BA4584YFE2 [ROHM]

Ground Sense Operational Amplifiers; 接地检测运算放大器
BA4584YFE2
型号: BA4584YFE2
厂家: ROHM    ROHM
描述:

Ground Sense Operational Amplifiers
接地检测运算放大器

运算放大器
文件: 总48页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Ground Sense  
Operational Amplifiers  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
General Description  
Key Specification  
Wide Operating Supply Voltage (single supply):  
General purpose BA10358/BA10324A and high  
reliability BA2904/BA2902  
integrate two or four  
BA10358/BA10324A  
BA2904/BA2902  
Wide Temperature Range:  
BA10358/ BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
+3.0V to +32.0V  
+3.0V to +36.0V  
independent Op-Amps on a single chip and have some  
features of high-gain, low power consumption, and  
wide operating voltage range of 3V to 36V (single  
power supply ).  
-40°C~+85°C  
-40°C~+105°C  
-40°C~+125°C  
-40°C~+125°C  
BA2904W have low input offset voltage(2mV max.).  
Input Offset Voltage:  
BA10358/ BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
Features  
7mV (Max.)  
7mV (Max.)  
7mV (Max.)  
2mV (Max.)  
Operable with a single power supply  
Wide operating supply voltage range  
Input and output are operable GND sense  
Low supply current  
High open loop voltage gain  
Internal ESD protection circuit  
Wide temperature range  
Low Input Bias Current:  
BA10358  
45nA (Typ.)  
20nA (Typ.)  
20nA (Typ.)  
20nA (Typ.)  
20nA (Typ.)  
BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
Application  
Current sense application  
Buffer application amplifier  
Active filter  
Packages  
SOP8  
W(Typ.)xD(Typ.) xH(Max.)  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
Consumer electronics  
SOP-J8  
SSOP-B8  
MSOP8  
SOP14  
SOP-J14  
SSOP-B14  
Selection Guide  
Maximum operating temperature  
Input Offset  
Voltage  
Output Current  
Source/Sink  
+85°C  
+105°C  
+125°C  
BA10358F  
BA10358FV  
BA10358FJ  
Normal  
Dual  
20mA/20mA  
7mV  
BA10324AF  
BA10324AFV  
BA10324AFJ  
Quad  
35mA/20mA  
7mV  
BA2904F  
BA2904SF  
BA2904FV  
BA2904FVM  
BA2904SFV  
BA2904SFVM  
High-reliability  
Dual  
30mA/20mA  
30mA/20mA  
7mV  
2mV  
7mV  
BA2904WF  
BA2904WFV  
BA2902F  
BA2902FV  
BA2902SF  
BA2902SFV  
Quad  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
1/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Simplified schematic  
VCC  
IN  
IN  
OUT  
VEE  
Figure 1. Simplified schematicone channel only)  
Pin Configuration(TOP VIEW)  
BA10358F,BA2904SF,BA2904F,BA2904WF :SOP8  
BA10358FV,BA2904SFV,BA2904FV,BA2904WFV :SSOP-B8  
BA2904SFVM,BA2904FVM :MSOP8  
BA10358FJ :SOP-J8  
Pin No.  
Symbol  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
OUT1  
-IN1  
+IN1  
VEE  
VCC  
OUT2  
-IN2  
+IN2  
1
2
3
4
8
7
6
5
+IN1  
VEE  
+IN2  
-IN2  
CH1  
- +  
CH2  
+ -  
OUT2  
VCC  
BA10324AF,BA2902SF,BA2902F :SOP14  
BA10324AFV,BA2902SFV,BA2902FV :SSOP-B14  
BA10324AFJ :SOP-J14  
Pin No.  
Symbol  
1
2
OUT1  
-IN1  
1
2
3
14 OUT4  
OUT1  
-IN1  
+IN1  
3
+IN1  
VCC  
+IN2  
-IN2  
13  
12  
-IN4  
+IN4  
CH1  
- +  
CH4  
+ -  
4
5
VCC 4  
11  
10  
VEE  
+IN3  
-IN3  
OUT3  
6
5
6
7
+IN2  
-IN2  
7
OUT2  
OUT3  
-IN3  
+ -  
CH3  
- +  
CH2  
9
8
8
9
OUT2  
10  
11  
12  
13  
14  
+IN3  
VEE  
+IN4  
-IN4  
OUT4  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
2/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Package  
SOP8  
SSOP-B8  
MSOP8  
SOP-J8  
SOP14  
SSOP-B14  
SOP-J14  
BA10358F  
BA2904SF  
BA2904F  
BA10358FV  
BA2904SFV  
BA2904FV  
BA2904SFVM BA10358FJ  
BA2904FVM  
BA10324AF  
BA2902SF  
BA2902F  
BA10324AFV BA10324AFJ  
BA2902SFV  
BA2902FV  
BA2904WF  
BA2904WFV  
Ordering Information  
B A  
x
x
x
x
x
x
x
x
-
x x  
Part Number.  
BA10358xx  
BA10324Axx  
BA2904xxx  
BA2904Sxxx  
BA2904Wxx  
BA2902xx  
Package  
: SOP8  
SOP14  
FV : SSOP-B8  
SSOP-B14  
FVM : MSOP8  
FJ : SOP-J8  
SOP-J14  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/  
SSOP-B14/SOP-J8/SOP-J14)  
TR: Embossed tape and reel  
(MSOP8)  
F
BA2902Sxx  
Line-up  
Input Offset  
Voltage  
Supply  
Current  
(Typ.)  
Orderable  
Part Number  
Topr  
Package  
Reel of 2500  
(Max.)  
SOP8  
BA10358F-E2  
BA10358FJ-E2  
BA10358FV-E2  
BA10324AF-E2  
BA10324AFJ-E2  
BA10324AFV-E2  
BA2904SF-E2  
BA2904SFV-E2  
BA2904SFVM-TR  
BA2902SF-E2  
BA2902SFV-E2  
BA2904F-E2  
0.5mA  
0.6mA  
SOP-J8  
SSOP-B8  
SOP14  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
-40°C to +85°C  
SOP-J14  
SSOP-B14  
SOP8  
0.5mA  
0.7mA  
0.5mA  
SSOP-B8  
MSOP8  
SOP14  
7mV  
-40°C to +105°C  
SSOP-B14  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
BA2904FV-E2  
BA2904FVM-TR  
BA2902F-E2  
-40°C to +125°C  
0.7mA  
0.5mA  
SSOP-B14  
SOP8  
BA2902FV-E2  
BA2904WF-E2  
BA2904WFV-E2  
2mV  
SSOP-B8  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
3/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Absolute Maximum Ratings (Ta=25)  
BA10358, BA10324A  
Parameter  
Supply Voltage  
Symbol  
Ratings  
Unit  
V
VCC-VEE  
SOP8  
+32  
620*1*7  
SOP-J8  
SSOP-B8  
SOP14  
SOP-J14  
SSOP-B14  
Vid  
540*2*7  
500*3*7  
450*4*7  
820*5*7  
Power dissipation  
Pd  
mW  
700*6*7  
Differential Input Voltage*6  
VCC – VEE  
VEE – VCC  
+3.0 to +32.0  
-40 to +85  
-55 to +125  
+125  
V
V
Input Common-mode Voltage Range  
Wide Operating Supply Voltage  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Vicm  
Vopr  
V
Topr  
Tstg  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating  
or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
*1 To use at temperature above Ta25reduce 6.2mW.  
*2 To use at temperature above Ta25reduce 5.4mW  
*3 To use at temperature above Ta25reduce 5.0mW.  
*4 To use at temperature above Ta25reduce 4.5mW.  
*5 To use at temperature above Ta25reduce 8.2mW  
*6 To use at temperature above Ta25reduce 7.0mW.  
*7 Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
*8 The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
BA2904, BA2902  
Ratings  
Parameter  
Supply Voltage  
Symbol  
Unit  
V
BA2904S  
BA2902S  
BA2904, BA2904W  
BA2902  
VCC-VEE  
SOP8  
+36  
775*9*14  
625*10*14  
600*11*14  
560*12*14  
870*13*14  
+36  
SSOP-B8  
Power dissipation  
Pd  
MSOP8  
SOP14  
SSOP-B14  
Vid  
mW  
Differential Input Voltage *15  
V
V
Input Common-mode Voltage Range  
Wide Operating Supply Voltage  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Vicm  
(VEE-0.3) to (VEE+36)  
+3.0 to +36.0  
Vopr  
V
Topr  
-40 to +105  
-40 to +125  
Tstg  
-55 to +150  
+150  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating  
or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
*9 To use at temperature above Ta25reduce 6.2mW.  
*10 To use at temperature above Ta25reduce 5.0mW.  
*11 To use at temperature above Ta25reduce 4.8mW.  
*12 To use at temperature above Ta25reduce 4.5mW.  
*13 To use at temperature above Ta25reduce 7.0mW.  
*14 Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm)..  
*15 The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
4/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Electrical Characteristics  
BA10358 (Unless otherwise specified VCC=+5V, VEE=0V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
2
Max.  
7
Input Offset Voltage *16  
Input Offset Current *16  
Input Bias Current *17  
Vio  
Iio  
mV OUT=1.4V  
-
-
5
45  
0.5  
-
50  
nA OUT=1.4V  
Ib  
250  
nA OUT=1.4V  
ICC  
VOH  
VOL  
-
1.2  
mA RL=, All Op-Amps  
Supply Current  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
3.5  
-
-
V
RL=2k  
-
250  
mV RL=,All Op-Amps  
25  
88  
0
100  
100  
-
-
V/mV  
RL2k, VCC=15V  
OUT=1.4 to 11.4V  
Av  
Large Signal Voltage Gain  
-
dB  
(VCC-VEE)=5V  
V
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Vicm  
CMRR  
PSRR  
VCC-1.5  
OUT=VEE+1.4V  
65  
65  
80  
100  
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V,  
1CH is short circuit  
VIN+=0V, VIN-=1V  
mA OUT=5V,  
Isource  
Isink  
10  
10  
20  
20  
-
-
Output Source Current  
Output Sink Current  
1CH is short circuit  
CS  
SR  
-
-
-
120  
0.2  
0.5  
-
-
-
dB f=1kHz, input referred  
Channel Separation  
Slew Rate  
VCC=15V, Av=0dB  
V/μs  
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
GBW  
MHz  
Gain Band Width  
*16 Absolute value  
*17 Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
5/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A (Unless otherwise specified VCC=+5V, VEE=0V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
2
Max.  
7
Input Offset Voltage *18  
Vio  
Iio  
mV OUT=1.4V  
Input Offset Current *18  
-
-
5
20  
0.6  
-
50  
nA OUT=1.4V  
Input Bias Current *19  
Ib  
250  
nA OUT=1.4V  
Supply Current  
ICC  
-
2
mA RL=,All Op-Amps  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
Input Common-mode Voltage range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
VOH  
VOL  
Av  
3.5  
-
-
V
RL=2kΩ  
-
250  
mV RL=,All Op-Amps  
RL2k, VCC=15V  
V/mV  
25  
0
100  
-
-
OUT=1.4 to 11.4V  
(VCC-VEE)=5V  
V
Vicm  
CMRR  
PSRR  
VCC-1.5  
OUT=VEE+1.4V  
65  
65  
75  
100  
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V,  
1CH is short circuit  
VIN+=0V, VIN-=1V  
mA OUT=5V,  
Output Source Current  
Output Sink Current  
Isource  
Isink  
20  
10  
35  
20  
-
-
1CH is short circuit  
Channel Separation  
Slew Rate  
CS  
SR  
-
-
-
120  
0.2  
0.5  
-
-
-
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
GBW  
MHz  
Gain Band Width  
*18 Absolute value  
*19 Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
6/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
Temperature  
Range  
Parameter  
Symbol  
Unit  
mV  
Condition  
Min.  
Max.  
25℃  
Full range  
-
-
2
-
7
10  
OUT=1.4V  
VCC=5 to 30V, OUT=1.4V  
Input Offset Voltage *20 *21  
Input Offset Voltage Drift  
Input Offset Current *20 *21  
Input Offset Current Drift  
Input Bias Current *20 *21  
Vio  
Vio/T  
Iio  
-
-
±7  
-
μV/OUT=1.4V  
nA OUT=1.4V  
25℃  
Full range  
-
-
2
-
50  
200  
lio/T  
Ib  
-
-
±10  
-
pA/OUT=1.4V  
nA OUT=1.4V  
25℃  
Full range  
25℃  
Full range  
25℃  
-
-
-
20  
-
0.5  
-
-
28  
250  
250  
1.2  
2
-
-
Supply Current *21  
ICC  
mA RL=, All Op-Amps  
-
3.5  
27  
RL=2kΩ  
Maximum Output Voltage(High) *21  
Maximum Output Voltage(Low) *21  
Large Signal Voltage Gain  
VOH  
VOL  
V
Full range  
VCC=30V, RL=10kΩ  
Full range  
25℃  
-
5
100  
-
20  
-
mV RL=, All Op-Amps  
RL2k, VCC=15V  
V/mV  
Av  
25  
0
OUT=1.4 to 11.4V  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
Vicm  
25℃  
VCC-1.5  
OUT=VEE+1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25℃  
25℃  
50  
65  
80  
-
-
dB OUT=1.4V  
100  
dB VCC=5 to 30V  
25℃  
Full range  
25℃  
20  
10  
10  
2
30  
-
20  
-
-
-
-
-
VIN+=1V, VIN-=0V  
mA  
Output Source Current *21 *22  
Isource  
OUT=0V, 1CH is short circuit  
VIN+=0V, VIN-=1V  
mA  
OUT=5V, 1CH is short circuit  
Full range  
Output Sink Current *21 *22  
Isink  
VIN+=0V, VIN-=1V  
OUT=200mV  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
-
-
-
μA  
Channel Separation  
Slew rate  
CS  
SR  
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Band Width  
GBW  
Vn  
25℃  
25℃  
-
-
0.5  
40  
-
-
MHz  
VCC=15V, VEE=-15V  
nV/ Hz  
Input referred noise voltage  
RS=100, Vi=0V, f=1kHz  
*20 Absolute value  
*21 BA2904S :Full range -40 to +105BA2904 :Full range -40 to +125℃  
*22 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
7/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904W (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
0.5  
±7  
2
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Max.  
2
Input Offset Voltage *23  
Input Offset Voltage Drift  
Input Offset Current *23  
Input Offset Current Drift  
Vio  
Vio/T  
Iio  
25℃  
-
-
mV OUT=1.4V  
μV/OUT=1.4V  
nA OUT=1.4V  
pA/OUT=1.4V  
-
-
25℃  
-
-
50  
-
lio/T  
-
±10  
20  
-
25℃  
-
250  
250  
1.2  
1.2  
-
Input Bias Current *23  
Ib  
nA OUT=1.4V  
Full range  
25℃  
-
-
0.5  
-
Supply Current  
ICC  
VOH  
mA RL=, All Op-Amps  
Full range  
25℃  
-
3.5  
27  
-
RL=2kΩ  
Maximum Output Voltage(High)  
V
Full range  
28  
-
VCC=30V, RL=10kΩ  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOL  
Av  
Full range  
25℃  
-
5
100  
-
20  
-
mV RL=, All Op-Amps  
RL2k, VCC=15V  
V/mV  
25  
0
OUT=1.4 to 11.4V  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
Vicm  
25℃  
VCC-1.5  
OUT=VEE+1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25℃  
25℃  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
25℃  
VIN+=1V, VIN-=0V  
mA  
Output Source Current*24  
Isource  
OUT=0V, 1CH is short circuit  
Full range  
25℃  
20  
-
VIN+=0V, VIN-=1V  
mA  
OUT=5V, 1CH is short circuit  
Output Sink Current *24  
Isink  
Full range  
VIN+=0V, VIN-=1V  
OUT=200mV  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
-
-
-
μA  
Channel Separation  
Slew rate  
CS  
SR  
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Band Width  
GBW  
Vn  
25℃  
25℃  
-
-
0.5  
40  
-
-
MHz  
VCC=15V, VEE=-15V  
nV/ Hz  
Input referred noise voltage  
RS=100, Vi=0V, f=1kHz  
*23 Absolute value  
*24 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
8/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
Temperature  
Range  
Parameter  
Symbol  
Unit  
mV  
Condition  
Min.  
Max.  
25℃  
Full range  
-
25℃  
Full range  
-
-
-
-
-
2
-
±7  
2
7
10  
-
50  
200  
OUT=1.4V  
VCC=5 to 30V, OUT=1.4V  
Input Offset Voltage *25 *26  
Input Offset Voltage Drift  
Input Offset Current *25 *26  
Vio  
Vio/T  
Iio  
μV/OUT=1.4V  
nA OUT=1.4V  
-
Input Offset Current Drift  
lio/T  
Ib  
-
-
±10  
-
pA/OUT=1.4V  
nA OUT=1.4V  
25℃  
Full range  
25℃  
Full range  
25℃  
-
-
-
20  
-
0.7  
-
-
28  
250  
250  
2
3
-
Input Bias Current *25 *26  
Supply Current *26  
ICC  
A RL=,All Op-Amps  
-
3.5  
27  
RL=2kΩ  
V
Maximum Output Voltage(High) *26  
Maximum Output Voltage(Low) *26  
Large Signal Voltage Gain  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
VOH  
VOL  
Av  
Full range  
-
VCC=30V, RL=10kΩ  
Full range  
25℃  
-
5
100  
-
20  
mV RL=, All Op-Amps  
RL2k, VCC=15V  
V/mV  
25  
0
-
OUT=1.4 to 11.4V  
(VCC-VEE)=5V  
V
Vicm  
CMRR  
PSRR  
25℃  
VCC-1.5  
OUT=VEE+1.4V  
25℃  
50  
65  
80  
100  
-
-
dB  
dB  
OUT=1.4V  
25℃  
VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V  
25℃  
20  
10  
30  
-
-
-
Output Source Current *26 *27  
Output Sink Current *26 *27  
Isource  
Isink  
Full range  
1CH is short circuit  
VIN+=0V, VIN-=1V  
OUT=5V, 1CH is short circuit  
25℃  
Full range  
10  
2
20  
-
-
-
mA  
μA  
VIN+=0V, VIN-=1V  
OUT=200mV  
25℃  
25℃  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
0.5  
40  
-
-
-
-
-
Channel Separation  
Slew rate  
CS  
SR  
dB  
f=1kHz, input referred  
VCC=15V, Av=0dB  
RL=2k, CL=100pF  
-
V/μs  
MHz  
nV/ Hz  
VCC=30V, RL=2kΩ  
CL=100p  
Gain Band Width  
GBW  
Vn  
-
VCC=15V, VEE=-15V  
RS=100, Vi=0V, f=1kHz  
Input referred noise voltage  
-
*25 Absolute value  
*26 BA2902S :Full range -40 to +105,BA2902 :Full range -40 to +125℃  
*27 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
9/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Power supply voltage (VCC-VEE)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
1.3 Input common-mode voltage range (Vicm)  
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
2.2 Input offset voltage drift (Vio/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (Iio)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.4 Input offset current drift (Iio/T)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
2.5 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
2.6 Circuit current (ICC)  
Indicates the current that flows within the IC under specified no-load conditions.  
2.7 Maximum Output Voltage(High)/ Maximum Output Voltage(Low) (VOH/VOL)  
Indicates the voltage range of the output under specified load condition. It is typically divided into high-level output  
voltage and low-level output voltage. High-level output voltage indicates the upper limit of output voltage while  
Low-level output voltage indicates the lower limit.  
2.8 Large signal voltage gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.9 Input common-mode voltage range (Vicm)  
Indicates the input voltage range where IC normally operates.  
2.10 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
10/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
2.11 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.12 Output source current/ output sink current (Isource/Isink)  
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
2.13 Channel separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
2.14 Slew rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
2.15 Gain Band Width (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
2.16 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
11/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Typical Performance Curves  
BA10358  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
BA10358F  
25℃  
BA10358FJ  
BA10358FV  
-40℃  
85℃  
85  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
.
Figure 2.  
Figure 3.  
Derating Curve  
Supply Current – Supply Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
35  
30  
25  
20  
15  
10  
5
85℃  
32V  
25℃  
-40℃  
5V  
3V  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 5.  
Figure 4.  
Maximum Output Voltage - Supply Voltage  
Supply Current – Ambient Temperature  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
5
4
3
2
1
0
40  
30  
20  
10  
0
-40℃  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 6.  
Figure 7.  
Output Source Current - Output Voltage  
(VCC=5V)  
Maximum Output Voltage - Ambient Temperature  
(VCC=5V, RL=2k)  
40  
30  
20  
10  
0
100  
10  
15V  
85℃  
25℃  
-40℃  
1
0. 1  
5V  
3V  
0.01  
0. 001  
0
0.4  
0.8  
1.2  
1.6  
2
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Figure 8.  
Figure 9.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
15V  
25℃  
5V  
-40℃  
3V  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 11.  
Figure 10.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
60  
50  
40  
30  
20  
10  
0
8
6
32V  
4
2
-40℃  
0
5V  
-2  
-4  
-6  
-8  
3V  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 13.  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
Figure 12.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
50  
40  
30  
20  
10  
0
8
6
4
2
25℃  
0
3V  
5V  
-2  
-4  
-6  
-8  
85℃  
-40℃  
32V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 14.  
Figure 15.  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
5V  
3V  
-10  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Figure 16.  
Figure 17.  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, Vicm=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
8
6
10  
5
4
2
-40℃  
25℃  
0
0
-40℃  
25℃  
-2  
-4  
-6  
-8  
85℃  
-5  
-10  
85℃  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Figure 18.  
Figure 19.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
10  
5
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
5V  
3V  
0
85℃  
32V  
80  
-5  
-10  
70  
60  
4
6
8
10  
12  
14  
16  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 21.  
Figure 20.  
Large Signal Voltage Gain - Supply Voltage  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
(RL=2k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
5V  
-40℃  
15V  
25℃  
80  
85℃  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 23.  
Common Mode Rejection Ratio  
- Supply Voltage  
Figure 22.  
Large Signal Voltage Gain - Ambient Temperature  
(RL=2k)  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
32V  
80  
5V  
3V  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 25.  
Power Supply Rejection Ratio  
- Ambient Temperature  
Figure 24.  
Common Mode Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
1000  
800  
600  
400  
200  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
BA10324AFJ  
BA10324AFV  
25℃  
BA10324AF  
85℃  
-40℃  
85  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
.
Figure 27.  
Supply Current - Supply Voltage  
Figure 26.  
Derating Curve  
35  
30  
25  
20  
15  
10  
5
2. 0  
1. 6  
1. 2  
0. 8  
0. 4  
0. 0  
85℃  
32V  
25℃  
-40℃  
5V  
3V  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 28.  
Supply Current - Ambient Temperature  
Figure 29.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
OUTPUT VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 30.  
Maximum Output Voltage - Ambient  
Temperature  
Figure 31.  
Output Source Current - Output Voltage  
(VCC=5V)  
(VCC=5V, RL=2k)  
100  
10  
50  
40  
30  
20  
10  
0
15V  
85℃  
5V  
1
3V  
25℃  
0.1  
-40℃  
0. 01  
0.001  
-50  
-25  
0
25  
50  
75  
100  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENTTEMPERATURE[]  
OUTPUT VOLTAGE [V]  
Figure 33.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 32.  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
85℃  
15V  
5V  
25℃  
-40℃  
3V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 35.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 34.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
60  
50  
40  
30  
20  
10  
0
8
6
4
85℃  
25℃  
32V  
2
0
-40℃  
-2  
-4  
-6  
-8  
3V  
5V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 37.  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
Figure 36.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
8
6
50  
40  
30  
20  
10  
0
4
32V  
5V  
2
0
85℃  
3V  
25℃  
-2  
-4  
-6  
-8  
-40℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENTTEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 39.  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
Figure 38.  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
5V  
3V  
-10  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
AMBIENT TEMPERATURE[]  
Figure 40.  
Figure 41.  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, Vicm=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
10  
5
8
6
-40℃  
4
25℃  
85℃  
25℃  
2
85℃  
0
0
-40℃  
-2  
-4  
-6  
-8  
-5  
-10  
0
5
10  
15  
20  
25  
30  
35  
-1  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 42.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC=5V)  
Figure 43.  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
10  
5
140  
130  
120  
110  
100  
90  
-40℃  
32V  
5V  
0
25℃  
85℃  
3V  
-5  
-10  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 44.  
Figure 45.  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
15V  
-40℃  
5V  
25℃  
85℃  
80  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 46.  
Large Signal Voltage Gain  
- Ambient Temperature  
(RL=2k)  
Figure 47.  
Common Mode Rejection Ratio  
- Supply Voltage  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
32V  
5V  
80  
3V  
60  
70  
40  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENTTEMPERATURE[]  
AMBIENT TEMPERATURE[]  
Figure 48.  
Figure 49.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
BA2904F  
BA2904WF  
BA2904SF  
BA2904FV  
BA2904WFV  
BA2904SFV  
25℃  
-40℃  
105℃  
BA2904FVM  
BA2904SFVM  
125℃  
200  
0
105  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
.
SUPPLY VOLTAGE [V]  
Figure 50.  
Figure 51.  
Derating Curve  
Supply Current- Supply Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
30  
20  
10  
0
-40℃  
125℃  
36V  
25℃  
105℃  
5V  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 52.  
Supply Current – Ambient Temperature  
Figure 53.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
BA2904, BA2904W-40to 125BA2904S-40℃ to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
24/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENTTEMPERATURE[]  
OUTPUT VOLTAGE [V]  
Figure 54.  
Figure 55.  
Maximum Output Voltage - Ambient Temperature  
Output Source Current - Output Voltage  
(VCC=5V)  
(VCC=5V, RL=2k)  
100  
10  
50  
105℃  
40  
30  
20  
10  
0
3V  
125℃  
1
5V  
-40℃  
25℃  
15V  
0.1  
0. 01  
0. 001  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 57.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 56.  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
15V  
25℃  
-40℃  
105℃  
125℃  
3V  
5V  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
Figure 59.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 58.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
36V  
4
-40℃  
25℃  
2
5V  
0
3V  
105℃  
125℃  
-2  
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 61.  
Figure 60.  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
8
6
50  
40  
30  
20  
10  
0
4
3V  
2
25℃  
-40℃  
0
5V  
36V  
-2  
-4  
-6  
-8  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 62.  
Figure 63.  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
36V  
5V  
3V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[  
]  
AMBIENT TEMPERATURE[]  
Figure 64.  
Figure 65.  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, Vicm=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
8
6
10  
5
105℃  
125℃  
-40℃  
4
-40℃  
25℃  
25℃  
2
0
0
125℃  
105℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 66.  
Figure 67.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
5
0
36V  
5V  
3V  
105℃  
125℃  
80  
-5  
70  
60  
-10  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 68.  
Figure 69.  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
15V  
-40℃  
25℃  
5V  
125℃  
105℃  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 70.  
Large Signal Voltage Gain  
- Ambient Temperature  
(RL=2k)  
Figure 71.  
Common Mode Rejection Ratio  
- Supply Voltage  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
5V  
3V  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 72.  
Figure 73.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
29/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
1000  
2.0  
800  
1.6  
BA2902FV  
BA2902SFV  
600  
1.2  
-40℃  
25℃  
BA2902F  
BA2902SF  
400  
200  
0
0.8  
0.4  
0.0  
125℃  
105℃  
105  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
]
.
SUPPLY VOLTAGE [V]  
Figure 74.  
Figure 75.  
Derating Curve  
Supply Current - Supply Voltage  
40  
30  
20  
10  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-40℃  
125℃  
36V  
25℃  
105℃  
5V  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 76.  
Supply Current - Ambient Temperature  
Figure 77.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
BA2902-40℃ to +125BA2902S-40℃ to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
30/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENTTEMPERATURE[  
]  
OUTPUT VOLTAGE [V]  
Figure 79.  
Output Source Current - Output Voltage  
(VCC=5V)  
Figure 78.  
Maximum Output Voltage - Ambient  
Temperature (VCC=5V, RL=2k)  
100  
10  
50  
105℃  
40  
30  
20  
10  
0
3V  
125℃  
1
5V  
-40℃  
25℃  
15V  
0.1  
0. 01  
0. 001  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 81.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 80.  
Output Source Current - Ambient  
Temperature (OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
31/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
15V  
25℃  
-40℃  
105℃  
125℃  
3V  
5V  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
Figure 83.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 82.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
36V  
4
-40℃  
25℃  
2
5V  
0
3V  
105℃  
125℃  
-2  
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 84.  
Figure 85.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
32/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
8
6
50  
40  
30  
20  
10  
0
4
3V  
2
25℃  
-40℃  
0
5V  
36V  
-2  
-4  
-6  
-8  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 86.  
Figure 87.  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
36V  
5V  
3V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[  
]  
AMBIENT TEMPERATURE[]  
Figure 88.  
Figure 89.  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, Vicm=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
33/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
8
6
10  
5
105℃  
125℃  
-40℃  
4
-40℃  
25℃  
25℃  
2
0
0
125℃  
105℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 90.  
Figure 91.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=1.4V)  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
5
0
36V  
5V  
3V  
105℃  
125℃  
80  
-5  
70  
60  
-10  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 92.  
Figure 93.  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
34/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
15V  
-40℃  
25℃  
5V  
125℃  
105℃  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 94.  
Figure 95.  
Large Signal Voltage Gain - Ambient Temperature  
Common Mode Rejection Ratio  
- Supply Voltage  
(RL=2k)  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
5V  
3V  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 96.  
Figure 97.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
35/45  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Application Information  
NULL method condition for Test Circuit 1  
VCC, VEE, EK, Vicm Unit : V  
BA2904  
BA10358  
BA10324A  
BA2902  
Parameter  
VF  
S1  
S2  
S3  
calculation  
VCC VEE  
EK  
Vicm VCC VEE  
EK  
Vicm  
0
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VF1 ON  
ON OFF  
5
5
5
0
0
0
-1.4  
0
0
0
5 to 30  
0
0
0
-1.4  
1
2
3
4
VF2 OFF OFF OFF  
-1.4  
-1.4  
5
5
-1.4  
-1.4  
0
0
VF3 OFF ON  
OFF  
VF4 ON OFF  
VF5  
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
VF6  
VF7  
Common-mode Rejection Ratio  
(Input common-mode Voltage  
Range)  
ON OFF  
ON OFF  
5
6
VF8  
5
0
-1.4  
3.5  
5
0
-1.4  
3.5  
VF9  
5
0
0
-1.4  
-1.4  
0
0
5
0
0
-1.4  
-1.4  
0
0
Power Supply  
Rejection Ratio  
VF10  
30  
30  
-Calculation-  
1. Input Offset Voltage (Vio)  
|VF1|  
Vio  
[V]  
=
1+RF/RS  
0.1µF  
2. Input Offset Current (Iio)  
|VF2-VF1|  
RF=50kΩ  
=
[A]  
Iio  
Ri ×(1+RF/RS)  
0.1µF  
500kΩ  
SW1  
VCC  
3. Input Bias Current (Ib)  
|VF4-VF3|  
15V  
EK  
Vo  
RS=50Ω  
Ri=10kΩ  
=
[A]  
Ib  
500kΩ  
2 × Ri ×(1+RF/RS)  
DUT  
NULL  
-15V  
4. Large Signal Voltage Gain (Av)  
10 × (1+RF/RS)  
SW3  
1000pF  
Ri=10kΩ  
RS=50Ω  
50kΩ  
RL  
VF  
Av  
[dB]  
= 20Log  
Vicm  
SW2  
|VF5-VF6|  
VEE  
5. Common-mode Rejection Ration (CMRR)  
3.5 × (1+RF/RS)  
CMRR  
[dB]  
= 20Log  
|VF8-VF7|  
Figure . 98 Test circuit1 (one channel only)  
6. Power supply rejection ratio (PSRR)  
25 × (1+ RF/RS)  
PSRR  
[dB]  
=
20Log  
|VF10 – VF9|  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
36/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Switch Condition for Test Circuit 2  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
Maximum Output Voltage(High) OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
Maximum Output Voltage(Low) OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
Output Source Current  
Output Sink Current  
Slew Rate  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
SW4  
Input voltage  
VH  
R2  
SW5  
VCC  
A
VL  
t
Input wave  
SW1  
RS  
SW2  
SW3  
Output voltage  
VH  
SW6  
VIN-  
SW7  
VIN+  
SW8  
SW9  
SW10 SW11 SW12 SW13 SW14  
R1  
C
90%  
SR=ΔV/Δt  
VEE  
A
RL  
CL  
V
V
ΔV  
OUT  
10%  
VL  
Δt  
t
Output wave  
Figure 99. Test Circuit 2 (each Op-Amp)  
Figure 100. Slew Rate Input Waveform  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
VIN  
R2  
OUT1  
=0.5 Vrms  
R1  
R2  
V
V
OUT2  
100 × OUT1  
CS 20 × log  
OUT2  
Figure 101. Test Circuit 3(Channel Separation)  
(R1=1k,R2=100k)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
37/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Examples of circuit  
Voltage follower  
Voltage gain is 0 dB.  
VCC  
This circuit controls output voltage (OUT) equal input  
voltage (IN), and keeps OUT with stable because of  
high input impedance and low output impedance.  
OUT is shown next formula.  
OUT=IN  
OUT  
IN  
VEE  
Inverting amplifier  
R2  
VCC  
For inverting amplifier, IN is amplified by voltage gain  
decided R1 and R2, and phase reversed voltage is  
output.  
R1  
IN  
OUT  
OUT is shown next formula.  
OUT=-(R2/R1)IN  
Input impedance is R1.  
R1//R2  
VEE  
Non-inverting amplifier  
For non-inverting amplifier, IN is amplified by voltage  
gain decided R1 and R2, and phase is same with IN.  
OUT is shown next formula.  
OUT= (1+R2/R1)IN  
This circuit realizes high input impedance because  
Input impedance is operational amplifier’s input  
Impedance.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
38/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Power Dissipation  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature). IC is  
heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The  
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable  
power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature)  
and thermal resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the  
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin  
or lead  
frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is called  
thermal resistance, represented by the symbol θja/W. The temperature of IC inside the package can be estimated by this  
thermal resistance. Figure 102. (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient  
temperature Ta, maximum junction temperature Tjmax, and power dissipation Pd can be calculated by the equation below:  
θja = (Tjmax-Ta) / Pd  
/W  
・・・・・ ()  
Derating curve in Figure 102. (b) indicates power that can be consumed by IC with reference to ambient temperature.  
Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by  
thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature,  
package condition, wind velocity, etc even when the same of package is used.  
Thermal reduction curve indicates a reference value measured at a specified condition. Figure 103. (c) to (f) show a  
derating curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904W, BA2902S, BA2902.  
Power dissipation of LSI  
[W]  
Pd (max)  
θja=(Tjmax-Ta)/Pd /W  
P2  
θja2 < θja1  
θ' ja2  
Ambient temperature  
Ta [  
]
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
75  
Chip surface temperature  
Tj [  
]
Power dissipation Pd[W]  
0
25  
50  
100  
Ta [  
125  
150  
Ambient temperature  
(b) Derating curve  
]
(a)Thermal resistance  
Figure 102. Thermal resistance and derating  
1000  
1000  
800  
600  
400  
200  
0
BA10324AFJ(*31)  
800  
BA10324AFV(*32)  
BA10358F(*28)  
600  
400  
200  
0
BA10358FJ(*29)  
BA10358FV(*30)  
BA10324AF(*33)  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
AMBIEN T TEMPERATURE [  
]
.
AMBIENT TEMPERATURE [  
]
.
(c)BA10358  
(c)BA10324  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA2904F(*34)  
BA2904WF(*34)  
BA2904SF(*34)  
BA2902FV(*37)  
BA2902SFV(*37)  
BA2904FV(*35)  
BA2904WFV(*35)  
BA2904SFV(*35)  
BA2902F(*38)  
BA2904FVM(*36)  
BA2904SFVM(*36)  
BA2902SF(*38)  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
.
]
AMBIENT TEMPERATURE [  
.
(e)BA2904  
(f)BA2902  
(*28)  
6.2  
(*29)  
5.4  
(*30)  
5.0  
(*31)  
(*32)  
7.0  
(*33)  
4.5  
(*34)  
6.2  
(*35)  
5.0  
(*36)  
4.7  
(*37)  
7.0  
(*38)  
4.5  
Unit  
8.2  
mW/℃  
When using the unit above Ta=25, subtract the value above per degree .  
Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted.  
Figure 103. Derating curve  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
39/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
VCC  
Operational Notes  
1) Unused circuits  
+
-
When there are unused op-amps, it is recommended that they are  
connected as in Figure 104, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (Vicm).  
Connect  
to Vicm  
Vicm  
2) Input voltage  
VEE  
Applying VEE +32V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, regardless of  
the supply voltage. However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input voltage is  
within the common mode input voltage range of the electric characteristics.  
Figure 104. Example of  
application circuit for unused op-amp  
3) Power supply (single / dual)  
The op-amp operates when the voltage supplied is between VCC and VEE.  
Therefore, the single supply op-amp can be used as dual supply op-amp as  
well.  
4) Power dissipation Pd  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics including  
reduced current capability due to the rise of chip temperature. Therefore, please take into consideration the power  
dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal  
derating curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation  
or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.  
6) Operation in a strong electromagnetic field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
7) Radiation  
This IC is not designed to withstand radiation.  
8) IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations of the electrical  
characteristics due to piezo resistance effects.  
9) IC operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected  
to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and  
charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias  
current for Class A operation will suppress crossover distortion.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, make sure that  
the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the  
assembly process as well as during transportation and storage.  
11) Output capacitor  
If a large capacitor is connected between the output pin and GND pin, current from the charged capacitor will flow into the  
output pin and may destroy the IC when the VCC or VIN pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 1uF between output and GND.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
40/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimensions Tape and Reel Information  
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+
6
°
4°  
4
°
Quantity  
8
1
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B8  
<Tape and Reel information>  
3.0 0.2  
(MAX 3.35 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
8
7 6  
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2 3  
4
0.15 0.1  
S
0.1  
0.22  
+0.06  
-
0.04  
M
0.08  
Direction of feed  
1pin  
(0.52)  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
+
6°  
4°  
Quantity  
3000pcs  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
–0.03  
0.145  
0.475  
S
0.22  
–0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
SOP-J8  
<Tape and Reel information>  
4.9 0.2  
(MAX 5.25 include BURR)  
Tape  
Embossed carrier tape  
+
6°  
4°  
4°  
Quantity  
2500pcs  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.545  
0.2 0.1  
S
1.27  
0.42 0.1  
Direction of feed  
1pin  
0.1  
S
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
41/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
SOP14  
<Tape and Reel information>  
8.7 0.2  
Tape  
Embossed carrier tape  
2500pcs  
(MAX 9.05 include BURR)  
Quantity  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
1.27  
0.4 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B14  
<Tape and Reel information>  
5.0 0.2  
Tape  
Embossed carrier tape  
2500pcs  
14  
8
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SOP-J14  
<Tape and Reel information>  
8.65 0.1  
(Max 9.0 include BURR)  
+6°  
4°  
Tape  
Embossed carrier tape  
4°  
14  
8
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
1PIN MARK  
0.515  
+0.05  
0.03  
0.22  
0.08  
M
S
+0.05  
0.42  
1.27  
0.04  
0.08  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
42/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Marking Diagrams  
SOP8(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B8(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
SOP-J14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J8(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
43/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Product Name  
Package Type  
SOP8  
Marking  
10358  
F
FJ  
FV  
F
BA10358  
SOP-J8  
SSOP-B8  
SOP14  
358  
BA10324AF  
BA10324A  
324A  
BA10324A  
FJ  
FV  
F
SOP-J14  
SSOP-B14  
SOP8  
BA2904  
BA2904W  
BA2904S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP8  
2904  
FV  
F
SSOP-B8  
SOP8  
2904S  
04S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP14  
2904S  
BA2902F  
2902  
BA2902  
FV  
F
SSOP-B14  
SOP14  
BA2902S  
2902S  
FV  
SSOP-B14  
Land pattern data  
all dimensions in mm  
Land length  
Land pitch  
Land space  
Land width  
b2  
PKG  
SOP8  
e
MIE  
4.60  
4.60  
3.90  
2.62  
4.60  
4.60  
3.90  
≧ℓ 2  
1.10  
1.20  
1.35  
0.99  
1.10  
1.20  
1.35  
1.27  
0.65  
1.27  
0.65  
1.27  
0.65  
1.27  
0.76  
0.35  
0.76  
0.35  
0.76  
0.35  
0.76  
SSOP-B8  
SOP-J8  
MSOP8  
SOP14  
SSOP-B14  
SOP-J14  
MIE  
ℓ2  
SOP8, SSOP-B8, SOP-J8, MSOP8  
SOP14, SSOP-B14, SOP-J14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
44/45  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Revision History  
Date  
Revision  
001  
Changes  
14.SEP.2012  
11.Jan.2013  
New Release  
002  
Land pattern data inserted.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200130-1-2  
11.Jan.2013 Rev.002  
45/45  
Daattaasshheeeett  
Notice  
General Precaution  
1) Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2) All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
Precaution on using ROHM Products  
1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3) Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4) The Products are not subject to radiation-proof design.  
5) Please verify and confirm characteristics of the final or mounted products in using the Products.  
6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8) Confirm that operation temperature is within the specified range described in the product specification.  
9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precaution for Mounting / Circuit board design  
1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Precautions Regarding Application Examples and External Circuits  
1) If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2) You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1) All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Other Precaution  
1) The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
3) The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
5) The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY