BD00EA5WFP2 [ROHM]

BD00EA5Wxxx系列是低消耗电流线性稳压器。该IC具有45V耐压,500mA输出电流,17μA消耗电流(典型值)。输出电压精度BD00EA5WFP和BD00EA5WFP为±1%,BD00EA5WFP2为±1.5%(不包括反馈电阻精度)。通过在ADJ引脚上增加一个电阻,可以将输出电压设置为1.2V至16V。有一个输出关闭功能,当EN引脚施加High电压时,IC输出开启,施加LOW电压时输出关闭。该IC具有过流保护功能,可防止因输出短路等导致的IC损坏,以及过热保护电路,可防止IC因过载等原因造成热损坏等。输出相位补偿电容可使用低ESR陶瓷电容器。;
BD00EA5WFP2
型号: BD00EA5WFP2
厂家: ROHM    ROHM
描述:

BD00EA5Wxxx系列是低消耗电流线性稳压器。该IC具有45V耐压,500mA输出电流,17μA消耗电流(典型值)。输出电压精度BD00EA5WFP和BD00EA5WFP为±1%,BD00EA5WFP2为±1.5%(不包括反馈电阻精度)。通过在ADJ引脚上增加一个电阻,可以将输出电压设置为1.2V至16V。有一个输出关闭功能,当EN引脚施加High电压时,IC输出开启,施加LOW电压时输出关闭。该IC具有过流保护功能,可防止因输出短路等导致的IC损坏,以及过热保护电路,可防止IC因过载等原因造成热损坏等。输出相位补偿电容可使用低ESR陶瓷电容器。

电容器 陶瓷电容器 稳压器
文件: 总39页 (文件大小:2872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
500 mA Adjustable Output  
LDO Regulators  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
General Description  
Key Specifications  
The BD00EA5Wxxx series are linear regulators designed  
as low current consumption products for power supplies in  
various automotive applications.  
These products are designed for up to 45 V as an absolute  
maximum voltage and to operate until 500 mA for the  
output current with low current consumption 17 μA (Typ).  
Wide Temperature Range (Tj):  
Wide Operating Input Range:  
Low Current Consumption:  
Output Current Capability:  
High Output Voltage Accuracy:  
Output Voltage:  
-40 °C to +105 °C  
3 V to 42 V  
17 μA(Typ)  
500 mA  
±1 %(Tj = 25 °C)  
1.2 V to 16 V  
These can regulate the output with  
a very high  
accuracy(Note 1), ±1 % (BD00EA5WFP, BD00EA5WHFP)  
and ±1.5 % (BD00EA5WFP2). The output voltage can be  
adjusted between 1.2 V and 16 V by an external resistive  
divider connected to the adjustment pin. These regulators  
are therefore an ideal for any applications requiring a direct  
connection to the battery and a low current consumption.  
Packages  
FP: TO252-5  
W(Typ) x D(Typ) x H(Max)  
6.5 mm x 9.5 mm x 2.5 mm  
A logical “HIGH” at the EN pin turns on the device, and in  
the other side, the devices are controlled to disable by a  
logical “LOW” input to the EN pin.  
The devices feature the integrated Over Current Protection  
to protect the device from a damage caused by a short-  
circuiting or an overload. These products also integrate  
Thermal Shutdown Protection to avoid the damage by  
overheating.  
HFP: HRP5  
9.395 mm x 10.54 mm x 2.005 mm  
Furthermore, low ESR ceramic capacitors are sufficiently  
applicable for the phase compensation.  
(Note 1) The tolerance of feedback resistor is not included.  
Features  
FP2: TO263-5 10.16 mm × 15.10 mm × 4.70 mm  
Output Shutdown Function (EN Function)  
Over Current Protection (OCP)  
Thermal Shutdown Protection (TSD)  
Applications  
Power Supply for General Purpose  
Typical Application Circuit  
FIN  
Components Externally Connected  
Capacitor: 0.1 µF ≤ CIN (Min), 1.47 µF ≤ COUT (Min) (Note 2)  
Resistor: 5 kΩ ≤ R1 ≤ 200 kΩ (Note 3) (Note 4)  
VADJ (Typ): 0.65 V  
BD00EA5WFP  
EN  
ADJ  
VOUT  
N.C.  
푂푈푇  
VIN  
2 = 푅1 (  
− ꢀ)  
퐴퐷퐽  
Input  
Voltage  
Output  
R2  
Voltage  
(Note 2) Electrolytic, tantalum and ceramic capacitors can be used.  
(Note 5)  
CADJ  
COUT  
(Note 3) The tolerance of feedback resistor is not included in the accuracy of output voltage.  
(Note 4) The value of a feedback resistor R1 must be within this range.  
R2 value is defined by following the formula using the limitation of R1.  
(Note 5) If it needs better transient characteristic, insert a capacitor between  
Enable  
Voltage  
R1  
CIN  
the VOUT and ADJ pin. Refer to Typical Application and Layout Example for the details such as equations.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
1/36  
 
 
 
 
 
 
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Packages........................................................................................................................................................................................1  
Typical Application Circuit...............................................................................................................................................................1  
Pin Configurations ..........................................................................................................................................................................4  
Pin Descriptions..............................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of Blocks ......................................................................................................................................................................6  
Absolute Maximum Ratings............................................................................................................................................................7  
Thermal Resistance........................................................................................................................................................................7  
Operating Conditions......................................................................................................................................................................8  
Electrical Characteristics.................................................................................................................................................................9  
LDO Function..............................................................................................................................................................................9  
Enable Function ..........................................................................................................................................................................9  
Typical Performance Curves.........................................................................................................................................................10  
Figure 1. Output Voltage vs Input Voltage.................................................................................................................................10  
Figure 2. Output Voltage vs Input Voltage -Enlarged view ........................................................................................................10  
Figure 3. Output Voltage vs Junction Temperature (IOUT = 0.5 mA)........................................................................................10  
Figure 4. Current Consumption + Enable Bias Current vs Input Voltage................................................................................10  
Figure 5. Current Consumption + Enable Bias Current vs Junction Temperature...................................................................11  
Figure 6. Current Consumption + Enable Bias Current vs Output Current .............................................................................11  
Figure 7. Output Voltage vs Output Current (Over Current Protection) ..................................................................................11  
Figure 8. Shutdown Current vs Junction Temperature (VEN = 0 V) .........................................................................................11  
Figure 9. Dropout Voltage vs Output Current (VIN = 4.75 V)...................................................................................................12  
Figure 10. Output Voltage vs Junction Temperature (Thermal Shutdown Protection).............................................................12  
Figure 11. Output Voltage vs EN Input Voltage .........................................................................................................................12  
Figure 12. EN Input Voltage vs Junction Temperature ..............................................................................................................12  
Figure 13. Enable Bias Current vs Junction Temperature .........................................................................................................13  
Figure 14. Ripple Rejection (ein = 1 Vrms, IOUT = 100 mA).....................................................................................................13  
Figure 15. Line Regulation (VIN = 6 V → 42 V).......................................................................................................................13  
Figure 16. Load Regulation (IOUT = 0.5 mA → 400 mA)..........................................................................................................13  
Figure 17. Line Transient Response (VIN = 0 V → 16 V) ........................................................................................................14  
Figure 18. Line Transient Response (VIN = 6 V → 16 V) ........................................................................................................14  
Figure 19. Load Transient Response (IOUT = 1 mA ↔ 500 mA) ..............................................................................................15  
Figure 20. Load Transient Response (IOUT = 10 mA ↔ 500 mA) ............................................................................................16  
Figure 21. EN ON/OFF Sequence ............................................................................................................................................17  
Figure 22. VIN ON/OFF Sequence.............................................................................................................................................18  
Measurement Circuit for Typical Performance Curves .................................................................................................................19  
Application and Implementation....................................................................................................................................................20  
Selection of External Components............................................................................................................................................20  
Input Pin Capacitor................................................................................................................................................................20  
Output Pin Capacitor .............................................................................................................................................................20  
Typical Application and Layout Example ...................................................................................................................................22  
Surge Voltage Protection for Linear Regulators ........................................................................................................................23  
Positive Surge to the Input.....................................................................................................................................................23  
Negative Surge to the Input...................................................................................................................................................23  
Reverse Voltage Protection for Linear Regulators ....................................................................................................................23  
Protection against Reverse Input/Output Voltage..................................................................................................................23  
Protection against Input Reverse Voltage..............................................................................................................................24  
Protection against Reverse Output Voltage when Output Connect to an Inductor.................................................................25  
Power Dissipation.........................................................................................................................................................................26  
TO252-5....................................................................................................................................................................................26  
HRP5.........................................................................................................................................................................................26  
TO263-5....................................................................................................................................................................................27  
Thermal Design ............................................................................................................................................................................28  
I/O Equivalence Circuits................................................................................................................................................................29  
Operational Notes.........................................................................................................................................................................30  
1. Reverse Connection of Power Supply...................................................................................................................................30  
2. Power Supply Lines ..............................................................................................................................................................30  
3. Ground Voltage.....................................................................................................................................................................30  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
2/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
4. Ground Wiring Pattern...........................................................................................................................................................30  
5. Recommended Operating Conditions ...................................................................................................................................30  
6. Inrush Current .......................................................................................................................................................................30  
7. Thermal Consideration..........................................................................................................................................................30  
8. Testing on Application Boards ...............................................................................................................................................30  
9. Inter-pin Short and Mounting Errors ......................................................................................................................................30  
10 Unused Input Pins................................................................................................................................................................30  
11. Regarding the Input Pin of the IC ........................................................................................................................................31  
12. Ceramic Capacitor...............................................................................................................................................................31  
13. Thermal Shutdown Protection Circuit(TSD) ........................................................................................................................31  
14. Over Current Protection Circuit (OCP) ................................................................................................................................31  
15. Enable Pin...........................................................................................................................................................................31  
Ordering Information.....................................................................................................................................................................32  
Marking Diagrams.........................................................................................................................................................................32  
Physical Dimension and Packing Information...............................................................................................................................33  
Revision History............................................................................................................................................................................36  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
3/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Pin Configurations  
TO252-5  
HRP5  
TO263-5  
(TOP VIEW)  
(Top View)  
(TOP VIEW)  
FIN  
FIN  
FIN  
1
2
3
4 5  
1 2 3 4 5  
1 2 3 4  
5
Pin Descriptions  
Pin No.  
Pin Name  
Function  
Descriptions  
It is necessary to use a capacitor with a capacitance of 0.1 μF (Min)  
or higher between the VIN pin and GND. The detail of a selection  
is described in Selection of External Components. If the  
inductance of power supply line is high, please adjust input  
capacitor value.  
1
VIN  
Input Supply Voltage Pin  
A logical “HIGH” (VEN ≥ 2.0 V) at the EN pin enables the device  
and LOW(VEN ≤ 0.8 V) at the EN pin disables the device.  
2
EN  
Control Output ON/OFF Pin  
N.C.(Note 1)  
(TO252-5)  
Not Connected  
Ground Pin  
Not connected to chip  
3
4
GND  
ADJ  
Ground.  
Adjustment Pin  
For Output Voltage  
Connect an external resistor to adjust output voltage.  
Connect an external resistor to adjust output voltage.  
It is necessary to use a capacitor with a capacitance of 1.47  
μF(Min) or higher between the VOUT pin and GND. The detail of  
a selection is described in Selection of External Components  
5
VOUT  
Output Voltage Pin  
Ground.  
FIN  
GND  
Ground Pin  
This pin should be connected to Analog ground / Power ground or  
Heat Sink.  
(Note 1) The N.C. is not connected inside of IC.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
4/36  
27.May.2019 Rev.002  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Block Diagram  
TO252-5  
GND (FIN)  
Power Tr.  
OCP  
EN  
PREREG  
VREF  
AMP  
DRIVER  
TSD  
DIS-  
CHARGE  
EN  
VIN (Pin 1)  
EN (Pin 2)  
N.C. (Pin 3)  
GND (FIN)  
ADJ (Pin 4)  
VOUT (Pin 5)  
HRP5 / TO263-5  
Power Tr.  
OCP  
EN  
PREREG  
VREF  
AMP  
DRIVER  
TSD  
DIS-  
CHARGE  
EN  
VIN (Pin 1)  
EN (Pin 2)  
GND (Pin 3)  
ADJ (Pin 4)  
VOUT (Pin 5)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
5/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Description of Blocks  
Block Name  
Function  
Description of Blocks  
A logical “HIGH” (VEN ≥ 2.0 V) at the EN pin enables the device  
and LOW(VEN ≤ 0.8 V) at the EN pin disables the device.  
EN  
Control Output Voltage ON / OFF  
Internal Power Supply  
PREREG  
Power supply for internal circuit.  
In case maximum power dissipation is exceeded or the ambient  
temperature is higher than the Maximum Junction Temperature,  
overheating causes the chip temperature (Tj) to rise. The TSD  
protection circuit detects this and forces the output to turn off in order  
to protect the device from overheating. When the junction  
temperature decreases to low, the output turns on automatically.  
(Typ:175 °C)  
TSD  
Thermal Shutdown Protection  
VREF  
AMP  
Reference Voltage  
Error Amplifier  
Generate the reference voltage.  
The error amplifier amplifies the difference between the feedback  
voltage of the output voltage and the reference voltage.  
DRIVER  
Output MOSFET Driver  
Drive the output MOSFET (Power Tr.)  
If the output current increases higher than the maximum output  
current, it is limited by Over Current Protection in order to protect the  
device from a damage caused by an over current.  
While this block is operating, the output voltage may decrease  
because the output current is limited.  
OCP  
Over Current Protection  
If an abnormal state is removed and the output current value returns  
to normal, the output voltage also returns to normal state.(Typ:1400  
mA)  
Output pin is discharged when EN  
detected.(Typ:4 kΩ)  
= Low input or TSD  
DISCHARGE Output Discharge Function  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
6/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Absolute Maximum Ratings  
Parameter  
Supply Voltage(Note 1)  
Symbol  
Ratings  
Unit  
VIN  
VEN  
-0.3 to +45  
-0.3 to +45  
V
V
EN Pin Voltage(Note 2)  
Output Pin Voltage  
VOUT  
VADJ  
Tj  
-0.3 to +20 (≤ VIN + 0.3)  
-0.3 to +7  
V
ADJ Pin Voltage  
V
Junction Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
-40 to +150  
-55 to +150  
150  
°C  
°C  
°C  
Tstg  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2:Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance and power dissipation taken into  
consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Do not exceed Tjmax.  
(Note 2) The start-up orders of power supply (VIN) and the VEN do not influence if the voltage is within the operation power supply voltage range.  
Thermal Resistance (Note 3)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 5)  
2s2p(Note 6)  
TO252-5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
θJA  
136.0  
17  
23.0  
3
°C/W  
°C/W  
ΨJT  
HRP5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
θJA  
91.3  
8
21.4  
3
°C/W  
°C/W  
ΨJT  
TO263-5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
θJA  
80.2  
10  
21.8  
2
°C/W  
°C/W  
ΨJT  
(Note 3) Based on JESD51-2A(Still-Air).  
(Note 4) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 5) Using a PCB board based on JESD51-3.  
(Note 6) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 7)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 7) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
7/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Operating Conditions( -40 °C ≤ Tj ≤ +105 °C)  
Parameter  
Input Voltage(Note 1)  
Symbol  
Min  
Max  
Unit  
VIN  
VIN Start-Up  
VOUT  
R1  
VOUT (Max) + ΔVd (Max)  
42  
-
V
V
Start-Up Voltage(Note 2)  
Output Voltage  
3
1.2  
5
16  
V
Feedback Resistor ADJ vs GND(Note 3)  
Output Control Voltage  
Output Current  
200  
42  
kΩ  
V
VEN  
0
IOUT  
0
500  
-
mA  
µF  
µF  
Input Capacitor(Note 4)  
Output Capacitor(Note 5)  
CIN  
0.1  
1.47  
COUT  
1000  
Output Capacitor Equivalent Series  
Resistance  
ESR(COUT  
)
-
5
VOUT-ADJ Capacitor  
CADJ  
Ta  
-
1000  
+105  
pF  
°C  
Operating Temperature  
-40  
(Note 1) Minimum Input Voltage must be 3.3 V or more.  
Please consider that the output voltage would be dropped (Dropout voltage ΔVd) by the output current.  
(Note 2) If VOUT setting is 3 V or less, VOUT (Min) = 90 % × VOUT (Typ) when VIN = 3 V, IOUT = 0 mA.  
(Note 3) If it needs better transient characteristic, insert a capacitor between the VOUT and ADJ pin. Refer to Typical Application and Layout Example for the  
details such as equations.  
(Note 4) If the inductance of power supply line is high, please adjust input capacitor value.  
(Note 5) Set the value of the capacitor so that it does not fall below the minimum value. Take into consideration the temperature characteristics and DC device  
characteristics.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
8/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Electrical Characteristics  
LDO Function (VOUT setting = 5 V, R1 = 120 kΩ, R2 = 803 kΩ)  
Unless otherwise specified, Tj = -40 °C to +105 °C, VIN = 13.5 V, IOUT = 0 mA, VEN = 5 V  
Typical values are defined at Tj = 25 °C, VIN = 13.5 V  
Limits  
Parameter  
Shutdown Current  
Symbol  
ISHUT  
Unit  
μA  
Conditions  
VEN = 0 V  
Min  
-
Typ  
1
Max  
5
IOUT ≤ 500 mA  
-
-
17  
17  
34  
46  
μA  
Tj ≤ 25 °C  
Current Consumption(Note 1)  
ICC  
IOUT ≤ 500 mA  
μA  
V
Tj ≤ 105 °C  
TO252-5, HRP5 package  
Tj = 25°C  
0.643  
0.640  
0.637  
0.633  
0.650  
0.650  
0.650  
0.650  
0.657  
0.660  
0.663  
0.667  
6 V ≤ VIN ≤ 42 V  
0.5 mA ≤ IOUT ≤ 400 mA  
TO263-5 package  
Tj = 25°C  
V
V
V
6 V ≤ VIN ≤ 42 V  
0.5 mA ≤ IOUT ≤ 400 mA  
TO252-5, HRP5 package  
-40 °C ≤ Tj ≤ 105 °C  
6 V ≤ VIN ≤ 42 V  
0.5 mA ≤ IOUT ≤ 400 mA  
TO263-5 package  
-40 °C ≤ Tj ≤ 105 °C  
6 V ≤ VIN ≤ 42 V  
0.5 mA ≤ IOUT ≤ 400 mA  
VIN = VOUT × 0.95  
IOUT = 500 mA  
Reference Voltage  
VADJ  
Dropout Voltage  
Ripple Rejection  
-
0.45  
70  
0.83  
-
V
ΔVd  
R.R.  
f = 120 Hz, ein = 1 Vrms  
IOUT = 100 mA  
60  
dB  
Line Regulation  
Load Regulation  
Reg.I  
-
-
0.02  
0.02  
0.4  
0.4  
% × VOUT  
% × VOUT  
6 V ≤ VIN ≤ 42 V  
Reg.L  
0.5 mA ≤ IOUT ≤ 400 mA  
6 V ≤ VIN ≤ 42 V  
VOUT = 90 % × VOUT(Typ)  
-
Overload Current Protection  
IOUT(OCP)  
750  
151  
1400  
175  
-
-
mA  
°C  
Thermal Shutdown Temperature  
Tj(TSD)  
(Note 1) It does not contain the current of R1 and R2.  
Enable Function  
Unless otherwise specified, Tj = -40 °C to +105 °C, VIN = 13.5 V, IOUT = 0 mA, VEN = 5 V  
Typical values are defined at Tj = 25 °C, VIN = 13.5 V  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min  
2.0  
0
Typ  
Max  
42.0  
0.8  
8
Enable Mode Voltage  
Disable Mode Voltage  
Enable Bias Current  
VENH  
VENL  
IEN  
-
-
V
V
-
-
-
-
4
µA  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
9/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ  
10.0  
7.5  
5.0  
2.5  
0.0  
10.0  
7.5  
5.0  
2.5  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 1.  
Figure 2.  
Output Voltage vs Input Voltage  
Output Voltage vs Input Voltage -Enlarged view  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +105°C  
-40  
0
40  
80  
120  
0
10  
20  
30  
40  
50  
Junction Temperature: Tj [°C]  
Input Voltage: VIN [V]  
Figure 3.  
Figure 4.  
Output Voltage vs Junction Temperature  
(IOUT = 0.5 mA)  
Current Consumption + Enable Bias Current  
vs Input Voltage  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
10/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
-40  
0
40  
80  
120  
0
100  
200  
300  
400  
500  
Junction Temperature: Tj [°C]  
Output Current: IOUT [mA]  
Figure 5.  
Figure 6.  
Current Consumption + Enable Bias Current  
vs Junction Temperature  
Current Consumption + Enable Bias Current  
vs Output Current  
5
10.0  
7.5  
5.0  
2.5  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
4
3
2
1
0
0
500  
1000  
1500  
2000  
-40  
0
40  
80  
120  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 7.  
Figure 8.  
Output Voltage vs Output Current  
(Over Current Protection)  
Shutdown Current vs Junction Temperature  
(VEN = 0 V)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
11/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ  
1000  
800  
600  
400  
200  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
0
100  
200  
300  
400  
500  
100  
120  
140  
160  
180  
200  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 9.  
Dropout Voltage vs Output Current  
(VIN = 4.75 V)  
Figure 10.  
Output Voltage vs Junction Temperature  
(Thermal Shutdown Protection)  
7
6
5
4
3
2
1
0
2
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
VENH  
VENL  
1.8  
1.6  
1.4  
1.2  
1
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
-40  
0
40  
80  
120  
EN Input Voltage: VEN [V]  
Junction Temperature: Tj [°C]  
Figure 11.  
Figure 12.  
Output Voltage vs EN Input Voltage  
EN Input Voltage vs Junction Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
12/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +105 °C  
-40  
0
40  
80  
120  
0.01  
0.1  
1
10  
100  
Junction Temperature: Tj [°C]  
Frequency: f [kHz]  
Figure 13.  
Figure 14. Ripple Rejection  
(ein = 1 Vrms, IOUT = 100 mA)  
Enable Bias Current vs Junction Temperature  
0.4  
0.3  
0.2  
0.1  
0.0  
0.4  
0.3  
0.2  
0.1  
0.0  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 16. Load Regulation  
(IOUT = 0.5 mA → 400 mA)  
Figure 15. Line Regulation  
(VIN = 6 V → 42 V)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
13/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ, Tj = +25 °C  
10.0  
7.5  
5.0  
2.5  
0.0  
10.0  
7.5  
5.0  
2.5  
0.0  
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
1
10  
100  
1000  
1
10  
100  
1000  
Input Voltage Rise Time [μs]  
Input Voltage Rise Time [μs]  
(b. VIN = 0 V 16 V, CADJ = 220 pF)  
(a. VIN = 0 V 16 V, CADJ = None)  
Figure 17. Line Transient Response  
(VIN = 0 V → 16 V)  
10.0  
7.5  
5.0  
2.5  
0.0  
10.0  
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
7.5  
5.0  
2.5  
0.0  
1
10  
100  
1000  
1
10  
100  
1000  
Input Voltage Rise Time [μs]  
Input Voltage Rise Time [μs]  
(c. VIN = 6 V → 16 V, CADJ = None)  
(d. VIN = 6 V → 16 V, CADJ = 220 pF)  
Figure 18. Line Transient Response  
(VIN = 6 V → 16 V)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
14/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ, Tj = +25 °C  
0
-5  
0
-5  
-10  
-15  
-10  
-15  
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current Rise Time [μs]  
Output Current Rise Time [μs]  
(e. IOUT = 1 mA 500 mA, CADJ = None)  
(f. IOUT = 1 mA 500 mA, CADJ = 220 pF)  
15  
10  
5
15  
10  
5
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
0
0
1
10  
Output Current Fall Time [μs]  
(h. IOUT = 500 mA 1 mA, CADJ = 220 pF)  
100  
1000  
1
10  
Output Current Fall Time [μs]  
(g. IOUT = 500 mA 1 mA, CADJ = None)  
100  
1000  
Figure 19. Load Transient Response  
(IOUT = 1 mA ↔ 500 mA)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
15/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ, Tj = +25 °C  
0
-5  
0
-5  
-10  
-15  
-10  
-15  
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current Rise Time [μs]  
Output Current Rise Time [μs]  
(i. IOUT = 10 mA 500 mA, CADJ = None)  
(j. IOUT = 10 mA 500 mA, CADJ = 220 pF)  
15  
10  
5
15  
10  
5
COUT = 2.2 μF  
COUT = 10 μF  
COUT = 2.2 μF  
COUT = 10 μF  
0
0
1
10  
Output Current Fall Time [μs]  
(l. IOUT = 500 mA 10 mA, CADJ = 220 pF)  
100  
1000  
1
10  
100  
1000  
Output Current Fall Time [μs]  
(k. IOUT = 500 mA 10 mA, CADJ = None)  
Figure 20. Load Transient Response  
(IOUT = 10 mA ↔ 500 mA)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
16/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ, IOUT = 0 mA, Tj = +25 °C  
VEN = 2 V/div  
VEN = 2 V/div  
VOUT = 2 V/div  
VOUT = 2 V/div  
Time = 10 ms/div  
Time = 40 µs/div  
(a. VEN = 0 V → 5 V, COUT = 2.2 µF)  
(b. VEN = 5 V → 0 V, COUT = 2.2 µF)  
VEN = 2 V/div  
VEN = 2 V/div  
VOUT = 2 V/div  
(c. VEN = 0 V → 5 V, COUT=10 µF)  
Time = 20 ms/div  
(d. VEN = 5 V → 0 V, COUT = 10 µF)  
Time = 40 µs/div  
VOUT = 2 V/div  
Figure 21. EN ON/OFF Sequence  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
17/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = 13.5 V, VOUT setting = 5 V, VEN = 5 V, R1 = 120 kΩ, R2 = 803 kΩ, IOUT = 0 mA, Tj = +25 °C  
VIN = 5 V/div  
VIN = 5 V/div  
VOUT = 2 V/div  
VOUT = 2 V/div  
Time = 20 ms/div  
Time = 40 µs/div  
(e. VIN = 0 V → 13.5 V, COUT = 2.2 µF)  
(f. VIN = 13.5 V → 0 V, COUT = 2.2 µF)  
VIN = 5 V/div  
VIN = 5 V/div  
VOUT = 2 V/div  
VOUT = 2 V/div  
Time = 20 ms/div  
Time = 40 µs/div  
(g. VIN = 0 V → 13.5 V, COUT = 10 µF)  
(h. VIN = 13.5 V → 0 V, COUT = 10 µF)  
Figure 22. VIN ON/OFF Sequence  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
18/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Measurement Circuit for Typical Performance Curves  
CADJ  
VIN  
EN  
VOUT  
ADJ  
VIN  
EN  
VOUT  
ADJ  
803kΩ  
120kΩ  
803kΩ  
120kΩ  
0.1µF  
GND  
2.2µF  
0.1µF  
GND  
2.2µF  
Measurement Setup for  
Figure 4, 5, 8, 22  
Measurement Setup for  
Figure 1, 2, 3, 10, 15, 17, 18  
VIN  
EN  
VOUT  
ADJ  
VIN  
EN  
VOUT  
ADJ  
803kΩ  
120kΩ  
803kΩ  
120kΩ  
0.1µF  
GND  
2.2µF  
0.1µF  
GND  
2.2µF  
IOUT  
Measurement Setup for  
Figure 6  
Measurement Setup for  
Figure 7  
VIN  
EN  
VOUT  
ADJ  
VIN  
EN  
VOUT  
ADJ  
803kΩ  
120kΩ  
803kΩ  
120kΩ  
0.1µF  
GND  
2.2µF  
GND  
2.2µF  
0.1µF  
IOUT  
Measurement Setup for  
Figure 11, 12, 13, 21  
Measurement Setup for  
Figure 9  
CADJ  
VIN  
EN  
VOUT  
ADJ  
VIN  
EN  
VOUT  
ADJ  
803kΩ  
120kΩ  
803kΩ  
120kΩ  
ein  
GND  
2.2µF  
0.1µF  
IOUT  
0.1µF  
GND  
2.2µF  
IOUT  
Measurement Setup for  
Figure 14  
Measurement Setup for  
Figure 16, 19, 20  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
19/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Application and Implementation  
Notice: The following information is given as a reference or hint for the application and the implementation. Therefore, it does  
not guarantee its operation on the specific function, accuracy or external components in the application. In the  
application, it shall be designed with sufficient margin by enough understanding about characteristics of the external  
components, e.g. capacitor, and also by appropriate verification in the actual operating conditions.  
Selection of External Components  
Input Pin Capacitor  
If the battery is placed far from the regulator or the impedance of the input-side is high, higher capacitance is required for  
the input capacitor in order to prevent the voltage-drop at the input line. The input capacitor and its capacitance should be  
selected depending on the line impedance which is between the input pin and the smoothing filter circuit of the power  
supply. At this time, the capacitance value setting is different each application. Generally, the capacitor with capacitance  
value of 0.1 µF (Min) with good high frequency characteristic is recommended for this regulator.  
In addition, the consideration should be taken as the output pin capacitor, to prevent an influence to the regulators  
characteristic from the deviation or the variation of the external capacitors characteristic. All output capacitors mentioned  
above are recommended to have a good DC bias characteristic and a temperature characteristic (approximately ±15 %,  
e.g. X7R, X8R) with being satisfied high absolute maximum voltage rating based on EIA standard. These capacitors should  
be placed close to the input pin and mounted on the same board side of the regulator not to be influenced by implement  
impedance.  
Output Pin Capacitor  
The output capacitor is mandatory for the regulator in order to realize stable operation. The output capacitor with  
capacitance value ≥ 1.47 µF (Min) and ESR up to 5 Ω (Max) must be required between the output pin and the GND pin.  
A proper selection of appropriate both the capacitance value and ESR for the output capacitor can improve the transient  
behavior of the regulator and can also keep the stability with better regulation loop. The correlation of the output capacitance  
value and ESR is shown in the graph on the next page as the output capacitor’s capacitance value and the stability region  
for ESR. As described in this graph, this regulator is designed to be stable with ceramic capacitors as of MLCC, with the  
capacitance value from 1.47 µF to 1000 µF and with ESR value within almost 0 Ω to 5 Ω. The frequency range of ESR can  
be generally considered as within about 10 kHz to 100 kHz.  
Note that the provided the stable area of the capacitance value and ESR in the graph is obtained under a specific set of  
conditions which is based on the measurement result in single IC on our board with a resistive load. In the actual  
environment, the stability is affected by wire impedance on the board, input power supply impedance and also loads  
impedance. Therefore, please note that a careful evaluation of the actual application, the actual usage environment and  
the actual conditions should be done to confirm the actual stability of the system.  
Generally, in the transient event which is caused by the input voltage fluctuation or the load fluctuation beyond the gain  
bandwidth of the regulation loop, the transient response ability of the regulator depends on the capacitance value of the  
output capacitor. Basically the capacitance value of ≥ 1.47 µF (Min) for the output capacitor is recommended as shown in  
the table on Output Capacitance COUT, ESR Available Area. Using bigger capacitance value can be expected to improve  
better the transient response ability in a high frequency. Various types of capacitors can be used for the output capacitor  
with high capacity which includes electrolytic capacitor, electro-conductive polymer capacitor and tantalum capacitor. Noted  
that, depending on the type of capacitors, its characteristics such as ESR (5 ) absolute value range, a temperature  
dependency of capacitance value and increased ESR at cold temperature needs to be taken into consideration.  
In addition, the same consideration should be taken as the input pin capacitor, to prevent an influence to the regulators  
characteristic from the deviation or the variation of the external capacitors characteristic. All output capacitors mentioned  
above are recommended to have a good DC bias characteristic and a temperature characteristic (approximately ±15 %,  
e.g. X7R, X8R) with being satisfied high absolute maximum voltage rating based on EIA standard. These capacitors should  
be placed close to the output pin and mounted on the same board side of the regulator not to be influenced by implement  
impedance.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
20/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Application and Implementation - continued  
6
Unstable Available Area  
5
4
3
2
1
0
Stable Available Area  
1.47 μF ≤ COUT ≤ 1000 μF  
ESR(COUT) ≤ 5 Ω  
0.1  
1
10  
100  
1000  
Output Capacitance COUT [μF]  
Figure 23. Output Capacitance COUT, ESR Stable Available Area  
(-40 °C ≤ Tj ≤ +105 °C, 6 V ≤ VIN ≤ 42 V, VEN = 5 V, IOUT = 0 mA to 500 mA)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
21/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Application and Implementation – continued  
Typical Application and Layout Example  
Power Ground  
FIN  
2: EN  
1: VIN  
4: ADJ  
3: N.C. 5: VOUT  
CIN  
COUT  
Input  
Voltage  
Output  
Voltage  
R2  
CADJ  
R1  
Enable  
Voltage  
Parameter  
Symbol  
Reference Value for Application  
Output Current Range  
Output Voltage Range  
Feedback Resistor between the ADJ and GND pins  
IOUT  
VOUT  
R1  
IOUT ≤ 500 mA  
1.2 V to 16 V  
120 kΩ  
Calc. (a) R2 = R1 × (VOUT / VADJ - 1) = 803 kΩ  
5 V setting  
Feedback Resistor between the ADJ and VOUT pins  
R2  
ADJ Capacitor (Note 1)  
Output Capacitor  
CADJ  
COUT  
VIN  
Calc. (b) CADJ = 1 / (2π × R2 ×fZERO) = 220 pF  
4.7 μF  
Input Voltage (Note 2)  
Input Capacitor (Note 3)  
Enable Mode Voltage  
Disable Mode Voltage  
13.5 V  
CIN  
0.1 µF  
VENH  
VENL  
2 V to VIN  
0 V to 0.8 V  
(Note 1) For example, the CADJ’s value is defined at 220 pF based on the calculation (b) of the above table, if it is required to improve frequency characteristics  
of regulator at around fZERO 1 kHz with the component of R2 820 kΩ.  
(Note 2) Minimum input voltage must be 3.3 V or more. For the output voltage, please consider the voltage dropping (the minimum dropout voltage) according to  
the output current.  
(Note 3) If the inductance of power supply line is high, please adjust input capacitor value.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
22/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Application and Implementation - continued  
Surge Voltage Protection for Linear Regulators  
The following shows some helpful tips to protect ICs from possible inputting surge voltage which exceeds absolute  
maximum ratings.  
Positive Surge to the Input  
If there is any potential risk that positive surges higher than absolute maximum ratings, it is applied to the input, a  
Zener Diode should be inserted between the VIN pin and the GND to protect the device as shown in Figure 24.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 24. Surges Higher than absolute maximum ratings is Applied to the Input  
Negative Surge to the Input  
If there is any potential risk that negative surges below the absolute maximum ratings, (e.g.) -0.3 V, is applied to the  
input, a Schottky Diode should be inserted between the VIN and the GND to protect the device as shown in Figure  
25.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 25. Surges Lower than -0.3 V is Applied to the Input  
Reverse Voltage Protection for Linear Regulators  
A linear regulator which is one of the integrated circuit (IC) operates normally in the condition that the input voltage is  
higher than the output voltage. However, it is possible to happen the abnormal situation in specific conditions which is  
the output voltage becomes higher than the input voltage. A reverse polarity connection between the input and the output  
might be occurred or a certain inductor component can also cause a polarity reverse conditions. If the countermeasure  
is not implemented, it may cause damage to the IC. The following shows some helpful tips to protect ICs from the reverse  
voltage occasion.  
Protection against Reverse Input/Output Voltage  
In the case that MOSFET is used for the pass transistor, a parasitic body diode between the drain-source generally  
exists. If the output voltage becomes higher than the input voltage and if its voltage difference exceeds VF of the body  
diode, a reverse current flows from the output to the input through the body diode as shown in Figure 26. The current  
flows in the parasitic body diode is not limited in the protection circuit because it is the parasitic element, therefore  
too much reverse current may cause damage to degrade or destroy the semiconductor elements of the regulator.  
IR  
VOUT  
VIN  
Error  
AMP.  
VREF  
Figure 26. Reverse Current Path in a MOS Linear Regulator  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
23/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Protection against Reverse Input/Output Voltage – continued  
An effective solution for this problem is to implement an external bypass diode in order to prevent the reverse current  
flow inside the IC as shown in Figure 27. Note that the bypass diode must be turned on prior to the internal body  
diode of the IC. This external bypass diode should be chosen as being lower forward voltage VF than the internal  
body diode. It should to be selected a diode which has a rated reverse voltage greater than the IC’s input maximum  
voltage and also which has a rated forward current greater than the anticipated reverse current in the actual  
application.  
D1  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
CIN  
Figure 27. Bypass Diode for Reverse Current Diversion  
A Schottky barrier diode which has a characteristic of low forward voltage (VF) can meet to the requirement for the  
external diode to protect the IC from the reverse current. However, it also has a characteristic that the leakage (IR)  
caused by the reverse voltage is bigger than other diodes. Therefore, it should be taken into the consideration to  
choose it because if IR is large, it may cause increase of the current consumption, or raise of the output voltage in the  
light-load current condition. IR characteristic of Schottky diode has positive temperature characteristic, which the  
details shall be checked with the datasheet of the products, and the careful confirmation of behavior in the actual  
application is mandatory.  
Even in the condition when the input/output voltage is inverted, if the VIN pin is open as shown in Figure 28, or if the  
VIN pin becomes high-impedance condition as designed in the system, it cannot damage or degrade the parasitic  
element. It's because a reverse current via the pass transistor becomes extremely low. In this case, therefore, the  
protection external diode is not necessary.  
ONOFF  
IBIAS  
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
CIN  
Figure 28. Open VIN  
Protection against Input Reverse Voltage  
When the input of the IC is connected to the power supply, accidentally if plus and minus are routed in reverse, or if  
there is a possibility that the input may become lower than the GND pin, it may cause to destroy the IC because a  
large current passes via the internal electrostatic breakdown prevention diode between the input pin and the GND  
pin inside the IC as shown in Figure 29.  
The simplest solution to avoid this problem is to connect a Schottky barrier diode or a rectifier diode in series to the  
power supply line as shown in Figure 30. However, it increases a power loss calculated as VF × ICC, and it also causes  
the voltage drop by a forward voltage VF at the supply voltage while normal operation.  
Generally, since the Schottky barrier diode has lower VF, so it contributes to rather smaller power loss than rectifier  
diodes. If IC has load currents, the required input current to the IC is also bigger. In this case, this external diode  
generates heat more, therefore select a diode with enough margin in power dissipation. On the other hand, a reverse  
current passes this diode in the reverse connection condition, however, it is negligible because its small amount.  
VIN  
VOUT  
COUT  
GND  
VIN  
VOUT  
D1  
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
-
GND  
CIN  
CIN  
+
GND  
Figure 30. Protection against Reverse Polarity 1  
Figure 29. Current Path in Reverse Input Connection  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
24/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Protection against Input Reverse Voltage - continued  
Figure 31 shows a circuit in which a P-channel MOSFET is connected in series to the power. The body diode (parasitic  
element) is located in the drain-source junction area of the MOSFET. The drop voltage in a forward connection is  
calculated from the on state resistance of the MOSFET and the output current IO. It is smaller than the drop voltage  
by the diode as shown in Figure 30 and results in less of a power loss. No current flows in a reverse connection where  
the MOSFET remains off in Figure 31.  
If the gate-source voltage exceeds maximum rating of MOSFET gate-source junction with derating curve in  
consideration, reduce the gate-source junction voltage by connecting resistor voltage divider as shown in Figure 32.  
Q1  
VIN  
Q1  
VOUT  
VIN  
VOUT  
GND  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
R1  
R2  
CIN  
COUT  
CIN  
Figure 31. Protection against Reverse Polarity 2  
Figure 32. Protection against Reverse Polarity 3  
Protection against Reverse Output Voltage when Output Connect to an Inductor  
If the output load is inductive, electrical energy accumulated in the inductive load is released to the ground at the  
moment that the output voltage is turned off. IC integrates ESD protection diodes between the IC output and ground  
pins. A large current may flow in such condition finally resulting on destruction of the IC. To prevent this situation,  
connect a Schottky barrier diode in parallel to the integrated diodes as shown in Figure 33.  
Further, if a long wire is in use for the connection between the output pin of the IC and the load, confirm that the  
negative voltage is not generated at the VOUT pin when the output voltage is turned off by observation of the  
waveform on an oscilloscope, since it is possible that the load becomes inductive. An additional diode is required for  
a motor load that is affected by its counter electromotive force, as it produces an electrical current in a similar way.  
VOUT  
VIN  
VIN  
VOUT  
GND  
D1  
CIN  
XLL  
COUT  
GND  
GND  
Figure 33. Current Path in Inductive Load (Output: Off)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
25/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Power Dissipation  
TO252-5  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
(1) : 1-layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Top copper foil: Footprint and Trace, 70 μm copper.  
(2) : 4-layer PCB  
(Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.6 mmt  
Top copper foil: Footprint and Traces, 70 μm copper.  
2 inner layers copper foil area of PCB:  
74.2 mm × 74.2 mm, 35 μm copper.  
Bottom copper foil area of PCB:  
(2) 5.43 W  
(1) 0.91 W  
74.2 mm × 74.2 mm, 70 μm copper.  
Condition (1) : θJA = 136 °C/W, ΨJT (top center) = 17 °C/W  
Condition (2) : θJA = 23 °C/W, ΨJT (top center) = 3 °C/W  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature Ta [°C]  
Figure 34. Power Dissipation Graph (TO252-5)  
HRP5  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
(1) : 1-layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Top copper foil: Footprint and Trace, 70 μm copper.  
(2) 5.84 W  
(2) : 4-layer PCB  
(Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.6 mmt  
Top copper foil: Footprint and Traces, 70 μm copper.  
2 inner layers copper foil area of PCB:  
74.2 mm × 74.2 mm, 35 μm copper.  
Bottom copper foil area of PCB:  
(1) 1.36 W  
74.2 mm × 74.2 mm, 70 μm copper.  
Condition (1) : θJA = 91.3 °C/W, ΨJT (top center) = 8 °C/W  
Condition (2) : θJA = 21.4 °C/W, ΨJT (top center) = 3 °C/W  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [°C]  
Figure 35. Power Dissipation Graph (HRP5)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
26/36  
27.May.2019 Rev.002  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Power Dissipation - continued  
TO263-5  
(1) : 1-layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Top copper foil: Footprint and Trace, 70 μm copper.  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
(2) : 4-layer PCB  
(Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.6 mmt  
Top copper foil: Footprint and Traces, 70 μm copper.  
2 inner layers copper foil area of PCB:  
74.2 mm × 74.2 mm, 35 μm copper.  
Bottom copper foil area of PCB:  
(2) 5.73 W  
(1) 1.55 W  
74.2 mm × 74.2 mm, 70 μm copper.  
Condition (1) : θJA = 80.2 °C/W, ΨJT (top center) = 10 °C/W  
Condition (2) : θJA = 21.8 °C/W, ΨJT (top center) = 2 °C/W  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [°C]  
Figure 36. Power Dissipation Graph (TO263-5)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27/36  
27.May.2019 Rev.002  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Thermal Design  
This product exposes a frame on the back side of the package for thermal efficiency improvement. The power consumption  
of the IC is decided by the dropout voltage condition, the load current and the current consumption. Refer to power dissipation  
curves illustrated in Figure 34 and Figure 36 when using the IC in an environment of Ta ≥ 25 °C. Even if the ambient  
temperature Ta is at 25°C, chip junction temperature (Tj) can be very high depending on the input voltage and the load current.  
Consider the design to be Tj Tjmax = 150 °C in whole operating temperature range.  
Should by any condition the maximum junction temperature Tjmax = 150 °C rating be exceeded by the temperature increase  
of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on  
recommended PCB and measurement condition by JEDEC standard. Therefore, need to be careful because it might be  
different from the actual use condition. Verify the application and allow sufficient margins in the thermal design by the following  
method to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods.  
1. The following method is used to calculate the junction temperature Tj with ambient temperature Ta.  
ꢁ푗 = ꢁ푎 + × 퐽퐴 [°C]  
Where:  
Tj  
is the Junction Temperature  
Ta is the Ambient Temperature  
is the Power Consumption  
PC  
θJA is the Thermal Resistance (Junction to Ambient)  
2. The following method is also used to calculate the junction temperature Tj with top center of case’s (mold) temperature TT.  
ꢁ푗 = ꢁ+ × 훹 [°C]  
퐽푇  
Where:  
Tj  
TT  
PC  
is the Junction Temperature  
is the Top Center of Case’s (mold) Temperature  
is the Power consumption  
ΨJT is the Thermal Resistance (Junction to Top Center of Case)  
3. The following method is used to calculate the power consumption Pc (W).  
푃푐 = ꢂ푉 푂푈ꢃ × ꢄ푂푈푇 + 푉 × ꢄ퐶퐶 [W]  
퐼푁  
퐼푁  
Where:  
PC  
is the Power Consumption  
VIN is the Input Voltage  
VOUT is the Output Voltage  
IOUT is the Load Current  
ICC is the Current Consumption  
Calculation Example (TO263-5)  
If VIN = 13.5 V, VOUT = 5.0 V, IOUT = 200 mA, ICC = 17 μA, the power consumption Pc can be calculated as follows:  
= ꢂ푉 푂푈푇ꢃ × ꢄ푂푈푇 + 푉 × ꢄ퐶퐶  
퐼푁  
퐼푁  
=
ꢀ3.5 푉 – 5.0 푉 × ꢅ00 푚ꢆ + ꢀ3.5 푉 × ꢀ7 휇ꢆ  
= ꢀ.7 푊  
At the maximum ambient temperature Tamax = 65 °C,  
the thermal impedance (Junction to Ambient) θJA = 21.8 °C/W (4-layer PCB)  
ꢁ푗 = ꢁ푎푚푎푥 + × 퐽퐴  
= 65 °ꢇ + ꢀ.7 푊 × ꢅꢀ.8 °ꢇ/푊  
= ꢀ0ꢅ.ꢀ °ꢇ  
When operating the IC, the top center of case’s (mold) temperature TT = 80 °C, ΨJT = 10 °C/W (1-layer PCB)  
ꢁ푗 = ꢁ+ × 훹  
퐽푇  
= 80 °ꢇ + ꢀ.7 푊 × ꢀ0 °ꢇ/푊  
= 97.0 °ꢇ  
If it is difficult to ensure the margin by the calculations above, it is recommended to expand the copper foil area of the  
board, increasing the layer and thermal via between thermal land pad for optimum thermal performance.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
28/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
I/O Equivalence Circuits(Note 1)  
VIN Pin  
EN Pin  
EN  
VIN  
1 kΩ  
800 kΩ  
1300 kΩ  
2600 kΩ  
1300 kΩ  
Internal  
Circuit  
ADJ Pin  
VOUT Pin  
VIN  
10 kΩ  
ADJ  
4 kΩ  
VOUT  
PREREG  
4 kΩ  
10 MΩ  
(Note 1) Resistance value is Typical.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
29/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Thermal Consideration  
The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin  
should be allowed in the thermal design. On the reverse side of the package this product has an exposed heat pad for  
improving the heat dissipation. The amount of heat generation depends on the voltage difference between the input  
and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated heat  
does not exceed the Pd rating. If Junction temperature is over Tjmax (=150 °C), IC characteristics may be worse due  
to rising chip temperature. Heat resistance in specification is measurement under PCB condition and environment  
recommended in JEDEC. Ensure that heat resistance in specification is different from actual environment.  
8.  
9.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
30/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Operational Notes – continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Thermal Shutdown Protection Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
14. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
15. Enable Pin  
The EN pin is for controlling ON/OFF the output voltage. Do not make voltage level of chip enable keep floating level,  
or between VENH and VENL. Otherwise, the output voltage would be unstable or indefinite.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
31/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Ordering Information  
B
D
0
0
E
A
5
W
x
x
x
-
x
x
Output Voltage Withstand Output Current Enable Input  
Package  
Packaging and Forming Specification  
00: Adjustable  
Voltage  
E: 45 V  
A5: 500 mA  
W: Includes  
Enable  
FP: TO252-5 TR: Embossed Tape and Reel  
HFP: HRP5 (HRP5)  
Input  
FP2: TO263-5 E2: Embossed Tape and Reel  
(TO252-5, TO263-5)  
Marking Diagrams  
TO252-5  
(TOP VIEW)  
Part Number Marking  
D00EA5W  
LOT Number  
HRP5 (TOP VIEW)  
Part Number Marking  
LOT Number  
B D 0 0 E A 5 W  
Pin 1 Mark  
TO263-5  
(TOP VIEW)  
Part Number Marking  
LOT Number  
B D 0 0 E A 5 W  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
32/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Physical Dimension and Packing Information  
Package Name  
TO252-5  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
33/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Physical Dimension and Packing Information – continued  
Package Name  
HRP5  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
34/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Physical Dimension and Packing Information – continued  
Package Name  
TO263-5  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
35/36  
BD00EA5WFP BD00EA5WHFP BD00EA5WFP2  
Revision History  
Date  
Revision  
001  
Changes  
22.Apr.2019  
27.May.2019  
New Release  
Error is corrected of the Ordering Information.  
Original TO252-3 → Corrected TO252-5  
002  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GVG3AG00010-1-2  
27.May.2019 Rev.002  
36/36  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY