BA82901YF-C [ROHM]

BA82901YF-C是将高增益且接地检测输入独立的比较器以4个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。;
BA82901YF-C
型号: BA82901YF-C
厂家: ROHM    ROHM
描述:

BA82901YF-C是将高增益且接地检测输入独立的比较器以4个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。

比较器
文件: 总31页 (文件大小:1567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Comparator Series  
Automotive Excellent EMI Immunity  
Ground Sense Comparators  
BA82903Yxxx-C BA82901Yxx-C  
General Description  
Key Specifications  
BA82903Yxxx-C and BA82901Yxx-C are high-gain,  
ground sense input comparator. These ICs are  
monolithic ICs integrated dual or quad independent  
comparators on a single chip. These comparators have  
some features of low power consumption, and can  
operate from 2 V to 36 V (single power supply).  
BA82903Yxxx-C, BA82901Yxx-C are manufactured for  
automotive requirements of engine control unit, electric  
power steering, anti-lock braking system, and so on.  
Furthermore, they have the advantage of EMI tolerance  
dose. It is easy to replace with conventional products,  
and the EMI design is simple.  
Operating Supply Voltage Range  
Single Supply:  
Dual Supply:  
2.0 V to 36.0 V  
±1.0 V to ±18.0 V  
Supply Current  
BA82903Yxxx-C  
BA82901Yxx-C  
Input Bias Current:  
Input Offset Current:  
0.6 mA (Typ)  
0.8 mA (Typ)  
50 nA (Typ)  
5 nA (Typ)  
Operating Temperature Range: -40 °C to +125 °C  
Special Characteristics  
Input Offset Voltage  
-40 °C to +125 °C:  
9 mV (Max)  
Features  
AEC-Q100 Qualified(Note 1)  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00 mm x 6.20 mm x 1.71 mm  
8.70 mm x 6.20 mm x 1.71 mm  
5.00 mm x 6.40 mm x 1.35 mm  
2.90 mm x 4.00 mm x 0.90 mm  
Single or Dual Supply Operation  
Wide Operating Supply Voltage Range  
Standard Comparator Pin-assignments  
Operable from Almost GND Level for Input  
Internal ESD Protection Circuit  
Wide Operating Temperature Range  
Integrated EMI Filter  
SOP14  
SSOP-B14  
MSOP8  
(Note 1) Grade 1  
Applications  
Engine Control Unit  
Electric Power Steering (EPS)  
Anti-Lock Braking System (ABS)  
Automotive Electronics  
Selection Guide  
Maximum Operating Temperature  
125 °C  
Supply Current  
0.6 mA  
BA82903YF-C  
BA82903YFVM-C  
Automotive  
Dual  
BA82901YF-C  
BA82901YFV-C  
Quad  
0.8 mA  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/28  
TSZ22111 14 001  
BA82903Yxxx-C BA82901Yxx-C  
Pin Configurations  
BA82903YF-C: SOP8  
BA82903YFVM-C: MSOP8  
(TOP VIEW)  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
8
7
VCC  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
CH1  
OUT2  
-
+
+IN1  
VEE  
+IN2  
-IN2  
+IN1  
VEE  
-IN2  
6
5
CH2  
+
-
+IN2  
OUT2  
VCC  
BA82901YF-C: SOP14  
BA82901YFV-C: SSOP-B14  
(TOP VIEW)  
Pin No.  
Pin Name  
1
2
3
4
5
OUT3  
14  
13  
12  
11  
OUT2  
OUT1  
1
2
OUT2  
OUT1  
VCC  
-IN1  
OUT4  
3
VCC  
-IN1  
+IN1  
VEE  
+IN4  
4
CH1  
CH4  
5
+IN1  
-IN2  
-
+
-
+
6
10 -IN4  
7
+IN2  
-IN3  
9
8
+IN3  
-IN3  
6
7
-IN2  
8
CH3  
- +  
CH2  
-
+
9
+IN3  
-IN4  
+IN2  
10  
11  
12  
13  
14  
+IN4  
VEE  
OUT4  
OUT3  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage  
VCC-VEE  
VID  
36  
36  
V
V
Differential Input Voltage(Note 1)  
Input Common-mode Voltage Range  
Input Current  
VICM  
II  
(VEE-0.3) to (VEE+36)  
V
-10  
-55 to +150  
150  
mA  
°C  
°C  
Storage Temperature Range  
Maximum Junction Temperature  
Tstg  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then the input pin voltage is set to VEE or more.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
MSOP8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
284.1  
21  
135.4  
11  
°C/W  
°C/W  
ΨJT  
SOP8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
197.4  
21  
109.8  
19  
°C/W  
°C/W  
ΨJT  
SOP14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
166.5  
26  
108.1  
22  
°C/W  
°C/W  
ΨJT  
SSOP-B14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
159.6  
13  
92.8  
9
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
70 μm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
2
(±1)  
36  
(±18)  
Operating Supply Voltage  
Operating Temperature  
Vopr  
Topr  
-
-
V
-40  
+125  
°C  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
3/28  
BA82903Yxxx-C BA82901Yxx-C  
Electrical Characteristics  
BA82903Yxxx-C (Unless otherwise specified VCC=5 V, VEE=0 V)  
Temperature  
Range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Limits  
Typ  
2
-
5
-
50  
-
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
nA  
V
Conditions  
VOUT=1.4 V  
Min  
-
-
-
-
Max  
5
9
40  
50  
250  
275  
VCC-1.5  
Input Offset Voltage(Note 1)  
Input Offset Current(Note 1)  
Input Bias Current(Note 1)  
VCC=5 V to 36 V, VOUT=1.4 V  
IIO  
VOUT=1.4 V  
-
-
IB  
VOUT=1.4 V  
Input Common-mode  
Voltage Range  
0
0
88  
74  
-
-
6
-
-
VICM  
AV  
-
-
100  
-
0.6  
-
16  
150  
-
VCC-2.0  
-
-
1
2.5  
-
400  
700  
-
VCC=15 V, VOUT=1.4 V to 11.4 V  
RL=15 kΩ, VRL=15 V  
Large Signal Voltage Gain  
dB  
OUT=open  
OUT=open, VCC=36 V  
V+IN=0 V, V-IN=1 V, VOUT=1.5 V  
V+IN=0 V, V-IN=1 V  
ISINK=4 mA  
Supply Current  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Output Sink Current(Note 2)  
Output Saturation Voltage  
(Low Level Output Voltage)  
Output Leakage Current  
(High Level Output Current)  
25 °C  
Full range  
25 °C  
-
-
1
nA  
V+IN=1 V, V-IN=0 V, VOUT=5 V  
V+IN=1 V, V-IN=0 V, VOUT=36V  
RL=5.1 kΩ, VRL=5 V  
VIN=100 mVP-P, overdrive=5 mV  
RL=5.1 kΩ, VRL=5 V, VIN=TTL  
Logic Swing, VREF=1.4 V  
RL=2 kΩ, V+IN=1.5 V, V-IN=5 VP-P  
(Duty 50 % Rectangular Pulse)  
ILEAK  
Full range  
-
-
1
μA  
-
-
1.3  
0.4  
-
-
-
-
25 °C  
25 °C  
Response Time  
tRE  
μs  
Operable Frequency  
fopr  
100  
kHz  
(Note 1) Absolute value  
(Note 2) Under high temperatures, it is important to consider the Tjmax and Thermal Resistance when selecting the output current.  
When the output pin is continuously shorted, the output current may reduce because of the internal temperature rise by heating.  
BA82901Yxx-C (Unless otherwise specified VCC=5 V, VEE=0 V)  
Limits  
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
nA  
V
Conditions  
VOUT=1.4 V  
Min  
-
-
-
-
Typ  
2
-
5
-
50  
-
-
-
100  
-
0.8  
-
16  
150  
-
Max  
5
9
40  
50  
250  
275  
VCC-1.5  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Full range  
25 °C  
Input Offset Voltage(Note 3)  
Input Offset Current(Note 3)  
Input Bias Current(Note 3)  
VCC=5 V to 36 V, VOUT=1.4 V  
IIO  
VOUT=1.4 V  
-
-
IB  
VOUT=1.4 V  
Input Common-mode  
Voltage Range  
0
0
88  
74  
-
VICM  
AV  
-
VCC-2.0  
-
-
2
VCC=15 V, VOUT=1.4 V to 11.4 V  
RL=15 kΩ, VRL=15 V  
Large Signal Voltage Gain  
dB  
OUT=open  
Supply Current  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
25 °C  
25 °C  
Full range  
25 °C  
-
6
-
2.5  
-
400  
700  
-
OUT=open, VCC=36 V  
V+IN=0 V, V-IN=1 V, VOUT=1.5 V  
V+IN=0 V, V-IN=1 V,  
Output Sink Current(Note 4)  
Output Saturation Voltage  
(Low Level Output Voltage)  
Output Leakage Current  
(High Level Output Current)  
-
ISINK=4 mA  
-
1
nA  
V+IN=1 V, V-IN=0 V, VOUT=5 V  
V+IN=1 V, V-IN=0 V, VOUT=36 V  
RL=5.1 kΩ, VRL=5 V  
VIN=100 mVP-P, overdrive=5 mV  
RL=5.1 kΩ, VRL=5 V, VIN=TTL  
Logic Swing, VREF=1.4 V  
RL=2 kΩ, V+IN=1.5 V, V-IN=5 VP-P  
(Duty 50 % Rectangular Pulse)  
ILEAK  
Full range  
-
-
1
μA  
-
-
1.3  
0.4  
-
-
-
-
25 °C  
25 °C  
Response Time  
tRE  
μs  
Operable Frequency  
fopr  
100  
kHz  
(Note 3) Absolute value  
(Note 4) Under high temperatures, it is important to consider the Tjmax and Thermal Resistance when selecting the output current.  
When the output pin is continuously shorted, the output current may reduce because of the internal temperature rise by heating.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s or general  
document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the condition which must not be exceeded even momentarily. Applying of voltage in  
excess of absolute maximum rating or use at outside the temperature range which is provided in the absolute maximum  
ratings may cause deteriorating the characteristics of the IC or destroying it.  
1.1 Supply Voltage (VCC-VEE  
)
Indicates the maximum voltage that can be applied between the positive power supply pin and negative power  
supply pin without deteriorating the characteristics of the IC or without destroying it.  
1.2 Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting pin and inverting pin without deteriorating  
the characteristics of the IC or without destroying it.  
1.3 Input Common-mode Voltage Range (VICM  
)
Indicates the voltage range that can be applied to the non-inverting pin and inverting pin without deteriorating the  
characteristics of the IC or without destroying it. Input common-mode voltage range of the maximum ratings does not  
assure normal operation of IC. For normal operation, use the IC within the input common-mode voltage range of  
electrical characteristics.  
1.4 Storage Temperature Range (Tstg)  
The storage temperature range denotes the range of temperatures the IC can be stored without causing excessive  
deteriorating the characteristics of the IC.  
2. Electrical Characteristics  
2.1 Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting pin and inverting pin. It can be translated as the input voltage  
difference required for setting the output voltage at 0 V.  
2.2 Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting pins.  
2.3 Input Bias Current (IB)  
Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the  
non-inverting and inverting pins.  
2.4 Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
2.5 Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage regarding the voltage difference between non-inverting pin and  
inverting pin. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output Voltage) / (Differential Input Voltage)  
2.6 Supply Current (ICC  
)
Indicates the current that flows within the IC under no-load conditions.  
2.7 Output Sink Current (ISINK  
)
Indicates the current flowing into the IC under specified output conditions.  
2.8 Output Saturation Voltage (Low Level Output Voltage) (VOL  
)
Indicates the lower limit of output voltage under specified load conditions.  
2.9 Output Leakage Current (High Level Output Current) (ILEAK  
)
Indicates the current that flows into the IC under specified input and output conditions.  
2.10 Response Time (tRE  
)
Indicates the time interval between the input step function and the instant when the output crosses 50 % of the  
amplitude.  
2.11 Operable Frequency (fopr)  
Indicates minimum frequency that IC moves under specified conditions.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves (VEE=0 V)  
BA82903Yxxx-C  
1.6  
1.4  
1.2  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40 ºC  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VCC=36 V  
VCC=5 V  
Ta=+25 ºC  
Ta=+125 ºC  
VCC=2 V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 2. Supply Current vs Ambient Temperature  
Figure 1. Supply Current vs Supply Voltage  
200  
200  
150  
100  
50  
150  
Ta=+125 ºC  
Ta=+25 ºC  
VCC=2 V  
VCC=5 V  
100  
VCC=36 V  
50  
Ta=-40 ºC  
0
0
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature: Ta[°C]  
SupplyVoltage: VCC[V]  
Figure 3. Output Saturation Voltage vs Supply Voltage  
(ISINK=4 mA)  
Figure 4. Output Saturation Voltage vs Ambient Temperature  
(ISINK=4 mA)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82903Yxxx-C  
2.0  
1.8  
40  
30  
20  
10  
0
Ta=+125 ºC  
1.6  
1.4  
1.2  
VCC=36 V  
Ta=+25 ºC  
1.0  
0.8  
0.6  
0.4  
VCC=5 V  
VCC=2 V  
0.2  
0.0  
Ta=-40 ºC  
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25 50 75 100 125 150  
Output Sink Current: ISINK[mA]  
Ambient Temperature: Ta[°C]  
Figure 5. Output Voltage vs Output Sink Current  
(VCC=5 V)  
Figure 6. Output Sink Current vs Ambient Temperature  
(VOUT=1.5 V)  
8
6
8
6
4
Ta=-40 ºC  
4
2
VCC=5 V  
VCC=36 V  
Ta=+25 ºC  
2
0
VCC=2 V  
Ta=+125 ºC  
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
0
10  
20  
30  
40  
-50 -25  
0
25  
50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 7. Input Offset Voltage vs Supply Voltage  
Figure 8. Input Offset Voltage vs Ambient Temperature  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82903Yxxx-C  
160  
140  
120  
100  
160  
140  
120  
100  
80  
80  
60  
40  
20  
0
Ta=-40 ºC  
VCC=36 V  
Ta=+25 ºC  
60  
40  
VCC=2 V  
VCC=5 V  
Ta=+125 ºC  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 9. Input Bias Current vs Supply Voltage  
Figure 10. Input Bias Current vs Ambient Temperature  
50  
50  
40  
30  
20  
40  
30  
20  
Ta=+125 ºC  
Ta=-40 ºC  
Ta=+25 ºC  
VCC=5 V  
10  
10  
0
0
VCC=2 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
VCC=36 V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 11. Input Offset Current vs Supply Voltage  
Figure 12. Input Offset Current vs Ambient Temperature  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82903Yxxx-C  
140  
130  
140  
130  
120  
110  
100  
90  
VCC=36 V  
120  
Ta=+25 ºC  
Ta=-40 ºC  
110  
100  
VCC=15 V  
Ta=+125 ºC  
VCC=5 V  
90  
80  
70  
60  
80  
70  
60  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 13. Large Signal Voltage Gain vs  
Supply Voltage  
Figure 14. Large Signal Voltage Gain vs  
Ambient Temperature  
5
4
3
2
1
0
10  
8
6
Ta=-40 ºC  
Ta=+25 ºC  
4
2
0
Ta=+125 ºC  
-2  
-4  
-6  
-8  
-10  
Ta=+125 ºC  
Ta=+25 ºC  
Ta=-40 ºC  
-20  
-1  
0
1
2
3
4
5
-100  
-80  
-60  
-40  
0
Input Common-mode Voltage:VICM[V]  
Overdrive Voltage: VOV[mV]  
Figure 15. Input Offset Voltage vs Input Voltage  
(VCC=5 V)  
Figure 16. Response Time (Low to High) vs  
Overdrive Voltage  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82903Yxxx-C  
5
4
3
2
1
0
5
4
3
20 mV overdrive  
2
1
0
5 mV overdrive  
Ta=+25 ºC  
Ta=+125 ºC  
100 mV overdrive  
Ta=-40 ºC  
0
20  
40  
60  
80  
100  
-50 -25  
0
25  
50  
75 100 125 150  
Overdrive Voltage: VOV[mV]  
Ambient Temperature: Ta[°C]  
Figure 17. Response Time (Low to High) vs  
Ambient Temperature  
Figure 18. Response Time (High to Low) vs  
Overdrive Voltage  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
5
4
3
2
1
0
5 mV overdrive  
20 mV overdrive  
100 mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature: Ta[°C]  
Figure 19. Response Time (High to Low) vs  
Ambient Temperature  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82901Yxx-C  
2.0  
1.8  
1.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40 ºC  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VCC=36 V  
VCC=5 V  
Ta=+25 ºC  
Ta=+125 ºC  
VCC=2 V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 21. Supply Current vs Ambient Temperature  
Figure 20. Supply Current vs Supply Voltage  
200  
200  
150  
100  
50  
150  
Ta=+125 ºC  
Ta=+25 ºC  
VCC=2 V  
VCC=5 V  
100  
VCC=36 V  
50  
Ta=-40 ºC  
0
0
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature: Ta[°C]  
SupplyVoltage: VCC[V]  
Figure 22. Output Saturation Voltage vs Supply Voltage  
(ISINK=4 mA)  
Figure 23. Output Saturation Voltage vs Ambient Temperature  
(ISINK=4 mA)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82901Yxx-C  
2.0  
1.8  
40  
30  
20  
10  
0
Ta=+125 ºC  
1.6  
1.4  
1.2  
VCC=36 V  
Ta=+25 ºC  
1.0  
0.8  
0.6  
0.4  
VCC=5 V  
VCC=2 V  
0.2  
0.0  
Ta=-40 ºC  
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25 50 75 100 125 150  
Output Sink Current: ISINK[mA]  
Ambient Temperature: Ta[°C]  
Figure 24. Output Voltage vs Output Sink Current  
(VCC=5 V)  
Figure 25. Output Sink Current vs Ambient Temperature  
(VOUT=1.5 V)  
8
6
8
6
4
Ta=-40 ºC  
4
2
VCC=5 V  
VCC=36 V  
Ta=+25 ºC  
2
0
VCC=2 V  
Ta=+125 ºC  
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
0
10  
20  
30  
40  
-50 -25  
0
25  
50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 27. Input Offset Voltage vs Ambient Temperature  
Figure 26. Input Offset Voltage vs Supply Voltage  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82901Yxx-C  
160  
140  
120  
100  
160  
140  
120  
100  
80  
80  
60  
40  
20  
0
Ta=-40 ºC  
VCC=36 V  
Ta=+25 ºC  
60  
40  
VCC=2 V  
VCC=5 V  
Ta=+125 ºC  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 28. Input Bias Current vs Supply Voltage  
Figure 29. Input Bias Current vs Ambient Temperature  
50  
40  
30  
20  
50  
40  
30  
20  
Ta=+125 ºC  
Ta=-40 ºC  
Ta=+25 ºC  
VCC=5 V  
10  
10  
0
0
VCC=2 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
VCC=36 V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 30. Input Offset Current vs Supply Voltage  
Figure 31. Input Offset Current vs Ambient Temperature  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82901Yxx-C  
140  
130  
140  
130  
120  
110  
100  
90  
VCC=36 V  
120  
Ta=+25 ºC  
Ta=-40 ºC  
110  
100  
VCC=15 V  
Ta=+125 ºC  
VCC=5 V  
90  
80  
70  
60  
80  
70  
60  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SupplyVoltage: VCC[V]  
Ambient Temperature: Ta[°C]  
Figure 32. Large Signal Voltage Gain vs  
Supply Voltage  
Figure 33. Large Signal Voltage Gain vs  
Ambient Temperature  
5
4
3
2
1
0
10  
8
6
Ta=-40 ºC  
Ta=+25 ºC  
4
2
0
Ta=+125 ºC  
-2  
-4  
-6  
-8  
-10  
Ta=+125 ºC  
Ta=+25 ºC  
Ta=-40 ºC  
-20  
-1  
0
1
2
3
4
5
-100  
-80  
-60  
-40  
0
Input Common-mode Voltage:VICM[V]  
Overdrive Voltage: VOV[mV]  
Figure 34. Input Offset Voltage vs Input Voltage  
(VCC=5 V)  
Figure 35. Response Time (Low to High) vs  
Overdrive Voltage  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
14/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Typical Performance Curves - continued  
BA82901Yxx-C  
5
4
3
2
1
0
5
4
3
20 mV overdrive  
2
1
0
5 mV overdrive  
Ta=+25 ºC  
Ta=+125 ºC  
100 mV overdrive  
Ta=-40 ºC  
0
20  
40  
60  
80  
100  
-50 -25  
0
25  
50  
75 100 125 150  
Overdrive Voltage: VOV[mV]  
Ambient Temperature: Ta[°C]  
Figure 37. Response Time (High to Low) vs  
Overdrive Voltage  
Figure 36. Response Time (Low to High) vs  
Ambient Temperature  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
5
4
3
2
1
0
5 mV overdrive  
20 mV overdrive  
100 mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature: Ta[°C]  
Figure 38. Response Time (High to Low) vs  
Ambient Temperature  
(VCC=5 V,VRL=5 V,RL=5.1 kΩ)  
(Note) The data above is measurement value of typical sample; it is not guaranteed.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Application Information  
Test Circuit 1: Measurement Condition  
VCC, VEE, VEK, VICM Unit: V  
Parameter  
VF  
SW1  
SW2  
SW3  
VCC  
VEE  
VEK  
VICM  
Calculation  
Input Offset Voltage  
Input Offset Current  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
5 to 36  
0
0
0
0
0
0
-1.4  
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
0
0
0
0
0
0
1
2
5
5
Input Bias Current  
ON  
ON  
3
4
OFF  
5
15  
15  
Large Signal Voltage Gain  
ON  
ON  
- Calculation -  
1. Input Offset Voltage (VIO)  
[V]  
2. Input Offset Current (IIO)  
[A]  
3. Input Bias Current (IB)  
[A]  
4. Large Signal Voltage Gain (AV)  
[dB]  
RF=50 kΩ  
0.1 µF  
+15 V  
500 kΩ  
SW1  
VCC  
DUT  
VEK  
VO  
RS=50 Ω RI=10 kΩ  
500 kΩ  
NULL  
-15 V  
SW3  
RS=50 Ω RI=10 kΩ  
1000 pF  
V
VF  
RL  
VICM  
SW2  
50 kΩ  
VEE  
VRL  
Figure 39. Test Circuit 1 (One Channel Only)  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Application Information - continued  
Test Circuit 2: Switch Condition  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW No.  
Supply Current  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
Output Sink Current  
VOUT=1.5 V  
Output Saturation Voltage ISINK=4 mA  
OFF  
ON  
Output Leakage Current  
Response Time  
VOUT=36 V  
OFF  
OFF  
OFF  
OFF  
RL=5.1 kΩ, VRL=5 V  
OFF  
VCC  
A
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
RL  
V
A
VEE  
V-IN  
V+IN  
VRL  
VOUT  
Figure 40. Test Circuit 2 (One Channel Only)  
Input Wave  
Input Wave  
VIN  
VIN
+100mV  
N  
0V  
Overdrive Voltage  
Overdrive Voltage  
0V  
V
-100mV  
Output Wave  
Output Wave  
VOUT  
OUT
VT  
VRL  
VRL  
VRL/2  
V /2  
RL
0V  
0V  
tRE (Low to High)  
t
(High to Low)  
RE
Figure 41. Input / Output Waveform of Response Time  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Application Information - continued  
Application Example  
Reference voltage is -IN  
VCC  
VRL  
RL  
VOUT  
VIN  
VIN  
+
-
Reference  
Voltage  
Reference  
Voltage  
VREF  
VEE  
Time  
Input Voltage Wave  
VOUT  
High  
While the input voltage (VIN) is higher than the  
reference voltage, the output voltage remains high.  
In case the input voltage becomes lower than the  
reference voltage, the output voltage will turn low.  
Low  
Time  
Output Voltage Wave  
Reference voltage is +IN  
VIN  
VCC  
VRL  
RL  
Reference  
Voltage  
Reference  
Voltage  
+
-
VREF  
VOUT  
VIN  
Time  
VEE  
Input Voltage Wave  
VOUT  
High  
While the input voltage (VIN) is lower than the  
reference voltage, the output voltage remains high.  
In case the input voltage becomes higher than the  
reference voltage, the output voltage will turn low.  
Low  
Time  
Output Voltage Wave  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Application Information - continued  
EMI Immunity  
BA82903Yxxx-C and BA82901Yxx-C have high tolerance for electromagnetic interference from the outside because they  
have EMI filter, and the EMI design is simple. The data of the IC simple substance on ROHM board are as follows. They  
are most suitable to replace from conventional products. The test condition is based on ISO11452-2.  
<Test Condition> Based on ISO11452-2  
VCC: 12 V, VRL: 6 V, RL: 5.1 kΩ  
H Level Output: V+IN: 6 V, V-IN: 5.8 V  
L Level Output: V+IN: 5.8 V, V-IN: 6 V  
Test Method: Substituted Law  
(Progressive Wave)  
Field Intensity: 200 V/m  
Test Wave: CW (Continuous Wave)  
Frequency: 200 MHz 1000 MHz (2 % step)  
VRL+ 1  
VRL  
BA82903Yxxx-C,  
BA82901Yxx-C  
VRL- 1  
VRL- 2  
VRL- 3  
VRL- 4  
VRL- 5  
0
Conventional Product  
200  
400  
600  
800  
1000  
Frequency [MHz]  
Figure 42. EMI Characteristics (H Level Output)  
VRL+ 1  
Figure 44. EMI Evaluation Board  
(BA82903Yxxx-C)  
VRL  
VRL- 1  
VRL- 2  
VRL- 3  
VRL- 4  
VRL- 5  
0
Conventional Product  
BA82903Yxxx-C,  
BA82901Yxx-C  
200  
400  
600  
800  
1000  
Figure 45. EMI Evaluation Board  
(BA82901Yxx-C)  
Frequency [MHz]  
Figure 43. EMI Characteristics (L Level Output)  
+IN  
VCC  
Oscillo  
scope  
Battery  
6v  
Power  
Supply  
OUT  
VEE  
Battery  
12v  
-IN  
-
+
Antenna  
Figure 46. Measurement Circuit of EMI Evaluation  
(Note) The above data is obtained using typical IC simple substance on ROHM board. These values are not guaranteed.  
Design and evaluate in actual application before use.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
19/28  
BA82903Yxxx-C BA82901Yxx-C  
Application Information continued  
Notes  
1. Unused Circuits  
When there are unused circuits, it is recommended that they are connected as in Figure 47, and set the non-inverting  
input pin within the input common-mode voltage range (VICM).  
VCC  
OPEN  
+
Potential within VICM  
VCC-1.5 V > VICM > VEE  
-
VICM  
VEE  
Figure 47. Example of Application Circuit for Unused Circuit  
2. Input Voltage  
Applying VEE+36 V to the input pin is possible without causing deterioration of the electrical characteristics or destruction,  
regardless of the supply voltage. However, this does not ensure normal circuit operation. Note that the circuit operates  
normally only when the input voltage is within the input common-mode input voltage range of the electric characteristics.  
3. Power Supply (Single / Dual)  
The comparator operates when the voltage supplied is between the VCC and VEE pin. Therefore, the comparator can  
operate from single supply or dual supplies.  
4. Pin Short-circuits  
When the output and the VCC pins are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
5. IC Handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations of the electrical  
characteristics due to the piezo resistance effects. Pay attention to defecting or bending the board  
I/O Equivalence Circuit  
VCC  
OUT  
+IN  
-IN  
VEE  
Figure 48. Equivalence Circuit (One Channel Only)  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/28  
TSZ22111 15 001  
21.Sep.2022 Rev.002  
BA82903Yxxx-C BA82901Yxx-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 49. Example of Monolithic IC Structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all  
within the Area of Safe Operation (ASO).  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Ordering Information  
B A 8 2 9  
0
x Y x  
x
x
-
C x x  
Number of Channels  
3: Dual  
1: Quad  
Package  
Product Rank  
C: for Automotive  
F
: SOP8  
SOP14  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B14)  
TR: Embossed tape and reel  
(MSOP8)  
FV : SSOP-B14  
FVM: MSOP8  
Lineup  
Operating  
Temperature Range  
Operating  
Supply Voltage  
Number of  
Channels  
Package  
Reel of 2500  
Orderable Part Number  
SOP8  
BA82903YF-CE2  
BA82903YFVM-CTR  
BA82901YF-CE2  
BA82901YFV-CE2  
Dual  
MSOP8  
Reel of 3000  
Reel of 2500  
Reel of 2500  
-40 °C to +125 °C  
2 V to 36 V  
SOP14  
Quad  
SSOP-B14  
Marking Diagrams  
SOP8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
8 2 9 0 3  
8 2 9 0 3  
LOT Number  
Pin 1 Mark  
Pin 1 Mark  
SOP14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
8 0 1 Y  
BA82901YF  
LOT Number  
Pin 1 Mark  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/28  
TSZ22111 15 001  
BA82903Yxxx-C BA82901Yxx-C  
Physical Dimension and Packing Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT: mm)  
PKG: SOP8  
Drawing No.: EX112-5001-1  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
24/28  
BA82903Yxxx-C BA82901Yxx-C  
Physical Dimension and Packing Information continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT: mm)  
PKG: SOP14  
Drawing No.: EX113-5001  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
25/28  
BA82903Yxxx-C BA82901Yxx-C  
Physical Dimension and Packing Information continued  
Package Name  
SSOP-B14  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
26/28  
BA82903Yxxx-C BA82901Yxx-C  
Physical Dimension and Packing Information continued  
Package Name  
MSOP8  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
27/28  
BA82903Yxxx-C BA82901Yxx-C  
Revision History  
Date  
Revision  
Changes  
26.Jun.2018  
21.Sep.2022  
001  
002  
New Release  
Modified Title  
www.rohm.com  
TSZ02201-0GNG2G500020-1-2  
21.Sep.2022 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/28  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA82901YFV-C

BA82901YFV-C是将高增益且接地检测输入独立的比较器以4个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YF-C

BA82902YF-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YF-CE2

Operational Amplifier,
ROHM

BA82902YFJ-C

BA82902YFJ-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YFJ-CE2

Operational Amplifier,
ROHM

BA82902YFV-C

BA82902YFV-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YFV-CE2

Operational Amplifier,
ROHM

BA82902YFVJ-C

BA82902YFVJ-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YFVJ-CE2

Operational Amplifier,
ROHM

BA82903YF-C

BA82903YF-C是将高增益且接地检测输入独立的比较器以2个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82903YFVM-C

BA82903YFVM-C是将高增益且接地检测输入独立的比较器以2个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82904YF-C

BA82904YF-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM