BA33D18HFP-TL [ROHM]

Regulator, 2 Output, BIPolar,;
BA33D18HFP-TL
型号: BA33D18HFP-TL
厂家: ROHM    ROHM
描述:

Regulator, 2 Output, BIPolar,

线性稳压器IC 调节器 电源电路 输出元件
文件: 总9页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Secondary LDO Regulators  
Dual Output  
Secondary Fixed Output LDO Regulators  
No.11026EBT01  
BA3258HFP, BA33D15HFP, BA33D18HFP  
Description  
The BA3258HFP, BA33D15HFP, BA33D18HFP are fixed 2-output low-saturation regulators with a voltage accuracy at both  
outputs of 2%. These series incorporate both overcurrent protection and thermal shutdown (TSD) circuits in order to  
prevent damage due to output short-circuiting and overloading, respectively.  
Features  
1) Output voltage accuracy: 2%.  
2) Output current capacity: 1A (BA3258HFP), 0.5A (BA33D□□ Series)  
3) A ceramic capacitor can be used to prevent output oscillation (BA3258HFP).  
4) High Ripple Rejection (BA33D□□ Series)  
5) Built-in thermal shutdown circuit  
6) Built-in overcurrent protection circuit  
Applications  
FPDs, TVs, PCs, DSPs in DVDs and CDs  
Product Lineup  
Part Number  
BA3258HFP  
Output voltage  
Vo1  
Output voltage  
Vo2  
Current capability Current capability  
Package  
Io1  
Io2  
3.3 V  
3.3 V  
3.3 V  
1.5 V  
1.5 V  
1.8 V  
1 A  
1 A  
HRP5  
HRP5  
HRP5  
BA33D15HFP  
BA33D18HFP  
0.5 A  
0.5 A  
0.5 A  
0.5 A  
Absolute Maximum Ratings  
BA3258HFP  
BA33D□□ Series  
Symbol  
Ratings  
Unit  
V
Symbol  
Ratings  
18*1  
Unit  
Parameter  
Applied voltage  
Power dissipation  
Parameter  
VCC  
Pd  
15*1  
Applied voltage  
VCC  
Pd  
V
2300*2  
mW  
Power dissipation  
2300*2  
mW  
Operating  
temperature range  
Operating  
temperature range  
Topr  
Tstg  
30 to 85  
55 to 150  
150  
Topr  
Tstg  
25 to 105  
55 to 150  
150  
Ambient storage  
temperature  
Ambient storage  
temperature  
Maximum junction  
temperature  
Maximum junction  
temperature  
Tjmax  
Tjmax  
*1 Must not exceed Pd  
*2. Derated at 18.4 mW/at Ta>25when mounted on a glass epoxy board (70 mm 70 mm 1.6 mm)  
Recommended Operating Conditions  
BA3258HFP  
BA33D□□Series  
Ratings  
Min. Typ. Max.  
Ratings  
Min. Typ. Max.  
Symbol  
VCC  
Unit  
V
Symbol  
VCC  
Unit  
V
Parameter  
Parameter  
Input power supply  
voltage  
Input power supply  
voltage  
4.75  
-
14.0  
4.1  
-
16.0  
3.3 V output current  
1.5 V output current  
Io1  
Io2  
-
-
-
-
1
1
A
A
3.3 V output current  
1.5V output current  
1.8 V output current  
Io1  
Io2  
Io2  
-
-
-
-
-
-
0.5  
0.5  
0.5  
A
A
A
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
1/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
Electrical Characteristics  
BA3258HFP (Unless otherwise specified, Ta = 25, Vcc = 5 V)  
Limits  
Parameter  
Symbol  
IB  
Unit  
Conditions  
Min. Typ. Max.  
Bias current  
-
3
5
mA Io1 = 0 mA, Io2 = 0 mA  
[3.3 V Output Block]  
Output voltage1  
Vo1 3.234 3.300 3.366  
V
V
A
Io1 = 50 mA  
Minimum output voltage difference 1  
Output current capacity 1  
Ripple rejection 1  
Vd1  
Io1  
-
1.0  
46  
-
1.1  
1.3  
-
Io1 = 1 A, Vcc = 3.8 V  
-
52  
R.R.1  
Reg.I1  
Reg.L1  
Tcvo1  
-
dB f=120 Hz,ein=0.5Vp-p,Io1=5mA  
mV Vcc = 4.7514 V, Io1 = 5 mA  
mV Io1 = 5 mA1A  
Input stability 1  
5
15  
20  
-
Load stability 1  
Temperature coefficient of output voltage 1*3  
-
5
-
%/Io1 = 5 mA, Tj = 0to 85℃  
0.01  
[1.5 V Output Block]  
Output voltage 2  
Vo2 1.470 1.500 1.530  
V
A
Io2 = 50 mA  
Output current capacity 2  
Ripple rejection 2  
Io2  
1.0  
-
52  
-
-
R.R.2  
Reg.I2  
Reg.L2  
Tcvo2  
46  
-
dB f=120 Hz,ein=0.5Vp-p,Io2=5mA  
mV Vcc = 4.114 V, Io2 = 5 mA  
mV Io2 = 5 mA1 A  
Input stability 2  
5
15  
20  
-
Load stability 2  
Temperature coefficient of output voltage 2*3  
-
5
-
%/Io2 = 5 mA, Tj = 0to 125℃  
0.01  
*3: Design is guaranteed within these parameters. (No total shipment inspection is made.)  
BA33DSeries (Unless otherwise specified, Ta = 25, Vcc = 5 V)  
Limits  
Parameter  
Symbol  
Ib  
Unit  
Conditions  
Min. Typ. Max.  
Bias current  
-
0.7  
1.6  
mA Io1 = 0 mA, Io2 = 0 mA  
[3.3V Output Block]  
Output voltage 1  
Vo1 3.234 3.300 3.366  
V
V
A
Io1 = 250 mA  
Minimum output voltage difference 1  
Output current capacity 1  
Ripple rejection 1  
Vd1  
Io1  
0.25 0.50  
Io1 = 250 mA, Vcc = 3.135 V  
0.5  
-
68  
-
-
R.R.1  
Reg.I1  
Reg.L1  
Tcvo1  
-
-
-
-
dB f=120 Hz,ein =1Vp-p,Io1=100mA  
mV Vcc=4.1V16V,Io1=250mA  
mV Io1= 0 mA0.5 A  
Input stability 1  
5
30  
75  
-
Load stability 1  
30  
Temperature coefficient of output voltage 1*3  
BA33D15HFP Vo2 output  
[1.5V Output Block]  
0.01  
%/Io1 = 5 mA, Tj=0to 125℃  
Output voltage 2  
Output current capacity 2  
Ripple rejection 2  
Input stability 2  
Vo2 1.470 1.500 1.530  
V
A
Io2 = 250 mA  
Io2  
0.5  
-
74  
-
-
R.R.2  
Reg.I2  
Reg.L2  
Tcvo2  
-
-
-
-
dB f=120 Hz,ein=1Vp-p,Io2=100mA  
mV Vcc =4.1V16 V,Io2=250mA  
mV Io2 = 0 mA0.5A  
5
30  
75  
-
Load stability 2  
Temperature coefficient of output voltage 2*3  
30  
%/Io2 = 5 mA,Tj = 0to 125℃  
0.01  
BA33D18HFP Vo2 output  
[1.8V Output Block]  
Output voltage 2  
Vo2 1.764 1.800 1.836  
V
A
Io2=250 mA  
Output current capacity 2  
Ripple rejection 2  
Io2  
0.5  
-
72  
-
-
R.R.2  
Reg.I2  
Reg.L2  
Tcvo2  
-
-
-
-
dB f =120Hz,ein =1Vp-p,Io2=100mA  
mV Vcc = 4.1V16V,Io2=250mA  
mV Io2 = 0 mA0.5 A  
Input stability 2  
5
30  
75  
-
Load stability 2  
Temperature coefficient of output voltage 2*3  
30  
%/Io2 = 5 mA, Tj = 0to 125℃  
0.01  
*3: Design is guaranteed within these parameters. (No total shipment inspection is made.)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
BA3258HFP Electrical Characteristics Curves (Unless otherwise specified, Ta = 25, Vcc = 5V)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5
4
3
2
1
0
5
4
3
2
1
0
0
2
4
6
8
10  
SUPPLY VOLTAGE Vcc V  
[ ]  
12  
14  
0.0  
0.2  
OUTPUT CURRENT Io1 A  
[ ]  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
OUTPUT CURRENT Io2 A  
[ ]  
0.4  
0.6  
0.8  
1.0  
Fig. 2 Circuit Current vs Load Current Io2 Fig. 3 Circuit Current vs Load Current Io2  
(Io1 = 0 1 A) (Io2 = 0 1 A)  
Fig.1 Circuit Current  
(with no load)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
2
4
6
8
10  
SUPPLY VOLTAGE Vcc V  
[ ]  
12  
14  
0.0  
0.5  
OUTPUT CURRENT Io1 A  
[ ]  
1.0  
1.5  
2.0  
2.5  
0
2
4
6
8
10  
SUPPLY VOLTAGE Vcc V  
[ ]  
12  
14  
Fig. 6 Load Stability  
(3.3 V output)  
Fig. 4 Input Stability  
(3.3 V output with no load)  
Fig. 5 Input Stability  
(1.5 V output with no load)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
R.R.(1.5 V output)  
R.R.(3.3 V output)  
0.0  
0.2  
OUTPUT CURRENT Io1 A  
[ ]  
0.4  
0.6  
0.8  
1.0  
10  
100  
1000  
: [  
10000  
0.0  
0.5  
OUTPUT CURRENT Io2 A  
[ ]  
1.0  
1.5  
2.0  
2.5  
FREQUENCY f Hz  
Fig. 7 Load Stability  
Fig. 8 I/O Voltage Difference (3.3 V output)  
Fig. 9 R.R. Characteristics  
(ein = 0.5 Vp-p, Io = 5 mA)  
(Vcc = 3.8 V, Io1 = 0 1 A)  
1.506  
1.504  
1.502  
1.500  
1.498  
1.496  
1.494  
1.492  
1.490  
3.325  
3.315  
3.305  
3.295  
3.285  
3.275  
3.265  
3.255  
3.245  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
-30 -15  
0
15 30 45 60 75  
-30 -15  
0
15 30 45 60 75  
-30 -15  
0
15 30 45 60 75  
TEMPERATURE Ta  
[℃]  
TEMPERATURE Ta  
[℃]  
TEMPERATURE Ta  
[℃]  
Fig. 12 Circuit Current vs Temperature  
(Io = 0 mA)  
Fig. 10 Output Voltage vs Temperature  
(3.3 V output)  
Fig. 11 Output Voltage vs Temperature  
(1.5 V output)  
www.rohm.com  
3/8  
2011.03 - Rev.B  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
BA33D15HFP Electrical Characteristics Curves (Unless otherwise specified, Ta = 25, Vcc = 5V)  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
0
0
2
4
6
8
10 12 14 16 18  
0.0  
0.1  
OUTPUT CURRENT Io1 A  
[ ]  
0.2  
0.3  
0.4  
0.5  
0.0  
0.1  
OUTPUT CURRENT Io2 A  
[ ]  
0.2  
0.3  
0.4  
0.5  
SUPPLY VOLTAGE Vcc V  
[ ]  
Fig. 15 Circuit Current vs Load Current Io2  
Fig. 13 Circuit Current  
(with no load)  
Fig. 14 Circuit Current vs Load Current Io1  
(Io2 = 0 500 mA)  
(Io1 = 0 500 mA)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4  
SUPPLY VOLTAGE Vcc V  
SUPPLY VOLTAGE Vcc V  
[ ]  
OUTPUT CURRENT Io1 A  
[ ]  
Fig. 18 Load Stability  
(3.3 V output)  
Fig. 16 Input Stability  
(3.3 V output, Io1 = 250 mA)  
Fig. 17 Input Stability  
(1.5 V output, Io2 = 250 mA)  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Vo2(1.5V output)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vo1(3.3V output)  
100  
1000  
10000  
0.0  
0.1  
OUTPUT CURRENT Io1 A  
[ ]  
0.2  
0.3  
0.4  
0.5  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
OUTPUT CURRENT Io1 A  
FREQUENCY f Hz  
: [  
[ ]  
Fig. 21 R.R. Characteristics  
(ein = 1 Vp-p, Io = 100 mA)  
Fig. 20 I/O Voltage Difference  
(Vcc = 3.135 V, 3.3 V output)  
Fig. 19 Load Stability  
(1.5 V output)  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
1050  
950  
850  
750  
650  
550  
450  
350  
250  
1.60  
1.55  
1.50  
1.45  
1.40  
-25 -10  
5
20 35 50 65 80 95  
-25  
-5  
15  
35  
55  
75  
95  
-25 -10  
5
20 35 50 65 80 95  
TEMPERATURE Ta  
TEMPERATURE Ta  
[℃]  
[℃]  
TEMPERATURE Ta  
[℃]  
Fig. 22 Output Voltage vs Temperature  
(3.3 V output)  
Fig. 23 Output Voltage vs Temperature  
(1.5 V output)  
Fig. 24 Circuit Current vs Temperature  
(Io = 0 mA)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
4/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
Block Diagrams / Standard Example Application Circuits  
BA3258HFP  
VO1  
5
Pin No.  
Pin name  
Vcc  
Function  
3.3V  
Current  
Limit  
1
2
Power supply pin  
CO1  
V02_S  
GND  
Vo2  
Output voltage monitor pin  
GND pin  
1μF  
3
4
1.5 V output pin  
3.3 V output pin  
GND pin  
VO2  
4
1.5V  
5
Vo1  
Current  
Limit  
GND  
3
CO2  
FIN  
GND  
1μF  
GND  
Thermal  
FIN  
2
TOP VIEW  
Shutdown  
External capacitor  
setting range  
V02_S  
Vcc  
PIN  
Vcc (1 Pin) Approximately 3.3µF  
Vo1 (5 Pin) 1µF to 1000µF  
Vo2 (4 Pin) 1µF to 1000µF  
VIN  
VREF  
1
CIN  
3.3μF  
1
2
3
4
5
Fig.25 BA3258HFP Block Diagram  
HRP5  
BA33D□□Series  
GND(Fin)  
Vcc  
Pin No.  
Pin name  
Vcc  
Function  
Power supply pin  
N.C. pin  
Vcc  
1
2
Reference  
Voltage  
N.C.  
Current  
Limit  
3
GND  
Vo1  
GND pin  
Sat.  
Prevention  
4
3.3 V output pin  
1.5 V/1.8 V output pin  
GND pin  
5
Vo2  
FIN  
GND  
Vcc  
Vcc  
*The N.C. pin is not electrically connected internally  
TOP VIEW  
Thermal  
Shut Down  
Current  
Limit  
External capacitor  
setting range  
PIN  
Sat.  
Prevention  
Vcc (1 Pin) Approximately 3.3µF  
Vo1 (4 Pin) 10µF to 1000µF  
Vo2 (5 Pin) 10µF to 1000µF  
1
2
N.C.  
3
4
5
1
2
3
4
5
Vcc  
GND  
Vo1  
Vo2  
Co  
10μF  
HRP5  
Co  
10μF  
1μF  
Fig.26 BA33D□□ Series Block Diagram  
Input / Output Equivalent Circuits  
BA3258HFP  
BA33D□□Series  
Vcc  
Vcc  
Vcc  
Vo1/Vo2  
Vo2  
Vo2_S  
Vo1  
Fig. 27 BA3258HFP Input / Output Equivalent Circuit  
Fig. 28 BA33D□□Series Equivalent Circuit  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
5/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
Thermal Design  
If the IC is used under excessive power dissipation conditions, the chip temperature will rise, which will have an adverse  
effect on the electrical characteristics of the IC, such as a reduction in current capability. Furthermore, if the temperature  
exceeds Tjmax, element deterioration or damage may occur. Implement proper thermal designs to ensure that the power  
dissipation is within the permissible range in order to prevent instantaneous IC damage resulting from heat and maintain the  
reliability of the IC for long-term operation. Refer to the power derating characteristics curves in Fig. 29.  
Power Consumption (Pc) Calculation Method  
*Vcc: Applied voltage  
Vcc  
IP  
Vcc  
Io1: Load current on Vo1 side  
Io2: Load current on Vo2 side  
3.3 V output  
IO1  
Power consumption of 3.3V power transistor:  
Pc1 = (Vcc 3.3) Io1  
Power consumption of Vo2 power transistor:  
Pc2 = (Vcc Vo2) Io2  
Power consumption due to circuit current:  
Pc3 = Vcc Icc  
Power Tr  
Power Tr  
Vo1  
Icc: Circuit current  
Controller  
Vcc  
* The Icc (circuit current) varies with the load.  
(See reference data in Figs. 2, 3, 14, and 15.)  
IO2  
Vo2  
Icc  
1.5 V output or  
1.8 V output  
GND  
Pc = Pc1 + Pc2 + Pc3  
Refer to the above and implement proper thermal designs so that the IC will not be used under excessive power dissipation  
conditions under the entire operating temperature range.  
Calculation example (BA33D15HFP)  
Example: Vcc = 5V, Io1 = 200mA, and Io2 = 100mA  
Power consumption of 3.3V power transistor:  
Power consumption of 1.5V power transistor:  
Pc1 = (Vcc 3.3) Io1 = (5 3.3) 0.2 = 0.34W  
Pc2 = (Vcc 1.5) Io2 = (5 1.5) 0.2 = 0.35W  
Power consumption due to circuit current: Pc3 = Vcc Icc = 5 0.0085 = 0.0425 (W) (See Figs. 14 and 15)  
Implement proper thermal designs taking into consideration the dissipation at full power consumption  
(i.e., Pc1 + Pc2 + Pc3 = 0.34 + 0.35 + 0.0425 = 0.7325W).  
Explanation of External Components  
BA3258HFP  
1) Pin 1 (Vcc pin)  
Connecting a ceramic capacitor with a capacitance of approximately 3.3F between Vcc and GND as close to the pins  
as possible is recommended.  
2) Pins 4 and 5 (Vo pins)  
Insert a capacitor between the Vo and GND pins in order to prevent output oscillation. The capacitor may oscillate if  
the capacitance changes as a result of temperature fluctuations. Therefore, it is recommended that a ceramic  
capacitor with a temperature coefficient of X5R or above and a maximum capacitance change (resulting from  
temperature fluctuations) of 10% be used. The capacitance should be between 1F and 1,000µF. (Refer to Fig. 30)  
BA33D□□Series  
1) Pin 1 (Vcc pin)  
Insert a 1F capacitor between Vcc and GND. The capacitance will vary depending on the application. Check the  
capacitance with the application set and implement designing with a sufficient margin.  
2) Pins 4 and 5 (Vo pins)  
Insert a capacitor between the Vo and GND pins in order to prevent oscillation. The capacitance may vary greatly with  
temperature changes, thus making it impossible to completely prevent oscillation. Therefore, use a tantalum aluminum  
electrolytic capacitor with a low ESR (Equivalent Serial Resistance). The output will oscillate if the ESR is too high or too  
low, so refer to the ESR characteristcs in Fig. 31 and operate the IC within the stable operating region. If there is a  
sudden load change, use a capacitor with higher capacitance. A capacitance between 10F and 1,000F is  
recommended.  
Board size: 70 mm 70 1.6 mm (with a thermal via incorporated by the board)  
10  
10.0  
5.0  
10.0  
5.0  
4.0  
2.0  
Board surface area: 10.5 mm 10.5 mm  
Unstable region  
9
8
(1) 2-layer board (Backside copper foil area: 15 mm 15mm)  
(2) 2-layer board (Backside copper foil area: 70 mm 70 mm)  
(3) 4-layer board (Backside copper foil area: 70 mm 70mm)  
(3) 7.3 W  
(2) 5.5 W  
Unstable region  
2.0  
1.0  
7
6
5
1.0  
Stable region  
0.5  
0.2  
0.5  
0.2  
0.15  
0.1  
4
3
2
1
0
Stable region  
(1) 2.3 W  
0.1  
0.05  
0.05  
Unstable region  
0.02  
0.01  
0.02  
0.01  
0
25  
50  
75  
100 125 150  
0
200  
400 600  
Io [mA]  
800 1000  
0
200  
400 600  
Io [mA]  
800 1000  
AMBIENT TEMPERATURETa[℃]  
Fig. 29 Thermal Derating Curves  
Fig. 30 BA3258HFP ESR characteristics  
Fig. 31 BA33DSeries ESR  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
6/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
Notes for use  
1) Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break  
down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated  
values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.  
2) GND voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
3) Thermal Design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
4) Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
5) Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.  
6) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or  
removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic  
measure. Use similar precaution when transporting or storing the IC.  
7) Regarding input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example, the relation between each potential is as follows:  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes  
operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.  
8) Ground Wiring Pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the  
GND wiring pattern of any external components, either.  
9) Thermal Shutdown Circuit (TSD)  
This IC incorporates a built-in thermal shutdown circuit for protection against thermal destruction. Should the junction  
temperature (Tj) reach the thermal shutdown ON temperature threshold, the TSD will be activated, turning off all output  
power elements. The circuit will automatically reset once the chip's temperature Tj drops below the threshold temperature.  
Operation of the thermal shutdown circuit presumes that the IC's absolute maximum ratings have been exceeded.  
Application designs should never make use of the thermal shutdown circuit.  
10) Overcurrent protection circuit  
An overcurrent protection circuit is incorporated in order to prevention destruction due to short-time overload currents. Continued  
use of the protection circuits should be avoided. Please note that the current increases negatively impact the temperature.  
11) Damage to the internal circuit or element may occur when the polarity of the Vcc pin is opposite to that of the other pins in  
applications. (I.e. Vcc is shorted with the GND pin while an external capacitor is charged.) Use a maximum capacitance of  
1000 mF for the output pins. Inserting a diode to prevent back-current flow in series with Vcc or bypass diodes between  
Vcc and each pin is recommended.  
Bypass diode  
Resistor  
Transistor (NPN)  
(Pin B)  
GND  
B
Diode for preventing back current flow  
C
Pin A)  
Pin B)  
C
E
E
B
VCC  
GND  
N
Output pin  
P
P
P+  
P+  
P+  
P+  
Parasitic elements or  
transistors  
N
N
N
N
N
N
(Pin A)  
P substrate  
P
ara  
si  
tic  
elements  
x
Parasitic elements  
GND  
GND  
GND  
Fig32 Bypass diode  
Fig. 33 Example of Simple Bipolar IC Architecture  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
7/8  
2011.03 - Rev.B  
Technical Note  
BA3258HFP,BA33D15HFP,BA33D18HFP  
Ordering part number  
B
A
3
5
2
8
H
F
P
-
T
R
Part No.  
Part No.  
3528  
33D15  
33D18  
Package  
HFP:HRP5  
Packaging and forming specification  
TR: Embossed tape and reel  
(HRP5)  
HRP5  
<Tape and Reel information>  
9.395 0.125  
(MAX 9.745 include BURR)  
Tape  
Embossed carrier tape  
2000pcs  
8.82 0.1  
(6.5)  
1.905 0.1  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
1
2
3
4
5
1.2575  
+5.5°  
4.5°  
4.5°  
+0.1  
0.27  
0.05  
S
0.73 0.1  
0.08  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
1.72  
S
Reel  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
8/8  
2011.03 - Rev.B  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BA33D18HFP-TR

Dual Output Fixed Output LDO Regulators
ROHM

BA33DD0FP

Fixed Positive LDO Regulator, 3.3V, PSSO2, LEAD FREE, TO-252, 3 PIN
ROHM

BA33DD0FP-E2

Fixed Positive LDO Regulator, 3.3V, PSSO2, LEAD FREE, TO-252, 3 PIN
ROHM

BA33DD0FP-TR

Fixed Positive LDO Regulator, 3.3V, PSSO2, LEAD FREE, TO-252, 3 PIN
ROHM

BA33DD0FP-V5

Fixed Positive LDO Regulator, 3.3V, PSSO2, LEAD FREE, TO-252, 3 PIN
ROHM

BA33DD0HFP

Fixed Positive LDO Regulator, 3.3V, PSSO5, LEAD FREE, HRP-5
ROHM

BA33DD0HFP-E2

Fixed Positive LDO Regulator, 3.3V, PSSO5, LEAD FREE, HRP-5
ROHM

BA33DD0HFP-TR

Fixed Positive LDO Regulator, 3.3V, PSSO5, LEAD FREE, HRP-5
ROHM

BA33DD0HFP-V5

Fixed Positive LDO Regulator, 3.3V, PSSO5, LEAD FREE, HRP-5
ROHM

BA33DD0T

2A Low Dropout Voltage Regulator
ROHM

BA33DD0T-E2

Fixed Positive LDO Regulator, 3.3V, 0.7V Dropout, BIPolar, LEAD FREE, TO-220FP, 3 PIN
ROHM

BA33DD0T-TR

Fixed Positive LDO Regulator, 3.3V, 0.7V Dropout, BIPolar, LEAD FREE, TO-220FP, 3 PIN
ROHM