BD12734F-GE2 [ROHM]

Operational Amplifier,;
BD12734F-GE2
型号: BD12734F-GE2
厂家: ROHM    ROHM
描述:

Operational Amplifier,

放大器
文件: 总53页 (文件大小:1328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Low Supply Current  
Input/Output Full Swing  
Operational Amplifier  
BD12730G BD12732xxx BD12734xxx  
General Description  
Key Specifications  
Operating Supply Voltage (Single Supply):  
+1.8V to +5.5V  
Operating Temperature Range:  
Input Offset Voltage:  
Supply Current:  
BD12730G/BD12732xxx/BD12734xxx are input/output  
full swing operational amplifiers. They have the  
features of low operating supply voltage, low supply  
current, low input referred noise voltage and high  
phase margin. These are suitable for audio  
applications and battery management.  
-40°C to +85°C  
5mV (Max)  
BD12730G(Single)  
BD12732xxx(Dual)  
BD12734xxx(Quad)  
550µA (Max)  
900µA (Max)  
1800µA (Max)  
Features  
Low Operating Supply Voltage  
Input/Output Full Swing  
Low Supply Current  
Input Referred Noise Voltage:  
Adequate Phase Margin:  
10 nV/ Hz (Typ)  
75°(Typ)  
High Phase Margin  
Low Input Referred Noise Voltage  
Packages  
SSOP5  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
2.90mm x 4.00mm x 0.90mm  
3.00mm x 4.90mm x 1.10mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.20mm  
SOP8  
SOP-J8  
Applications  
Audio Application  
Battery Management  
General Purpose  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
Pin Configuration  
BD12730G  
: SSOP5  
Pin No.  
Pin Name  
+IN  
1
2
3
5
4
V+  
1
2
3
4
5
+IN  
GND  
-IN  
+
-
GND  
-IN  
OUT  
OUT  
V+  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
1/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
BD12732F  
: SOP8  
BD12732FJ  
BD12732FV  
BD12732FVT  
BD12732FVM  
BD12732FVJ  
: SOP-J8  
: SSOP-B8  
: TSSOP-B8  
: MSOP8  
: TSSOP-B8J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
5
6
7
8
OUT1  
1
8
7
6
5
V+  
-IN1  
CH1  
2
3
4
OUT2  
-IN2  
+IN2  
+IN1  
-
+
GND  
+IN2  
+IN1  
CH2  
-
+
-IN2  
GND  
OUT2  
V+  
BD12734F  
: SOP14  
BD12734FJ  
BD12734FV  
BD12734FVJ  
: SOP-J14  
: SSOP-B14  
: TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
OUT1  
1
2
3
4
5
6
7
14 OUT4  
3
+IN1  
V+  
13  
12  
11  
10  
9
4
-IN1  
+IN1  
V+  
-IN4  
CH1  
CH4  
-
-
+
+
5
+IN2  
-IN2  
+IN4  
GND  
+IN3  
-IN3  
6
7
OUT2  
OUT3  
-IN3  
8
+IN2  
-IN2  
-
9
-
+
+
CH2  
CH3  
10  
11  
12  
13  
14  
+IN3  
GND  
+IN4  
-IN4  
8
OUT2  
OUT3  
OUT4  
Ordering Information  
B
D
1
2
7
3 x x x x  
-
x x  
Part Number  
BD12730G  
BD12732xxx  
BD12734xxx  
Package  
Packaging and Forming Specification  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
E2: Embossed tape and reel  
(SOP8/SOP-J8/SSOP-B8/TSSOP-B8/  
TSSOP-B8J/SOP14/SOP-J14/SSOP-B14/  
TSSOP-B14J)  
G
F
: SSOP5  
: SOP8  
FJ  
FV  
: SOP-J8  
: SSOP-B8  
FVT : TSSOP-B8  
FVM : MSOP8  
FVJ : TSSOP-B8J  
F
: SOP14  
FJ  
FV  
: SOP-J14  
: SSOP-B14  
FVJ : TSSOP-B14J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
2/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Line-up  
Operating  
Channels  
Package  
Orderable Part Number  
BD12730G-TR  
Temperature  
1ch  
SSOP5  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
SOP8  
SOP-J8  
BD12732F-E2  
BD12732FJ-E2  
BD12732FV-E2  
BD12732FVT-E2  
BD12732FVM-TR  
BD12732FVJ-E2  
BD12734F-E2  
SSOP-B8  
TSSOP-B8  
MSOP8  
2ch  
-40°C to +85°C  
TSSOP-B8J  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
BD12734FJ-E2  
BD12734FV-E2  
BD12734FVJ-E2  
4ch  
Absolute Maximum Ratings (TA=25°C)  
Rating  
Parameter  
Symbol  
Unit  
V
BD12730G  
BD12732xxx  
+7.0  
BD12734xxx  
Supply Voltage  
V+  
SSOP5  
SOP8  
0.67 (Note 1,9)  
-
-
-
-
-
-
-
-
-
0.68 (Note 2,9)  
0.67 (Note 1,9)  
0.62 (Note 3,9)  
0.62 (Note 3,9)  
0.58 (Note 4,9)  
0.58 (Note 4,9)  
-
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
VID  
-
-
-
-
-
-
-
-
-
Power Dissipation  
PD  
W
0.56(Note 5,9)  
1.02(Note 6,9)  
0.87(Note 7,9)  
0.85(Note 8,9)  
-
-
-
Differential Input Voltage (Note 10)  
Input Common-mode Voltage Range  
Input Current (Note 11)  
±3.0  
V
V
VICM  
GND to V+  
±10  
II  
mA  
V
Operating Supply Voltage  
Operating Temperature  
Vopr  
+1.8 to +5.5  
- 40 to +85  
- 55 to +150  
+150  
Topr  
°C  
°C  
°C  
Storage Temperature  
Tstg  
Maximum Junction Temperature  
TJmax  
(Note 1) To use at temperature above TA=25°C, reduce by 5.4mW/°C.  
(Note 2) To use at temperature above TA=25°C, reduce by 5.5mW/°C.  
(Note 3) To use at temperature above TA=25°C, reduce by 5.0mW/°C.  
(Note 4) To use at temperature above TA=25°C, reduce by 4.7mW/°C.  
(Note 5) To use at temperature above TA=25°C, reduce by 4.5mW/°C.  
(Note 6) To use at temperature above TA=25°C, reduce by 8.2mW/°C.  
(Note 7) To use at temperature above TA=25°C, reduce by 7.0mW/°C.  
(Note 8) To use at temperature above TA=25°C, reduce by 6.8mW/°C.  
(Note 9) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 10) Differential Input Voltage is the voltage difference between the inverting and non-inverting inputs.  
The input pin voltage is set to more than GND.  
(Note 11) An excessive input current will flow when input voltages of more than Supply Voltage(V+)+0.6V or less than GND-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the  
IC is operated over the absolute maximum ratings.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
3/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Electrical Characteristics  
BD12730G (Unless otherwise specified V+=+5V, GND=0V, TA=25°C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
320  
Max  
550  
Supply Current  
µA  
mV  
nA  
nA  
dB  
dB  
dB  
RL=, +IN=2.5V  
IDD  
Input Offset Voltage(Note 12)  
Input Bias Current(Note 12)  
Input Offset Current(Note 12)  
Large Signal Voltage Gain  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Output Source Current  
-
-
1
5
-
VIO  
IB  
50  
5
250  
-
IIO  
-
100  
-
AV  
60  
55  
70  
85  
70  
85  
-
-
-
RL=2k(Note 13)  
CMRR  
PSRR  
-
-
VOH1  
VOH2  
VOL1  
VOL2  
4.9  
4.95  
4.85  
0.05  
0.15  
-
-
V
V
V
V
RL=20k(Note 13)  
RL=2k(Note 13)  
RL=20k(Note 13)  
RL=2k(Note 13)  
4.75  
-
-
0.1  
0.25  
ISOURCE  
ISINK  
VICM  
GBW  
fT  
-
-
12  
5
-
-
mA  
mA  
V
OUT=0V  
Output Sink Current  
OUT=5V  
Input Common-mode Voltage Range  
Gain Bandwidth  
0
-
-
5
-
CMRR>55dB  
f=10kHz  
1
MHz  
MHz  
Unity Gain Frequency  
-
1
-
RL=2k(Note 13)  
Phase Margin  
θ
-
75  
-
deg  
RL=2k(Note 13)  
-
-
10  
-
-
f=1kHz  
nV/ Hz  
Input Referred Noise Voltage  
VN  
1.2  
μVrms RS=100, DIN-AUDIO  
RL=2k(Note 13)  
Slew Rate  
SR  
-
0.4  
-
V/µS  
(Note 12) Absolute value  
(Note 13) Output load resistance connect to a half of V+  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
4/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Electrical Characteristics – continued  
BD12732xxx (Unless otherwise specified V+=+5V, GND=0V, TA=25°C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
580  
Max  
900  
RL=, +IN=2.5V  
All Op-Amps  
Supply Current  
IDD  
µA  
mV  
nA  
nA  
dB  
dB  
dB  
Input Offset Voltage(Note 14)  
Input Bias Current(Note 14)  
Input Offset Current(Note 14)  
Large Signal Voltage Gain  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Output Source Current  
Output Sink Current  
VIO  
-
-
1
5
-
IB  
50  
5
250  
-
IIO  
-
100  
-
AV  
60  
55  
70  
85  
70  
85  
-
-
-
RL=2k(Note 15)  
CMRR  
PSRR  
-
-
VOH1  
VOH2  
VOL1  
VOL2  
4.9  
4.95  
4.85  
0.05  
0.15  
-
-
V
V
V
V
RL=20k(Note 15)  
RL=2k(Note 15)  
RL=20k(Note 15)  
RL=2k(Note 15)  
4.75  
-
-
0.1  
0.25  
ISOURCE  
ISINK  
VICM  
GBW  
fT  
-
-
12  
5
-
-
mA  
mA  
V
OUT=0V  
OUT=5V  
Input Common-mode Voltage Range  
Gain Bandwidth  
0
-
-
5
-
CMRR>55dB  
f=10kHz  
1
MHz  
MHz  
Unity Gain Frequency  
-
1
-
RL=2k(Note 15)  
Phase Margin  
θ
-
75  
-
deg  
RL=2k(Note 15)  
-
-
10  
-
-
f=1kHz  
nV/ Hz  
Input Referred Noise Voltage  
Slew Rate  
VN  
1.2  
μVrms RS=100, DIN-AUDIO  
SR  
-
-
0.4  
90  
-
-
V/µS  
dB  
RL=2k(Note 15)  
f=1kHz, RL=2k(Note 15)  
OUT=1.2Vrms  
Channel Separation  
CS  
(Note 14) Absolute value  
(Note 15) Output load resistance connect to a half of V+  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
5/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Electrical Characteristics – continued  
BD12734xxx (Unless otherwise specified V+=+5V, GND=0V, TA=25°C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
Max  
RL=, +IN=2.5V  
All Op-Amps  
Supply Current  
IDD  
1200  
1800  
µA  
mV  
nA  
nA  
dB  
dB  
dB  
Input Offset Voltage(Note 16)  
Input Bias Current(Note 16)  
Input Offset Current(Note 16)  
Large Signal Voltage Gain  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Output Source Current  
Output Sink Current  
VIO  
-
-
1
5
-
IB  
50  
5
250  
-
IIO  
-
100  
-
AV  
60  
55  
70  
85  
70  
85  
-
-
-
RL=2k(Note 17)  
CMRR  
PSRR  
-
-
VOH1  
VOH2  
VOL1  
VOL2  
4.9  
4.95  
4.85  
0.05  
0.15  
-
-
V
V
V
V
RL=20k(Note 17)  
RL=2k(Note 17)  
RL=20k(Note 17)  
RL=2k(Note 17)  
4.75  
-
-
0.1  
0.25  
ISOURCE  
ISINK  
VICM  
GBW  
fT  
-
-
12  
5
-
-
mA  
mA  
V
OUT=0V  
OUT=5V  
Input Common-mode Voltage Range  
Gain Bandwidth  
0
-
-
5
-
CMRR>55dB  
f=10kHz  
1
MHz  
MHz  
Unity Gain Frequency  
-
1
-
RL=2k(Note 17)  
Phase Margin  
θ
-
75  
-
deg  
RL=2k(Note 17)  
-
-
10  
-
-
f=1kHz  
nV/ Hz  
Input Referred Noise Voltage  
Slew Rate  
VN  
1.2  
μVrms RS=100, DIN-AUDIO  
SR  
-
-
0.4  
-
-
V/µS  
dB  
RL=2k(Note 17)  
f=1kHz, RL=2k(Note 17)  
OUT=1.2Vrms  
Channel Separation  
CS  
133  
(Note 16) Absolute value  
(Note 17) Output load resistance connect to a half of V+  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
6/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Description of electrical characteristics  
Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown.  
Note that item name, symbol and their meaning may differ from those on other manufacturer’s document or general  
documents.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (V+/GND)  
Indicates the maximum voltage that can be applied between the V+ terminal and GND terminal without deterioration  
or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Supply Current (IDD  
)
Indicates the current that flows within the IC under specified no-load conditions.  
(2) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(3) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(4) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(5) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
AV = (Output voltage) / (Differential Input voltage)  
(6) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(7) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR = (Change of power supply voltage)/(Input offset fluctuation)  
(8) Maximum Output Voltage (High/Low Level Output Voltage) (VOH/VOL  
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage high and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(9) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(10) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(11) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
(12) Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
(13) Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(14) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
(15) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(16) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
7/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves  
BD12730G  
400  
350  
300  
250  
200  
150  
100  
50  
0.8  
0.6  
85℃  
25℃  
BD12730G  
-40℃  
0.4  
0.2  
0.0  
0
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
Ambient Temperature [  
]
SupplyVoltage [V]  
Figure 2.  
Supply Current vs Supply Voltage  
Figure 1.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
6
5
4
3
2
1
0
400  
350  
300  
250  
200  
150  
100  
50  
5.0V  
3.0V  
-40℃  
25℃  
1.8V  
85℃  
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 3.  
Figure 4.  
Supply Current vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
8/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
6
18  
15  
12  
9
5
5.0V  
4
85℃  
25℃  
3
3.0V  
-40℃  
2
6
1.8V  
1
3
0
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 5.  
Figure 6.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=20k)  
(RL=20k)  
18  
6
5
4
3
2
1
0
15  
12  
9
-40℃  
25℃  
85℃  
5.0V  
6
3.0V  
1.8V  
3
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Ambient Temperature [  
]
SupplyVoltage [V]  
Figure 7.  
Figure 8.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
9/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
120  
100  
80  
60  
40  
20  
0
6
5
5.0V  
4
85℃  
25℃  
3
3.0V  
2
-40℃  
1.8V  
1
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [  
]
Figure 9.  
Figure 10.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
120  
3
2
100  
80  
60  
40  
20  
0
-40℃  
1
25℃  
85℃  
0
5.0V  
-1  
-2  
-3  
3.0V  
1.8V  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 11.  
Figure 12.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Input Offset Voltage vs Supply Voltage  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
10/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
5
4
3
5
4
3
-40℃  
25℃  
3.0V  
1.8V  
2
1
2
1
85℃  
0
0
5.0V  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
4
5
6
Input Voltage [V]  
Ambient Temperature [°C]  
Figure 13.  
Figure 14.  
Input Offset Voltage vs Ambient Temperature  
Input Common Mode Voltage Range  
(V+=5V)  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
5.0V  
1.8V  
5.0V  
3.0V  
3.0V  
0
1.8V  
-5  
-10  
-15  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [  
]
Figure 15.  
Figure 16.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Ambient Temperature  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
11/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
100  
90  
100  
90  
80  
70  
60  
50  
40  
5.0V  
5.0V  
80  
3.0V  
70  
3.0V  
1.8V  
1.8V  
60  
50  
40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [°C]  
Figure 17.  
Figure 18.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(RL=2k)  
100  
90  
80  
70  
60  
50  
40  
80  
200  
Phase  
Gain  
60  
40  
20  
0
150  
100  
50  
0
-20  
-40  
-50  
-100  
102  
103  
104  
105  
106  
107  
-50  
-25  
0
25  
50  
75  
100  
Frequency[Hz]  
Ambient Temperature [°C]  
Figure 19.  
Figure 20.  
Power Supply Rejection Ratio vs Ambient Temperature  
(V+=1.8V to 5.0V)  
Voltage GainPhase vs Frequency  
(V+=5V, RL=2k, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
12/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
1
0.8  
0.6  
1
0.8  
0.6  
0.4  
0.2  
0
5.0V  
3.0V  
5.0V  
0.4  
0.2  
0
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [  
]
Figure 21.  
Figure 22.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
(RL=2k)  
(RL=2k)  
2
1.6  
1.2  
0.8  
0.4  
0
100  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance [pF]  
Load Capacitance [pF]  
Figure 23.  
Unity Gain Frequency vs Load Capacitance  
(V+=5V, TA=25°C)  
Figure 24.  
Phase Margin vs Load Capacitance  
(V+=5V, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
13/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12730G  
1.0000  
0.1000  
0.0100  
0.0010  
0.0001  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1kHz  
20Hz  
20kHz  
0.01  
0.10  
1.00  
10.00  
1
2
3
4
5
6
Output Voltage [Vrms]  
SupplyVoltage [V]  
Figure 25.  
Figure 26.  
Input Referred Noise Voltage vs Supply Voltage  
(TA=25°C)  
Total Harmonic Distortion + Noise vs Output Voltage  
(V+=5V, RL=2k, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
14/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
0.8  
800  
700  
600  
500  
400  
300  
200  
100  
0
BD12732F  
85℃  
BD12732FJ  
0.6  
BD12732FV  
25℃  
BD12732FVT  
-40℃  
0.4  
BD12732FVJ  
BD12732FVM  
0.2  
0.0  
85  
1
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
SupplyVoltage [V]  
Ambient Temperature [°C]  
Figure 27.  
Figure 28.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5.0V  
3.0V  
5
4
3
2
1
0
-40℃  
25℃  
85℃  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Ambient Temperature [  
]
Ambient Temperature [  
]
Figure 29.  
Figure 30.  
Supply Current vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
15/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
6
18  
15  
12  
9
5
5.0V  
4
85℃  
3
25℃  
3.0V  
6
2
1.8V  
-40℃  
1
3
0
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [  
]
Figure 31.  
Figure 32.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=20k)  
(RL=20k)  
18  
15  
12  
6
5
4
3
2
1
0
-40℃  
25℃  
85℃  
9
5.0V  
6
3.0V  
1.8V  
3
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Supply Voltage [V]  
Figure 33.  
Figure 34.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
16/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
6
120  
100  
80  
60  
40  
20  
0
5
5.0V  
4
85℃  
25℃  
3
3.0V  
2
-40℃  
1.8V  
1
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 35.  
Figure 36.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
120  
3
2
100  
80  
60  
40  
20  
0
-40℃  
1
25℃  
85℃  
0
5.0V  
-1  
-2  
-3  
3.0V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 38.  
Figure 37.  
Input Offset Voltage vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
17/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
5
4
5
4
3
3
-40℃  
25℃  
1.8V  
5.0V  
3.0V  
2
2
1
1
85℃  
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
4
5
6
Input voltage [V]  
Ambient Temperature [  
]
Figure 39.  
Figure 40.  
Input Offset Voltage vs Ambient Temperature  
Input Common Mode Voltage Range  
(V+=5V)  
60  
50  
40  
30  
20  
10  
0
15  
10  
5
1.8V  
3.0V  
0
5.0V  
-5  
3.0V  
-10  
-15  
1.8V  
5.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [  
]
Figure 41.  
Figure 42.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Ambient Temperature  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
18/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
100  
90  
100  
90  
80  
70  
60  
50  
40  
5.0V  
5.0V  
3.0V  
80  
70  
60  
50  
40  
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [°C]  
Figure 43.  
Figure 44.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(RL=2k)  
100  
90  
80  
70  
60  
50  
40  
80  
200  
Phase  
Gain  
60  
40  
20  
0
150  
100  
50  
0
-20  
-50  
-40  
-100  
102  
103  
104  
105  
106  
107  
-50  
-25  
0
25  
50  
75  
100  
1
Frequency[Hz]  
Ambient Temperature [  
]
Figure 45.  
Figure 46.  
Power Supply Rejection Ratio vs Ambient Temperature  
(V+=1.8V to 5.0V)  
Voltage GainPhase vs Frequency  
(V+=5V, RL=2k, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
19/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
5.0V  
3.0V  
5.0V  
0.4  
0.2  
0
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [  
]
Figure 47.  
Figure 48.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
(RL=2k)  
(RL=2k)  
2
1.6  
1.2  
0.8  
0.4  
0
100  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance [pF]  
Load Capacitance [pF]  
Figure 49.  
Unity Gain Frequency vs Load Capacitance  
(V+=5V, TA=25°C)  
Figure 50.  
Phase Margin vs Load Capacitance  
(V+=5V, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
20/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12732xxx  
1.0000  
0.1000  
0.0100  
0.0010  
0.0001  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1kHz  
20Hz  
20kHz  
0.01  
0.10  
1.00  
10.00  
1
2
3
4
5
6
SupplyVoltage [V]  
Output Voltage [Vrms]  
Figure 51.  
Figure 52.  
Input Referred Noise Voltage vs Supply Voltage  
(TA=25°C)  
Total Harmonic Distortion + Noise vs Output Voltage  
(V+=5V, RL=2k, TA=25°C)  
120  
110  
100  
90  
-40ºC  
25ºC  
85ºc  
80  
1
2
3
4
5
6
Supply Voltage [V]  
Figure 53.  
Channel Separation vs Supply Voltage  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
21/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
1.2  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
85℃  
1.0  
BD12734FJ  
25℃  
0.8  
BD12734FV  
-40℃  
0.6  
BD12734FVJ  
BD12734F  
0.4  
0.2  
0.0  
85  
1
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 54.  
Figure 55.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
6
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.0V  
3.0V  
5
4
3
2
1
0
-40℃  
25℃  
85℃  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [  
]
Figure 56.  
Supply Current vs Ambient Temperature  
Figure 57.  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
22/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
18  
15  
12  
9
6
5
5.0V  
4
85℃  
25℃  
3
3.0V  
-40℃  
2
6
1.8V  
1
3
0
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 58.  
Figure 59.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=20k)  
(RL=20k)  
18  
15  
12  
9
6
5
4
3
2
1
0
-40℃  
25℃  
85℃  
5.0V  
3.0V  
1.8V  
6
3
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
SupplyVoltage [V]  
Figure 60.  
Figure 61.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=20k)  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
23/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
6
120  
100  
80  
60  
40  
20  
0
5
5.0V  
4
-40℃  
85℃  
3
3.0V  
25℃  
2
1.8V  
1
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [  
]
Figure 62.  
Figure 63.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
3
2
120  
100  
80  
60  
40  
20  
0
1
25℃  
0
5.0V  
85℃  
-40℃  
-1  
-2  
-3  
3.0V  
1.8V  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
Ambient Temperature [  
]
Figure 64.  
Figure 65.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Input Offset Voltage vs Supply Voltage  
(RL=2k)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
24/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
5
4
3
2
5
4
85℃  
3
25℃  
2
3.0V  
1.8V  
1
1
0
0
-40℃  
5.0V  
-1  
-1  
-2  
-3  
-4  
-5  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
4
5
6
Input Voltage [V]  
Ambient Temperature [  
]
Figure 66.  
Figure 67.  
Input Offset Voltage vs Ambient Temperature  
Input Common Mode Voltage Range  
(V+=5V)  
60  
50  
40  
30  
20  
10  
0
15  
10  
5
1.8V  
5.0V  
5.0V  
3.0V  
0
3.0V  
-5  
1.8V  
-10  
-15  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient temperature [°C]  
Ambient Temperature [  
]
Figure 68.  
Figure 69.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Ambient Temperature  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
25/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
100  
90  
140  
120  
100  
80  
5.0V  
80  
5.0V  
3.0V  
3.0V  
70  
1.8V  
60  
1.8V  
60  
50  
40  
40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [°C]  
Figure 70.  
Figure 71.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(RL=2k)  
80  
60  
40  
20  
0
200  
100  
90  
80  
70  
60  
50  
40  
Phase  
Gain  
150  
100  
50  
0
-20  
-40  
-50  
-100  
102  
103  
104  
105  
106  
107  
Frequency[Hz]  
-50  
-25  
0
25  
50  
75  
100  
Ambient temperature [  
]
Figure 72.  
Figure 73.  
Power Supply Rejection Ratio vs Ambient Temperature  
(V+=1.8V to 5.0V)  
Voltage GainPhase vs Frequency  
(V+=5V, RL=2k, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
26/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
1
0.8  
0.6  
1
0.8  
0.6  
0.4  
0.2  
0
5.0V  
3.0V  
5.0V  
3.0V  
0.4  
0.2  
0
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [  
]
Ambient Temperature [  
]
Figure 74.  
Figure 75.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
(RL=2k)  
(RL=2k)  
100  
80  
60  
40  
20  
0
2
1.6  
1.2  
0.8  
0.4  
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance [pF]  
Load Capacitance [pF]  
Figure 76.  
Unity Gain Frequency vs Load Capacitance  
(V+=5V, TA=25°C)  
Figure 77.  
Phase Margin vs Load Capacitance  
(V+=5V, TA=25°C)  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
27/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Typical Performance Curves – Continued  
BD12734xxx  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1.0000  
0.1000  
0.0100  
0.0010  
0.0001  
1kHz  
20Hz  
20kHz  
1
2
3
4
5
6
0.01  
0.10  
1.00  
10.00  
SupplyVoltage [V]  
Output Voltage [Vrms]  
Figure 78.  
Figure 79.  
Input Referred Noise Voltage vs Supply Voltage  
(TA=25°C)  
Total Harmonic Distortion + Noise vs Output Voltage  
(V+=5V, RL=2k, TA=25°C)  
120  
110  
100  
90  
85℃  
25℃  
-40℃  
80  
1
2
3
4
5
6
Supply Voltage [V]  
Figure 80.  
Channel Separation vs Supply Voltage  
(*)The data above are measurement values of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
©2013 ROHM Co., Ltd. All rights reserved.  
28/50  
TSZ2211115001  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Application Information  
NULL method condition for Test Circuit 1  
V+, GND, VRL, EK, VICM Unit: V  
Calculation  
1
Parameter  
VF S1 S2 S3 V+ GND VRL RL EK VICM  
Input Offset Voltage  
VF1 ON ON OFF 5.0  
0
-
open -2.5 2.5  
VF2  
-4.5  
Large Signal Voltage Gain  
ON ON ON 5.0  
VF3  
0
2.5 2k  
2.5  
2
3
4
-0.5  
Common Mode Rejection Ratio  
(Input Common-mode  
Voltage Range)  
VF4  
0
ON ON OFF 5.0  
VF5  
0
0
-
-
open -2.5  
5.0  
VF6  
VF7  
5.0  
1.8  
Power Supply Rejection Ratio  
ON ON OFF  
open -0.9 0.9  
Calculation -  
|VF1|  
1+RF/RS  
VIO  
Av  
1. Input Offset Voltage (VIO)  
=
[V]  
EK × (1+RF/RS)  
[dB]  
= 20Log  
2. Large Signal Voltage Gain (AV)  
|VF2-VF3|  
ΔVICM × (1+RF/RS)  
CMRR  
PSRR  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
= 20Log  
[dB]  
|VF4 - VF5|  
ΔV+ × (1+ RF/RS)  
= 20Log  
[dB]  
|VF6 - VF7|  
0.1µF  
RF=50kΩ  
500kΩ  
0.01µF  
15V  
SW1  
V+  
EK  
RS=50Ω  
RI=10kΩ  
Vo  
500kΩ  
0.1µF  
DUT  
0.1µF  
NULL  
-15V  
SW3  
RI=10kΩ  
1000pF  
RS=50Ω  
50kΩ  
VF  
RL  
VRL  
VICM  
SW2  
GND  
Figure 81. Test Circuit 1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
29/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Application Information – continued  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10SW11SW12  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON ON OFF OFF OFF ON  
ON OFF OFF ON ON OFF OFF ON OFF OFF OFF ON  
Supply Current  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity Gain Frequency  
Input voltage  
VH  
SW3  
SW4  
R2 100kΩ  
V+  
VL  
SW1  
SW2  
t
Input wave  
SW8 SW9  
SW10 SW11 SW12  
SW5 SW6  
SW7  
Output voltage  
R1  
1kΩ  
SR=V/t  
90%  
GND  
VH  
RL  
CL  
-IN  
+IN  
VRL  
V  
Vo  
10%  
VL  
t  
t
Output wave  
Figure 82. Test Circuit 2  
Figure 83. Slew Rate Input Output Wave  
R2=100k  
R2=100kΩ  
V+  
V+  
R1=1kΩ  
R1=1kΩ  
OUT1  
=1Vrms  
OUT2  
R1//R2  
R1//R2  
GND  
GND  
IN  
100×OUT1  
OUT2  
CS=20Log  
Figure 84. Test Circuit 3 (Channel separation)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
30/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Application Example  
Voltage follower  
Voltage gain is 0dB.  
V+  
Using this circuit, the output voltage (OUT) is configured  
to be equal to the input voltage (IN). This circuit also  
stabilizes the output voltage (OUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (OUT) is shown below.  
OUT  
IN  
OUT=IN  
GND  
Figure 85. Voltage Follower  
Inverting amplifier  
R2  
V+  
For inverting amplifier, input voltage (IN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
R1  
IN  
OUT  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
R1//  
R2  
GND  
Figure 86. Inverting Amplifier Circuit  
Non-inverting amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified  
by a voltage gain, which depends on the ratio of R1 and  
R2. The output voltage (OUT) is -INphase with the input  
voltage (IN) and is shown in the next expression.  
V+  
OUT=(1 + R2/R1)IN  
OUT  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational  
amplifier.  
IN  
GND  
Figure 87. Non-inverting Amplifier Circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
31/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 88(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
=
(TJmaxTA) / PD °C/W  
The Derating curve in Figure 88(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 88(c) to € shows an example of the derating curve for BD12730G,  
BD12732xxx and BD12734xxx.  
Power dissipation of LSI [W]  
PDmax  
P2  
θJA=(TJmax-TA)/ PD °C/W  
θJA2 < θJA1  
Ambient temperature TA [ °C ]  
θJA2  
P1  
TJmax  
θJA1  
150  
0
25  
50  
75  
100  
125  
Chip surface temperature TJ [ °C ]  
Ambient temperature TA [ °C ]  
(b) Derating Curve  
(a) Thermal Resistance  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BD12732F(Note 19)  
BD12732FJ(Note 18)  
BD12732FV(Note 20)  
BD12730G(Note 18)  
BD12732FVT(Note 20)  
BD12732FVJ(Note 21)  
BD12732FVM(Note 21)  
85  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Ambient Temperature [  
]
(c) BD12730G  
(d) BD12732xxx  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
32/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
1.2  
1.0  
BD12734FJ(Note 23)  
0.8  
0.6  
0.4  
0.2  
0.0  
BD12734FVJ(Note 25)  
BD12734FV(Note 24)  
BD12734F(Note 22)  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [  
]
(e) BD12734xxx  
(Note 18)  
5.4  
(Note 19)  
5.5  
(Note 20)  
5.0  
(Note 21)  
4.7  
(Note 22)  
4.5  
(Note 23)  
8.2  
(Note 24)  
7.0  
(Note 25)  
6.8  
Unit  
mW/°C  
When using the unit above TA=25°C, subtract the value above per °C. Permissible dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area below 3%) is mounted  
Figure 88. Thermal Resistance and Derating Curve  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
33/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So, unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
34/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Operational Notes – continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Figure 89. Example of hic IC structure  
13. Applied voltage to the input terminal  
For normal circuit operation of voltage comparator, please input voltage for its input terminal within input common  
mode voltage V+ + 0.3V. Then, regardless of power supply voltage, GND-0.3V can be applied to input terminals  
without deterioration or destruction of its characteristics.  
14. Power supply (single / dual)  
The operational amplifiers operate when the voltage supplied is between V+ and GND. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
15. Power dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a  
rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power  
dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal  
derating curves for more information.  
16. IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
17. The IC destruction caused by capacitive load  
The transistors in circuits may be damaged when V+ terminal and GND terminal is shorted with the charged output  
terminal capacitor.When IC is used as a operational amplifier or as an application circuit, where oscillation is not  
activated by an output capacitor, the output capacitor must be kept below 0.1μF in order to prevent the damage  
mentioned above.  
18. Latch up  
Be careful in the application of input voltage that exceeds the V+ and GND. For CMOS device, sometimes latch up  
operation occurs. Also protect the IC from abnormal noise.  
19. Decoupling capacitor  
Insert a decoupling capacitor between V+ and GND for a stable operation of the operational amplifier.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
35/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Operational Notes – continued  
20. Unused circuits  
When there are unused Op-amps, it is recommended that they are  
connected as in Figure 90, setting the non-inverting input terminal to a  
potential within the Input Common-mode Voltage Range (VICM).  
V+  
Keep this potential  
in VICM  
VICM  
GND  
Figure 90. Example of Application  
Circuit for Unused Op-Amp  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
36/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
37/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
38/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
39/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
40/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
TSSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
41/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
42/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
TSSOP-B8J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
43/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
44/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP-J14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
45/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
46/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
TSSOP-B14J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
47/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Marking Diagram  
SSOP5(TOP VIEW)  
Part Number Marking  
LOT Number  
SOP8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B8(TOP VIEW)  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8J(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
48/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Marking Diagram - continued  
SOP14(TOP VIEW)  
Part Number Marking  
SOP-J14(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B14J (TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
BD12730  
Package Type  
Marking  
G
F
SSOP5  
K7  
D2732  
D2732  
2732  
SOP8  
FJ  
SOP-J8  
FV  
FVT  
FVM  
FVJ  
F
SSOP-B8  
TSSOP-B8  
MSOP8  
BD12732  
BD12734  
D2732  
D2732  
D2732  
BD12734F  
D2734  
D2734  
D2734  
TSSOP-B8J  
SOP14  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
FV  
FVM  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
49/50  
Datasheet  
BD12730G BD12732xxx BD12734xxx  
Revision History  
Date  
Revision  
001  
Changes  
30.Nov.2013  
11.Feb.2013  
1.Apr.2014  
New Release  
002  
Added BD12732F and BD12734F  
003  
BD12732FJ/FV/FVT/FVM/FVJ and BD12734FJ/FV/FVJ package variation added  
Change Operating Voltage Range Before:1.8V to 5V After:1.8V to 5.5V,  
Correction of erroneous description(P.28)  
Key Specifications : Temperature Range Operating Temperature Range(P.1)  
Line-up : Topr Operating Temperature(P.3)  
Delete Land Pattern Data(P.50)  
4.July.2016  
004  
005  
14.July.2016  
Correction of erroneous description (P.49 Diagr-m Diagram)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200600-1-2  
14.July.2016.Rev004  
50/50  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD12734FJ

Low Supply Current Input/Output Full Swing Operational Amplifier
ROHM

BD12734FJ-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, 8.65 X 6 MM, 1.65 MM HEIGHT, SOP-14
ROHM

BD12734FJ-GE2

Operational Amplifier,
ROHM

BD12734FV

Low Supply Current Input/Output Full Swing Operational Amplifier
ROHM

BD12734FV-E2

Low Supply Current Input/Output Full Swing Operational Amplifier
ROHM

BD12734FV-GE2

IC OP AMP I/O FULL SWING 14SSOPB
ROHM

BD12734FVJ

Low Supply Current Input/Output Full Swing Operational Amplifier
ROHM

BD12734FVJ-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, 5 X 6.40 MM, 1.20 MM HEIGHT, TSSOP-14
ROHM

BD128

TRANSISTOR | BJT | NPN | 300V V(BR)CEO | 500MA I(C) | TO-126
ETC

BD12801MUF-M

BD12801MUF-M是一款16通道恒流驱动器,具有13bit PWM调光和8bit局部DC调光通道。可通过SPI与微控制器通信。
ROHM

BD129

TRANSISTOR | BJT | NPN | 350V V(BR)CEO | 500MA I(C) | TO-126
ETC

BD12AV

Standard Profile DIP Switches
ITT