BA33DD0WFP-V5 [ROHM]

Fixed Positive LDO Regulator, 3.3V, PSSO4, LEAD FREE, TO-252, 5 PIN;
BA33DD0WFP-V5
型号: BA33DD0WFP-V5
厂家: ROHM    ROHM
描述:

Fixed Positive LDO Regulator, 3.3V, PSSO4, LEAD FREE, TO-252, 5 PIN

文件: 总9页 (文件大小:1092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
3-terminal Regulator LDO Regulator Series  
Standard Fixed Output  
LDO Regulator  
BA□□DD0,BA□□DD0W,BA□□CC0 and BA□□CC0W Series  
General Description  
BA□□DD0/CC0 are low-saturation regulators, available for output s up to 2A/1A. ROHM has a wide output voltage range  
and package lineup with and without shutdown switches. This IC has a built-in over-current protection circuit that prevents  
the destruction of the IC due to output short circuits, a thermal shut-down circuit that protects the IC from damage due to  
overloading and an over-voltage protection circuit that protects the IC from surges generated in the power supply line of the  
IC.  
Features  
1) Maximum output current : 2A (BA□□DD0),  
1A(BA□□CC0)  
5) Built-in thermal shutdown circuit for protecting the  
IC from damage due to overloading  
2) ±1% highly accurate output voltage (BA□□DD0)  
3) Low saturation with PNP output  
4) Built-in over-current protection circuit that prevents  
the destruction of the IC due to output short circuits  
6) Built-in over- voltage protection circuit that prevents  
the destruction of the IC due to power supply  
surges  
7) TO220FP and HRP5 packaging (BA□□DD0)  
TO220FP and TO252 packaging(BA□□CC0)  
Applications  
Used in DSP power supplies for DVD and CD players, FPDs, televisions, personal computers or any other consumer device  
Line up  
1A BA□□CC0 Series  
Part Number  
BA□□CC0WT  
BA□□CC0WT-V5  
BA□□CC0WFP  
BA□□CC0T  
3.0  
3.3  
5.0  
6.0  
7.0  
8.0  
9.0  
10  
12  
15  
Package  
TO220FP-5  
TO220FP-5V5)  
TO252-5  
TO220FP-3  
TO252-3  
BA□□CC0FP  
2A BA□□DD0 Series  
Part Number  
BA□□DD0WT  
BA□□DD0WHFP  
BA□□DD0T  
1.5  
1.8  
2.5  
3.0  
3.3  
5.0  
9.0  
12  
16  
Package  
TO220FP-5  
HRP5  
TO220FP-3  
Part NumberBA□□CC0□□  
Part NumberBA□□DD0□□  
b c  
a
b c  
a
Symbol  
Details  
Symbol  
Details  
Output Voltage Designation  
Output Voltage Designation  
Output Voltage(V)  
Output Voltage(V)  
Output Voltage(V)  
Output Voltage(V)  
□□  
03  
□□  
08  
□□  
15  
□□  
50  
3.0V(Typ.)  
3.3V(Typ.)  
5.0V(Typ.)  
6.0V(Typ.)  
7.0V(Typ.)  
8.0V(Typ.)  
9.0V(Typ.)  
10.0V(Typ.)  
12.0V(Typ.)  
15.0V(Typ.)  
1.5V(Typ.)  
1.8V(Typ.)  
2.5V(Typ.)  
3.0V(Typ.)  
3.3V(Typ.)  
5.0V(Typ.)  
9.0V(Typ.)  
12.0V(Typ.)  
16.0V(Typ.)  
033  
05  
09  
18  
90  
a
a
J0  
25  
J2  
06  
J2  
30  
J6  
07  
J5  
33  
Switch:”With W”:Shutdown switch included  
”Without W”:Shutdown switch not included  
Switch:”With W”:Shutdown switch included  
”Without W”:Shutdown switch not included  
b
c
b
c
Package  
T:TO220FP-5V5TO220FP-3  
FP:TO252-5TO252-3  
Package  
T:TO220FP-5TO220FP-3  
HFP:HRP5  
Oct.2007  
Absolute Maximum Ratings(Ta=25)  
Parameter  
Symbol  
Vcc  
Limits  
-0.3+35  
Unit  
V
1  
Input Power Supply Voltage  
2300HRP5)  
1300TO252-5)  
1200TO252-3)  
2000TO220FP-3,5)  
-40+125  
2  
Power Dissipation  
Pd  
mW  
Operating Temperature Range  
Ambient Storage Temperature  
Junction Temperature  
Topr  
Tstg  
V
-55+150  
Tjmax  
VCTL  
+150  
3  
4  
Output Control Terminal Voltage  
-0.3+Vcc  
Vcc peak  
+50  
V
Voltage Applied to the Tip  
*1 Must not exceed Pd  
*2 HRP5 : In cases in which Ta25when a 70mm×70mm×1.6mm glass epoxy board is used, the power is reduced by 18.4 mW/.  
TO252FP-3 : In cases in which Ta25when a 70mm×70mm×1.6mm glass epoxy board is used, the power is reduced by 9.6 mW/.  
TO252FP-5 : In cases in which Ta25when a 70mm×70mm×1.6mm glass epoxy board is used, the power is reduced by 10.4 mW/.  
TO220FP-5 : No heat sink. When Ta25, the power is reduced by 16 mW/.  
*3 Only for models with shutdown switches.  
*4 Applied voltage : 200msec or less (tr1msec)  
tr1msec  
50V  
35V  
MAX200msec  
(Voltage Supply more than 35V)  
0V  
Recommended Operating Range (Ta=25)  
Parameter  
Symbol  
Min.  
4.0  
3.0  
Max.  
25.0  
25.0  
1
Unit  
V
Input Power  
BA□□CC0  
BA□□DD0  
BA□□CC0  
BA□□DD0  
Vcc  
Supply Voltage  
Output Current  
Io  
A
V
2
Output Control Terminal Voltage  
VCTL  
0
Vcc  
Electrical Characteristics(ABRIDGED)  
BA□□CC0 Series (unless specified otherwise, Ta=25, VCTL=5.0V(only with switch), Io=500mA,and Vcc=VccD5  
)
Parameter  
Symbol  
Vo  
Min.  
Typ.  
Vo  
Max.  
Vo×1.02  
10  
Unit  
V
Conditions  
Refer to the lineup for Vo  
Output Voltage  
Vo×0.98  
Circuit Current at Shutdown  
Minimum I/O Difference  
Output Current Capacity  
Input Stability  
Isd  
1.0  
0
μA VCTL=0V  
Vd  
0.3  
0.5  
V
Vcc= 0.95×Vo  
Io  
A
Reg.I  
Reg.L  
TCVO  
20  
100  
mV Vcc= (Vo+1)V 25V  
mV Io=5mA1A  
%/Io=5mA ,Tj=0~125℃  
Load Stability  
50  
100  
Output Voltage Temperature Coefficient6  
±0.02  
BA00DD0□□ series (unless specified otherwise, Ta=25, VCTL=3V(only with switch), Io=500mA,and Vcc=VccD7  
)
Parameter  
Symbol  
Vo  
Min.  
Typ.  
Vo  
Max.  
Vo×1.01  
10  
Unit  
V
Conditions  
Io=200mA  
Output Voltage  
Vo×0.99  
Circuit Current at Shutdown  
Minimum I/O Difference  
Output Current Capacity  
Input Stability  
Isd  
2.0  
0
μA VCTL=0V  
Vd  
0.45  
0.7  
V
A
Vcc= 0.95×Vo, Io=2A  
Io  
Reg.I  
Reg.L  
TCVO  
15  
50  
mV Vcc= VccD725 V,Io=200mA  
Load Stability  
50  
200  
mV Io=5mA2A  
Output Voltage Temperature Coefficient6  
±0.02  
%/Io=5mA ,Tj=0~125℃  
*5 Vo=3.0V : Vcc= 8.0V , Vo=3.3V : Vcc=8.3V , Vo=5.0V : Vcc=10.0V , Vo=6.0V : Vcc=11.0V , Vo=7.0V : Vcc=12.0V,  
Vo=8.0V : Vcc= 13.0V , Vo=9.0V : Vcc=14.0V , Vo=10.0V : Vcc=15.0V , Vo=12.0V : Vcc=17.0V , Vo=15.0V : Vcc=20.0V  
*6 Design guarantee(100% shipping inspection not performed)  
*7 Vo=1.5V , 1.8V , 2.5V , 3.0V : Vcc=4.0V , Vo=3.3V , 5.0V : Vcc=7.0V , Vo=9.0V : Vcc=12.0V  
Vo=12V : Vcc=14V , Vo=16V : Vcc=18V  
2/8  
Reference Data  
BA□□CC0□□(BA33CC0WT)  
(Unless specified otherwise, Vcc=8.3V, Vo=3.3V, VCTL=5.0V, and Io=0mA)  
4
3.5  
3
4
3.5  
3
3
2.5  
2
[BA033CC0WFP]  
[BA033CC0WT]  
[BA033CC0WFP]  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
SUPPLY VOLTAGE Vcc [V]  
SUPPLY VOLTAGE Vcc [V]  
SUPPLY VOLTAGE : Vcc [V]  
Fig.2 Input Stability  
Fig.1 Circuit current  
Fig.3 Input Stability  
Io=500mA)  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
[BA033CC0WT]  
[BA033CC0WT]  
[BA033CC0WT]  
2.5  
2
1.5  
1
0.5  
0
0
100 200 300 400 500 600 700 800 900 1000  
OUTPUT CURRENT : IO [mA]  
0
200 400  
600 800 1000 1200 1400 1600 1800 2000  
10  
100  
1000  
10000  
100000  
1000000  
OUTPUT CURRENT: IO[mA]  
FREQUENCY : f [Hz]  
Fig.5 Input/Output Voltage Difference  
Fig.6 Ripple Rejection Characteristics  
Fig.4 Load Stability  
IOUT0V=1A)  
Io=100mA)  
1000  
200  
4.5  
4
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
[BA033CC0WT]  
[BA033CC0WT]  
[BA033CC0WT]  
150  
100  
50  
3.5  
3
2.5  
2
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
0
100 200 300 400 500 600 700 800 900 1000  
OUTPUT CURRENT:Io(mA)  
0
2
4
6
8
10  
12  
14 16  
18  
20  
CONTROL VOLTAGE:Vctl(V)  
AMBIENT TEMPERATURE : Ta [℃]  
Fig.7 Output Voltage  
Fig.8 Circuit Current by load Level  
Fig.9 CTL Voltage vs. CTL Current  
Temperature Characteristics  
(IOUT=0mA1A)  
4
4
8
7
6
5
4
3
2
1
0
[BA033CC0WFP]  
[BA033CC0WFP]  
3.5  
3
3.5  
[BA033CC0WFP]  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
130  
140  
150  
160  
170  
180  
190  
0
5
10 15  
20 25 30 35 40  
0
2
4
6
8
10 12 14 16 18 20 22 24  
AMBIENT TEMPERATURE : Ta [℃]  
SUPPLY VOLTAGE : Vcc [V]  
CONTROL VOLTAGE : Vctl [V]  
Fig.10 CTL Voltage vs. Output Voltage  
Fig.12 Thermal Shutdown  
Circuit Characteristics  
Fig.11 Overvoltage Operating  
Characteristics(Io=200mA)  
3/8  
Reference Data  
BA□□DD0□□(BA50DD0WT)  
(Unless specified otherwise, Vcc=7.0V, Vo=5.0V, VCTL=3.0V, and Io=0mA)  
8
7.5  
7
6.5  
6
6
5
4
3
2
1
0
8
7.5  
7
6.5  
6
[BA50DD0WT]  
[BA50DD0WT]  
[BA50DD0WT]  
5.5  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SUPPLY VOLTAGE Vcc [V]  
SUPPLY VOLTAGE : Vcc [V]  
SUPPLY VOLTAGE Vcc [V]  
Fig.15 Input Stability  
Fig.13 Circuit Current  
Fig.14 Input Stability  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
60  
50  
40  
30  
20  
10  
0
[BA50DD0WT]  
7.5  
7
[BA50DD0WT]  
[BA50DD0WT]  
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
2
10  
100  
1000  
10000  
100000  
1000000  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
OUTPUT CURRENT : IOUT [A]  
FREQUENCY : f [Hz]  
OUTPUT CURRENT : IOUT [A]  
Fig.16 Load Stability  
Fig.18 Ripple Rejection Characteristics  
Fig.17 Input/Output Voltage Difference  
Vcc=4.75V)  
Iout=100mA)  
5.2  
5.1  
5
200  
800  
[BA50DD0WT]  
[BA50DD0WT]  
[BA50DD0WT]  
180  
700  
600  
500  
400  
300  
200  
100  
0
160  
140  
120  
100  
80  
60  
4.9  
4.8  
40  
20  
0
-4 -3 -2 -1  
0
10 20 30 40 50 60 70 80 90 10 11  
0
0.5  
1
1.5  
2
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
0
0
0
0
0
OUTPUT CURRENT : IOUT [A]  
AMBIENT TEMPERATURE : Ta [℃]  
CONTROL VOLYAGE:VctlV)  
Fig.21 CTL Voltage vs. CTL Current  
Fig.19 Output Voltage  
Fig.20 Circuit Current by Load Level  
Temperature Characteristics  
(IOUT=0mA2A)  
8
7
6
5
4
3
2
1
8
8
[BA50DD0WT]  
[BA50DD0WT]  
[BA50DD0WT]  
7
6
5
4
3
2
1
0
6
4
2
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
5
10  
15  
20 25  
30  
SUPPLY VOLTAGE : Vcc [V]  
35  
40  
130  
140  
150  
160  
170  
AMBIENT TEMPERATURE : Ta [℃]  
180  
190  
CONTROL VOLTAGE : VCTL [V]  
Fig.22 CTL Voltage vs. Output Voltage  
Fig.23 Overvoltage Operating  
Fig.24 Thermal Shutdown  
Io=200A)  
1
4/8  
Block Diagrams  
BA□□CC0WFP/ BA□□DD0WHFP/ BA□□CC0WT(V5)/ BA□□DD0WT  
GND  
(TO252-5HRP5)  
TOP VIEW  
Fin  
Vcc  
FIN  
PIN No.  
Pin Name  
CTL  
Function  
Output voltage ON/OFF control  
Power supply voltage input  
Unconnected terminal/GND  
Voltage output  
Driver  
Vref  
1
2
R2  
R1  
Vcc  
1
2
3 4 5  
1 2 3 4 5  
HRP5  
1
3
N.C/GND  
OUT  
*
TO252-5  
TOP VIEW  
TOP VIEW  
4
OVP  
2
TSD  
OCP  
5
N.C  
Unconnected terminal  
GND  
2
Fin  
GND  
*
3
4
1
5
1 TO252-5 is N.C.,and TO220FP-5,-5(V5),and HRP5 are GND  
2 Only for TO252-5 and HRP5  
CTL  
Vcc  
N.C.  
OUT  
N.C.  
(TO252-5)  
GND  
(TO220FP-5,-5(V5),HRP5)  
1 2 345  
1 2 345  
TO220FP-5  
TO220FP-5V5)  
Fig.25  
BA□□CC0T/ BA□□CC0FP/ BA□□DD0T  
GND  
(TO252-3)  
Fin  
Vcc  
TOP VIEW  
FIN  
TOP VIEW  
Driver  
Vref  
PIN No.  
Pin Name  
Vcc  
Function  
R2  
R1  
1
2
Power supply voltage input  
N.C/GND  
OUT  
Unconnected terminal/GND*1  
3
Voltage output  
OVP  
TSD  
OCP  
1
2
3
2
Fin  
GND  
GND  
*
1
2 3  
TO252-3  
TO220FP-3  
1 TO252-3 is N.C.,and TO-220FP-3,is GND  
2 Only for TO252-3 and HRP5  
1
3
2
Vcc  
N.C.  
(TO252-3)  
GND  
(TO220FP-3)  
OUT  
Fig.26  
Input / Output Equivalent Circuit Diagrams  
<
BA□□DD0 Series  
>
<
BA□□CC0 Series  
>
Vcc  
Vcc  
Vcc  
25kΩ  
10kΩ  
CTL  
OUT  
39kΩ 2kΩ  
31kΩ  
CTL  
OUT  
25kΩ  
R2  
R1  
R2  
R1  
Fig.27  
Fig.28  
Thermal Design  
HRP-5  
TO220FP-5  
TO252-5  
2.0  
10  
25  
20  
15  
10  
5
Board size : 70×70×1.6 3 board contains a thermal via)  
Board front copper foil area : 10.5×10.5 2  
1When using a maximum heat sick : θj-c=6.25(/W)  
2When using an IC alone : θj-6=62.5(/W)  
Mounted on a Rohm standard board  
Board size : 70×70×1.6 ㎜  
Copper foil area :7×7 ㎜  
9
8
7
6
5
4
3
2
1
0
2-layer board (back surface copper foil area :15×15 2  
2-layer board (back surface copper foil area :70×70 2  
4-layer board (back surface copper foil area :70×70 2  
)
)
)
TO252-5θja=96.2(/W)  
1.6  
1.2  
0.8  
0.4  
0.0  
120.0  
7.3W  
1.30  
5.5W  
2.3W  
22.0  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient temperature:Ta(℃)  
Ambient temperature:Ta(℃)  
Ambient temperature:Ta(℃)  
Fig.29  
Fig.30  
Fig.31  
When using at temperatures over Ta=25, please refer to the heat reducing characteristics shown in Fig.29 through 31. The IC  
characteristics are closely related to the temperature at which the IC is used and if the temperature exceeds the maximum  
junction temperature TjMAX., the elements may be damaged or destroyed. From the standpoints of instantaneous destruction and  
long-term operating reliability, it is necessary give sufficient consideration to IC heat. In order to protect the IC from thermal  
damage, it is necessary to operate it at temperatures lower than the maximum junction temperature TjMAX of the IC.  
5/8  
Fig.30 shows the acceptable loss and heat reducing characteristics of the TO220FP package The portion shown by the  
diagonal line is the acceptable loss range that can be used with the IC alone. Even when the ambient temperature Ta is a normal  
temperature (25), the chip (junction) temperature Tj may be quite high so please operate the IC at temperatures less than the  
acceptable loss Pd.  
Vcc:  
Vo:  
Io:  
Input voltage  
Output voltage  
Load current  
Circuit current  
The method of calculating the power consumption Pc(W) is as follows.  
Pc = (Vcc-Vo) × Io Vcc × Icca  
Acceptable loss PdPc  
Icca:  
Solving this for load current IO in order to operate within the acceptable loss:  
Pd – Vcc×Icca  
Io≦  
VccVo  
Please refer to Figs.8 and 20 for Icca.)  
It is then possible to find the maximum load current IoMAX with respect to the applied voltage Vcc at the time of thermal design.  
Calculation Example  
Example 1) When Ta=85, Vcc=8.3V, Vo=3.3V, BA33DD0WT  
1.048.3×Icca  
Io≦  
With the IC alone : θja=62.5/W -16mW/℃  
25=2000mW 85=1040mW  
5
Io200mA (Icca : 2mA)  
Please refer to the above information and keep thermal designs within the scope of acceptable loss for all operating  
temperature ranges.  
The power consumption Pc of the IC when there is a short circuit (short between Vo and GND) is :  
Pc=Vcc×(IccaIshort)  
Ishort : Short circuit current  
Peripheral Circuit Considerations  
Vcc Terminal  
Please attach a capacitor (greater than 0.33μF) between the Vcc and GND.  
The capacitance values will differ depending on the application, so please take this into account when configuring the  
terminal.  
GND Terminal  
Please be sure to keep the set ground and IC ground at the same potential level so that a potential difference does not arise  
between them.  
If a potential difference arises between the set ground and the IC ground, the preset voltage will not be outputted, causing  
the system to become unstable. Therefore, please reduce the impedance by making the ground patterns as wide as  
possible and by reducing the distance between the set ground and the IC ground as much as possible.  
CTL Terminal  
The CTL terminal is turned ON at 2.0V and higher and OFF at 0.8V and lower within the operating power supply voltage  
range.  
The power supply and the CTL terminal may be started up and shut down in any order without problems.  
Vo Terminal  
100  
100  
Unstable operating region  
Unstable operating region  
10  
1
10  
Stable operating region  
OUT  
Stable operating region  
IC  
22μF  
1
Unstable operating region  
Unstable operating region  
0.1  
1
0.1  
200  
600  
800  
1000  
400  
100  
0
10  
1000  
OUTPUT CURRENTlo(mA)  
OUTPUT CURRENTlo(mA)  
Fig.32 Output Equivalent Circuit  
Fig.33 ESR-Io Characteristics  
Fig.34 ESR vs Io Characteristics  
(BA□□CC0,22μF)  
BA□□DD0,22μF)  
Please attach an anti-oscillation capacitor between Vcc and GND. The capacitance of the capacitor may significantly change  
due to factors such as temperature changes, making it impossible to completely stop oscillations. Please use a tantalum  
capacitor or aluminum electrolysis capacitor with favorable characteristics and small internal series resistance (ESR) even at  
low temperatures. The output fluctuates regardless of whether the ESR is large or small. Please use the IC within the stable  
operating region while referring to the ESR characteristics reference data shown in Figs.32 through 34. In applications where  
there are sudden load fluctuations, the use of a capacitor with large capacitance is recommended.  
Below figure , it is ESR-to-Io stability Area characteristics ,measured by 22μF-ceramic-capacitor and resistor connected in  
series.  
This characteristics is not equal value perfectly to 22μF-aluminum electrolytic capacitor in order to measurement  
method.  
Note, however, that the stable range suggested in the figure depends on the IC and the resistance load involved, and can vary  
with the board’s wiring impedance, input impedance, and/or load impedance. Therefore, be certain to ascertain the final status  
of these items for actual use.  
Keep capacitor capacitance within a range of 22μF1000μF. It is also recommended that a 0.33μF bypass capacitor be  
connected as close to the input pin-GND as location possible. However, in situations such as rapid fluctuation of the input  
voltage or the load, please check the operation in real application to determine proper capacitance.  
6/8  
Other Points of Caution  
1)Protection Circuits  
Over-current Protection Circuit  
A built-in over-current protection circuit corresponding to the current capacity prevents the destruction of the IC when there  
are load shorts. This protection circuit is a “7”-shaped current control circuit that is designed such that the current is restricted  
and does not latch even when a large current momentarily flows through the system with a high-capacitance capacitor.  
However, while this protection circuit is effective for the prevention of destruction due to unexpected accidents, it is not  
suitable for continuous operation or transient use. Please be aware when creating thermal designs that the overcurrent  
protection circuit has negative current capacity characteristics with regard to temperature (Refer to Figs.4 and 16).  
Thermal Shutdown Circuit (Thermal Protection)  
This system has a built-in temperature protection circuit for the purpose of protecting the IC from thermal damage. As shown  
above, this must be used within the range of acceptable loss, but if the acceptable loss happens to be continuously exceeded,  
the chip temperature Tj increases, causing the temperature protection circuit to operate.  
When the thermal shutdown circuit operates, the operation of the circuit is suspended. The circuit resumes operation  
immediately after the chip temperature Tj decreases, so the output repeats the ON and OFF states (Please refer to Figs.12  
and 24 for the temperatures at which the temperature protection circuit operates).  
There are cases in which the IC is destroyed due to thermal runaway when it is left in the overloaded state. Be sure to avoid  
leaving the IC in the overloaded state.  
Reverse Current  
In order to prevent the destruction of the IC when a reverse current flows through the IC, it is recommended that a diode  
be placed between the Vcc and Vo and a pathway be created so that the current can escape (Refer to Fig.35).  
2) This IC is bipolar IC that has a P-board (substrate) and P+ isolation layer  
between each devise, as shown in Fig.36. A P-N junction is formed between  
Reverse current  
this P-layer and the N-layer of each device, and the P-N junction operates as a  
parasitic diode when the electric potential relationship is GND> Terminal A,  
OUT  
Vcc  
GND> Terminal B, while it operates as a parasitic transistor when the electric  
potential relationship is Terminal B GND> Terminal A. Parasitic devices are  
structurally inevitable in the IC. The operation of parasitic devices induces  
mutual interference between circuits, causing malfunctions and eventually the  
destruction of the IC. It is necessary to be careful not to use the IC in ways that  
would cause parasitic elements to operate. For example, applying a voltage  
that is lower than the GND (P-board) to the input terminal.  
CTL  
GND  
Fig. 36:Bypass diode  
Transistor (NPN)  
B
Resistor  
(Pin A)  
(Pin B)  
O
(Pin B)  
E
C
B
GND  
E
N
P+  
P+  
P
N
GND  
P
P+  
Parasitic element  
or transistor  
N
P
N
P+  
N
N
N
Parasitic element  
GND  
P
(Pin A)  
Parasitic element  
GND  
Parasitic element  
or transistor  
GND  
Fig. 37: Example of the basic structure of a bipolar IC  
Part Number Selection  
H P  
0
F
B A  
D D  
W
2
33  
E
Output  
voltage  
Current capacity  
CC0 : 1A  
DD0 : 2A  
ROHM  
model name  
Shutdown switch Package  
Package specification  
W : With switch  
None : Without  
switch  
T : TO220-3,5  
F P : TO252-3,5  
HFP : HRP5  
TR : Embossed taping(HRP5)  
E2 : Embossed taping(TO252-3,5)  
None : Tube container  
V5 :Foaming(V5 only)  
Unit:mm)  
Unit:mm)  
Unit:mm)  
TO252-3  
TO252-5  
7/8  
HRP5  
Package SpecificationHRP5  
< Package Specification > TO252-3,5  
Embossed taping  
Package Form  
Package Quantity  
Embossed taping  
2000pcs  
Package Form  
Package Quantity  
2000pcs  
Package  
Orientation  
Package  
Orientation  
TR  
E2  
When the reek is held with the left hand and the tape is drawn out with the  
right hand, the No.1 pin of the product faces the upper right direction.  
When the reek is held with the left hand and the tape is drawn out with the  
right hand, the No.1 pin of the product faces the lower left direction.  
Pulling side  
Pulling side  
Reel  
No.1 pin  
Reel  
No.1 pin  
Unit:mm)  
Unit:mm)  
Unit:mm)  
TO220FP-5(V5)  
TO220FP-5  
TO220FP-3  
Package SpecificationTO220FP-5V5)  
Package SpecificationTO220FP-5  
Package SpecificationTO220FP-3  
Package  
Package  
Package  
Container tube  
Form  
Container tube  
Form  
Container tube  
Form  
Package  
Package  
Package  
500pcs  
Quantity  
500pcs  
Quantity  
500pcs  
Quantity  
The product orientation in each  
container tube is constant.  
The product orientation in each  
container tube is constant.  
The product orientation in each  
container tube is constant.  
Package  
Orientation  
Package  
Orientation  
Package  
Orientation  
*Please make orders in multiples of  
the package quantity.  
*Please make orders in multiples of  
the package quantity.  
*Please make orders in multiples of  
the package quantity.  
8/8  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY