25°C  
80  
80  
105  
100  
105  
100  
k
= 5 V to 30 V  
SVR  
CC  
(ΔV  
/ΔV )  
Full range  
25°C  
CC  
IO  
230  
230  
230  
230  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
9
9
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2021M  
TLE2021BM  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
500  
MIN  
TYP  
MAX  
100  
25°C  
120  
40  
V
IO  
Input offset voltage  
μV  
Full range  
1000  
200  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
μV/°C  
Input offset voltage long-term drift (see Note 4)  
25°C  
25°C  
0.006  
0.2  
0.006  
0.2  
μV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
nA  
nA  
IO  
Full range  
25°C  
25  
25  
Input bias current  
IB  
Full range  
15 15.3  
15 15.3  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
Full range  
13.2  
13.2  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
13.8  
13.8  
R = 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.6  
Maximum negative peak  
output voltage swing  
OM −  
Full range 13.6  
25°C  
Full range  
25°C  
1
0.5  
100  
96  
6.5  
115  
120  
200  
1
0.5  
100  
96  
6.5  
115  
120  
200  
Large-signal differential  
voltage amplification  
A
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
VD  
O
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
105  
100  
105  
100  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
Full range  
CC  
IO  
25°C  
300  
300  
300  
300  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
10  
10  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2022M  
TLE2022AM  
TLE2022BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP MAX  
25°C  
250  
400  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
800  
550  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.2  
3.2  
3.2  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
3.8  
3.8  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.95  
0.3  
0.1  
85  
1.5  
0.4  
0.1  
87  
1.5  
0.5  
0.1  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
μA  
μA  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
k
= 5 V to 30 V  
SVR  
(ΔV  
/ΔV )  
Full range  
25°C  
CC  
IO  
600  
600  
600  
600  
600  
600  
I
Supply current  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
37  
37  
37  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2022M  
TLE2022AM  
TLE2022BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
500  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
120  
70  
V
IO  
Input offset voltage  
μV  
μV/°C  
μV/mo  
nA  
Full range  
700  
450  
300  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.2  
13.2  
13.2  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
R = 10 kΩ  
L
13.7 14.1  
13.6  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
100  
96  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
97  
93  
103  
98  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
91  
100  
95  
105  
100  
k
= 2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
Full range  
25°C  
CC  
IO  
700  
700  
700  
700  
700  
700  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
60  
60  
60  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
TLE2024M  
TLE2024AM  
TLE2024BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
0
to  
3.5  
0.3  
to  
25°C  
4
4
4
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.2  
3.2  
3.2  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
3.8  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
50  
50  
50  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
TLE2024M  
TLE2024AM  
TLE2024BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
μV  
Full range  
950  
700  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
μV/°C  
μV/mo  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
S
V
15  
to  
15  
to  
15  
to  
Full range  
13.2  
13.2  
13.2  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.7  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.8  
R = 10 kΩ  
L
13.7 14.1  
13.6  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM−  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
=
10 V,  
R = 10 kΩ  
V/μV  
dB  
dB  
O
L
Full range  
25°C  
102  
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
CC  
ICR  
Full range  
25°C  
90  
112  
100  
95  
115  
117  
k
=
2.5 V to 15 V  
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
μA  
μA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
ΔI  
Full range  
85  
85  
85  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C  
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
V/μs  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.09  
1.2  
0.16  
0.47  
0.09  
1.2  
0.16  
0.47  
0.9  
Peak-to-peak equivalent input  
noise voltage  
V
N(PP)  
μV  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
1.2  
φ
m
Phase margin at unity gain  
42°  
42°  
42°  
TLE2021 operating characteristics at specified free-air temperature, VCC = 15 V  
C SUFFIX  
I SUFFIX  
TYP  
M SUFFIX  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/μs  
nV/Hz  
μV  
T
A
MIN  
0.45  
0.45  
TYP  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
0.45  
0.45  
25°C  
Full range  
25°C  
0.65  
0.65  
0.65  
SR  
Slew rate at unity gain  
V
= 1V to 3 V,  
See Figure 1  
O
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
V
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.09  
2
0.16  
0.47  
0.09  
2
0.16  
0.47  
0.09  
2
Peak-to-peak equivalent input  
noise voltage  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
25°C  
φ
m
Phase margin at unity gain  
25°C  
46°  
46°  
46°  
Full range is 0°C to 70°C for the C-suffix devices, 40°C to 85°C for the I-suffix devices, and 55°C to 125°C for the M-suffix devices.  
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C  
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/μs  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
Equivalent input noise voltage  
(see Figure 2)  
nV/Hz  
μV  
V
n
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
1.7  
1.7  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
47°  
47°  
TLE2022 operating characteristics at specified free-air temperature, VCC = 15 V  
C SUFFIX  
I SUFFIX  
TYP  
M SUFFIX  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/μs  
T
A
MIN  
0.45  
0.45  
TYP  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
0.65  
0.65  
0.45  
0.4  
0.65  
SR  
Slew rate at unity gain  
V
=
10 V,  
See Figure 1  
O
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise  
voltage (see Figure 2)  
nV/Hz  
μV  
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
Peak-to-peak equivalent  
input noise voltage  
V
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
2.8  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
52°  
52°  
Full range is 0°C to 70°C for the Csuffix devices, 40°C to 85°C for the I suffix devices and 55°C to 125°C for the Isuffix devices.  
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C  
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/μs  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
nV/Hz  
μV  
V
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
n
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
V
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
1.7  
1.7  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
47°  
47°  
TLE2024 operating characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
C SUFFIX  
I SUFFIX  
TYP  
M SUFFIX  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/μs  
T
A
MIN  
TYP  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
0.45  
0.45  
0.7  
0.7  
0.45  
0.4  
0.7  
SR  
Slew rate at unity gain  
V = 10 V, See Figure 1  
O
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
nV/Hz  
μV  
V
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
Peak-to-peak equivalent input noise  
voltage  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
2.8  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
52°  
52°  
Full range is 0°C to 70°C for the Csuffix devices, 40°C to 85°C for the I suffix devices and 55°C to 125°C for the Isuffix devices.  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted)  
TLE2021Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
μV  
μV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
0.3  
to  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
R = 10 kΩ  
L
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R = 10 kΩ  
1.5  
V/μV  
dB  
dB  
μA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
R = 50 Ω  
S
100  
115  
400  
IC  
CC  
ICR  
k
Supply-voltage rejection ratio (ΔV  
/ΔV )  
IO  
= 5 V to 30 V  
SVR  
CC  
CC  
I
Supply current  
= 2.5 V,  
No load  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C  
TLE2021Y  
TYP  
0.5  
PARAMETER  
Slew rate at unity gain  
TEST CONDITIONS  
= 1 V to 3 V  
UNIT  
MIN  
MAX  
SR  
V
O
V/μs  
f = 10 Hz  
21  
nV/Hz  
μV  
V
Equivalent input noise voltage  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)  
TLE2022Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
600  
μV  
μV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
0.3  
to  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
R = 10 kΩ  
L
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R = 10 kΩ  
1.5  
V/μV  
dB  
dB  
μA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
R = 50 Ω  
S
100  
115  
450  
IC  
CC  
ICR  
k
Supply-voltage rejection ratio (ΔV  
/ΔV )  
IO  
= 5 V to 30 V  
SVR  
CC  
CC  
I
Supply current  
= 2.5 V,  
No load  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C  
TLE2022Y  
TYP  
0.5  
PARAMETER  
Slew rate at unity gain  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
SR  
V
O
= 1 V to 3 V, See Figure 1  
V/μs  
f = 10 Hz  
21  
V
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
nV/Hz  
μV  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)  
TLE2024Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
0.005  
0.6  
μV/mo  
nA  
I
I
V
IC  
= 0,  
R = 50 Ω  
S
IO  
Input bias current  
45  
nA  
IB  
0.3  
to  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
4
V
V
High-level output voltage  
Low-level output voltage  
4.2  
0.7  
V
V
OH  
R = 10 kΩ  
L
OL  
Large-signal differential  
voltage amplification  
A
V
V
V
V
= 1.4 V to 4 V,  
R = 10 kΩ  
1.5  
90  
V/μV  
dB  
VD  
O
L
CMRR Common-mode rejection ratio  
= V min,  
R = 50 Ω  
S
IC  
ICR  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
112  
800  
dB  
SVR  
CC  
(ΔV /ΔV  
)
IO  
CC  
I
Supply current  
= 2.5 V,  
O
No load  
μA  
CC  
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C  
TLE2024Y  
TYP  
0.5  
PARAMETER  
Slew rate at unity gain  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
SR  
V
O
= 1 V to 3 V, See Figure 1  
V/μs  
f = 10 Hz  
21  
nV/Hz  
μV  
V
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
PARAMETER MEASUREMENT INFORMATION  
20 kΩ  
20 kΩ  
5 V  
15 V  
V
O
V
O
+
+
V
I
V
I
15 V  
20 kΩ  
30 pF  
(see Note A)  
30 pF  
(see Note A)  
20 kΩ  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 1. Slew-Rate Test Circuit  
2 kΩ  
2 kΩ  
15 V  
5 V  
20 Ω  
20 Ω  
V
O
+
V
O
2.5 V  
+
15 V  
20 Ω  
20Ω  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Voltage Test Circuit  
10 kΩ  
10 kΩ  
15 V  
5 V  
100 Ω  
V
I
V
I
V
100Ω  
V
O
O
+
+
2.5 V  
15 V  
30 pF  
(see Note A)  
10 kΩ  
30 pF  
(see Note A)  
10 kΩ  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
NOTE A: C includes fixture capacitance.  
L
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
PARAMETER MEASUREMENT INFORMATION  
5 V  
15 V  
0.1 μF  
10 kΩ  
V
O
V
O
+
+
V
I
V
I
10 kΩ  
15 V  
10 kΩ  
10 kΩ  
30 pF  
(see Note A)  
30 pF  
(see Note A)  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 4. Small-Signal Pulse-Response Test Circuit  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
5, 6, 7  
IO  
vs Common-mode input voltage  
vs Free-air temperature  
8, 9, 10  
11, 12, 13  
I
I
IB  
Input current  
vs Differential input voltage  
14  
I
vs Output current  
vs Free-air temperature  
15, 16, 17  
18  
V
V
Maximum peak output voltage  
OM  
vs High-level output current  
vs Free-air temperature  
19, 20  
21  
High-level output voltage  
OH  
vs Low-level output current  
vs Free-air temperature  
22  
23  
V
V
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
Large-signal differential voltage amplification  
vs Frequency  
24, 25  
O(PP)  
vs Frequency  
vs Free-air temperature  
26  
27, 28, 29  
A
VD  
vs Supply voltage  
vs Free-air temperature  
30 33  
34 37  
I
Short-circuit output current  
Supply current  
OS  
vs Supply voltage  
vs Free-air temperature  
38, 39, 40  
41, 42, 43  
I
CC  
CMRR Common-mode rejection ratio  
vs Frequency  
44, 45, 46  
47, 48, 49  
50, 51  
SR  
Slew rate  
vs Free-air temperature  
Voltage-follower small-signal pulse response  
Voltage-follower large-signal pulse response  
52 57  
0.1 to 1 Hz  
0.1 to 10 Hz  
58  
59  
V
V
B
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
Unity-gain bandwidth  
N(PP)  
vs Frequency  
60  
n
1
vs Supply voltage  
vs Free-air temperature  
61, 62  
63, 64  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
65, 66  
67, 68  
69, 70  
φ
m
Phase margin  
Phase shift  
vs Frequency  
26  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLE2022  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLE2021  
INPUT OFFSET VOLTAGE  
20  
16  
12  
8
20  
16  
12  
8
231 Units Tested From 1 Wafer Lot  
398 Amplifiers Tested From 1 Wafer Lot  
V
=
15 V  
V
T
=
15 V  
CC  
CC  
T
A
= 25°C  
P Package  
= 25°C  
A
P Package  
4
4
0
0
600 450 300 150  
0
150 300  
450 600  
600 400  
200  
0
200  
400  
600  
V
IO  
Input Offset Voltage μV  
V
IO  
Input Offset Voltage μV  
Figure 5  
Figure 6  
TLE2021  
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF TLE2024  
INPUT OFFSET VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
5  
V
T
=
15 V  
CC  
796 Amplifiers Tested From 1 Wafer Lot  
15 V  
= 25°C  
V
CC  
=
A
T
A
= 25°C  
N Package  
4
0
0
15  
1  
0.5  
0
0.5  
1
10  
5  
0
5
10  
15  
V
IO  
Input Offset Voltage mV  
V
IC  
Common-Mode Input Voltage V  
Figure 7  
Figure 8  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022  
INPUT BIAS CURRENT  
vs  
TLE2024  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
50  
45  
60  
50  
V
=
15 V  
CC  
V
= 15 V  
CC  
T
A
= 25°C  
T
A
= 25°C  
40  
40  
30  
20  
35  
30  
25  
20  
15  
10  
5  
0
5
10  
15  
15  
10  
5  
0
5
10  
15  
V
IC  
Common-Mode Input Voltage V  
V
IC  
Common-Mode Input Voltage V  
Figure 9  
Figure 10  
TLE2022  
INPUT BIAS CURRENT†  
vs  
TLE2021  
INPUT BIAS CURRENT†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5  
V
V
V
=
15 V  
V
V
V
=
= 0  
= 0  
15 V  
CC  
CC  
= 0  
O
O
= 0  
IC  
IC  
35  
30  
25  
20  
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2024  
INPUT BIAS CURRENT†  
vs  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
T
A
=
15 V  
60  
50  
40  
CC  
V
V
V
=
= 0  
= 0  
15 V  
= 0  
= 25°C  
CC  
IC  
O
IC  
30  
20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
125  
75 50 25  
0
25  
50  
75 100  
|V | Differential Input Voltage V  
ID  
T
A
Free-Air Temperature °C  
Figure 13  
Figure 14  
TLE2022  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
TLE2021  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
16  
16  
14  
12  
10  
8
V
T
=
15 V  
V
=
15 V  
CC  
CC  
T = 25°C  
A
= 25°C  
14  
12  
10  
8
A
V
V
OM+  
OM+  
V
OM−  
V
OM−  
6
6
4
4
2
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
I
O
Output Current mA  
|I | Output Current mA  
O
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2024  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK OUTPUT VOLTAGE†  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
15  
14.5  
14  
16  
14  
12  
10  
8
V
CC  
= 15 V  
T
A
= 25°C  
V
OM+  
V
OM+  
V
OM−  
V
OM−  
13.5  
13  
6
4
V
CC  
=
15 V  
12.5  
R = 10 kΩ  
L
2
T
= 25°C  
A
0
12  
14  
0
2
4
6
8
10  
12  
75 50 25  
0
25  
50  
75  
100 125  
I
O
Output Current mA  
T
A
Free-Air Temperature °C  
Figure 17  
Figure 18  
TLE2021  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
TLE2022 AND TLE2024  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
5
V
CC  
= 5 V  
V
CC  
= 5 V  
T
A
= 25°C  
T = 25°C  
A
4
3
2
1
0
1
0
0
2  
4  
6  
8  
10  
0
1  
2  
3  
4  
5  
6  
7  
I
High-Level Output Current mA  
I
High-Level Output Current mA  
OH  
OH  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE†  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
5
4.8  
4.6  
4.4  
5
4
3
2
1
0
V = 5 V  
CC  
T = 25°C  
A
V
CC  
= 5 V  
No Load  
R = 10 kΩ  
L
4.2  
4
75 50 25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
T
A
Free-Air Temperature °C  
I
Low-Level Output Current mA  
OL  
Figure 21  
Figure 22  
LOW-LEVEL OUTPUT VOLTAGE†  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
5
1
0.75  
0.5  
I
= 1 mA  
OL  
4
3
2
1
0
I
= 0  
OL  
0.25  
0
V
CC  
= 5 V  
R = 10 kΩ  
L
V
CC  
= 5 V  
T = 25°C  
A
1 M  
75 50 25  
0
25  
50  
75 100 125  
100  
1 k  
10 k  
100 k  
T
A
Free-Air Temperature °C  
f Frequency Hz  
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
15  
10  
5
V
CC  
=
15 V  
R = 10 kΩ  
L
T = 25°C  
A
0
100  
1 k  
10 k  
100 k  
1 M  
f Frequency Hz  
Figure 25  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
80  
60°  
80°  
Phase Shift  
100°  
120°  
140°  
160°  
180°  
200°  
V
CC  
=
15 V  
A
VD  
60  
V
CC  
= 5 V  
40  
20  
R = 10 kΩ  
C = 30 pF  
L
0
L
T
= 25°C  
A
20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f Frequency Hz  
Figure 26  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2021  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
AMPLIFICATION†  
TLE2022  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION†  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
10  
8
6
5
R = 10 kΩ  
L
R = 10 kΩ  
L
V
CC  
=
15 V  
V
CC  
= 15 V  
4
6
3
2
4
2
1
0
V
= 5 V  
V
= 5 V  
75  
CC  
CC  
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 27  
Figure 28  
TLE2024  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
TLE2021  
AMPLIFICATION†  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10  
8
10  
8
R = 10 kΩ  
L
V
T
A
= 0  
= 25°C  
O
6
V
CC  
=
15 V  
V
ID  
= 100 mV  
4
6
2
0
4
2  
4  
6  
8  
10  
2
V
ID  
= 100 mV  
V
0
=
5 V  
50  
CC  
0
75 50 25  
25  
75 100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
Free-Air Temperature °C  
|V  
CC  
| Supply Voltage V  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
15  
12  
8
V
T
A
= 0  
= 25°C  
O
T
A
= 25°C  
10  
5
V
V
= 100 mV  
ID  
= V  
O
CC  
V
ID  
= 100 mV  
4
0
5  
0
4  
8  
12  
V
= 100 mV  
= 0  
ID  
V
= 100 mV  
ID  
V
O
10  
15  
0
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
25  
30  
|V  
CC  
| Supply Voltage V  
V
Supply Voltage V  
CC  
Figure 31  
Figure 32  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT†  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
15  
10  
8
6
V
CC  
= 5 V  
T
A
= 25°C  
V
V
= 100 mV  
ID  
V
ID  
= 100 mV  
= V  
4
V
O
= 5 V  
O
CC  
5
2
0
0
2  
4  
6  
8  
5  
10  
15  
V
V
= 100 mV  
= 0  
ID  
O
V
V
= 100 mV  
ID  
= 0  
O
0
5
10  
15  
20  
25  
30  
75 50 25  
0
25  
50  
75 100 125  
V
CC  
Supply Voltage V  
T
Free-Air Temperature °C  
A
Figure 33  
Figure 34  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT†  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
4
12  
8
V
CC  
= 5 V  
V
= 100 mV  
V
V
= 15 V  
ID  
CC  
V
= 5 V  
= 0  
O
O
2
V
ID  
= 100 mV  
4
0
2  
4  
6  
8  
10  
0
4  
8  
12  
V
ID  
V
O
= 100 mV  
= 0  
V
ID  
= 100 mV  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 35  
Figure 36  
TLE2022 AND TLE2024  
TLE2021  
SUPPLY CURRENT  
vs  
SHORT-CIRCUIT OUTPUT CURRENT†  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
250  
200  
150  
100  
50  
15  
10  
5
V
= 0  
O
V
V
= 15 V  
= 0  
CC  
No Load  
O
V
= 100 mV  
ID  
T
A
= 125°C  
0
T
A
= 25°C  
5  
10  
15  
T
= 55°C  
A
V
ID  
= 100 mV  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
Free-Air Temperature °C  
|V  
CC  
| Supply Voltage V  
Figure 37  
Figure 38  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2024  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
500  
400  
1000  
800  
V
= 0  
O
V
= 0  
O
No Load  
T
A
= 125°C  
No Load  
T
A
= 25°C  
T
A
= 25°C  
300  
600  
T
A
= 55°C  
T
A
= 125°C  
T
A
= 55°C  
200  
100  
400  
200  
0
0
0
2
4
|V  
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
| Supply Voltage V  
CC  
|V  
| Supply Voltage V  
CC  
Figure 39  
Figure 40  
TLE2022  
TLE2021  
SUPPLY CURRENT†  
vs  
SUPPLY CURRENT†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
225  
200  
175  
150  
125  
100  
75  
500  
400  
V
= 15 V  
CC  
V
=
= 15 V  
CC  
V
CC  
2.5 V  
V
CC  
=
2.5 V  
300  
200  
100  
50  
V
= 0  
V
= 0  
O
O
25  
No Load  
No Load  
0
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 41  
Figure 42  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2024  
SUPPLY CURRENT†  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
1000  
800  
120  
100  
80  
60  
40  
20  
0
V
=
15 V  
CC  
V
CC  
=
15 V  
V
= 2.5 V  
CC  
600  
V
CC  
= 5 V  
400  
200  
V
= 0  
O
No Load  
T
A
= 25°C  
0
75 50 25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
Free-Air Temperature °C  
f Frequency Hz  
Figure 43  
Figure 44  
TLE2024  
TLE2022  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
V
= 15 V  
CC  
T
A
= 25°C  
V
= 15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
T
A
= 25°C  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f Frequency Hz  
f Frequency Hz  
Figure 45  
Figure 46  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022  
SLEW RATE†  
TLE2021  
SLEW RATE†  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
V
=
15 V  
CC  
V
=
15 V  
CC  
V
CC  
= 5 V  
V
= 5 V  
CC  
R = 20 kΩ  
C = 30 pF  
L
R = 20 kΩ  
L
L
C = 30 pF  
L
See Figure 1  
See Figure 1  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 47  
Figure 48  
TLE2024  
SLEW RATE†  
vs  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
100  
50  
V
=
15 V  
CC  
R = 10 kΩ  
C = 30 pF  
L
L
T
= 25°C  
A
V
=
15 V  
CC  
See Figure 4  
0
V
= 5 V  
CC  
50  
100  
R = 20 kΩ  
L
See Figure 1  
L
C = 30 pF  
75 50 25  
0
25  
50  
75  
100 125  
0
20  
40  
60  
80  
T
A
Free-Air Temperature °C  
t Time μs  
Figure 49  
Figure 50  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
TLE2021  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
2.6  
2.55  
2.5  
4
3
2
1
0
V
= 5 V  
CC  
V
= 5 V  
CC  
R = 10 kΩ  
C = 30 pF  
L
R = 10 kΩ  
C = 30 pF  
L
L
L
T
= 25°C  
A
T
= 25°C  
A
See Figure 4  
See Figure 1  
2.45  
2.4  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t Time μs  
t Time μs  
Figure 51  
Figure 52  
TLE2024  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SCALE  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
4
3
2
1
0
4
3
2
1
0
V
= 5 V  
CC  
V
= 5 V  
CC  
L
L
R = 10 kΩ  
C = 30 pF  
L
R = 10 kΩ  
C = 30 pF  
L
T
= 25°C  
A
T
= 25°C  
A
See Figure 1  
See Figure 1  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t Time μs  
t Time μs  
Figure 53  
Figure 54  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
15  
10  
V
=
15 V  
CC  
V
=
15 V  
CC  
R = 10 kΩ  
C = 30 pF  
L
R = 10 kΩ  
C = 30 pF  
L
L
L
T = 25°C  
A
T
= 25°C  
A
See Figure 1  
See Figure 1  
5
5
0
0
5  
10  
15  
5  
10  
15  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t Time μs  
t Time μs  
Figure 55  
Figure 56  
TLE2024  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 1 Hz  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
5
0.5  
0.4  
V
=
15 V  
CC  
V
=
15 V  
CC  
R = 10 kΩ  
C = 30 pF  
L
T
A
= 25°C  
L
T
= 25°C  
A
0.3  
See Figure 1  
0.2  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
5  
10  
15  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
10  
t Time μs  
t Time s  
Figure 57  
Figure 58  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 10 Hz  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
0.5  
0.4  
200  
160  
120  
80  
V
T
=
15 V  
CC  
V
R
=
15 V  
CC  
= 25°C  
= 20 Ω  
= 25°C  
A
S
T
A
0.3  
See Figure 2  
0.2  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1 k  
10 k  
t Time s  
f Frequency Hz  
Figure 59  
Figure 60  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
4
3
2
1
0
4
3
2
1
0
R = 10 kΩ  
L
R = 10 kΩ  
L
L
C = 30 pF  
L
C = 30 pF  
T = 25°C  
A
T
A
= 25°C  
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| Supply Voltage V  
|V  
CC  
| Supply Voltage V  
Figure 61  
Figure 62  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2021  
UNITY-GAIN BANDWIDTH†  
vs  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
2
1
0
4
3
2
1
0
R = 10 kΩ  
L
R = 10 kΩ  
L
See Figure 3  
L
C = 30 pF  
L
C = 30 pF  
See Figure 3  
V
= 15 V  
CC  
V
=
15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
25  
75 50 25  
0
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 63  
Figure 64  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
55°  
53°  
51°  
49°  
47°  
45°  
50°  
48°  
46°  
44°  
42°  
40°  
R = 10 kΩ  
L
R = 10 kΩ  
L
L
C = 30 pF  
L
C = 30 pF  
T
A
= 25°C  
T
A
= 25°C  
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
|V  
6
8
10  
12  
14  
16  
| Supply Voltage V  
|V  
CC  
| Supply Voltage V  
CC  
Figure 65  
Figure 66  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
70°  
60°  
50°  
40°  
30°  
20°  
10°  
0°  
60°  
50°  
40°  
30°  
20°  
10°  
0
R = 10 kΩ  
L
R = 10 kΩ  
L
T
A
= 30 pF  
T
A
= 25°C  
See Figure 3  
See Figure 3  
V
CC  
=
15 V  
V
=
15 V  
CC  
V
CC  
= 5 V  
V
CC  
= 5 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
C
Load Capacitance pF  
C
Load Capacitance pF  
L
L
Figure 67  
Figure 68  
TLE2021  
PHASE MARGIN†  
vs  
TLE2022 AND TLE2024  
PHASE MARGIN†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
36°  
54°  
52°  
R = 10 kΩ  
L
C = 30 pF  
L
See Figure 3  
V
=
15 V  
CC  
V
=
15 V  
CC  
50°  
48°  
V
CC  
= 5 V  
46°  
44°  
V
= 5 V  
CC  
R = 10 kΩ  
C = 30 pF  
L
L
42°  
40°  
See Figure 3  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 69  
Figure 70  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
APPLICATION INFORMATION  
voltage-follower applications  
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For  
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can  
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).  
C = 20 pF to 50 pF  
F
I
F
1 mA  
R
F
V
CC+  
V
O
V
I
+
V
CC−  
Figure 71. Voltage Follower  
Input offset voltage nulling  
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in  
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null  
pins may be left disconnected.  
IN −  
OFFSET N2  
+
IN +  
5 kΩ  
OFFSET N1  
V
CC  
(split supply)  
1 kΩ GND (single supply)  
Figure 72. Input Offset Voltage Null Circuit  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure  
75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this  
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
3
V
CC+  
egnd  
+
din  
91  
ree  
cee  
Iee  
92  
9
fb  
+
rp  
1
90  
ro2  
hlim  
+
+
vb  
dip  
vip  
vin  
re1  
re2  
+
+
vc  
IN−  
r2  
13  
Q1  
14  
Q2  
C2  
53  
7
6
+
IN+  
2
vlim  
dc  
de  
ga  
gcm  
dp  
C1  
8
11  
12  
ro1  
rc1  
rc2  
54  
5
V
CC−  
4
+
ve  
OUT  
Figure 73. Boyle Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010  
.SUBCKT TLE2021 1 2 3 4 5  
*
hcmr 80  
1
4
poly(2) vcm+ vcm0 1E2 1E2  
185E6  
irp  
iee  
iio  
3
c1  
c2  
c3  
11 12 6.244E12  
3
10 dc 15.67E6  
6
87  
7
0
13.4E12  
10.64E9  
2
0
0
2E9  
1E21  
i1  
88  
cpsr 85 86 15.9E9  
dcm+ 81 82 dx  
dcm83 81 dx  
q1  
q2  
R2  
11 89 13 qx  
12 80 14 qx  
6
9
100.0E3  
dc  
5
53 dx  
5 dx  
rcm 84 81 1K  
de  
dlp  
dln  
dp  
54  
ree 10 99 14.76E6  
90 91 dx  
92 90 dx  
4
rn1 87  
0
2.55E8  
rn2 87 88 11.67E3  
3 dx  
ro1  
ro2  
8
7
5
62  
ecmr 84 99 (2 99) 1  
99 63  
egnd 99  
epsr 85  
ense 89  
0
0
2
poly(2) (3,0) (4,0) 0 .5 .5  
poly(1) (3,4) 60E6 2.0E6  
poly(1) (88,0) 120E6 1  
vcm+ 82 99 13.3  
vcm83 99 14.6  
vb  
9
0
dc 0  
fb  
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6  
vc  
3
53 dc 1.300  
+ 50E7 50E7 50E7 50E7 547E6  
ve  
54  
7
91  
0
0
4
8
0
dc 1.500  
dc 0  
dc 3.600  
ga  
gcm  
6
0
0
6
11 12 188.5E6  
10 99 335.2E12  
vlim  
vlp  
vln  
vpsr  
gpsr 85 86 (85,86) 100E6  
92 dc 3.600  
86 dc 0  
grc1  
grc2  
4
4
11 (4,11) 1.885E4  
12 (4,12) 1.885E4  
.model dx d(is=800.0E18)  
.model qx pnp(is=800.0E18 bf=270)  
.ends  
gre1 13 10 (13,10) 6.82E4  
gre2 14 10 (14,10) 6.82E4  
hlim  
90  
0 vlim 1k  
Figure 74. Boyle Macromodel for the TLE2021  
.SUBCKT TLE2022 1 2 3 4 5  
*
rc1  
rc2  
4
4
11 2.842E3  
12 2.842E3  
c1  
11 12 6.814E12  
ge1 13 10 (10,13) 31.299E3  
ge2 14 10 (10,14) 31.299E3  
ree 10 99 11.07E6  
ro1  
ro2  
rp  
c2  
dc  
6
5
7
20.00E12  
53 dx  
de  
54 5 dx  
90 91 dx  
92 90 dx  
8
7
3
9
3
5 250  
99 250  
4 137.2E3  
0 dc 0  
53 dc 1.300  
dlp  
dln  
dp  
4
3 dx  
vb  
vc  
egnd 99  
fb  
0
poly(2) (3,0) (4,0) 0 .5 .5  
7
99poly(5) vb vc ve vlp vln 0  
ve  
54 4 dc 1.500  
8 dc 0  
vlp 91 0 dc 3  
vln 92 dc 3  
+ 45.47E6 50E6 50E6 50E6 50E6  
vlim 7  
ga 6  
gcm 06  
iee  
0
11 12 377.9E6  
10 99 7.84E10  
10 DC 18.07E6  
0
3
.model dx d(is=800.0E18)  
.model qx pnp(is=800.0E18 bf=257.1)  
.ends  
hlim 90 0 vlim 1k  
q1  
q2  
r2  
11 2 13 qx  
12 1 14 qx  
6
9 100.0E3  
Figure 75. Boyle Macromodel for the TLE2022  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
5962-9088101MPA  
5962-9088102M2A  
5962-9088102MPA  
5962-9088103M2A  
5962-9088103MCA  
5962-9088104Q2A  
5962-9088104QPA  
5962-9088105Q2A  
5962-9088105QPA  
5962-9088106Q2A  
5962-9088106QCA  
5962-9088107Q2A  
5962-9088107QPA  
5962-9088108Q2A  
5962-9088108QPA  
5962-9088109Q2A  
5962-9088109QCA  
TLE2021ACD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
SOIC  
JG  
FK  
JG  
FK  
J
8
20  
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
75  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
20  
14  
20  
8
FK  
JG  
FK  
JG  
FK  
J
20  
8
20  
14  
20  
8
FK  
JG  
FK  
JG  
FK  
J
20  
8
20  
14  
8
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021ACDG4  
TLE2021ACDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2021ACDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2021ACP  
TLE2021ACPE4  
TLE2021ACPS  
TLE2021ACPSG4  
TLE2021AID  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SO  
P
P
8
8
8
8
8
50  
50  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
TBD  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
OBSOLETE  
OBSOLETE  
ACTIVE  
PS  
PS  
D
Call TI  
Call TI  
Call TI  
Call TI  
SO  
TBD  
SOIC  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLE2021AIDG4  
TLE2021AIDR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021AIDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2021AIP  
TLE2021AIPE4  
TLE2021AMFKB  
TLE2021AMJGB  
TLE2021BMFKB  
TLE2021BMJG  
TLE2021BMJGB  
TLE2021CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
LCCC  
CDIP  
LCCC  
CDIP  
CDIP  
SOIC  
P
8
8
50  
50  
1
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
P
Pb-Free (RoHS)  
FK  
JG  
FK  
JG  
JG  
D
20  
8
TBD  
TBD  
TBD  
TBD  
TBD  
1
A42  
N / A for Pkg Type  
20  
8
1
POST-PLATE N / A for Pkg Type  
1
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
8
1
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021CDG4  
TLE2021CDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2021CDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2021CP  
TLE2021CPE4  
TLE2021CPWLE  
TLE2021CPWR  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
P
8
8
8
8
50  
50  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
TBD  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
P
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
Call TI  
Call TI  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021CPWRG4  
TLE2021ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
SOIC  
SOIC  
SOIC  
PW  
D
8
8
8
8
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLE2021IDG4  
TLE2021IDR  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLE2021IDRG4  
ACTIVE  
SOIC  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021IP  
TLE2021IPE4  
TLE2021MD  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
P
P
D
8
8
8
50  
50  
75  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
TLE2021MDG4  
ACTIVE  
SOIC  
D
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2021MJG  
TLE2021MJGB  
TLE2022ACD  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
SOIC  
JG  
JG  
D
8
8
8
1
1
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2022ACDG4  
TLE2022ACDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2022ACDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2022ACP  
TLE2022ACPE4  
TLE2022AID  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
P
P
D
8
8
8
50  
50  
75  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
TLE2022AIDG4  
TLE2022AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2022AIDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2022AIP  
TLE2022AIPE4  
TLE2022AMD  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
P
P
D
8
8
8
50  
50  
75  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
TLE2022AMDG4  
ACTIVE  
SOIC  
D
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Status (1)  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLE2022AMDR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2022AMDRG4  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
POST-PLATE N / A for Pkg Type  
TLE2022AMFKB  
TLE2022AMJGB  
TLE2022BCDR  
TLE2022BMFKB  
TLE2022BMJG  
TLE2022BMJGB  
TLE2022CD  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
SOIC  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
D
20  
8
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A42  
N / A for Pkg Type  
Call TI  
OBSOLETE  
ACTIVE  
8
Call TI  
FK  
JG  
JG  
D
20  
8
1
POST-PLATE N / A for Pkg Type  
OBSOLETE  
ACTIVE  
Call TI  
A42  
Call TI  
8
1
N / A for Pkg Type  
ACTIVE  
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2022CDG4  
TLE2022CDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2022CDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2022CP  
TLE2022CPE4  
TLE2022CPSR  
TLE2022ID  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SO  
P
P
8
8
8
8
50  
50  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
TBD  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
OBSOLETE  
ACTIVE  
PS  
D
Call TI  
Call TI  
SOIC  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2022IDG4  
TLE2022IDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2022IDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2022IP  
TLE2022IPE4  
TLE2022MD  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
P
P
D
8
8
8
50  
50  
75  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLE2022MDG4  
TLE2022MDR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
POST-PLATE N / A for Pkg Type  
TLE2022MDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2022MFKB  
TLE2022MJG  
TLE2022MJGB  
TLE2024ACDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
20  
8
1
1
TBD  
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
JG  
8
1
DW  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2024ACDWG4  
TLE2024ACDWR  
TLE2024ACDWRG4  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
16  
16  
16  
40  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLE2024ACN  
TLE2024ACNE4  
TLE2024AIDW  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
N
N
14  
14  
16  
25  
25  
40  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
DW  
Green (RoHS  
& no Sb/Br)  
TLE2024AIDWG4  
ACTIVE  
SOIC  
DW  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2024AIN  
TLE2024AINE4  
TLE2024AMFKB  
TLE2024AMJ  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
LCCC  
CDIP  
CDIP  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
N
N
14  
14  
20  
14  
14  
16  
14  
16  
14  
16  
25  
25  
1
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
Pb-Free (RoHS)  
ACTIVE  
FK  
J
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ACTIVE  
1
A42  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
TLE2024AMJB  
TLE2024BCDW  
TLE2024BCN  
TLE2024BIDW  
TLE2024BIN  
ACTIVE  
J
1
A42  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
DW  
N
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
DW  
N
Call TI  
Call TI  
TLE2024BMDW  
DW  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLE2024BMDWG4  
ACTIVE  
SOIC  
DW  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2024BMFKB  
TLE2024BMJ  
TLE2024BMJB  
TLE2024BMN  
TLE2024CDW  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
PDIP  
SOIC  
FK  
J
20  
14  
14  
14  
16  
1
1
1
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
ACTIVE  
J
OBSOLETE  
ACTIVE  
N
Call TI  
DW  
40  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLE2024CDWG4  
TLE2024CDWR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
16  
16  
16  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
TLE2024CDWRG4  
Green (RoHS  
& no Sb/Br)  
TLE2024CN  
TLE2024CNE4  
TLE2024IDW  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
N
N
14  
14  
16  
25  
25  
40  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
DW  
Green (RoHS  
& no Sb/Br)  
TLE2024IDWG4  
ACTIVE  
SOIC  
DW  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLE2024IN  
TLE2024INE4  
TLE2024MDW  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
N
N
14  
14  
16  
25  
25  
40  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
DW  
Green (RoHS  
& no Sb/Br)  
TLE2024MDWG4  
ACTIVE  
SOIC  
DW  
16  
100  
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
POST-PLATE N / A for Pkg Type  
TLE2024MFKB  
TLE2024MJ  
ACTIVE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
CDIP  
PDIP  
FK  
J
20  
14  
14  
14  
TBD  
TBD  
TBD  
TBD  
Call TI  
A42  
Call TI  
TLE2024MJB  
TLE2024MN  
J
1
N / A for Pkg Type  
Call TI  
OBSOLETE  
N
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLE2021, TLE2021A, TLE2021AM, TLE2021M, TLE2022, TLE2022A, TLE2022AM, TLE2022B, TLE2022BM, TLE2022M,  
TLE2024, TLE2024A, TLE2024AM, TLE2024B, TLE2024BM, TLE2024M :  
Catalog: TLE2021A, TLE2021, TLE2022A, TLE2022B, TLE2022, TLE2024A, TLE2024B, TLE2024  
Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2021A-Q1, TLE2021-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2022A-Q1, TLE2022-Q1, TLE2024-Q1, TLE2024A-Q1,  
TLE2024A-Q1, TLE2024-Q1  
Enhanced Product: TLE2021-EP, TLE2021A-EP, TLE2021A-EP, TLE2021-EP, TLE2022-EP, TLE2022A-EP, TLE2022A-EP, TLE2022-EP, TLE2024-EP, TLE2024A-  
EP, TLE2024A-EP, TLE2024-EP  
Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2022BM, TLE2024M, TLE2024AM, TLE2024BM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 7  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2012  
Military - QML certified for Military and Defense Applications  
Addendum-Page 8  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLE2021ACDR  
TLE2021ACDR  
TLE2021AIDR  
TLE2021CDR  
TLE2021CPWR  
TLE2021IDR  
SOIC  
SOIC  
SOIC  
SOIC  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
16.4  
6.4  
6.4  
6.4  
6.4  
7.0  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
3.6  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
1.6  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.7  
2.7  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
8
D
8
PW  
D
8
8
TLE2022ACDR  
TLE2022AIDR  
TLE2022AMDR  
TLE2022CDR  
TLE2022IDR  
D
8
D
8
D
8
D
8
D
8
TLE2022MDR  
TLE2024ACDWR  
TLE2024CDWR  
D
8
DW  
DW  
16  
16  
10.75 10.7  
10.75 10.7  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLE2021ACDR  
TLE2021ACDR  
TLE2021AIDR  
TLE2021CDR  
TLE2021CPWR  
TLE2021IDR  
SOIC  
SOIC  
SOIC  
SOIC  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
340.5  
367.0  
340.5  
340.5  
367.0  
340.5  
340.5  
340.5  
367.0  
340.5  
340.5  
367.0  
367.0  
367.0  
338.1  
367.0  
338.1  
338.1  
367.0  
338.1  
338.1  
338.1  
367.0  
338.1  
338.1  
367.0  
367.0  
367.0  
20.6  
35.0  
20.6  
20.6  
35.0  
20.6  
20.6  
20.6  
35.0  
20.6  
20.6  
35.0  
38.0  
38.0  
D
8
D
8
PW  
D
8
8
TLE2022ACDR  
TLE2022AIDR  
TLE2022AMDR  
TLE2022CDR  
TLE2022IDR  
D
8
D
8
D
8
D
8
D
8
TLE2022MDR  
TLE2024ACDWR  
TLE2024CDWR  
D
8
DW  
DW  
16  
16  
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLE2024ACDWG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACDWR

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACDWRG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACNE4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDW

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWR

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16
ROCHESTER

TLE2024AIJ

IC,OP-AMP,QUAD,BIPOLAR,DIP,16PIN,CERAMIC
TI

TLE2024AIN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIN

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDIP14, ROHS COMPLIANT, PLASTIC, DIP-14
ROCHESTER

TLE2024AINE4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI