BD00JC0MNUX-M (新产品) [ROHM]

BD00JC0MNUX-M是一款可从超低电压输入实现超低电压输出的线性稳压器。通过使用N-MOS FET作为内置的功率晶体管,该产品可以在低至导通电阻(RON=200mΩ)所产生的电压差(超低输入电压差)下使用。通过降低输入输出电压差,可实现大电流(Iomax=1.0A)输出,也可降低转换损耗,因此,可替代开关电源。BD00JC0MNUX-M不需要开关电源所需的扼流线圈、整流二极管和功率晶体管,因此可降低应用产品的总成本并实现小型化。可使用外置电阻器将输出电压设置为0.65~2.7V的任意值。另外,通过使用NRCS引脚,可以调整电压输出的启动时间,因此可支持应用产品的电源时序。;
BD00JC0MNUX-M (新产品)
型号: BD00JC0MNUX-M (新产品)
厂家: ROHM    ROHM
描述:

BD00JC0MNUX-M是一款可从超低电压输入实现超低电压输出的线性稳压器。通过使用N-MOS FET作为内置的功率晶体管,该产品可以在低至导通电阻(RON=200mΩ)所产生的电压差(超低输入电压差)下使用。通过降低输入输出电压差,可实现大电流(Iomax=1.0A)输出,也可降低转换损耗,因此,可替代开关电源。BD00JC0MNUX-M不需要开关电源所需的扼流线圈、整流二极管和功率晶体管,因此可降低应用产品的总成本并实现小型化。可使用外置电阻器将输出电压设置为0.65~2.7V的任意值。另外,通过使用NRCS引脚,可以调整电压输出的启动时间,因此可支持应用产品的电源时序。

开关 晶体管 整流二极管 电阻器 稳压器
文件: 总31页 (文件大小:1473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
1A Variable Output  
LDO Regulator with Power Good  
BD00JC0MNUX-M  
General Description  
Key Specifications  
BD00JC0MNUX-M is a low-voltage output 1ch linear  
regulator IC that operates from a very low input supply  
and offers an ideal performance in low input voltage to  
low output voltage applications. It has built-in  
N-MOSFET power transistor that minimizes the  
input-to-output voltage differential producing very  
Input Power Supply Voltage Range  
Input Voltage 1 (VCC):  
Input Voltage 2 (VIN):  
Output Voltage Range:  
Output Current:  
3.0V to 5.5V  
0.95V to 4.5V  
0.65V to 2.7V  
1.0A  
Operating Temperature Range:  
-40°C to +105°C  
small ON  
resistance  
(RON=200mΩ) level. By  
lowering the dropout voltage in this way, the IC can  
operate even at high current (Iomax=1A) with very low  
power loss. As a result, this eliminates the need for  
switching regulator and its associated components.  
BD00JC0MNUX-M is designed for small packages that  
causes cost reduction. Its output voltage can be varied  
from 0.65V to 2.7V and it has a soft start (NRCS)  
function that enables an output voltage ramp-up which  
can be set to whatever power supply sequence is  
required.  
Package  
W(Typ) x D(Typ) x H(Max)  
3.0mm x 3.0mm x 0.6mm  
Features  
High Output Voltage Accuracy : ±1%  
Built-in VCC Under Voltage Lock Out circuit  
With Soft Start Function (NRCS)  
Low ON Resistance  
Built-in Over-Current Protection Circuit  
Built-in Thermal Shut Down circuit (TSD)  
Variable Output  
VSON010X3030  
With Tracking Function  
Small package VSON010X3030  
Typical Application Circuit  
2
4
1
3
5
PGDLY  
VCC  
EN  
VO  
6,7  
8
R2  
100kΩ  
PG  
VIN  
FB  
22µF  
R1  
9
NRCS  
0.01µF  
1µF  
22µF  
GND  
10  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/28  
TSZ2211114001  
Datasheet  
BD00JC0MNUX-M  
Block Diagram  
VCC  
C1  
1
VIN  
VIN  
Current  
Limit  
UVLO  
CL  
5
EN  
Reference  
Block  
2
C2  
VCC  
Vo  
Vo  
6
7
8
CL  
C
FB  
UVLO  
TSD  
EN  
R2  
R1  
Vo  
Thermal  
C3  
Shutdown  
FB  
NRCS  
TSD  
Power  
Good  
10  
4
3
9
GND  
PGDLY  
PG  
NRCS  
C
NRCS  
CPGDLY  
Figure 1. Block Diagram  
Pin Description  
Pin No.  
Pin name  
VCC  
Pin Function  
1
2
Power supply pin  
Enable input pin  
Power Good pin  
EN  
3
PG  
4
PGDLY  
VIN  
Power Good Delay capacitor connection pin  
Input voltage pin  
5
6
VO  
Output voltage pin  
7
VO  
Output voltage pin  
8
FB  
Reference voltage feedback pin  
9
NRCS  
GND  
In-rush current protection (NRCS) capacitor connection pin  
Ground pin  
10  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Description of Blocks  
AMP  
This is an error amp that compares the reference voltage (0.65V) with Vo to drive the output Nch FET (Ron=200mΩ).  
Frequency optimization helps to adjusts on rapid transient response, and to support the use of ceramic capacitors on the  
output. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to VCC. When EN is OFF, or  
when UVLO is active, output goes LOW and the output of the NchFET switches OFF.  
EN  
The EN block controls the regulators ON/OFF state through the EN logic input pin. When OFF, circuit current is  
maintained at 0µA, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the  
NRCS pin and Vo, thereby draining the excess charge and preventing the IC on the load side from malfunctioning. Since  
no electrical connection is required (e.g., between the VCC pin and the ESD prevention Diode), operation is independent  
of the input sequence.  
UVLO  
To prevent malfunctions that can occur during a momentary decrease in VCC, the UVLO circuit switches the output to OFF,  
and (like the EN block) discharges NRCS and Vo. Once the UVLO threshold voltage (TYP2.5V) is reached, the power-on  
reset is triggered and output continues.  
CURRENT LIMIT  
When output is ON, the current limit monitors the internal IC output current against the designed value (2.0A). When  
current exceeds this level, the current limit circuit lowers the output current to protect the IC. When the overcurrent state  
is eliminated, output voltage is restored.  
NRCS (Non Rush Current on Start-up)  
The soft start function is enabled by connecting an external capacitor between the NRCS pin and GND pin. Output  
ramp-up can be set for any period up to the time the NRCS pin reaches VFB (0.65V). During startup, the NRCS pin serves  
as a 20μA (TYP) constant current source to charge the external capacitor. Output start time is calculated via formula (1)  
below.  
0.65V  
t = C  
・・・(1)  
20μA  
Tracking sequence is available by connecting the output voltage of external power supply instead of external capacitor.  
And then, ratio-metric sequence is also available by changing the resistor divider network of external power supply output  
voltage. (See next page)  
TSD (Thermal Shut Down)  
The shutdown (TSD) circuit automatically switches the output OFF when the chip temperature gets too high, thus  
protecting the IC against “thermal runaway” and heat damage. Because the TSD circuit is provided to shut down the IC in  
the presence of extreme heat, in order to avoid potential problems with the TSD, it is crucial that the Tj (max) parameter  
not be exceeded in the thermal design.  
VIN  
The VIN line acts as the major current supply line, and is connected to the output NchFET drain. Since no electrical  
connection (such as between the VCC pin and the ESD protection Diode) is necessary, VIN operates independent of the  
input sequence. However, since an output NchFET body Diode exists between VIN and Vo, a VIN-Vo electric (Diode)  
connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to VIN from Vo.  
PGOOD  
It outputs the output voltage (Vo). PGOOD pin (open drain) is used to pull up the 100kΩ resistor. PGOOD is HIGH when  
FB voltage is between 0.585V(TYP) to 0.715V(TYP), and LOW if the voltage is out of range.  
PGDLY  
It is available to set PGOOD output delay. PGDLY pin should be connected to 100pF capacitor.  
PGOOD delay time is determined by the following formula.  
C(pF)×0.75  
tPGDLY  
=
(μsec)  
IPGDLY (μA)  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Timing Chart  
EN ON/OFF  
VIN  
VCC  
EN  
0.65V(TYP)  
NRCS  
Startup  
Vo×0.9V(TYP)  
VO  
40μs (TYP@ C=100pF)  
PGOOD  
t
VCC ON/OFF  
VIN  
UVLO  
VOPR  
Hysteresis  
VCC  
EN  
0.65V(TYP)  
NRCS  
VO  
Startup  
Vo×0.9V(TYP)  
40μs (TYP@100pF)  
PGOOD  
t
Tracking sequence  
1.7V Output  
1.2V Output  
DC/DC  
(R1=3.9kΩ, R2=3.3kΩ)  
NRCS  
VO  
1.7V  
VO  
1.2V  
Tracking sequence  
R2  
R1  
3.3kΩ  
1.7V Output  
1.2V Output  
FB  
3.9kΩ  
Ratio-metric sequence  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
4/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Limit  
Unit  
V
Input Voltage 1  
+6.0 (Note 1)  
+6.0 (Note 1)  
-0.3 to +6.0  
+6.0 (Note 1)  
0.575 (Note 2)  
1.8 (Note 3)  
-40 to +105  
-55 to +150  
+150  
Input Voltage 2  
VIN  
V
Enable Input Voltage  
PGOOD Input Voltage  
Power Dissipation 1  
Power Dissipation 2  
Operating Temperature Range  
Storage Temperature Range  
VEN  
V
VPGOOD  
Pd1  
V
W
W
°C  
°C  
°C  
Pd2  
Topr  
Tstg  
Junction Temperature  
(Note 1) Not to exceed Power dissipation (Pd)  
Tjmax  
(Note 2) Reduced by 4.6mW/for temperature above 25(when mounted on a 1-layer glass epoxy board with 74.2mm×74.2mm×1.6mm dimension,  
and copper foil dimension = 6.28mm2).  
(Note 3) Reduced by 14.4mW/for temperature above 25(when mounted on a 4-layer glass epoxy board with 74.2mm×74.2mm×1.6mm dimension,  
and copper foil dimension = 6.28mm2).  
Recommended Operating Conditions  
Parameter  
Input Voltage 1  
Symbol  
VCC  
Min  
3.0  
0.95  
-
Max  
Unit  
V
5.5  
VCC-1 (Note 4)  
1.0  
Input Voltage 2  
VIN  
V
Output Current  
IO  
A
PGOOD Input Voltage  
Output Voltage Setting Range  
Enable Input Voltage  
VPGOOD  
VO  
-0.3  
VFB  
-0.3  
5.5  
V
VIN-dVo (Note 5)  
V
VEN  
5.5  
V
(Note 4) No power-ON sequence for VCC and VIN.  
(Note 5) Minimum dropout voltage (Electrical Characteristics).  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
5/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Electrical Characteristics  
(Unless otherwise specified Ta=-40 to 105°C, VCC=5V, VEN=3V, VIN=1.7V, R1=3.9kΩ, R2=3.3kΩ)  
Parameter  
Circuit Current  
Symbol  
ICC  
Min  
Typ  
0.7  
Max  
1.0  
10  
-
Unit  
mA  
µA  
V
Conditions  
-
-
-
VCC Shutdown Mode Current  
Output Voltage  
ISTB  
0
VEN=0V  
Tj=25°C  
VOUT  
1.200  
Output Voltage Temperature  
Coefficient  
TCVO  
-
0.01  
-
%/°C  
Feedback Voltage 1  
Feedback Voltage 2  
Load Regulation  
VFB1  
VFB2  
0.643  
0.650  
0.650  
0.5  
0.657  
0.663  
10  
V
V
0.637  
Tj=-40 to 105°C  
Reg.L  
Reg.l1  
Reg.l2  
IdEN  
-
-
mV IO=0A to 1.0A  
Line Regulation 1  
0.1  
0.5  
%/V VCC=3.0V to 5.5V  
%/V VIN=1.5V to 3.3V  
mA VEN=0V, VO=1V  
Line Regulation 2  
-
0.1  
0.5  
Standby Discharge Current  
[ENABLE]  
1
-
-
Enable Pin Input Voltage High  
Enable Pin Input Voltage Low  
Enable Input Bias Current  
[NRCS]  
ENHI  
ENLOW  
IEN  
2
0
-
-
-
-
V
V
VCC×0.15  
10  
7
μA  
VEN=3V  
NRCS Charge Current  
NRCS Standby Voltage  
[UVLO]  
INRCS  
VSTB  
14  
-
20  
0
26  
50  
μA  
VNRCS=0.5V  
mV VEN=0V  
VCC Undervoltage Lockout  
Threshold Voltage  
VCC Undervoltage Lockout  
Hysteresis Voltage  
[PGOOD]  
VCCUVLO  
VCCHYS  
2.3  
50  
2.5  
2.7  
V
VCC:Sweep-up  
100  
150  
