BD3506EFV [ROHM]

Ultra Low Dropout Linear Regulators for PC Chipsets; 超低压差线性稳压器的PC芯片组
BD3506EFV
型号: BD3506EFV
厂家: ROHM    ROHM
描述:

Ultra Low Dropout Linear Regulators for PC Chipsets
超低压差线性稳压器的PC芯片组

线性稳压器IC 调节器 电源电路 光电二极管 输出元件 PC
文件: 总17页 (文件大小:698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
High-performance Regulator IC Series for PCs  
Ultra Low Dropout  
Linear Regulators for PC Chipsets  
BD3506F, BD3506EFV  
Description  
The BD3506F/EFV is an ultra-low dropout linear regulator for chipset that can achieve ultra-low voltage input to ultra-low  
voltage output. By using N-MOS FET for built-in power transistor, the regulator can be used at ultra-low I/O voltage  
difference up to voltage difference generated by ON resistor (Ron = 120 m/100 m). Because by reducing the I/O  
voltage difference, large current (Iomax = 2.5A) output is achieved and conversion loss can be reduced, switching power  
supply can be replaced. BD3506F/EFV does not need any choke coil, diode for rectification and power transistor which  
are required for switching power supply, total cost of the set can be reduced and compact size can be achieved for the set.  
Using external resistors, optional output from 0.65V to 2.5V can be set. In addition, since voltage output start-up time can  
be adjusted by using the NRCS terminal, it is possible to meet the power supply sequence of the set.  
Features  
1) Built-in high-accuracy reference voltage circuit (0.65V±1%)  
2) Built-in VCC low input maloperation prevention circuit (Vcc = 4.15V)  
3) Reduced rush current by NRCS  
4) Built-in ultra-low on-resistor (120/100 mtyp) Nch Power MOSFET (BD3506F/BD3506EFV)  
5) Built-in current limiting circuit (2.5A min)  
6) Built-in thermal shutdown circuit  
7) Output variable type (0.65-2.5V)  
8) Adoption of SOP8 package (BD3506F): 5.0 x 6.2 x 1.5 (mm)  
9) Adoption of high power HTSSOP-B20 package (BD3506EFV): 5.0 x 6.4 x 1.0 (mm)  
Applications  
Mobile PC, desktop PC, LCD-TV, DVD, digital home appliances  
Line up  
Parameter  
Ron  
BD3506F  
120mΩ  
2.5A  
BD3506EFV  
100mΩ  
Output Current  
Package  
2.5A  
SOP8  
HTSSOP-B20  
Oct. 2008  
ABSOLUTE MAXIMUM RATINGS  
BD3506F  
ABSOLUTE MAXIMUM RATINGS(Ta=25)  
Parameter  
Symbol  
BD3506F  
7 *1  
BD3506EFV  
Unit  
V
Input Voltage1  
Input Voltage2  
VCC  
VIN  
7 *1  
7 *1  
7 *1  
V
Enable Input Voltage  
Ven  
7
7
V
Power Dissipation1  
Pd1  
560 *2  
690 *3  
-10+100  
-55+125  
+150  
-
mW  
mW  
Power Dissipation2  
Pd2  
1000 *4  
-10+100  
-55+125  
+150  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
Tjmax  
Maximum Junction Temperature  
*1 However, not exceeding Pd.  
*2 In the case of Ta25°C (no heat radiation board), derated at 4.48 mW/°C.  
*3 In the case of Ta25°C (when mounting to 70mmx70mmx1.6mm glass epoxy substrate), derated at 5.52 mW/°C.  
*4 In the case of Ta25°C (when mounting to 70mmx70mmx1.6mm glass epoxy substrate), derated at 8.00 mW/°C.  
RECOMMENDED OPERATING CONDITIONS  
BD3506F/EFV  
RECOMMENDED OPERATING CONDITIONS(Ta=25)  
Parameter  
Symbol  
VCC  
VIN  
MIN  
4.3  
MAX  
5.5  
VCC-1 *5  
Unit  
V
Input Voltage1  
Input Voltage2  
1.2  
V
Output Voltage  
Vo  
VFB  
-0.3  
0.001  
2.5  
V
Enable Input Voltage  
Capacitor in NRCS pin  
Ven  
5.5  
V
CNRCS  
1
uF  
*5 However, irrespective of charging order of VCC and VIN.  
* No radiation-resistant design is adopted for the present product.  
2/16  
ELECTRICAL CHARACTERISTICS  
BD3506F/BD3506EFV  
ELECTRICAL CHARACTERISTICS  
(unless otherwise noted, Ta=25VCC=5V Ven=3V VIN=1.8V R1=3.9KΩ R2=3.3KΩ)  
Standard Value  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
0.7  
0
MAX  
Bias Current  
ICC  
IST  
-
1.4  
mA  
Bias current  
-
-
10  
-
uA Ven=0V  
Shut-Down Mode Current  
Output Voltage  
VOUT  
Io  
1.200  
-
V
A
Io=50mA  
2.5  
-
-
Maximum Output Current  
Maximum Short Current  
Temperature coefficient of Output  
Voltage  
Iost  
Tcvo  
2.0  
0.01  
-
A
Vo=0V  
-
-
%/℃  
VFB1  
0.643  
0.650  
0.657  
V
V
Io=50mA  
Feed Back Voltage 1  
Feed Back Voltage 2  
Line Regulation 1  
VFB2  
Reg.l1  
Reg.l2  
Reg.L  
dVo  
0.630  
0.650  
0.1  
0.1  
0.5  
120  
100  
-
0.670  
0.5  
0.5  
10  
Io=0 to 2A, Ta=-10 to 100*5  
-
%/V VCC=4.3V to 5.5V  
-
%/V VIN=1.2V to 3.3V  
Line Regulation 2  
-
mV Io=0 to 2A  
Dropout Voltage (BD3506F)  
Dropout Voltage (BD3506EFV)  
Standby Discharge Current  
[Enable]  
-
-
200  
160  
-
mV Io=1A,VIN=1.2V, Ta=-10 to 100*5  
mV Io=1A,VIN=1.2V, Ta=-10 to 100*5  
mA Ven=0V, Vo=1V  
dVo  
Iden  
150  
High level Enable Input Voltage  
Low level Enable Input Voltage  
Enable pin Input Current  
[Voltage Feed Back]  
Feed Back terminal Bias Current  
[NRCS]  
Enhi  
Enlow  
Ien  
2
-0.3  
-
-
-
5.5  
0.8  
10  
V
V
7
uA Ven=3V  
IFB  
-100  
0
100  
nA  
NRCS Charge Current  
NRCS Standby Voltage  
[UVLO]  
Inrcs  
VSTB  
14  
-
20  
0
26  
50  
uA Vnrcs=0.5V  
mV Ven=0V  
VCC UVLO  
VCCUVLO  
Vcchys  
4.00  
100  
4.15  
160  
4.30  
220  
V
Vcc:Sweep-up  
VCC UVLO Hysterisis  
mV Vcc:Sweep-down  
*5 Design Guarantee  
3/16  
Reference Data  
10  
8
Vout  
(50mV/div)  
EN  
Vin  
6
Vcc  
4
Iout  
(1A/div)  
2
Vo  
0
0
2
4
6
8
VIN(V)  
Fig.1 Transient Response  
Fig.2 Input Voltage  
SequenceFinal Input Voltage  
EN  
Fig.3 VIN-IIN(Ta=25)  
656  
655  
654  
653  
652  
651  
650  
649  
648  
647  
646  
EN  
Vin  
EN  
Vin  
Vcc  
Vo  
Vcc  
Vo  
-10  
10  
30  
50  
70  
90  
Ta(  
)
Fig.4 Input Voltage  
SequenceFinal Input Voltage  
VIN  
Fig.5 Ta-Vfb  
Fig.6 Input Voltage  
SequenceFinal Input Voltage  
VCC  
18  
16  
14  
12  
10  
8
Vo  
20mV/DIV  
Vo  
20mV/DIV  
Io  
1A/DIV  
Io  
1A/DIV  
6
4
2
0
0
1
2
3
4
5
VEN(V)  
Fig.7 Transient Response (rise)  
Cout=100uF  
Fig.8 Transient Response (fall)  
Cout=100uF  
Fig.9 VEN-IEN  
EN  
2V/DIV  
Vo  
EN  
20mV/DIV  
2V/DIV  
NRCS  
0.5V/DIV  
NRCS  
0.5V/DIV  
Io  
1A/DIV  
Vo  
0.5V/DIV  
Vo  
0.5V/DIV  
Fig.10 Transient Response (rise)  
Cout=220uF  
Fig.11 Start up Wave Form  
Fig.12 Shut down Wave Form  
4/16  
700  
600  
500  
400  
300  
200  
100  
0
Vo  
20mV/DIV  
Vo  
50mV/DIV  
Io  
1A/DIV  
Io  
1A/DIV  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
VNRCS(V)  
Fig.13 VNRCS-VFB  
Fig.14 Transient Response (fall)  
Cout=220uF  
Fig.15 Transient Response (rise)  
47u MLCC+30mΩ  
Vo  
50mV/DIV  
Io  
1A/DIV  
Fig.16 Transient Response (fall)  
47u MLCC+30mΩ  
5/16  
BLOCK DIAGRAM  
BD3506F  
VCC  
4
VCC  
VCC  
VIN  
Vo1  
Current  
Limit  
UVLO  
Enable  
EN  
CL  
VIN  
Vo  
2
Reference  
Block  
1
7
8
CL  
Vo2  
EN  
UVLO  
TSD  
R2  
R1  
VFB  
Thermal  
3
Shutdown  
NRCS  
TSD  
6
5
NRCS  
GND  
BD3506EFV  
VCC  
VCC  
17  
VIN1  
VCC  
14  
15  
VIN  
Current  
Limit  
VIN2  
CL  
UVLO  
EN  
13  
Reference  
Block  
VCC  
Vo1  
Vo2  
5
6
Vo3  
Vo4  
Vo5  
Vo6  
7
Vo  
8
CL  
9
EN  
UVLO  
TSD  
10  
R2  
R1  
Thermal  
FB  
16  
Shutdown  
NRCS  
TSD  
2
3
20  
4
GND  
NRCS  
6/16  
BD3506F  
PIN CONFIGRATION  
PIN FUNCTION  
PIN No.  
PIN NAME  
EN  
PIN FUNCTION  
Enable Pin  
1
2
3
4
5
EN  
1
2
3
4
8 VO2  
VIN  
Input Voltage Pin  
Output Voltage Feedback  
Power Source  
FB  
VIN  
VO1  
7
VCC  
GND  
Ground Pin  
FB  
6 NRCS  
NRCS(Non Rush Current on  
Start Up) time setup  
6
NRCS  
GND  
5
VCC  
7
8
VO1  
VO2  
VO1 Pin  
VO2 Pin  
BD3506EFV  
PIN CONFIGRATION  
PIN FUNCTION  
PIN No.  
1
PIN NAME  
PIN FUNCTION  
Non connection  
Ground1 Pin  
N.C.  
2
3
GND1  
GND2  
N.C.  
GND1  
GND2  
NRCS  
1
2
3
20  
19  
18  
17  
16  
15  
14  
13  
GND3  
N.C.  
Ground2 Pin  
NRCS(Non Rush Current on  
Start Up) time setup  
4
NRCS  
5
VO1  
VO2  
VO3  
VO4  
VO5  
VO6  
N.C.  
N.C.  
EN  
VO1 Pin  
N.C.  
VCC  
6
VO2 Pin  
4
5
6
7
VO3 Pin  
8
VO4 Pin  
VO1  
VO2  
VO3  
FB  
9
VO5 Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VO6 Pin  
VIN2  
VIN1  
Non connection  
Non connection  
Enable Pin  
7
8
VO4  
VO5  
VO6  
EN  
VIN1  
VIN2  
FB  
Input Voltage1 Pin  
Input Voltage2 Pin  
Output Voltage Feedback  
Power Source  
Non connection  
Non connection  
Ground3 Pin  
9
12  
11  
N.C.  
N.C.  
10  
VCC  
N.C.  
N.C.  
GND3  
7/16  
Block Function  
AMP  
An error amplifier that compares reference voltage (VREF) to Vo and drives Nch FET (Ron = 120/100 m) of output. The  
frequency characteristics are optimized so that low ESR functional polymer capacitor can be used for the output capacitor  
and high-speed transient response can be achieved. The input voltage range at the AMP section is GND-2.5V and the  
output voltage range of the AMP section is GND-VCC. At the time of EN OFF or UVLO, the output is brought to the LOW  
level and the output NchFET is turned OFF.  
EN  
By the logic input pin, regulator ON/OFF is controlled. At the time of OFF, the circuit current is controlled to be 0 μA to  
reduce the standby current consumption of the apparatus. In addition, EN turns ON FET that can discharge NRCS  
terminal Vo and removes excess electric charge to prevent maloperation of IC on the load side. Since there is no electrical  
connection with the Vcc terminal as is the case of Di for electrostatic measures, it does not depend on the input sequence.  
UVLO  
UVLO turned OFF output to prevent output voltage from making maloperation at the time of Vcc reduced voltage. Same  
as EN, UVLO discharges NRCS Vo. When voltage exceeds the threshold voltage (TYP 4.15V), UVLO starts output.  
CURRENT LIMIT  
In the event the output current that exceeds the current (2.5A or more) set inside the IC flows when output is turned ON,  
output voltage is attenuated to protect the IC on the load side. When current reduces, output voltage returns to the set  
voltage.  
NRCS  
Connecting an external capacitor to the counter-GND of NRCS pin can achieve soft start. The output voltage startup time  
is determined by the time when the NRCS terminal reaches VFB (0.65V). During start-up, the NRCS terminal serves as a  
constant current source of 20 uA (Typ.) output, and charges the capacitor externally connected.  
TSD (Thermal Shut down)  
In order to prevent thermal breakdown and thermal runaway of the IC, the output is turned OFF when chip temperature  
becomes high. In addition, when temperature returns to the specified temperature, the output is recovered. However,  
since the temperature protection circuit is originally built in to protect the IC itself, thermal design within Tj(max) is  
requested.  
VIN  
This is a large-current supply line. The VIN terminal is connected to the rain of output NchFET. Since there is no  
electrical connection with the Vcc terminal as is the case of Di for electrostatic measures, it does not depend on the input  
sequence. However, because there is body Di of output NchFET between VIN and Vo, there is electrical connection  
(Di-connection) between VIN and Vo. Consequently, when the output is turned ON/OFF by VIN, reverse current flows from  
Vo to VIN, to which care must be taken.  
8/16  
TIMING CHART  
EN ON/OFF  
VIN  
VCC  
EN  
NRCS  
Vo  
Start up Time  
t
VCC ON/OFF  
VIN  
UVLO  
hysterisis  
VCC  
EN  
NRCS  
Vo  
Start up Time  
t
9/16  
Evaluation Board  
BD3506F Evaluation Board Circuit  
U1  
EN  
BD3506F  
Vo  
1
2
3
4
8
7
6
5
EN  
VO2  
VO1  
VIN  
CO  
R1  
R2  
VIN  
FB  
Cin1  
NRCS  
GND  
GND  
VCC  
CNRCS  
VCC  
Ccc  
BD3506F Evaluation Board Application Components  
Part No  
U1  
Value  
Company  
ROHM  
Parts Name  
BD3506F  
Part No  
Ccc  
Value  
Company  
Parts Name  
MCH184CN105K  
MCH218CN106K  
-
1uF  
ROHM  
ROHM  
R1  
R2  
3.3k  
3.9k  
ROHM  
MCR03EZPF3301  
MCR03EZPF3901  
Cin1  
Co  
10uF  
220uF  
0.01uF  
ROHM  
SANYO,etc 2R5TPE220MF  
ROHM  
C6  
BD3506F Evaluation Board Layout  
Silk Screen  
TOP Layer  
Bottom Layer  
For Evaluation Board, BD3506EFV is available.  
10/16  
Recommended Circuits  
R2  
VOUT(1.2V)/2.5A  
1
8
C3  
+
Ven  
2
3
7
6
C2  
VIN  
R1  
C4  
4
5
C1  
Vcc  
Part No  
R1/R2  
Value  
Notes for use  
6.5k/5.5k  
The present IC can set output voltage by external reference voltage (VR) and value of output  
voltage setting resistors (R1, R2). Output voltage can be set by VRxR2/(R1+R2) but it is  
recommended to use at the resistance value (total: about 10 k) which is not susceptible to  
VREF bias current (±100 nA).  
C3  
100μF  
Connect the output capacitor between Vo1, Vo2 terminals and GND terminal without fail in  
order to stabilize output voltage. The output capacitor has a role to compensate for the phase  
of loop gain and to reduce output voltage fluctuation when load is rapidly changed. When  
there is an insufficient capacity value, there is a possibility to cause oscillation, and when the  
equivalent serial resistance (ESR) of the capacitors is large, output voltage fluctuation is  
increased when load is rapidly changed. About 100-µF high-performance electrolytic  
capacitors are recommended but output capacitor greatly depends on temperature and load  
conditions. In addition, when only ceramic capacitors with low ESR are used, or various  
capacitors are connected in series, the total phase allowance of loop gain becomes not  
sufficient, and oscillation may result. Thoroughgoing confirmation at application temperature  
and under load range conditions is requested.  
C1  
C2  
C4  
0.1μF  
10μF  
1μF  
The input capacitor plays a part to lower output impedance of a power supply connected to  
input terminals (Vcc). When output impedance of this power supply increases, the input  
voltages (Vcc,) become unstable and there is a possibility of giving rise to oscillation and  
degraded ripple rejection characteristics. The use of capacitors of about 0.1 μF with low ESR,  
which provide less capacity value changes caused by temperature changes, is recommended,  
but since input capacitor greatly depends on characteristics of the power supply used for input,  
substrate wiring pattern, thoroughgoing confirmation under the application temperature and  
load range, is requested.  
The input capacitor plays a part to lower output impedance of a power supply connected to  
input terminals (VIN). When output impedance of this power supply increases, the input  
voltages (VIN) become unstable and there is a possibility of giving rise to oscillation and  
degraded ripple rejection characteristics. The use of capacitors of about 10 μF with low ESR,  
which provide less capacity value changes caused by temperature changes, is recommended,  
but since input capacitor greatly depends on characteristics of the power supply used for input,  
substrate wiring pattern, thoroughgoing confirmation under the application temperature and  
load range, is requested.  
To the present IC, there mounted is a function (Non Rush Current on Start-up: NRCS) to  
prevent rush current from VIN to load and output capacitor via Vo at the output voltage start-up.  
When the EN terminal is reset from High or UVLO, constant current is allowed to flow from the  
NRCS terminal. By this current, voltage generated at the NRCS terminal becomes the  
reference voltage and output voltage is started. In order to stabilize the NRCS set time, it is  
recommended to use a capacitor (B special) with less capacity value change caused by  
temperature change.  
11/16  
About heat loss  
In designing heat, operate the apparatus within the following conditions.  
(Because the following temperatures are warranted temperature, be sure to take margin, etc. into account.)  
1. Ambient temperature Ta shall be not more than 100°C.  
2. Chip junction temperature Tj shall be not more than 150°C.  
Chip junction temperature Tj can be considered under the following two cases.  
Chip junction temperature Tj is found from  
IC surface temperature TC under actual  
application conditions:  
Chip junction temperature Tj is found from ambient temperature Ta:  
Tj=Ta+θj-a×W  
Reference value>  
Tj=TC+θj-c×W  
Reference value>  
(IC only)  
θj-a:SOP8  
222.0/W  
181.0/W  
θj-c:SOP8 41.0/W  
Single-layer substrate  
HTSSOP-B20 45.0/W  
Substrate size:70×70×1.6mm  
(substrate surface copper foil area: less 3%)  
Single-layer substrate  
θj-a:HTSSOP-B20 125.0/W  
(Substrate surface capper  
foil area:less3%)  
(substrate surface copper foil area: less 3%))  
2nd-layer  
86.2/W  
54.3/W  
39.1/W  
(substrate surface copper foil area:15×15mm2)  
2nd-layer  
θj-a:HTSSOP-B20 125.0/W  
86.2/W  
(substrate surface copper foil area: 70×70mm2)  
4th-layer  
54.3/W  
39.1/W  
(substrate surface copper foil area: 70×70mm2)  
Substrate size 70
×
70
×
1.6mm
3
(thermal vias in the board.)  
Most of heat loss in BD3506F/EFV occurs at the output Nch FET. The power lost is determined by multiplying the voltage  
between VIN and Vo by the output current. Confirm voltage and output current conditions of VIN and Vo used, and collate  
them with the thermal derating characteristics. Because BD3506EFV employs the power PKG, the thermal derating  
characteristics significantly vary in accord with the pc board conditions. When designing, care must be taken to the size of  
a pc board to be used.  
Power dissipation (W) = {Input voltage (VIN) – Output voltage (V0VREF)}×Io (averaged)  
Ex.) If VIN = 1.8 volts, V0=1.2 volts, and Io (averaged)=1.5 A, the power dissipation is given by the following:  
Power dissipation (W) =(1.8 volts – 1.2 volts) × 1.5 (A)  
= 0.9 W  
EQUIVALENT CIRCUIT  
Vcc  
Vcc  
1kΩ  
1kΩ  
VIN  
NRCS  
1kΩ  
1kΩ  
1kΩ  
10kΩ  
10kΩ  
1kΩ  
Vcc  
Vcc  
1kΩ  
EN  
VFB  
1kΩ  
Vo1  
Vo2  
350kΩ  
100kΩ  
100kΩ  
1kΩ  
50kΩ  
10kΩ  
20pF  
12/16  
NOTE FOR USE  
1. Input terminals(VCC,VIN,EN)  
In the present IC, EN terminal, VIN terminal, and VCC terminal have an independent construction. In addition, in order  
to prevent malfunction at the time of low input, the UVLO function is equipped with the VCC terminal. They begin to  
start output voltage when all the terminals reach threshold voltage without depending on the input order of input  
terminals.  
2. Operating range  
Within the operating range, the operation and function of the circuits are generally guaranteed at an ambient  
temperature within the range specified. The values specified for electrical characteristics may not be guaranteed, but  
drastic change may not occur to such characteristics within the operating range.  
3. Permissible dissipation  
With respect to the permissible dissipation, the thermal derating characteristics are shown in the Exhibit, which we hope  
would be used as a good-rule-of-thumb. Should the IC be used in such a manner to exceed the permissible dissipation,  
reduction of current capacity due to chip temperature rise, and other degraded properties inherent to the IC would result.  
You are strongly urged to use the IC within the permissible dissipation.  
4. Built-in thermal shutdown protection circuit  
The thermal shutdown circuit is first and foremost intended for interrupt IC from thermal runaway, and is not intended to  
protect and warrant the IC. Consequently, never attempt to continuously use the IC after this circuit is activated or to  
use the circuit with the activation of the circuit premised.  
5. Inspection by set substrate  
In the event a capacitor is connected to a pin with low impedance at the time of inspection with a set substrate, there is a  
fear of applying stress to the IC. Therefore, be sure to discharge electricity for every process. As electrostatic  
measures, provide grounding in the assembly process, and take utmost care in transportation and storage. Furthermore,  
when the set substrate is connected to a jig in the inspection process, be sure to turn OFF power supply to connect the jig  
and be sure to turn OFF power supply to remove the jig.  
6. For the present product, thoroughgoing quality control is carried out, but in the event that applied voltage, working  
temperature range, and other absolute maximum rating are exceeded, the present product may be destroyed.  
Because it is unable to identify the short mode, open mode, etc., if any special mode is assumed, which exceeds the  
absolute maximum rating, physical safety measures are requested to be taken, such as fuses, etc..  
7. The use in the strong electromagnetic field may sometimes cause malfunction, to which care must be taken.  
8. In the event that load containing a large inductance component is connected to the output terminal, and generation of  
back-EMF at the start-up and when output is turned OFF is assumed, it is requested to insert a protection diode.  
(Example)  
OUTPUT PIN  
9. We are certain that examples of applied circuit diagrams are recommendable, but you are requested to thoroughly  
confirm the characteristics before using the IC. In addition, when the IC is used with the external circuit changed,  
decide the IC with sufficient margin provided while consideration is being given not only to static characteristics but also  
variations of external parts and our IC including transient characteristics.  
13/16  
10. The present IC is a monolithic IC and has P+ isolation between elements to separate elements and a P substrate. With this  
P layer and N layer of each element, PN junction is formed, and various parasitic elements are formed.  
For example, when resistors and transistors are connected to terminals as illustrated below,  
at the resistor, when GND>terminal A, and at transistor (NPN), when GND>terminal B,  
PN junction works as a parasitic diode.  
at the transistor (NPN), when GND>terminal B,  
the parasitic NPN transistor is operated by the N-layer of other element adjacent to the parasitic diode.  
The parasitic element is inevitably formed because of the IC construction. The operation of the parasitic element gives rise  
to mutual interference between circuits and results in malfunction, and eventually, breakdown. Consequently, take utmost  
care not to use the IC to operate the parasitic element such as applying voltage lower than GND (P substrate) to the input  
terminal.  
PIN A)  
Resistor  
NPN Transistor Structure (NPN)  
B
PIN A)  
PIN B)  
E
Parasitic diode  
C
GND  
GND  
N
N
PIN B)  
P+  
P+  
P
P
P+  
P+  
N
C
N
N
N
N
B
E
Parasitic diode  
GND  
P substrate  
P substrate  
GND  
GND  
Parasitic diode  
Nearby other device  
Parasitic diode  
POWER DISSIPATION  
SOP8  
HTSSOPB-20  
(1) Mounted on board  
70mm×70mm×1.6mm Glass-epoxy PCB  
θj-a=181/W  
(2) Without heat sink  
measureTH-156Kuwano-Denki)  
measure conditionRohm Standard Board  
PCB size70mm×70mm×1.6mmt  
(PCB with Thermal Via)  
[mW]  
700  
[W]  
5
θj-a=222/W  
PCB①:Single-layer substrate  
PCB②:Double-layer substrate  
(1) 690mW  
600  
500  
substrate surface copper foil area 15mm×15mm)  
PCB③:Double-layer substrate  
4
substrate surface copper foil area 70mm×70mm)  
PCB④:Fourth-layer substrate  
3.20W  
(2) 560mW  
3
substrate surface copper foil area 70mm×70mm)  
400  
300  
200  
2.30W  
PCB①:θja=125.0/W  
PCB②:θja=86.2/W  
PCB③:θja=54.3/W  
PCB④:θja=39.1/W  
100℃  
2
1.45W  
1.00W  
1
100  
0
0
25  
50 75  
100 125 150  
0
25  
50  
75 100 125 150  
[]  
[]  
Ambient Temperature [Ta]  
Ambient Temperature [Ta]  
14/16  
Ordering part number  
B
D
3
5
0
6
F
E
2
Part Number  
BD3506  
Package Type  
F : SOP8  
E2 Embossed carrier tape  
EFV : HTSSOP-B20  
Package specification  
SOP8  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
E2  
Direction  
of feed  
5.0 0.2  
8
5
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
4
0.15 0.1  
0.1  
1.27  
0.4 0.1  
1Pin  
When you order , please order in times the amount of package quantity.  
Direction of feed  
Reel  
(Unit:mm)  
HTSSOP-B20  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
6.5 0.1  
Quantity  
Direction  
of feed  
2500pcs  
20  
11  
E2  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
10  
+0.05  
0.03  
0.325  
0.17  
S
0.08  
S
0.65  
0.2 +00..0045  
Direction of feed  
1pin  
Reel  
Unit:mm)  
When you order , please order in times the amount of package quantity.  
15/16  
Catalog No.08T437A '08.10 ROHM ©  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account when  
designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no respon-  
sibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples of  
application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or  
exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility  
whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment or  
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic  
appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no  
responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended  
to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev3.0  

相关型号:

BD3506EFV-E1

Regulator, 1 Output, CMOS, PDSO20,
ROHM

BD3506EFV-E2

Fixed Positive LDO Regulator, 1.2V, 0.16V Dropout, CMOS, PDSO20, 5 X 6.40 MM, 1 MM HEIGHT, ROHS COMPLIANT, HTSSOP-20
ROHM

BD3506F

1ch Series Regulator Driver IC
ROHM

BD3506F-E1

Regulator, 1 Output, CMOS, PDSO8,
ROHM

BD3506F_08

Ultra Low Dropout Linear Regulators for PC Chipsets
ROHM

BD3506F_10

Nch FET Ultra LDO for PC Chipsets
ROHM

BD3506G

Rectifier Diode,
WTE

BD3506G-LF

Rectifier Diode,
WTE

BD3506GR

Rectifier Diode,
WTE

BD3506R

Rectifier Diode, 1 Phase, 1 Element, 35A, 600V V(RRM), Silicon, PRESSFIT-1
WTE

BD3506R-LF

暂无描述
WTE

BD3507HFV

1ch Series Regulator Driver IC
ROHM