BA4584FV-E2 [ROHM]

Operational Amplifier, 4 Func, 3000uV Offset-Max, BIPolar, PDSO14, ROHS COMPLIANT, SSOP-14;
BA4584FV-E2
型号: BA4584FV-E2
厂家: ROHM    ROHM
描述:

Operational Amplifier, 4 Func, 3000uV Offset-Max, BIPolar, PDSO14, ROHS COMPLIANT, SSOP-14

放大器 光电二极管
文件: 总43页 (文件大小:1800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Low Noise Operational Amplifiers  
BA4580Rxxx BA4584FV BA4584Rxx  
General Description  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.20mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.35mm  
BA4580Rxxx, BA4584FV, BA4584Rxx integrates two or  
four independent high voltage gain Op-Amps on a  
single chip. Especially, this series are suitable for any  
audio applications due to low noise and low distortion  
characteristics and are usable for other many  
applications by wide operating supply voltage range.  
SOP-J8  
TSSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
Features  
High Voltage Gain  
Low Input Referred Noise Voltage  
Low Distortion  
Wide Operating Supply Voltage Range  
Wide Temperature Range  
Key Specification  
Operating Supply Voltage Range (Split Supply):  
BA4580Rxxx, BA4584FV  
BA4584Rxx  
Slew Rate:  
Total Harmonic Distortion:  
±2V to ±16V  
±2V to ±9.5V  
5V/µs(Typ)  
0.0005%(Typ)  
Application  
Audio Application  
Consumer Electronics  
Input Referred Noise Voltage:  
Operating Temperature Range:  
BA4584FV  
5
nV/ Hz (Typ)  
-40°C to +85°C  
-40°C to +105°C  
BA4580Rxxx,BA4584Rxx  
Simplified Schematic  
VCC  
-IN  
OUT  
+IN  
VEE  
Figure 1. Simplified schematic  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111400  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
1/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Pin Configuration  
BA4580RF  
: SOP8  
BA4580RFJ  
BA4580RFVT  
BA4580RFVM  
: SOP-J8  
: TSSOP-B8  
: MSOP8  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
5
6
7
8
OUT1  
VCC  
8
1
CH1  
- +  
-IN1 2  
+IN1 3  
7 OUT2  
-IN2  
+IN1  
VEE  
6
CH2  
+ -  
+IN2  
-IN2  
4
5 +IN2  
VEE  
OUT2  
VCC  
BA4584RF  
BA4584FV, BA4584RFV  
: SOP14  
: SSOP-B14  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
+IN1  
VCC  
1
2
3
14 OUT4  
OUT1  
-IN1  
+IN1  
4
13  
12  
-IN4  
+IN4  
CH1  
- +  
CH4  
+ -  
5
+IN2  
-IN2  
6
VCC 4  
11  
10  
VEE  
+IN3  
-IN3  
OUT3  
7
OUT2  
OUT3  
-IN3  
5
6
7
+IN2  
-IN2  
8
+ -  
CH3  
- +  
CH2  
9
8
9
10  
11  
12  
13  
14  
+IN3  
VEE  
OUT2  
+IN4  
-IN4  
OUT4  
Package  
TSSOP-B8  
SOP8  
BA4580RF  
SOP-J8  
MSOP8  
SOP14  
SSOP-B14  
BA4584FV  
BA4584RFV  
BA4580RFJ  
BA4580RFVT BA4580RFVM  
BA4584RF  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
2/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Ordering Information  
B A 4  
5
8
x
x
x
x
x
-
x x  
Part Number  
BA4580Rxxx  
BA4584FV  
Package  
: SOP8  
SOP14  
FJ : SOP-J8  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP-J8/TSSOP-B8/SOP14/  
SSOP-B14)  
F
BA4584Rxx  
FV : SSOP-B14  
FVT : TSSOP-B8  
FVM : MSOP8  
TR: Embossed tape and reel  
(MSOP8)  
Line-up  
Operating  
Temperature  
Range  
Operating Supply  
Voltage Range  
(Split Supply)  
Supply  
Current  
(Typ)  
Slew  
Rate  
(Typ)  
Orderable  
Package  
Part Number  
-40°C to +85°C  
12mA  
SSOP-B14  
SOP8  
Reel of 2500 BA4584FV-E2  
Reel of 2500 BA4580RF-E2  
Reel of 2500 BA4580RFJ-E2  
±2.0V to ±16.0V  
±2.0V to ±9.5V  
SOP-J8  
6mA  
5V/µs  
TSSOP-B8 Reel of 3000 BA4580RFVT-E2  
-40°C to +105°C  
MSOP8  
Reel of 3000 BA4580RFVM-TR  
Reel of 2500 BA4584RF-E2  
Reel of 2500 BA4584RFV-E2  
SOP14  
11mA  
SSOP-B14  
Absolute Maximum Ratings (TA=25)  
Parameter  
Ratings  
Symbol  
Unit  
BA4580Rxxx  
BA4584FV  
+36  
BA4584Rxx  
Supply Voltage  
VCC-VEE  
SOP8  
V
0.78(Note1,7)  
0.67(Note2,7)  
0.62(Note3,7)  
0.59(Note4,7)  
-
-
-
-
-
SOP-J8  
TSSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
VID  
Power Dissipation  
PD  
W
-
0.61(Note5,7)  
0.87(Note6,7)  
-
Differential Input Voltage(Note 8)  
Input Common-mode Voltage Range  
Input Current(Note 9)  
+36  
V
V
VEE to VEE+36  
VICM  
II  
-10  
mA  
+4 to +32  
(±2 to ±16)  
+4 to +19  
(±2 to ±9.5)  
Operating Supply Voltage Range  
Vopr  
V
Output Current  
IOUT  
Topr  
±50  
mA  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
-40 to +105  
-40 to +85  
-55 to +150  
+150  
-40 to +105  
Tstg  
TJmax  
(Note 1) To use at temperature above TA25reduce 6.2mW/.  
(Note 2) To use at temperature above TA25reduce 5.4mW/℃  
(Note 3) To use at temperature above TA25reduce 5.0mW/℃  
(Note 4) To use at temperature above TA25reduce 4.8mW/℃  
(Note 5) To use at temperature above TA25reduce 4.9mW/℃  
(Note 6) To use at temperature above TA25reduce 7.0mW/℃  
(Note 7) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
(Note 8) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 9) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all destructive situations such as  
short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit protection measures, like adding a fuse, in case the IC is  
operated in a special mode exceeding the absolute maximum ratings.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
3/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Electrical Characteristics  
BA4580R (Unless otherwise specified VCC=+15V, VEE=-15V, TA=25)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Typ  
0.3  
Max  
3
Input Offset Voltage (Note 10)  
Input Offset Current (Note 10)  
Input Bias Current (Note 11)  
Large Signal Voltage Gain  
Maximum Output Voltage  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Supply Current  
VIO  
IIO  
mV  
nA  
nA  
dB  
V
RS10kΩ  
-
-
5
100  
110  
±13.5  
±13.5  
110  
110  
6
200  
-
-
IB  
500  
AV  
90  
±12  
±12  
80  
80  
-
-
-
RL10kΩ, OUT=±10V  
VOM  
VICM  
CMRR  
PSRR  
ICC  
RL2kΩ  
-
V
-
-
dB  
dB  
mA  
RS10kΩ  
RS10kΩ  
-
9
-
RL=, All Op-Amps, VIN+=0V  
Slew Rate  
SR  
-
5
V/μs RL2kΩ  
MHz f=10kHz  
MHz RL=2kΩ  
Gain Bandwidth Product  
Unity Gain Frequency  
GBW  
fT  
-
10  
-
-
5
-
AV=20dB, OUT=5Vrms  
RL=2kΩ  
f=1kHz, 20Hz~20kHz BPF  
Total Harmonic Distortion+ Noise  
Input Referred Noise Voltage  
THD+N  
-
0.0005  
-
%
-
-
-
5
-
-
-
nV/ Hz RS=100Ω, VI=0V, f=1kHz  
VN  
0.8  
110  
μVrms RIAA, RS=2.2 kΩ, 30kHz LPF  
Channel Separation  
CS  
dB  
R1=100Ω, f=1kHz  
(Note 10) Absolute value  
(Note 11) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
4/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584 (Unless otherwise specified VCC=+15V, VEE=-15V, TA =25)  
Limits  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
nA  
dB  
V
Condition  
Min.  
-
Typ.  
Max.  
3
Input Offset Voltage (Note 12)  
Input Offset Current (Note 12)  
Input Bias Current (Note 13)  
Large Signal Voltage Gain  
Maximum Output Voltage  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Supply Current  
0.3  
RS10kΩ  
IIO  
-
-
5
200  
-
-
IB  
100  
110  
500  
AV  
90  
-
-
RL10kΩ, OUT=±10V  
VOM  
VICM  
CMRR  
PSRR  
ICC  
±12 ±13.5  
±12 ±13.5  
RL2kΩ  
-
V
-
80  
80  
-
110  
110  
12  
-
dB  
dB  
mA  
RS10kΩ  
RS10kΩ  
-
18  
-
RL=, All Op-Amps, VIN+=0V  
Slew Rate  
SR  
-
5
V/μs RL2kΩ  
MHz f=10kHz  
MHz RL=2kΩ  
Gain Bandwidth Product  
Unity Gain Frequency  
GBW  
fT  
-
10  
-
-
5
-
AV=20dB, OUT=5Vrms  
RL=2kΩ  
f=1kHz, 20Hz~20kHz BPF  
Total Harmonic Distortion+ Noise  
THD+N  
-
0.0005  
5
-
%
-
-
nV/ Hz RS=100Ω, VI=0V, f=1kHz  
Input Referred Noise Voltage  
VN  
-
0.8  
110  
-
μVrms RIAA, RS=2.2 kΩ, 30kHz LPF  
Channel Separation  
CS  
-
-
dB  
R1=100Ω, f=1kHz  
(Note 12) Absolute value  
(Note 13) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
5/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584R (Unless otherwise specified VCC=+9.5V, VEE=-9.5V, TA =25)  
Limits  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
nA  
dB  
V
Condition  
Min.  
-
Typ.  
Max.  
3
Input Offset Voltage (Note 14)  
Input Offset Current (Note 14)  
Input Bias Current (Note 15)  
Large Signal Voltage Gain  
Maximum Output Voltage  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Supply Current  
0.3  
RS10kΩ  
IIO  
-
5
100  
110  
±8  
200  
-
-
IB  
-
500  
AV  
90  
-
-
RL10kΩ, OUT=±10V  
VOM  
VICM  
CMRR  
PSRR  
ICC  
±6.5  
RL2kΩ  
±6.5  
±8  
-
V
-
80  
80  
-
110  
110  
11  
-
dB  
dB  
mA  
RS10kΩ  
RS10kΩ  
-
17  
-
RL=, All Op-Amps, VIN+=0V  
Slew Rate  
SR  
-
5
V/μs RL2kΩ  
MHz f=10kHz  
MHz RL=2kΩ  
Gain Bandwidth Product  
Unity Gain Frequency  
GBW  
fT  
-
10  
-
-
5
-
AV=20dB, OUT=5Vrms  
RL=2kΩ  
f=1kHz, 20Hz~20kHz BPF  
Total Harmonic Distortion+ Noise  
THD+N  
-
0.0005  
5
-
%
-
-
nV/ Hz RS=100Ω, VI=0V, f=1kHz  
Input Referred Noise Voltage  
VN  
-
0.8  
110  
-
μVrms RIAA, RS=2.2 kΩ, 30kHz LPF  
Channel Separation  
CS  
-
-
dB  
R1=100Ω, f=1kHz  
(Note 14) Absolute value  
(Note 15) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
6/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Power Supply Voltage (VCC-VEE)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
1.2 Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
1.3 Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
1.4 Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical Characteristics Item  
2.1 Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
2.2 Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.3 Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
2.4 Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
2.5 Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
2.6 Circuit Current (ICC  
)
Indicates the current that flows within the IC under specified no-load conditions.  
2.7 Output Saturation Voltage (VOM  
)
Signifies the voltage range that can be output under specific output conditions.  
2.8 Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.9 Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.10 Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
2.11 Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
7/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
2.12 Gain Band Width (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
2.13 Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
2.14 Total Harmonic Distortion+ Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.15 Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
8/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Typical Performance Curves  
BA4580Rxxx  
10  
8
1
BA4580RF  
0.8  
-40  
25℃  
BA4580RFJ  
6
0.6  
BA4580RFVT  
4
0.4  
105℃  
BA4580RFVM  
2
0.2  
0
0
105  
100  
0
25  
50  
75  
125  
±0  
±5  
±10  
±15  
±20  
AMBIENT TEMPERATURE []  
.
SUPPLYVOLTAGE [V]  
Figure 2.  
Derating Curve  
Figure 3.  
Supply Current - Supply Voltage  
30  
10.0  
25  
20  
15  
10  
5
8.0  
6.0  
4.0  
2.0  
0.0  
±15V  
±2 V  
±7.5 V  
0
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
LOAD RESISTANCE [kΩ]  
AMBIENT TEMPERATURE []  
Figure 4.  
Figure 5.  
Maximum Output Voltage Swing  
- Load Resistance  
Supply Current - Ambient Temperature  
(VCC/VEE=+15V/-15V, TA=25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
9/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4580Rxxx  
20  
15  
10  
5
20  
15  
VOH  
10  
VOH  
5
0
0
-5  
-5  
VOL  
-10  
-15  
-20  
-10  
VOL  
-15  
-20  
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18  
SUPPLY VOLTAGE [V]  
0.1  
1
10  
LOAD RESISTANCE [kΩ]  
Figure 6.  
Figure 7.  
Maximum Output Voltage  
- Load Resistance  
Maximum Output Voltage  
- Supply Voltage  
(VCC/VEE=+15V/-15V, TA =25)  
(RL=2kΩ, TA =25)  
20  
15  
10  
5
20  
15  
10  
5
VOH  
VOH  
0
0
-5  
-5  
VOL  
VOL  
-10  
-15  
-20  
-10  
-15  
-20  
-50 -25  
0
25  
50  
75 100 125  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE []  
OUTPUT CURRENT [mA]  
Figure 8.  
Figure 9.  
Maximum Output Voltage  
- Ambient Temperature  
Maximum Output Voltage  
- Ambient Temperature  
(VCC/VEE=+15V/-15V, RL=2kΩ)  
(VCC/VEE=+15V/-15V, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
10/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4580Rxxx  
6
4
6
4
±2V  
-40℃  
2
2
25℃  
±7.5V  
0
0
±15V  
105℃  
-2  
-4  
-6  
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 11.  
Figure 10.  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=0V)  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=0V)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
±7.5V  
120  
-40℃  
100  
80  
60  
60  
±15V  
±2V  
105℃  
25℃  
40  
40  
20  
20  
0
0
-50 -25  
0
25  
50  
75 100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 13.  
Figure 12.  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=0V)  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
11/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4580Rxxx  
30  
20  
30  
20  
±2V  
±7.5V  
105℃  
10  
10  
0
0
±15V  
25℃  
-40℃  
-10  
-20  
-30  
-10  
-20  
-30  
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 15.  
Figure 14.  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=0V)  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=0V)  
5
150  
125  
100  
75  
4
105℃  
3
2
25℃  
-40℃  
1
0
-1  
-2  
-3  
-4  
-5  
50  
25  
0
-50 -25  
0
25  
50  
75 100 125  
-4  
-3  
-2  
-1  
0
1
2
3
4
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE [V]  
Figure 17.  
Figure 16.  
Common Mode Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC/VEE=+4V/-4V, OUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
12/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4580Rxxx  
150  
125  
100  
75  
10  
5
0
50  
-5  
-10  
25  
0
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 19.  
Slew Rate - Supply Voltage  
(CL=100pF, RL=2kΩ, TA=25)  
Figure 18.  
Power Supply Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+2V/-2V to +15V/-15V)  
80  
60  
40  
20  
0
1
0.1  
0.01  
20kHz  
1kHz  
0.001  
0.0001  
20Hz  
1
10  
100  
1000  
10000  
0.1  
1
10  
OUTPUT VOLTAGE [Vrms]  
FREQUENCY [Hz]  
Figure 21.  
Figure 20.  
Total Harmonic Distortion - Output Voltage  
(VCC/VEE=+15V/-15V, AV=20dB,  
RL=2kΩ, 80kHz-LPF, TA=25)  
Equivalent Input Noise Voltage - Frequency  
(VCC/VEE=+15V/-15V, RS=100Ω, TA=25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
13/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4580Rxxx  
60  
50  
40  
30  
20  
10  
0
0
30  
25  
20  
15  
10  
5
PHASE  
-30  
-60  
-90  
GAIN  
-120  
-150  
-180  
7
0
2
3
4
5
6
10 10 10 10 10 10  
1
10  
100  
1000  
FREQUENCY [kHz]  
FREQUENCY [Hz]  
Figure 22.  
Figure 23.  
Maximum Output Voltage Swing - Frequency  
(VCC/VEE=+15V/-15V, RL=2kΩ, TA=25)  
Voltage GainPhase - Frequency  
(VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA=25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
14/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
1
24  
20  
16  
12  
8
0.8  
BA4584FV  
-40℃  
25℃  
0.6  
0.4  
0.2  
85℃  
4
0
0
85  
0
25  
50  
75  
100  
125  
±0  
±5  
±10  
±15  
±20  
AMBIENT TEMPERATURE []  
SUPPLYVOLTAGE [V]  
Figure 24.  
Derating Curve  
Figure 25.  
Supply Current - Supply Voltage  
30  
24  
20  
16  
12  
8
25  
20  
15  
10  
5
±15V  
±2 V  
4
±7.5 V  
0
0
0.1  
1
10  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
LOAD RESISTANCE [kΩ]  
Figure 27.  
Figure 26.  
Maximum Output Voltage Swing  
- Load Resistance  
Supply Current - Ambient Temperature  
(VCC/VEE=+15V/-15V, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
15/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
20  
15  
10  
5
20  
15  
VOH  
10  
VOH  
5
0
0
-5  
-5  
VOL  
-10  
-15  
-20  
-10  
VOL  
-15  
-20  
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18  
SUPPLY VOLTAGE [V]  
0.1  
1
10  
LOAD RESISTANCE [kΩ]  
Figure 28.  
Figure 29.  
Maximum Output Voltage  
- Load Resistance  
Maximum Output Voltage  
- Supply Voltage  
(VCC/VEE=+15V/-15V, TA =25)  
(RL=2kΩ, TA =25)  
20  
20  
15  
10  
5
15  
10  
5
VOH  
VOH  
0
0
-5  
-5  
VOL  
VOL  
-10  
-15  
-20  
-10  
-15  
-20  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE []  
OUTPUT CURRENT [mA]  
Figure 30.  
Figure 31.  
Maximum Output Voltage  
- Ambient Temperature  
(VCC/VEE=+15V/-15V, RL=2kΩ)  
Maximum Output Voltage  
- Output Current  
(VCC/VEE=+15V/-15V, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
16/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
6
4
6
4
±2V  
-40℃  
25℃  
2
±7.5V  
2
0
0
105℃  
±15V  
-2  
-4  
-6  
-2  
-4  
-6  
-50  
-25  
0
25  
50  
75  
100  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 33.  
Figure 32.  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=0V)  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=0V)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
±7.5V  
±4V  
25℃  
120  
100  
80  
105℃  
-40℃  
60  
60  
40  
20  
0
±15V  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 34.  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=0V)  
Figure 35.  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
17/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
30  
20  
6
4
-40℃  
25℃  
±2V  
10  
2
±7.5V  
0
0
105℃  
±15V  
-10  
-20  
-30  
-2  
-4  
-6  
-50  
-25  
0
25  
50  
75  
100  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Figure 36.  
Figure 37.  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=0V)  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=0V)  
150  
125  
100  
75  
5
4
85℃  
3
-40℃  
2
25℃  
1
0
-1  
-2  
-3  
-4  
-5  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
-15  
-10  
-5  
0
5
10  
15  
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE [V]  
Figure 39.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Figure 38.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC/VEE=+15V/-15V, OUT=0V)  
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
18/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
150  
125  
100  
75  
10  
5
0
50  
-5  
-10  
25  
0
-50  
-25  
0
25  
50  
75  
100  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 41.  
Slew Rate - Supply Voltage  
(CL=100pF, RL=2kΩ, TA =25)  
Figure 40.  
Power Supply Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+2V/-2V to +15V/-15V)  
1
80  
60  
40  
20  
0
0.1  
0.01  
20kHz  
0.001  
0.0001  
1kHz  
20Hz  
0.1  
1
10  
1
10  
100  
1000  
10000  
OUTPUT VOLTAGE [Vrms]  
FREQUENCY [Hz]  
Figure 43.  
Figure 42.  
Total Harmonic Distortion - Output Voltage  
(VCC/VEE=+15V/-15V, AV=20dB,  
RL=2kΩ, 80kHz-LPF, TA =25)  
Equivalent Input Noise Voltage Frequency  
(VCC/VEE=+15V/-15V, RS=100Ω, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
19/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584FV  
60  
50  
40  
30  
20  
10  
0
0
30  
25  
20  
15  
10  
5
PHASE  
-30  
-60  
-90  
GAIN  
-120  
-150  
-180  
0
2
4
5
6
7
13
10  
10  
10  
10  
10  
10  
1
10  
100  
1000  
FREQUENCY [kHz]  
FREQUENCY [Hz]  
Figure 44.  
Figure 45.  
Maximum Output Voltage Swing Frequency  
(VCC/VEE=+15V/-15V, RL=2kΩ, TA =25)  
Voltage GainPhase - Frequency  
(VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
20/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
20  
16  
12  
8
1
BA4584RFV  
0.8  
25℃  
-40℃  
BA4584RF  
0.6  
0.4  
0.2  
105℃  
4
0
0
105  
100  
±0  
±2  
±4  
±6  
±8  
±10  
0
25  
50  
75  
125  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 46.  
Derating Curve  
Figure 47.  
Supply Current - Supply Voltage  
20  
15  
10  
5
24  
20  
16  
12  
8
±9.5V  
±2 V  
±4.5 V  
4
0
0
0.1  
1
10  
-50 -25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE []  
LOAD RESISTANCE [kΩ]  
Figure 48.  
Figure 49.  
Supply Current - Ambient Temperature  
Maximum Output Voltage Swing  
- Load Resistance  
(VCC/VEE=+9.5V/-9.5V, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
21/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
10  
5
10  
VOH  
VOH  
5
0
0
-5  
-10  
-5  
VOL  
VOL  
-10  
±2  
±4  
±6  
±8  
±10  
0.1  
1
10  
SUPPLY VOLTAGE [V]  
LOAD RESISTANCE [kΩ]  
Figure 51.  
Maximum Output Voltage  
- Supply Voltage  
Figure 50.  
Maximum Output Voltage  
- Load Resistance  
(RL=2kΩ, TA =25)  
(VCC/VEE=+9.5V/-9.5V, TA =25)  
15  
10  
5
15  
10  
5
VOH  
VOL  
VOH  
0
0
VOL  
-5  
-5  
-10  
-15  
-10  
-15  
0
5
10  
15  
20  
25  
-50 -25  
0
25  
50  
75 100 125  
OUTPUT CURRENT [mA]  
AMBIENT TEMPERATURE []  
Figure 53.  
Maximum Output Voltage  
- Output Current  
Figure 52.  
Maximum Output Voltage  
- Ambient Temperature  
(VCC/VEE=+9.5V/-9.5V, RL=2kΩ)  
(VCC/VEE=+9.5V/-9.5V, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
22/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
6
4
6
4
±2V  
-40℃  
25℃  
2
2
0
±4.5V  
0
105℃  
±9.5V  
-2  
-4  
-6  
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125  
±0  
±2  
±4  
±6  
±8  
±10  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 54.  
Figure 55.  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=0V)  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=0V)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
-40℃  
±2V  
±4.5V  
25℃  
60  
60  
±9.5V  
105℃  
40  
40  
20  
20  
0
0
-50 -25  
0
25  
50  
75 100 125  
±0  
±2  
±4  
±6  
±8  
±10  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 56.  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=0V)  
Figure 57.  
Input Bias Current -  
Ambient Temperature  
(VICM=0V, OUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
23/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
30  
20  
30  
20  
±4.5V  
±2V  
105℃  
10  
10  
0
0
25℃  
±9.5V  
-10  
-10  
-20  
-30  
-40℃  
-20  
-30  
±0  
±2  
±4  
±6  
±8  
±10  
-50 -25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 59.  
Figure 58.  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=0V)  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=0V)  
5
4
150  
125  
100  
75  
105℃  
25℃  
3
2
-40℃  
1
0
-1  
-2  
-3  
-4  
-5  
50  
25  
0
-50 -25  
0
25  
50  
75 100 125  
-4  
-3  
-2  
-1  
0
1
2
3
4
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE [V]  
Figure 61.  
Common Mode Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+9.5V/-9.5V, VICM=-12V to +12V)  
Figure 60.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC/VEE=+4V/-4V, OUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
24/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
150  
125  
100  
75  
10  
5
0
50  
-5  
-10  
25  
0
±0  
±2  
±4  
±6  
±8  
±10  
-50 -25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 63.  
Slew Rate - Supply Voltage  
(CL=100pF, RL=2kΩ, TA =25)  
Figure 62.  
Power Supply Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+2V/-2V to +9.5V/-9.5V)  
1
0.1  
80  
60  
40  
20  
0
20kHz  
0.01  
1kHz  
20Hz  
0.001  
0.0001  
0.1  
1
10  
1
10  
100  
1000  
10000  
OUTPUT VOLTAGE [Vrms]  
FREQUENCY [Hz]  
Figure 65.  
Figure 64.  
Total Harmonic Distortion - Output Voltage  
(VCC/VEE=+9.5V/-9.5V, AV=20dB,  
RL=2kΩ, 80kHz-LPF, TA =25)  
Equivalent Input Noise Voltage - Frequency  
(VCC/VEE=+9.5V/-9.5V, RS=100Ω, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
25/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
BA4584Rxx  
60  
50  
40  
30  
20  
10  
0
0
20  
-30  
PHASE  
15  
10  
5
-60  
-90  
GAIN  
-120  
-150  
-180  
0
102  
103  
104  
105  
106  
107  
FREQUENCY [Hz]  
1
10  
100  
1000  
FREQUENCY [kHz]  
Figure 66.  
Figure 67.  
Voltage GainPhase - Frequency  
(VCC/VEE=+9.5V/-9.5V, Av=40dB, RL=2kΩ, TA =25)  
Maximum Output Voltage Swing - Frequency  
(VCC/VEE=+9.5V/-9.5V, RL=2kΩ, TA =25)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
26/40  
TSZ221111500  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Application Information  
NULL method Condition for Test Circuit1  
VCC, VEE, EK, VICM Unit: V  
BA4580Rxxx,  
BA4584FV  
BA4584R  
Parameter  
VF  
S1  
S2  
S3  
Calculation  
VCC  
VEE  
EK  
0
VCC  
9.5  
VEE  
-9.5  
EK  
0
Input Offset Voltage  
VF1  
VF2  
ON  
ON  
OFF  
OFF  
OFF  
ON  
15  
15  
15  
-15  
1
2
3
4
5
6
Input Offset Current  
Input Bias Current  
OFF  
OFF  
-15  
-15  
0
0
9.5  
9.5  
-9.5  
-9.5  
0
0
VF3  
VF4  
VF5  
VF6  
VF7  
VF8  
VF9  
VF10  
OFF  
ON  
ON  
OFF  
15  
15  
3
-15  
-15  
-27  
-3  
-10  
10  
12  
-12  
0
9.5  
9.5  
3
-9.5  
-9.5  
-16  
-3  
-4.5  
4.5  
6.5  
-6.5  
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
ON  
Common-mode Rejection Ratio  
OFF  
OFF  
(Input common-mode Voltage Range)  
27  
2
16  
2
-2  
-2  
Power Supply  
Rejection Ratio  
15  
-15  
0
9.5  
-9.5  
0
-Calculation-  
1. Input Offset Voltage (VIO)  
0.1µF  
|VF1|  
[V]  
VIO  
=
RF=50kΩ  
1+RF/RS  
2. Input Offset Current (IIO)  
|VF2-VF1|  
RI ×(1+RF/RS)  
3. Input Bias Current (IB)  
0.1µF  
500kΩ  
SW1  
VCC  
+15V  
EK  
RS=50Ω  
RI=10kΩ  
500kΩ  
IIO  
=
[A]  
DUT  
NULL  
-15V  
SW3  
RI=10kΩ  
1000pF  
RS=50Ω  
50kΩ  
VF  
RL  
VICM  
SW2  
|VF4-VF3|  
2 × RI ×(1+RF/RS)  
4. Large Signal Voltage Gain (AV)  
VEE  
IB  
[A]  
=
Figure 68. Test circuit1 (one channel only)  
ΔEK × (1+RF/RS)  
AV =  
[dB]  
20Log  
|VF5-VF6|  
5. Common-mode Rejection Ration (CMRR)  
ΔVICM × (1+RF/RS)  
CMRR  
[dB]  
= 20Log  
|VF8-VF7|  
6. Power supply rejection ratio (PSRR)  
ΔVCC × (1+ RF/RS)  
PSRR  
[dB]  
=
20Log  
|VF10 VF9|  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10SW11SW12SW13SW14  
Supply Current  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
High Level Output Voltage  
Low Level Output Voltage  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
27/40  
20.Nov.2014 Rev.003  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
SW4  
Input voltage  
VH  
R2  
SW5  
VCC  
VL  
SW1  
RS  
SW2  
R1  
SW3  
t
Input wave  
SW9  
SW11  
SW13 SW14  
SW12  
SW10  
SW6  
SW7  
SW8  
Output voltage  
VH  
SR=ΔV/Δt  
90%  
VEE  
C
C
RL  
CL  
VIN-  
VIN+  
ΔV  
VOUT  
VRL  
10%  
VL  
Δt  
Output wave  
t
Figure 69. Test Circuit 2 (each Op-Amp)  
Figure 70. Slew Rate Input Waveform  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
VIN  
R2  
R1  
R2  
OUT1  
OUT2  
V
V
=0.5Vrms  
100OUT1  
OUT2  
CS 20log  
Figure 71. Test circuit 3 (Channel Separation)  
(VCC=+15V,VEE=-15V, R1=100Ω, R2=10kΩ)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
28/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Power Dissipation  
Power dissipation(total loss) indicates the power that can be consumed by IC at TA =25(normal temperature). IC is  
heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The  
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable  
power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and  
thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the  
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin  
or lead  
frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called  
thermal resistance, represented by the symbol θJA/W. The temperature of IC inside the package can be estimated by this  
thermal resistance. Figure 72. (a) shows the model of thermal resistance of the package. Thermal resistance θJA, ambient  
temperature Ta, maximum junction temperature TJMAX, and power dissipation PD can be calculated by the equation below:  
θJA = (TJMAX-TA) / PD  
/W  
Derating curve in Figure 72. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power  
that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate  
at certain ambient temperature. This gradient is determined by thermal resistance θJA. Thermal resistance θJA depends on  
chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of  
package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 73. (c),(d)  
show a derating curve for an example of BA4580Rxxx, BA4584FV, BA4584Rxx.  
Power Dissipation of LSI [W]  
PD(max)  
P2  
θJA=(TJmax-TA)/ PD °C/W  
θJA2 < θJA1  
Ambient Temperature TA [ °C ]  
θ’JA2  
θJA2  
P1  
TJ’max TJmax  
θ’JA1  
θJA1  
75  
0
25  
50  
100  
125  
150  
Chip Surface Temperature TJ [ °C ]  
Ambient Temperature TA [ °C ]  
(a) Thermal Resistance  
(b) Derating Curve  
Figure 72. Thermal resistance and derating curve  
1
0.8  
0.6  
0.4  
0.2  
0
1
BA4580RF(Note 16)  
BA4580RFJ(Note 17)  
0.8  
0.6  
0.4  
0.2  
0
BA4584RFV(Note 20)  
BA4580RFVT(Note 18)  
BA4580RFVM(Note 19)  
BA4584RF(Note 21)  
BA4584FV(Note 21)  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE []  
.
AMBIENT TEMPERATURE[]  
(c)BA4580Rxxx  
(d)BA4584FV/BA4584Rxx  
(Note 16)  
6.2  
(Note 17)  
5.4  
(Note 18)  
5.0  
(Note 19)  
4.8  
(Note 20)  
7.0  
(Note 21)  
4.9  
Unit  
mW/℃  
When using the unit above TA=25, subtract the value above per degree. Permissible dissipation is the value.  
Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted.  
Figure 73. Derating Curve  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
29/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Application Examples  
Voltage Follower  
Voltage gain is 0dB.  
Using this circuit, the output voltage (OUT) is  
configured to be equal to the input voltage (IN). This  
circuit also stabilizes the output voltage (OUT) due to  
high input impedance and low output impedance.  
Computation for output voltage (OUT) is shown below.  
OUT=IN  
VCC  
OUT  
IN  
VEE  
Figure 74. Voltage Follower Circuit  
Inverting Amplifier  
R2  
For inverting amplifier, input voltage (IN) is amplified  
by a voltage gain and depends on the ratio of R1 and  
R2. The out-of-phase output voltage is shown in the  
next expression  
VCC  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
R1  
IN  
OUT  
R1//R2  
VEE  
Figure 75. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is  
amplified by a voltage gain, which depends on the ratio  
of R1 and R2. The output voltage (OUT) is in-phase  
with the input voltage (IN) and is shown in the next  
expression.  
VCC  
OUT=(1 + R2/R1)IN  
Effectively, this circuit has high input impedance since  
its input side is the same as that of the operational  
amplifier.  
OUT  
IN  
VEE  
Figure 76. Non-inverting Amplifier Circuit  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
30/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
31/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 77. Example of monolithic IC structure  
VCC  
12. Unused Circuits  
It is recommended to apply the connection (see Figure 78.) and set the  
non-inverting input terminal at a potential within the Input Common-mode  
Voltage Range (VICM) for any unused circuit.  
Keep this potential  
in VICM  
VICM  
13. Input Voltage  
Applying VEE +36V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, regardless of  
the supply voltage. However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input voltage  
is within the common mode input voltage range of the electric  
characteristics.  
VEE  
Figure 78. Example of Application Circuit  
for Unused Op-amp  
14. Power Supply(single/dual)  
The operational amplifier operates when the voltage supplied is between VCC and VEE. Therefore, the single supply  
operational amplifier can be used as dual supply operational amplifier as well.  
15. IC Handling  
When pressure is applied to the IC through warp on the printed circuit board, the characteristics may fluctuate due to  
the piezo effect. Be careful with the warp on the printed circuit board.  
16. The IC Destruction Caused by Capacitive Load  
The IC may be damaged when VCC terminal and VEE terminal is shorted with the charged output terminal capacitor.  
When IC is used as an operational amplifier or as an application circuit where oscillation is not activated by an output  
capacitor, output capacitor must be kept below 0.1μF in order to prevent the damage mentioned above.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
32/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
33/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
SOP-J8  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
34/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
TSSOP-B8  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
35/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
MSOP8  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
36/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
37/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B14  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
38/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Marking Diagrams  
SOP8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP14(TOP VIEW)  
Part Number Marking  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
Package Type  
Marking  
4580R  
F
SOP8  
FJ  
SOP-J8  
BA4580Rxxx  
FVT  
FVM  
FV  
TSSOP-B8  
MSOP8  
BA4584FV  
BA4584Rxx  
SSOP-B14  
SOP14  
4584  
BA4584RF  
4584R  
F
FV  
SSOP-B14  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
39/40  
BA4580Rxxx BA4584FV BA4584Rxx  
Datasheet  
Land Pattern Data  
all dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
≧ℓ 2  
SOP8  
SOP14  
1.27  
4.60  
1.10  
0.76  
SOP-J8  
SSOP-B14  
MSOP8  
1.27  
0.65  
0.65  
0.65  
3.90  
4.60  
2.62  
4.60  
1.35  
1.20  
0.99  
1.20  
0.76  
0.35  
0.35  
0.35  
TSSOP-B8  
SOP8, SOP14, SOP-J8, SSOP-B14,  
MSOP8, TSSOP-B8  
MIE  
ℓ2  
Revision History  
Date  
Revision  
Changes  
27.Feb.2012  
31.Oct.2014  
20.Nov.2014  
001  
002  
003  
New Release  
Page.3 Absolute Maximum Ratings : Added Input Current  
Page.3 Absolute Maximum Ratings : Modified Input Current  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ221111500  
TSZ02201-0RAR1G200030-1-2  
20.Nov.2014 Rev.003  
40/40  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY