BA2901YF-LB(H2) [ROHM]

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BA2901YF-LB是可单电源工作的集电极开路比较器。消耗电流低,工作电源电压范围较大为+2V~+36V,同相输入电压可通过接地电平输入。;
BA2901YF-LB(H2)
型号: BA2901YF-LB(H2)
厂家: ROHM    ROHM
描述:

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BA2901YF-LB是可单电源工作的集电极开路比较器。消耗电流低,工作电源电压范围较大为+2V~+36V,同相输入电压可通过接地电平输入。

比较器
文件: 总30页 (文件大小:671K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Comparator  
Ground Sense Comparators  
BA2903YF-LB BA2901YF-LB  
General Description  
Key Specifications  
This is the product guarantees long time support in  
Industrial market.  
BA2903YF-LB and BA2901YF-LB are open collector  
output comparators that can operate in single power  
supply. It features wide operating voltage range of 2V to  
36V and with low supply current.  
Operating Supply Voltage Range  
single supply :  
split supply :  
Supply Current  
BA2903YF-LB(Dual)  
BA2901YF-LB(Quad)  
Input Bias Current :  
+2.0V to +36V  
±1.0V to ±18V  
0.6mA(Typ)  
0.8mA(Typ)  
50nA(Typ)  
Features  
Long Time Support a Product for  
Input Offset Current :  
5nA(Typ)  
Operating Temperature Range :  
-40°C to +125°C  
Industrial Applications  
Single or Dual Power Supply Operation  
Wide Operating Supply Voltage  
Standard Comparator Pin-assignments  
Common-mode Input Voltage Range includes ground  
level.  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
8.70mm x 6.20mm x 1.71mm  
SOP14  
Wide Temperature Range  
Application  
Industrial Equipment  
Current Monitor  
Battery Monitor  
Multivibrators  
Simplified schematic  
VCC  
OUT  
+IN  
-IN  
VEE  
Figure 1. Simplified schematic (one channel only)  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
1/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Pin Configuration  
BA2903YF-LB : SOP8  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
VCC  
OUT2  
-IN2  
1
2
8
7
OUT1  
-IN1  
CH1  
- +  
+IN1  
VEE  
+IN2  
-IN2  
3
4
+IN1  
VEE  
6
5
CH2  
+ -  
+IN2  
OUT2  
VCC  
BA2901YF-LB : SOP14  
Pin No.  
Pin Name  
1
2
OUT2  
OUT1  
VCC  
-IN1  
OUT2  
OUT1  
OUT3  
OUT4  
1
2
14  
13  
3
4
12  
11  
10  
9
VCC  
-IN1  
+IN1  
3
4
5
VEE  
+IN4  
5
+IN1  
-IN2  
6
CH1  
- +  
CH4  
- +  
7
+IN2  
-IN3  
8
-IN4  
9
+IN3  
-IN4  
-IN2  
6
7
+IN3  
-IN3  
10  
11  
12  
13  
14  
CH3  
- +  
CH2  
- +  
+IN4  
VEE  
+IN2  
8
OUT4  
OUT3  
Package  
SOP8  
BA2903YF-LB  
SOP14  
BA2901YF-LB  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
2/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Ordering Information  
B A 2  
9
0
x Y F  
-
LB H2  
Part Number  
BA2903YF  
BA2901YF  
Package  
Product class  
F
: SOP8  
SOP14  
LB for Industrial applications  
Packaging and forming specification  
H2: Embossed tape and reel  
(SOP8/SOP14)  
Line-up  
Operating  
Supply  
Voltage  
Orderable  
Part Number  
Topr  
Dual/Quad  
Package  
Dual  
SOP8  
Reel of 250  
Reel of 250  
BA2903YF-LBE2  
BA2901YF-LBE2  
-40°C to +125°C  
+2.0V to +36V  
Quad  
SOP14  
Absolute Maximum Ratings (TA=25°C)  
Parameter  
Ratings  
Symbol  
Unit  
V
BA2903YF-LB  
BA2901YF-LB  
VCC-VEE  
SOP8  
SOP14  
VID  
+36  
+36  
Supply Voltage  
0.77 (Note 1,3)  
-
-
Power dissipation  
PD  
W
0.56 (Note 2,3)  
Differential Input Voltage (Note 4)  
Input Common-mode Voltage Range  
Input Current (Note 5)  
V
V
VICM  
(VEE-0.3) to (VEE+36)  
-10  
II  
mA  
V
Operating Supply Voltage  
Vopr  
+2.0 ~ +36 (±1.0 ~ ±18)  
-40 to +125  
Operating Temperature Range  
Storage Temperature Range  
Maximum junction Temperature  
Topr  
°C  
°C  
°C  
Tstg  
-55 to +150  
TJmax  
+150  
(Note 1) To use at temperature above TA=25°C reduce 6.2mW/°C.  
(Note 2) To use at temperature above TA=25°C reduce 4.5mW/°C.  
(Note 3) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (copper foil area less than 3%).  
(Note 4) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 5) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
3/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Electrical Characteristics  
BA2903YF-LB (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
range  
Min  
Typ  
Max  
7
25°C  
-
-
-
-
-
-
2
-
EK=-1.4V  
VCC=5 to 36V, EK=-1.4V  
Input Offset Voltage (Note 6,7)  
Input Offset Current (Note 6,7)  
Input Bias Current (Note 7,8)  
Full range  
25°C  
15  
5
-
50  
IIO  
nA EK=-1.4V  
Full range  
25°C  
200  
250  
500  
50  
-
IB  
VICM  
AV  
nA EK=-1.4V  
V
Full range  
Input Common-mode  
Voltage Range  
25°C  
0
-
VCC-1.5  
-
25°C  
Full range  
25°C  
88  
74  
-
100  
-
-
VCC=15V, EK=-1.4 to -11.4V  
RL=15k, VRL=15V  
Large Signal Voltage Gain(Note 7)  
dB  
-
0.6  
-
1
OUT=open  
Supply Current(Note 7)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
OUT=open, VCC=36V  
+IN=0V, -IN=1V  
OUT=1.5V  
Output Sink Current (Note 9)  
25°C  
6
16  
-
Output Saturation Voltage(Note 7)  
(Maximum Output Voltage Low)  
25°C  
-
-
150  
-
400  
700  
+IN=0V, -IN= 1V  
I
SINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1k, VRL=5V  
VIN=100mVP-P, overdrive=5mV  
RL=5.1k, VRL=5V, VIN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
Output Leakage Current(Note 7)  
(High level output current)  
ILEAK  
μA  
μs  
Full range  
1.3  
0.4  
Response Time  
25°C  
tRE  
-
(Note 6) Absolute value  
(Note 7) Full range TA=-40°C to +125°C  
(Note 8) Current Direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 9) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
4/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
BA2901YF-LB (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
range  
Min  
Typ  
Max  
7
25°C  
-
-
-
-
-
-
2
-
EK=-1.4V  
VCC=5 to 36V, EK=-1.4V  
Input Offset Voltage (Note10,11)  
Input Offset Current (Note10,11)  
Input Bias Current (Note11,12)  
Full range  
25°C  
15  
5
-
50  
IIO  
nA EK=-1.4V  
Full range  
25°C  
200  
250  
500  
50  
-
IB  
VICM  
AV  
nA EK=-1.4V  
V
Full range  
Input Common-mode Voltage  
Range  
25°C  
0
-
VCC-1.5  
-
25°C  
Full range  
25°C  
88  
74  
-
100  
-
-
VCC=15V, EK=-1.4 to -11.4V  
RL=15k, VRL=15V  
Large Signal Voltage Gain(Note11)  
dB  
-
0.8  
-
2
OUT=open  
Supply Current(Note11)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
OUT=open, VCC=36V  
+IN=0V, -IN=1V  
OUT=1.5V  
Output Sink Current (Note13)  
25°C  
6
16  
-
Output Saturation Voltage(Note11)  
(Maximum Output Voltage Low)  
+IN=0V, -IN= 1V  
25°C  
-
-
150  
-
400  
700  
ISINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1k, VRL=5V  
VIN=100mVP-P, overdrive=5mV  
RL=5.1k, VRL=5V, VIN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
Output Leakage Current(Note11)  
(High level output current)  
ILEAK  
μA  
μs  
Full range  
1.3  
0.4  
Response Time  
25°C  
tRE  
-
(Note 10) Absolute value  
(Note 11) Full range TA=-40°C to +125°C  
(Note 12) Current Direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 13) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
5/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Description of electrical characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VCC/VEE)  
Indicates the maximum voltage that can be applied between the VCC terminal and the VEE terminal without  
deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Operating and Storage Temperature Ranges (Topr, Tstg  
)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the  
ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range  
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.  
(5) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(3) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(4) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(5) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
AV = (Output voltage) / (Differential Input voltage)  
(6) Supply Current (ICC  
Indicates the current that flows within the IC under specified no-load conditions.  
(7) Output Sink Current (ISINK  
Denotes the maximum current that can be output under specific output conditions.  
(8) Output Saturation Voltage, Low Level Output Voltage (VOL  
Signifies the voltage range that can be output under specific output conditions.  
(9) Output Leakage Current, High Level Output Current (ILEAK  
Indicates the current that flows into the IC under specific input and output conditions.  
(10) Response Time (tRE  
)
)
)
)
)
Response time indicates the delay time between the input and output signal is determined by the time difference  
from the fifty percent of input signal swing to the fifty percent of output signal swing.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
6/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves  
BA2903YF-LB  
1.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2903YF-LB  
0.8  
0.6  
0.4  
0.2  
0.0  
25℃  
-40℃  
125℃  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 2.  
Figure 3.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
200  
150  
100  
50  
125℃  
25℃  
36V  
5V  
-40℃  
2V  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 4.  
Figure 5.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(ISINK=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
7/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2903YF-LB  
200  
150  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
125℃  
2V  
25℃  
100  
5V  
36V  
50  
0
-40℃  
-50 -25  
0
25  
50  
75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
Ambient Temperature [°C]  
Output Sink Current [mA]  
Figure 6.  
Figure 7.  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
Output Saturation Voltage vs Ambient Temperature  
(ISINK=4mA)  
40  
30  
20  
10  
0
8
6
4
-40℃  
5V  
2
36V  
0
25℃  
125℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 8.  
Figure 9.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
8/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2903YF-LB  
8
6
4
160  
140  
120  
100  
80  
2V  
2
-40℃  
0
5V  
36V  
25℃  
-2  
-4  
-6  
-8  
60  
40  
125℃  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 10.  
Figure 11.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
-40℃  
25℃  
36V  
0
125℃  
-10  
-20  
-30  
-40  
-50  
60  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 12.  
Figure 13.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
9/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2903YF-LB  
140  
130  
120  
110  
100  
90  
50  
40  
30  
20  
125℃  
10  
2V  
-40℃  
25℃  
0
36V  
5V  
-10  
-20  
-30  
-40  
-50  
80  
70  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 14.  
Figure 15.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
125℃  
25℃  
5V  
15V  
-40℃  
80  
60  
70  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 16.  
Figure 17.  
Large Signal Voltage Gain  
vs Ambient Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
10/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2903YF-LB  
150  
125  
6
4
25℃  
36V  
-40℃  
100  
2
125℃  
75  
0
5V  
2V  
50  
25  
0
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 18.  
Figure 19.  
Common Mode Rejection Ratio  
vs Ambient Temperature  
Input Offset Voltage - Input Voltage  
(VCC=5V)  
200  
180  
160  
140  
120  
100  
80  
5
4
3
2
1
0
125℃  
-40℃  
25℃  
60  
-50 -25  
0
25  
50  
75 100 125 150  
-100  
-80  
-60  
-40  
-20  
0
Ambient Temperature [°C]  
Over Drive Voltage [mV]  
Figure 21.  
Figure 20.  
Response Time (Low to High)  
vs Over Drive Voltage  
Power Supply Rejection Ratio  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
11/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2903YF-LB  
5
4
3
2
1
0
5
4
3
125℃  
2
5mV overdrive  
25℃  
20mV overdrive  
-40℃  
100mV overdrive  
1
0
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Over Drive Voltage [mV]  
Ambient Temperature [°C]  
Figure 22.  
Figure 23.  
Response Time (Low to High)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
Response Time (High to Low)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1k)  
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 24.  
Response Time (High to Low)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
12/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
1.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
25℃  
-40℃  
BA2901YF-LB  
0.6  
0.4  
0.2  
0.0  
125℃  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 25.  
Figure 26.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
36V  
125℃  
25℃  
5V  
2V  
-40℃  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 27.  
Figure 28.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(ISINK=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
13/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
200  
150  
125℃  
2V  
25℃  
100  
5V  
36V  
50  
0
-40℃  
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25  
50  
75 100 125 150  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 30.  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
Figure 29.  
Output Saturation Voltage vs Ambient Temperature  
(ISINK=4mA)  
40  
30  
20  
10  
0
8
6
4
-40℃  
5V  
2
36V  
0
25℃  
125℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 31.  
Figure 32.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
14/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
8
6
4
160  
140  
120  
100  
80  
2V  
2
-40℃  
0
5V  
36V  
25℃  
-2  
-4  
-6  
-8  
60  
40  
125℃  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 33.  
Figure 34.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
50  
40  
140  
120  
100  
80  
30  
20  
10  
25℃  
-40℃  
36V  
0
125℃  
-10  
-20  
-30  
-40  
-50  
60  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 36.  
Input Offset Current vs Supply Voltage  
Figure 35.  
Input Bias Current vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
15/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
140  
130  
120  
110  
100  
90  
50  
40  
30  
20  
125℃  
10  
2V  
-40℃  
25℃  
0
5V  
36V  
-10  
-20  
-30  
-40  
-50  
80  
70  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 37.  
Figure 38.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
125℃  
25℃  
5V  
15V  
-40℃  
80  
60  
70  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 40.  
Figure 39.  
Common Mode Rejection Ratio  
vs Supply Voltage  
Large Signal Voltage Gain  
vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
16/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
150  
125  
6
4
25℃  
36V  
-40℃  
100  
2
125℃  
75  
0
5V  
2V  
50  
25  
0
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 41.  
Figure 42.  
Common Mode Rejection Ratio  
vs Ambient Temperature  
Input Offset Voltage - Input Voltage  
(VCC=5V)  
5
4
3
2
1
0
200  
180  
160  
140  
120  
100  
80  
125℃  
-40℃  
25℃  
60  
-50 -25  
0
25  
50  
75 100 125 150  
-100  
-80  
-60  
-40  
-20  
0
Ambient Temperature [°C]  
Over Drive Voltage [mV]  
Figure 44.  
Response Time (Low to High)  
vs Over Drive Voltage  
Figure 43.  
Power Supply Rejection Ratio  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
17/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Typical Performance Curves - continued  
BA2901YF-LB  
5
4
3
5
4
3
2
1
0
125℃  
2
5mV overdrive  
25℃  
20mV overdrive  
-40℃  
100mV overdrive  
1
0
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Over Drive Voltage [mV]  
Ambient Temperature [°C]  
Figure 46.  
Response Time (High to Low)  
vs Over Drive Voltage  
Figure 45.  
Response Time (Low to High)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(VCC=5V, VRL=5V, RL=5.1k)  
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 47.  
Response Time (High to Low)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
18/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 48(a) shows the model of the thermal resistance of the package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA = (TJmax-TA) / PD  
°C/W  
The Derating curve in Figure 48(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 48(c) and (d) shows an example of the derating curve for  
BA2903YF-LB, BA2901YF-LB.  
Power diss  
ip  
a
tion of LSI [W]  
PD
(m x)
a
θJA=(TJmax-TA)/PD °C /W  
P2  
P1  
θ
< θ  
JA2 JA1
T
A
Ambient temperature  
[ °C ]  
θ’  
JA2
θ
JA2
TJ’(max) TJ(max)  
θJA  
1
1  
θJA1  
0
25  
50  
75  
100  
T
[ °C ]  
A
125  
150  
Chip surface temperature  
TJ [ °C ]  
Ambient temperature  
(a) Thermal resistance  
(b) Derating curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
(Note 14)  
BA2903YF-LB  
(Note 15)  
BA2901YF-LB  
0
25  
50  
75 100 125 150  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(c) BA2903Y  
(d) BA2901Y  
(Note14)  
6.2  
(Note15)  
4.5  
UNIT  
mW/°C  
When using the unit above TA=25°C, subtract the value above per Celsius degree.  
Permissible dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3%) is mounted.  
Figure 48. Thermal resistance and derating  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
19/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Application Information  
NULL method condition for Test circuit1  
VCC,VEE,EK,VICM UnitV  
Parameter  
VF  
S1  
S2  
S3  
VCC  
VEE  
0
EK  
VICM  
Calculation  
Input Offset Voltage  
Input Offset Current  
VF1  
ON  
ON  
ON  
ON  
5 to 36  
-1.4  
0
1
2
VF2  
VF3  
VF4  
VF5  
VF6  
OFF  
OFF  
ON  
OFF  
ON  
5
5
0
0
0
0
0
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
0
0
0
0
0
Input Bias Current  
ON  
ON  
3
4
OFF  
5
15  
15  
Large Signal Voltage Gain  
ON  
ON  
- Calculation -  
1. Input Offset Voltage (VIO)  
|VF1|  
VIO  
[V]  
=
=
1+RF/RS  
|VF2-VF1|  
2. Input Offset Current (IIO)  
3. Input Bias Current (IB)  
[A]  
IIO  
RI ×(1+RF/RS)  
|VF4-VF3|  
=
[A]  
IB  
2 × RI ×(1+RF/RS)  
ΔEK × (1+RF/RS)  
AV  
= 20Log  
[dB]  
4. Large Signal Voltage Gain (AV)  
|VF5-VF6|  
RF=50kΩ  
0.1µF  
500kΩ  
SW1  
VCC  
DUT  
EK  
15V  
RS=50Ω  
RI=10kΩ  
Vo  
500kΩ  
0.1µF  
0.1µF  
NULL  
-15V  
SW3  
RL  
RI=10kΩ  
1000pF  
RS=50Ω  
50kΩ  
VF  
VICM  
SW2  
VRL  
VEE  
Figure 49. Test circuit1 (one channel only)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
20/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Switch Condition for Test Circuit 2  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW No.  
Supply Current  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
Output Sink Current  
Output Saturation Voltage  
Output Leakage Current  
Response Time  
OUT=1.5V  
SINK=4mA  
ON  
OFF  
ON  
I
ON  
OFF  
OFF  
OFF  
OFF  
OUT=36V  
OFF  
OFF  
RL=5.1k, VRL=5V  
VCC  
A
SW1  
SW2  
SW3  
SW4 SW5 SW6  
SW7  
VEE  
RL  
A
V
VRL  
-IN  
+IN  
OUT  
Figure 50. Test Circuit 2 (one channel only)  
IN  
IN  
Input wave  
Input wave  
VREF  
overdrive voltage  
overdrive voltage  
VREF  
OUT  
OUT  
Output wave  
VCC/2  
Output wave  
VCC/2  
VCC  
VCC  
0V  
0V  
tRE (Low to High)  
tRE (High to Low)  
Figure 51. Response Time  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
21/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Example of circuit  
Reference voltage is -IN  
VCC  
VRL  
IN  
IN  
+
VREF  
-
OUT  
Reference Voltage  
Vref  
VEE  
Time  
OUT  
High  
While the input voltage is higher that the reference  
voltage, the output voltage remains high. In case  
the input voltage becomes lower than the reference  
voltage, the output voltage will turn low.  
Low  
Time  
Reference voltage is +IN  
IN  
VCC  
VRL  
RL  
VREF  
Time  
+
-
Reference Voltage  
Vref  
IN  
VEE  
OUT  
High  
Low  
While the input voltage is smaller that the reference  
voltage, the output voltage remains high. In case  
the input voltage becomes higher than the  
reference voltage, the output voltage will turn low.  
Time  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
22/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply  
lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting  
the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of  
temperature and aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current GND traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on  
the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of  
connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to  
many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
23/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Operational Notes – continued  
11. Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P+  
P+  
P+  
P+  
P
N
P
N
N
N
N
N
N
N
Parasitic  
Element  
Parasitic  
Element  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Element  
Parasitic  
Element  
Parasitic element  
or Transistor  
Figure 52. Example of Monolithic IC Structure  
12. Unused Circuits  
When there are unused circuits it is recommended that they be connected as in Figure 53, setting the non-inverting  
input terminal to a potential within the in-phase input voltage range (VICR).  
VCC  
OPEN  
+
-
keep this potential  
in VICM  
VICM  
VEE  
Figure 53. Disable Circuit Example  
13. Input Terminal Voltage  
Applying VEE + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or  
destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that  
the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric  
characteristics.  
14. Power Supply (signal / dual)  
The comparator operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply  
comparator can be used as a dual supply op-amp as well.  
15. Terminal short-circuits  
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
16. IC Handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
24/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Physical Dimensions Tape and Reel Information  
Package Name  
SOP8  
Max 5.35 (include. BURR)  
Drawing: EX112-5001-1  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
25/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Physical Dimension Tape and Reel Information - continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
26/27  
Datasheet  
BA2903YF-LB BA2901YF-LB  
Marking Diagrams  
SOP14(TOP VIEW)  
SOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
Package Type  
Marking  
BA2903Y  
BA2901Y  
F-LB  
F-LB  
SOP8  
2903Y  
SOP14  
BA2901YF  
Land pattern data  
SOP8, SOP14  
MIE  
ℓ2  
All dimensions in mm  
Land length  
Land pitch  
Land space  
MIE  
Land width  
b2  
PKG  
e
≧ℓ 2  
SOP8  
SOP14  
1.27  
4.60  
1.10  
0.76  
Revision History  
Date  
Revision  
001  
Changes  
30.Jan.2014  
New Release  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200680-1-2  
30.Jan.2014 Rev.001  
27/27  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA2901YF-M

Automotive Ground Sense Comparators
ROHM

BA2901YF-ME2

Automotive Ground Sense Comparators
ROHM

BA2901YFC

Automotive Ground Sense Comparators
ROHM

BA2901YFE2

Automotive Ground Sense Comparators
ROHM

BA2901YFTR

Automotive Ground Sense Comparators
ROHM

BA2901YFV-C

Automotive Comparators:Ground Sense
ROHM

BA2901YFV-CE2

Automotive Ground Sense Comparators
ROHM

BA2901YFV-M

车载适用品BA2903Yxxx-M、BA2901Yxx-M是各自独立的高增益比较器,是将2个电路集成于1个芯片的单片IC。尤其是工作范围较大,为+2V~+36V(单电源工作时),且消耗电流较小,可用于汽车导航、汽车音响等用途。
ROHM

BA2901YFV-ME2

Automotive Ground Sense Comparators
ROHM

BA2901YFVC

Automotive Ground Sense Comparators
ROHM

BA2901YFVE2

Automotive Ground Sense Comparators
ROHM

BA2901YFVM-CTR

Operational Amplifier, 15000uV Offset-Max, PDSO8, ROHS COMPLIANT, MSOP-8
ROHM