mV VCC:Sweep-down  
Low-side Threshold Voltage  
High-side Threshold Voltage  
PGDLY charge current  
Ron  
VTHPGL  
VTHPGH  
IPGDLY  
RPG  
VO×0.87 VO×0.9  
VO×1.07 VO×1.1  
VO×0.93  
VO×1.13  
2.6  
V
V
1.4  
30  
2.0  
75  
μA  
Ω
150  
[AMP]  
Minimum dropout voltage  
dVO  
-
200  
300  
mV IO=1.0A, VIN=1.2V  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
6/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves  
(Unless otherwise specified VCC=5V, VEN=3V, VIN=1.7V, R1=3.9kΩ, R2=3.3kΩ)  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
10µsec/div  
10µsec/div  
Figure.2 Transient Response  
(Io=0 → 1.0A, Ta=-40°C)  
CO=100uF, CFB=1000pF  
Figure.3 Transient Response  
(Io=0 → 1.0A, Ta=25°C)  
CO=100uF, CFB=1000pF  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
10µsec/div  
10µsec/div  
Figure.4 Transient Response  
(Io=0 → 1.0A, Ta=105°C)  
CO=100uF, CFB=1000pF  
Figure.5 Transient Response  
(Io=0 → 1.0A, Ta=-40°C)  
CO=47uF, CFB=1000pF  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
10µsec/div  
10µsec/div  
Figure.6 Transient Response  
(Io=0 → 1.0A, Ta=25°C)  
CO=47uF, CFB=1000pF  
Figure.7 Transient Response  
(Io=0 → 1.0A, Ta=105°C)  
CO=47uF, CFB=1000pF  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
20µsec/div  
20µsec/div  
Figure.8 Transient Response  
(Io=0 → 1.0A, Ta=-40°C)  
CO=22uF, CFB=1000pF  
Figure.9 Transient Response  
(Io=0 → 1.0A, Ta=25°C)  
CO=22uF, CFB=1000pF  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
8/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
20µsec/div  
100µsec/div  
Figure.11 Transient Response  
Figure.10 Transient Response  
(Io=0 → 1.0A, Ta=105°C)  
CO=22uF, CFB=1000pF  
(Io=1.0A → 0, Ta=-40°C)  
CO=100uF, CFB=1000pF  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
100µsec/div  
100µsec/div  
Figure.12 Transient Response  
(Io=1.0A → 0, Ta=25°C)  
CO=100uF, CFB=1000pF  
Figure.13 Transient Response  
(Io=1.0A → 0, Ta=105°C)  
CO=100uF, CFB=1000pF  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
Io  
1.0A  
Io  
1A/div  
1A/div  
100µsec/div  
100µsec/div  
Figure.15 Transient Response  
Figure.14 Transient Response  
(Io=1.0A → 0, Ta=-40°C)  
CO=47uF, CFB=1000pF  
(Io=1.0A → 0, Ta=25°C)  
CO=47uF, CFB=1000pF  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
40µsec/div  
100µsec/div  
Figure.17 Transient Response  
(Io=1.0A → 0, Ta=-40°C)  
CO=22uF, CFB=1000pF  
Figure.16 Transient Response  
(Io=1.0A → 0, Ta=105°C)  
CO=47uF, CFB=1000pF  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
1.0A  
1.0A  
Io  
Io  
1A/div  
1A/div  
40µsec/div  
40µsec/div  
Figure.18 Transient Response  
(Io=1.0A → 0, Ta=25°C)  
CO=22uF, CFB=1000pF  
Figure.19 Transient Response  
(Io=1.0A → 0, Ta=105°C)  
CO=22uF, CFB=1000pF  
VEN  
VEN  
2V/div  
2V/div  
NRCS  
1V/div  
NRCS  
1V/div  
Vo  
Vo  
1V/div  
1V/div  
200µsec/div  
200µsec/div  
Figure.20 Start-up Sequence 1  
(Ta=-40°C)  
Figure.21 Start-up Sequence 1  
(Ta=25°C)  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VEN  
2V/div  
VEN  
2V/div  
NRCS  
1V/div  
NRCS  
1V/div  
Vo  
1V/div  
Vo  
1V/div  
200µsec/div  
1msec/div  
Figure.23 OFF Sequence  
(Ta=-40°C)  
Figure.22 Start-up Sequence 1  
(Ta=105°C)  
VEN  
VEN  
2V/div  
2V/div  
NRCS  
1V/div  
NRCS  
1V/div  
Vo  
Vo  
1V/div  
1V/div  
1msec/div  
1msec/div  
Figure.24 OFF Sequence  
(Ta=25°C)  
Figure.25 OFF Sequence  
(Ta=105°C)  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VCC  
5V/div  
VCC  
5V/div  
VEN  
2V/div  
VEN  
2V/div  
VIN  
2V/div  
VIN  
2V/div  
VO  
1V/div  
VO  
1V/div  
20msec/div  
20msec/div  
Figure.27 Start-up Sequence 2  
Figure.26 Start-up Sequence 2  
(VCC → VIN → VEN  
)
(VCC → VIN → VEN  
)
Ta=25°C  
Ta=-40°C  
VCC  
VCC  
5V/div  
5V/div  
VEN  
VEN  
2V/div  
2V/div  
VIN  
VIN  
2V/div  
2V/div  
VO  
VO  
1V/div  
1V/div  
20msec/div  
20msec/div  
Figure.28 Start-up Sequence 2  
Figure.29 Start-up Sequence 3  
(VCC → VEN → VIN)  
Ta=-40°C  
(VCC → VIN → VEN  
)
Ta=105°C  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VCC  
5V/div  
VCC  
5V/div  
VEN  
2V/div  
VEN  
2V/div  
VIN  
2V/div  
VIN  
2V/div  
VO  
1V/div  
VO  
1V/div  
20msec/div  
20msec/div  
Figure.31 Start-up Sequence 3  
Figure.30 Start-up Sequence 3  
(VCC → VEN → VIN)  
Ta=25°C  
(VCC → VEN → VIN)  
Ta=105°C  
VCC  
VCC  
5V/div  
5V/div  
VEN  
VEN  
2V/div  
2V/div  
VIN  
VIN  
2V/div  
2V/div  
VO  
VO  
1V/div  
1V/div  
20msec/div  
20msec/div  
Figure.32 Start-up Sequence 4  
Figure.33 Start-up Sequence 4  
(VIN → VCC → VEN  
)
(VIN → VCC → VEN  
)
Ta=-40°C  
Ta=25°C  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VCC  
5V/div  
VCC  
5V/div  
VEN  
2V/div  
VEN  
2V/div  
VIN  
2V/div  
VIN  
2V/div  
VO  
1V/div  
VO  
1V/div  
20msec/div  
20msec/div  
Figure.35 Start-up Sequence 5  
Figure.34 Start-up Sequence 4  
(VIN → VEN → VCC  
)
(VIN → VCC → VEN  
)
Ta=-40°C  
Ta=105°C  
VCC  
VCC  
5V/div  
5V/div  
VEN  
VEN  
2V/div  
2V/div  
VIN  
VIN  
2V/div  
2V/div  
VO  
VO  
1V/div  
1V/div  
20msec/div  
20msec/div  
Figure.36 Start-up Sequence 5  
Figure.37 Start-up Sequence 5  
(VIN → VEN → VCC  
)
(VIN → VEN → VCC)  
Ta=25°C  
Ta=105°C  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VCC  
5V/div  
VCC  
5V/div  
VEN  
2V/div  
VEN  
2V/div  
VIN  
2V/div  
VIN  
2V/div  
VO  
1V/div  
VO  
1V/div  
20msec/div  
20msec/div  
Figure.39 Start-up Sequence 6  
Figure.38 Start-up Sequence 6  
(VEN → VCC → VIN)  
Ta=-40°C  
(VEN→ VCC → VIN)  
Ta=25°C  
VCC  
VCC  
5V/div  
5V/div  
VEN  
VEN  
2V/div  
2V/div  
VIN  
VIN  
2V/div  
2V/div  
VO  
VO  
1V/div  
1V/div  
20msec/div  
20msec/div  
Figure.40 Start-up Sequence 6  
(VEN → VCC → VIN)  
Ta=105°C  
Figure.41 Start-up Sequence 7  
(VEN → VIN → VCC  
)
Ta=-40°C  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
VCC  
5V/div  
VCC  
5V/div  
VEN  
2V/div  
VEN  
2V/div  
VIN  
2V/div  
VIN  
2V/div  
VO  
1V/div  
VO  
1V/div  
20msec/div  
20msec/div  
Figure.43 Start-up Sequence 7  
Figure.42 Start-up Sequence 7  
(VEN → VIN → VCC  
)
(VEN → VIN → VCC  
)
Ta=105°C  
Ta=25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
1.13  
105  
-40  
-10  
20  
Ta (°C)  
50  
80  
105  
-40  
-10  
20  
Ta (°C)  
50  
80  
Figure.44 Ta-Vo  
(IO=0mA)  
Figure.45 Ta-ICC  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
105  
80  
105  
-40  
-10  
20  
Ta (°C)  
50  
-40  
-10  
20  
Ta (°C)  
50  
80  
Figure.46 Ta-ISTB  
Figure.47 Ta-IIN  
30.0  
27.0  
25.0  
23.0  
21.0  
19.0  
17.0  
15.0  
25.0  
20.0  
15.0  
10.0  
5.0  
0.0  
105  
80  
105  
-40  
-10  
20  
Ta (°C)  
50  
-40  
-10  
20  
Ta (°C)  
50  
80  
Figure.48 Ta-IINSTB  
Figure.49 Ta-INRCS  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Typical Performance Curves - continued  
15.0  
10.0  
5.0  
12.0  
10.0  
8.0  
0.0  
6.0  
-5.0  
4.0  
-10.0  
-15.0  
2.0  
0.0  
105  
105  
80  
-40  
-10  
20  
Ta (°C)  
50  
80  
-40  
-10  
20  
Ta (°C)  
50  
Figure.50 Ta-IFB  
Figure.51 Ta-IEN  
200  
180  
160  
140  
120  
100  
80  
220  
200  
180  
160  
140  
120  
100  
Ta=105°C  
Ta=25°C  
Ta=-40°C  
2
3
4
5
6
7
8
105  
-40  
-10  
20  
Ta (°C)  
50  
80  
VCC (V)  
Figure.52 Ta-RON  
(VCC=5V, VO=1.2V)  
Figure.53 VCC-RON  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Evaluation Board  
Evaluation Board Schematic  
BD00JC0MNUX-M  
(VSON010X3030)  
Evaluation Board Standard Component List  
Component Rating Manufacturer Product Name  
Component Rating Manufacturer Product Name  
U1  
-
ROHM  
BD00JC0MNUX-M  
GRM188B11A105KD  
GRM188B11H103KD  
GRM188B11H101KD  
Jumper  
C2  
C13  
R1  
R2  
R4  
22uF  
KYOCERA  
CM32X5R226M10A  
GRM188B11H102KD  
MCR03EZPF3901  
MCR03EZPF3301  
MCR03EZPF  
C1  
1uF  
MURATA  
1000pF MURATA  
3.9kΩ ROHM  
3.3kΩ ROHM  
100kΩ ROHM  
C10  
C11  
R8  
0.01uF MURATA  
100pF MURATA  
0Ω  
-
C5  
22uF  
KYOCERA  
CM32X5R226M10A  
Evaluation Board Layout  
(2nd layer and 3rd layer are GND Line)  
Silkscreen  
Bottom Layer  
TOP Layer  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Recommended Circuit Example  
1
2
3
10  
9
VCC  
GND  
C1  
EN  
R4  
C4  
8
R1  
VCC  
FB  
R5  
R2  
C5  
4
5
7
6
VO(1.2V)  
C3  
C6  
VIN  
C2  
Recommended  
Component  
Value  
Programming Notes and Precautions  
IC output voltage can be set with a configuration formula using the values for the internal  
reference output voltage (VFB) and the output voltage resistors (R1, R2). Select resistance  
values that will avoid the impact of the VREF current (±100nA). The recommended total  
resistance value is 10KΩ.  
R1/R2  
3.9k/3.3k  
To assure output voltage stability, there should be capacitor connected across VO pins and  
the GND pin. Output capacitor plays a role in loop gain phase compensation and in  
mitigating output fluctuation during rapid changes in load level. Insufficient capacitance  
may cause oscillation, while high equivalent series reisistance (ESR) will exacerbate  
output voltage fluctuation under rapid load change conditions. While a 22μF ceramic  
capacitor is recomended, actual stability is highly dependent on temperature and load  
conditions. Also, note that connecting different types of capacitors in series may result in  
insufficient total phase compensation, thus causing oscillation. In light of this information,  
please confirm operation across a variety of temperature and load conditions.  
Input capacitor reduce the output impedance of the voltage supply source connected to  
C3  
22μF  
the (VCC) input pin. If the impedance of this power supply increases, input voltage (VCC  
)
could become unstable, leading to oscillation or lowered ripple rejection function. While a  
low-ESR 1μF capacitor with minimal susceptibility to temperature is recommended,  
stability is highly dependent on the input power supply characteristics and the substrate  
wiring pattern. In light of this information, please confirm operation across a variety of  
temperature and load conditions.  
Input capacitor reduce the output impedance of the voltage supply source connected to  
the (VIN) input pin. If the impedance of this power supply increases, input voltage (VIN)  
could become unstable, leading to oscillation or lowered ripple rejection function. While a  
low-ESR 22μF capacitor with minimal susceptibility to temperature is recommended,  
stability is highly dependent on the input power supply characteristics and the substrate  
wiring pattern. In light of this information, please confirm operation across a variety of  
temperature and load conditions.  
The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush  
current from going through the load (VIN to VO) and impacting output capacitors at power  
supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the  
UVLO function is deactivated. The temporary reference voltage is proportionate to time,  
due to the current charge of the NRCS pin capacitor, and output voltage start-up is  
proportionate to this reference voltage. Capacitors with low susceptibility to temperature  
are recommended, in order to assure a stable soft-start time.  
C1  
C2  
C4  
1μF  
22μF  
0.01μF  
This component is employed when the C3 capacitor causes, or may cause, oscillation. It  
provides more precise internal phase correction.  
C5  
C6  
-
100pF  
Capacitor to set delay of power good. 100pF is recommended.  
R5  
R4  
100k  
It is pull-up resistance of Open Drain pin. 100kΩ is recommended.  
Several kΩ  
It is recommended that a resistance (several kΩ to several 10kΩ) be place in R4, in case  
several 10kΩ negative voltage is applied in EN pin.  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
I/O Equivalent Circuit Diagram  
(Resistance value is Typical)  
VIN  
VOUT  
VOUT  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
22/28  
Datasheet  
BD00JC0MNUX-M  
Notes for Use  
1. Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If  
any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,  
such as fuses.  
2. GND Voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
3. Thermal design  
Use a thermal design that allows for a sufficient margin considering the power dissipation (Pd) in actual operating  
conditions.  
4. Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
5. ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.  
6. Thermal shutdown circuit  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit: Latch type). The thermal shutdown circuit (TSD  
circuit: Latch type) is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or  
guarantee its operation.  
Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this  
circuit is assumed.  
TSD ON temperature  
[℃](typ.)  
Hysteresis temperature [℃]  
(typ.)  
15  
175  
7. Ground Wiring Pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern of any external components.  
8. Output voltage resistance setting (R1, R2)  
Output voltage is adjusted with resistor R1 and R2. Output voltage is calculated as VFB×(R1+R2) / R1. Total 10kΩ is  
recommended so that the output voltage is not affected by the VFB bias current.  
9. Output capacitor (C3)  
To assure output voltage stability, there should be capacitor connected across VO pins and the GND pin. Output  
capacitors play a role in loop gain phase compensation and in mitigating output fluctuation during rapid changes in load  
level. Insufficient capacitance may cause oscillation, while high equivalent series resistance (ESR) will exacerbate output  
voltage fluctuation under rapid load change conditions. While a 47uF ceramic capacitor is recommended, actual stability  
is highly dependent on temperature and load conditions. Also, note that connecting different types of capacitors in series  
may result in insufficient total phase compensation, thus causing oscillation. In light of this information, please confirm  
operation across a variety of temperature and load conditions.  
10. Input capacitors setting (C1, C2)  
Input capacitors reduce the impedance of the voltage supply source connected to the (VCC, VIN) input pins. If the  
impedance of this power supply increases, input voltage (VCC, VIN) could become unstable, leading to oscillation or  
lowered ripple rejection function. Stability highly depends on the input power supply characteristic and the substrate  
wiring pattern. Please confirm operation across a variety of temperature and load conditions.  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
11. NRCS pin capacitors setting (CNRCS)  
The Non Rush Current on Startup (NRCS) function is built in the IC to prevent rush current from going through the load  
(VIN to VO) and impacting output capacitors at power supply start-up. The constant current comes from the NRCS pin  
when EN is HIGH or the UVLO function is deactivated. The temporary reference voltage is proportionate to time, due to  
the current charge of the NRCS pin capacitor, and output voltage start-up is proportionate to this reference voltage. To  
obtain a stable NRCS delay time, capacitors with low susceptibility to temperature are recommended.  
12. Input pins (VCC, VIN, EN)  
This ICs EN pin, VIN pin, and VCC pin are isolated, and the UVLO function is built in the VCC pin to prevent undervoltage  
lockout. It does not depend on the Input pin order. Output voltage starts up when VCC and EN reach the threshold voltage.  
However, note that when putting in VIN pin lastly, VO may result in overshooting.  
13. Heat sink (FIN)  
Since the heat sink (FIN) is connected to with the Sub, short it to the GND. It is possible to minimize the thermal  
resistance by soldering it to substrate. Please solder properly.  
(e.g.)  
14. Please add a protection diode when a large inductance  
OUTPUT PIN  
component is connected to the output terminal,  
and reverse-polarity power is possible at start-up  
or in output OFF condition.  
15. Short-circuits between pins and mounting errors  
Please be sure to install the IC in correct position and orientation. Mounting errors, such as incorrect positioning or  
orientation, or connecting of the power supply in reverse polarity can also destroy the IC. Short-circuit between pins or  
pin and the power supply, or between ground may also damage to the IC.  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Heat Loss  
Thermal design should allow operation within the following conditions. Note that the temperatures listed are the allowed  
temperature limits, and thermal design should allow sufficient margin from the limits.  
1. Ambient temperature Ta can be no higher than 105°C.  
2. Chip junction temperature (Tj) can be no higher than 150°C.  
Chip junction temperature can be determined as follows:  
Calculation based on ambient temperature (Ta)  
Tj=Ta+θj-a X W  
< Reference values >  
θj-a:VSON010X3030  
215°C/W  
69.4°C/W  
1-layer substrate (Bottom copper foil area: 6.28mm2)  
4-layer substrate (Bottom copper foil area: 6.28mm2)  
PCB size: 74.2mm×74.2mm×1.6mm (substrate with thermal via)  
It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern  
in the inner layer (in using multiplayer substrate). This package is so small (size: 3.0mm×3.0mm) that it is not available to  
layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below)  
enables to get the superior heat radiation characteristic. (The figure below shows the recommended VIA size and the  
number suitable for the actual situation.)  
Most of the heat loss that occurs in the BD00JC0MNUX-M is generated from the output Nch FET. Power loss is determined  
by the total VIN-Vo voltage and output current. Be sure to confirm the system’s input and output voltage and the output  
current conditions in relation to the heat dissipation characteristics of the VIN and Vo in the design. Bearing in mind that  
heat dissipation may vary substantially depending on the substrate employed (due to the power package incorporated in  
the BD00JC0MNUX-M) considering other factor such as substrate size into the thermal design.  
Power consumption (W) = { Input voltage (VIN)- Output voltage (Vo) (VoVREF) } x Io(Ave)  
Example: When VIN=1.7V, VO=1.2V, Io(Ave) = 1A,  
Power consumption (W) = { 1.7(V)-1.2(V) } x 1.0(A)  
= 0.5(W)  
Power Dissipation  
VSON010X3030  
[W]  
3.0  
(1) Mounted on 1-layer board  
Bottom copper foil area: 6.28mm2  
θj-a=215.5°C/W  
(2) Mounted on 4-layer board  
2.0  
(2) 1.8W  
Bottom copper foil area: 6.28mm2  
θj-a=69.4°C/W  
1.0  
0
(1) 0.575W  
0
25  
45  
65  
85 105 125  
150  
[°C]  
Ambient Temperature [Ta]  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Ordering Information  
B D 0 0  
J
C
0 M N U  
X
-
M E 2  
Part  
Output  
Input  
Voltage  
Output Automotive Package  
Current  
Packaging and forming  
specification  
Number voltage  
00:Variable J:6V  
C0:1A  
“M”:M-series NUX:VSON010X3030 E2:Emboss tape reel  
Marking Diagram  
VSON010X3030 (TOP VIEW)  
Part Number Marking  
LOT Number  
J C 0  
M N X  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/28  
TSZ2211115001  
Datasheet  
BD00JC0MNUX-M  
Physical Dimension and Packing Information  
Package Name  
VSON010X3030  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
27/28  
Datasheet  
BD00JC0MNUX-M  
Revision History  
Date  
Revision  
Changes  
2.Dec.2013  
001  
New Release  
P4: A writing errors of Timing Chart was corrected.  
P11 and P12: A writing errors of Figure.20 to Figure.25 was corrected.  
P22: I/O Equivalent Circuit Diagram was fixed.  
P22: Reference landing pattern was removed.  
P25: A writing errors of Heat Loss was corrected.  
P25: A writing errors of Power Dissipation was corrected.  
P26: Add Marking Diagram.  
19.Apr.2022  
002  
P27: Add Physical Dimension and Packing Information.  
www.rohm.com  
TSZ02201-0R6R0AN00500-1-2  
19.Apr.2022 Rev.002  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/28  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY