BD3551HFN-TL [ROHM]

暂无描述;
BD3551HFN-TL
型号: BD3551HFN-TL
厂家: ROHM    ROHM
描述:

暂无描述

外围驱动器 稳压器 驱动程序和接口 接口集成电路 光电二极管 PC
文件: 总17页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
High-performance Regulator IC Series for PCs  
Ultra Low Dropout  
Linear Regulators for PC  
BD3550HFN, BD3551HFN, BD3552HFN  
(0.52.0A)  
Description  
BD3550HFN,BD3551HFN,BD3552HFN ultra low-dropout linear chipset regulator operates from a very low input supply, and  
offers ideal performance in low input voltage to low output voltage applications. It incorporates a built-in N-MOSFET power  
transistor to minimize the input-to-output voltage differential to the ON resistance (RON=100mΩ <BD3552HFN>) level. By  
lowering the dropout voltage in this way, the regulator realizes high current output (Iomax=2.0A <BD3552HFN>) with  
reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier  
diode. Thus, BD3550HFN,BD3551HFN,BD3552HFN is designed to enable significant package profile downsizing and cost  
reduction. An external resistor allows the entire range of output voltage configurations between 0.65 and 2.7V, while the  
NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power  
supply sequence is required.  
Features  
1) Internal high-precision reference voltage circuit(0.65V±1%)  
2) Built-in VCC undervoltage lockout circuit  
3) NRCS (soft start) function reduces the magnitude of in-rush current  
4) Internal Nch MOSFET driver offers low ON resistance (100mΩ <BD3552HFN typ>)  
5) Built-in current limit circuit  
6) Built-in thermal shutdown (TSD) circuit  
7) Variable output (0.652.7V)  
8) Small package HSON8 : 2.9×3×0.6(mm)  
9) Tracking function  
Applications  
Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances  
Line-up  
It is available to select power supply voltage and maximum output voltage.  
Maximum Output Voltage  
Package  
HSON8  
Vcc=5V  
0.5A  
1.0A  
2.0A  
BD3550HFN  
BD3551HFN  
BD3552HFN  
Oct. 2008  
Absolute maximum ratings  
BD3550HFN,BD3551HFN,BD3552HFN  
Limit  
BD3551HFN  
+6.0 *1  
Parameter  
Input Voltage 1  
Symbol  
Unit  
BD3550HFN  
BD3552HFN  
VCC  
VIN  
V
V
Input Voltage 2  
+6.0 *1  
Enable Input Voltage  
Ven  
-0.3+6.0  
0.63 *2  
V
Power Dissipation 1  
Pd1  
W
W
W
Power Dissipation 2  
Pd2  
1.35 *3  
Power Dissipation 3  
Pd3  
1.75 *4  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
Tjmax  
-10+100  
-55+150  
+150  
*1 Should not exceed Pd.  
*2 Reduced by 5.04mW/for each increase in Ta25(when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)  
On less than 0.2% (percentage occupied by copper foil.  
*3 Reduced by 10.8mW/for each increase in Ta25(when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)  
On less than 7.0% (percentage occupied by copper foil.  
*4 Reduced by 14.0mW/for each increase in Ta25(when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)  
On less than 65.0% (percentage occupied by copper foil.  
2/16  
BD3550HFN,BD3551HFN,BD3552HFN  
Operating Voltage(Ta=25)  
Parameter  
Input Voltage 1  
Symbol  
VCC  
VIN  
Min.  
4.3  
Max.  
5.5  
Unit  
V
Input Voltage 2  
0.95  
VFB  
0
VCC-1 *5  
V
Output Voltage Setting Range  
Enable Input Voltage  
NRCS Capacity  
Vo  
2.7  
V
Ven  
5.5  
V
CNRCS  
0.001  
1
μF  
*5 VCC and VIN do not have to be implemented in the order listed.  
This product is not designed for use in radioactive environments.  
Electrical Characteristics (Unless otherwise specified, Ta=25, VCC=5V, Ven=3V, VIN=1.8V, R1=3.9KΩ, R2=3.3KΩ)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
0.5  
Max.  
1.0  
10  
Bias Current  
ICC  
IST  
-
-
-
mA  
uA  
V
VCC Shutdown Mode Current  
Output Voltage  
0
Ven=0V  
VOUT  
1.200  
-
Output Voltage Temperature  
Coefficient  
Tcvo  
-
0.01  
-
%/℃  
Feedback Voltage 1  
Feedback Voltage 2  
VFB1  
VFB2  
0.643  
0.637  
0.650  
0.650  
0.657  
0.663  
V
V
Tj=-10 to 100℃  
Io=0 to 1A  
Load Regulation  
Reg.L  
-
0.5  
10  
mV  
(BD3550HFN Io=0A to 0.5A)  
Line Regulation 1  
Line Regulation 2  
Standby Discharge Current  
[ENABLE]  
Reg.l1  
Reg.l2  
Iden  
-
-
0.1  
0.1  
-
0.5  
0.5  
-
%/V VCC=4.3V to 5.5V  
%/V VIN=1.2V to 3.3V  
1
mA  
Ven=0V, Vo=1V  
Enable Pin  
Enhi  
2
-
-
V
Input Voltage High  
Enable Pin  
Enlow  
Ien  
0
-
-
0.8  
10  
V
Input Voltage Low  
Enable Input Bias Current  
[FEEDBACK]  
7
μA  
Ven=3V  
Feedback Pin Bias Current  
[NRCS]  
IFB  
-100  
0
100  
nA  
NRCS Charge Current  
NRCS Standby Voltage  
[UVLO]  
Inrcs  
14  
-
20  
0
26  
50  
μA  
Vnrcs=0.5V  
Ven=0V  
VSTB  
mV  
VCC Undervoltage Lockout  
Threshold Voltage  
VCC Undervoltage Lockout  
Hysteresis Voltage  
[AMP]  
VccUVLO  
Vcchys  
3.5  
3.8  
4.1  
V
Vcc:Sweep-up  
100  
160  
220  
mV  
Vcc:Sweep-down  
Gate Source Current  
Gate Sink Current  
IGSO  
IGSI  
Io  
-
-
1.6  
4.7  
-
-
mA  
mA  
A
VFB=0, VGATE=2.5V  
-
-
VFB=VCC, VGATE=2.5V  
BD3550HFN  
Maximum output  
BD3551HFN  
current  
0.5  
1.0  
2.0  
-
Io  
-
-
A
BD3552HFN  
Io  
-
-
A
BD3550HFN  
Minimum dropout  
BD3551HFN  
voltage  
dVo  
dvo  
dVo  
200  
200  
200  
300  
300  
300  
mV  
mV  
mV  
Io=0.5A, VIN=1.2V, Ta=-10 to 100℃  
Io=1.0A, VIN=1.2V, Ta=-10 to 100℃  
Io=2.0A, VIN=1.2V, Ta=-10 to 100℃  
-
BD3552HFN  
-
3/16  
Reference Data(BD3550HFN)  
Vo  
Vo  
Vo  
50mV/div  
50mV/div  
50mV/div  
40mV  
22mV  
26mV  
Io  
Io  
Io  
0.5A/div  
0.5A/div  
0.5A  
0.5A/div  
0.5A  
0.5A  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Fig.1 Transient Response  
(00.5A)  
Fig.2 Transient Response  
(00.5A)  
Fig.3 Transient Response  
(00.5A)  
Co=100μF, Cfb=1000pF  
Co=47μF, Cfb=1000pF  
Co=22μF, Cfb=1000pF  
Vo  
Vo  
Vo  
50mV/div  
50mV/div  
50mV/div  
33mV  
23mV  
14mV  
Io  
Io  
Io  
0.5A  
0.5A  
0.5A  
0.5A/div  
0.5A/div  
0.5A/div  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Fig.4 Transient Response  
(0.50A)  
Fig.5 Transient Response  
(0.50A)  
Fig.6 Transient Response  
(0.50A)  
Co=100μF, Cfb=1000pF  
Co=47μF, Cfb=1000pF  
Co=22μF, Cfb=1000pF  
Reference Data(BD3551HFN)  
Vo  
Vo  
Vo  
50mV/div  
50mV/div  
50mV/div  
46mV  
35mV  
55mV  
Io  
Io  
Io  
1.0A  
1.0A  
1.0A  
1.0A/div  
1.0A/div  
1.0A/div  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Fig.8 Transient Response  
(01.0A)  
Fig.9 Transient Response  
(01.0A)  
Fig.7 Transient Response  
(01.0A)  
Co=47μF, Cfb=1000pF  
Co=22μF, Cfb=1000pF  
Co=100μF, Cfb=1000pF  
Vo  
Vo  
Vo  
56mV  
46mV  
50mV/div  
50mV/div  
50mV/div  
36mV  
Io  
Io  
Io  
1.0A  
1.0A  
1.0A  
1.0A/div  
1.0A/div  
1.0A/div  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Fig.10 Transient Response  
(1.00A)  
Fig.11 Transient Response  
(1.00A)  
Fig.12 Transient Response  
(1.00A)  
Co=100μF, Cfb=1000pF  
Co=47μF, Cfb=1000pF  
Co=22μF, Cfb=1000pF  
4/16  
Reference Data(BD3552HFN)  
Vo  
50mV/div  
26mV  
Vo  
Vo  
50mV/div  
50mV/div  
89mV  
117mV  
Io  
Io  
Io  
2.0A  
2.0A  
2.0A  
2.0A/div  
2.0A/div  
2.0A/div  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Io=0A1A/μsec  
t(10μsec/div)  
Fig.15 Transient Response  
(02.0A)  
Fig.13 Transient Response  
(02.0A)  
Fig.14 Transient Response  
(02.0A)  
Co=22μF, Cfb=1000pF  
Co=100μF, Cfb=1000pF  
Co=47μF, Cfb=1000pF  
Vo  
Vo  
Vo  
117mV  
83mV  
54mV  
50mV/div  
50mV/div  
50mV/div  
Io  
Io  
Io  
2.0A/div  
2.0A/div  
2.0A/div  
2.0A  
2.0A  
2.0A  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Io=1A0A/μsec  
t(100μsec/div)  
Fig.16 Transient Response  
(2.00A)  
Fig.17 Transient Response  
(2.00A)  
Fig.18 Transient Response  
(2.00A)  
Co=100μF, Cfb=1000pF  
Co=47μF, Cfb=1000pF  
Co=22μF, Cfb=1000pF  
Reference Data(BD3551HFN)  
VCC  
Ven  
Ven  
2V/div  
2V/div  
Ven  
VIN  
Vo  
VNRCS  
2V/div  
VNRCS  
2V/div  
Vo  
Vo  
1V/div  
1V/div  
t(2msec/div)  
VCCVINVen  
t(200μsec/div)  
Fig.19 Waveform at output  
start  
Fig.20 Waveform at output OFF  
Fig.21 Input sequence  
VCC  
VCC  
VCC  
Ven  
VIN  
Vo  
Ven  
VIN  
Vo  
Ven  
VIN  
Vo  
VINVCCVen  
VenVCCVIN  
VCCVenVIN  
Fig.22 Input sequence  
Fig.24 Input sequence  
Fig.23 Input sequence  
5/16  
Reference Data(BD3551HFN)  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
VCC  
Ven  
VCC  
Ven  
VIN  
Vo  
VIN  
Vo  
100  
90  
-10  
10  
30  
50  
Ta()  
70  
VINVenVCC  
VenVINVCC  
Fig.26 Input sequence  
Fig.25 Input sequence  
Fig.27 Ta-Vo (Io=0mA)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
100  
100  
90  
-10  
10  
30  
50  
Ta()  
70  
90  
-60 -30  
0
30 60  
Ta()  
90 120 150  
-10  
10  
30  
50  
Ta()  
70  
Fig.29 Ta-ISTB  
Fig.30 Ta-IIN  
Fig.28 Ta-ICC  
20  
15  
10  
5
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
100  
100  
90  
-10  
10  
30  
50  
70  
90  
-10  
10  
30  
50  
70  
-60 -30  
0
30  
60  
90 120 150  
Ta()  
Ta()  
Ta()  
Fig.31 Ta-IINSTB  
Fig.32 Ta-INRCS  
Fig.33 Ta-IFB  
10  
9
8
7
6
5
4
3
2
1
0
150  
140  
130  
120  
110  
100  
90  
150  
140  
130  
120  
110  
100  
90  
2
4
6
8
100  
90  
-10  
10  
30  
50  
Ta()  
70  
100  
90  
-10  
10  
30  
50  
Ta()  
70  
Vcc(V)  
Fig.34 Ta-Ien  
Fig.36 VCC-RON  
Fig.35 Ta-RON  
(VCC=5V/Vo=1.2V)  
6/16  
Block Diagram  
VCC  
VCC  
VCC  
VIN  
VIN  
UVLO  
Current  
Limit  
EN  
CL  
Reference  
Block  
VCC  
Vo  
VO  
CL  
UVLO  
TSD  
EN  
FB  
Thermal  
Shutdown  
GATE  
NRCS  
TSD  
NRCS  
GND  
Pin Layout  
PIN No.  
PIN name  
PIN Function  
1
VCC  
EN  
Power supply pin  
Enable input pin  
Gate pin  
2
3
GATE  
VIN  
4
Input voltage pin  
Output voltage pin  
5
VO  
6
FB  
Reference voltage feedback pin  
7
8
NRCS  
GND  
FIN  
In-rush current protection (NRCS) capacitor connection pin  
Ground pin  
reverse  
Connected to heatsink and GND  
Pin Function Table  
HSON8  
2.90 0.2  
(2.2) (0.05)  
0.475  
8 7
 
6  
5
5 6
 
7 8  
B D 3  
5 5 X  
+0.1  
0.13  
0.05  
1
2 3  
4
4 3 2 1  
Lot No.  
1PIN MARK  
0.32 0.10  
0.65  
(Unit : mm)  
7/16  
Operation of Each Block  
AMP  
This is an error amp that compares the reference voltage (0.65V) with Vo to drive the output Nch FET (Ron=100m  
Ω:BD3552HFN). Frequency optimization helps to realize rapid transient response, and to support the use of ceramic  
capacitors on the output. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to VCC.  
When EN is OFF, or when UVLO is active, output goes LOW and the output of the NchFET switches OFF.  
EN  
The EN block controls the regulator’s ON/OFF state via the EN logic input pin. In the OFF position, circuit voltage is  
maintained at 0μA, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the  
NRCS pin Vo, thereby draining the excess charge and preventing the IC on the load side from malfunctioning. Since no  
electrical connection is required (e.g., between the VCC pin and the ESD prevention Diode), module operation is  
independent of the input sequence.  
UVLO  
To prevent malfunctions that can occur during a momentary decrease in VCC, the UVLO circuit switches the output OFF,  
and (like the EN block) discharges NRCS and Vo. Once the UVLO threshold voltage (TYP3.80V) is reached, the power-on  
reset is triggered and output continues.  
CURRENT LIMIT  
When output is ON, the current limit function monitors the internal IC output current against the parameter value (2.0A or  
more:BD3552HFN). When current exceeds this level, the current limit module lowers the output current to protect the load  
IC. When the overcurrent state is eliminated, output voltage is restored to the parameter value.  
NRCS (Non Rush Current on Start-up)  
The soft start function enabled by connecting an external capacitor between the NRCS pin and ground. Output ramp-up  
can be set for any period up to the time the NRCS pin reaches VFB (0.65V). During startup, the NRCS pin serves as a 20  
μA (TYP) constant current source to charge the external capacitor. Output start time is calculated via formula (1) below.  
0.65V  
t = C  
・・・(1)  
20μA  
Tracking sequence is available by connecting the output voltage of external power supply instead of external capacitor. And  
then, ratio-metric sequence is also available by changing the resistor division ratio of external power supply output voltage.  
(See the next page)  
TSD (Thermal Shut down)  
The shutdown (TSD) circuit automatically switches output OFF when the chip temperature gets too high, thus serving to  
protect the IC against “thermal runaway” and heat damage. Because the TSD circuit is provided to shut down the IC in the  
presence of extreme heat, in order to avoid potential problems with the TSD, it is crucial that the Tj (max) parameter not be  
exceeded in the thermal design.  
VIN  
The VIN line acts as the major current supply line, and is connected to the output NchFET drain. Since no electrical  
connection (such as between the VCC pin and the ESD protection Diode) is necessary, VIN operates independent of the  
input sequence. However, since an output NchFET body Diode exists between VIN and Vo, a VIN-Vo electric (Diode)  
connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to VIN from Vo.  
8/16  
Timing Chart  
EN ON/OFF  
VIN  
VCC  
EN  
0.65V(typ)  
NRCS  
Vo  
Startup  
t
VCC ON/OFF  
VIN  
VCC  
EN  
UVLO  
Hysteresis  
0.65V(typ)  
NRCS  
Vo  
Startup  
t
Tracking sequence  
1.8V Output  
1.2V Output  
DC/DC  
(R1=3.9kΩ, R2=3.3kΩ)  
NRCS  
V0  
1.8V  
Vo  
Tracking sequence  
1.2V  
3.3kΩ  
R2  
R1  
FB  
1.8V  
1.2V  
3.9kΩ  
Ratio-metric sequence  
9/16  
Evaluation Board  
BD3550HFN,BD3551HFN,BD3552HFN Evaluation Board Schematic  
GND_S  
GND  
VCC  
C1  
1
8
VCC  
VCC  
GND  
SW1  
R8  
GND  
U1  
GND  
2
3
4
7
6
5
BD355XHFN  
(HSON8)  
NRCS  
EN  
C12  
C10  
GND  
R1  
GND  
GND  
FB  
C11  
GATE  
VIN_S  
C13  
R4  
R2  
Vo_S  
GND  
Vo  
VIN  
R3  
C9  
C6  
C2  
C3  
C5  
C4  
C7  
C8  
R5  
7568  
GND  
R6  
R7  
GND GND  
GND  
GND  
GND  
GND  
GND  
4
U2  
TP1  
GND  
VCC  
321  
TP2  
JPF1  
GND  
GND  
U3  
JPF2  
5
GND GND  
2
GND  
4
3
R9  
C14  
BD3550HFN,BD3551HFN,BD3552HFN Evaluation Board Standard Component List  
Component Rating Manufacturer Product Name  
Component Rating Manufacturer Product Name  
U1  
C1  
C10  
R8  
C5  
-
ROHM  
BD355XHFN  
C2  
22uF  
KYOCERA  
CM32X5R226M10A  
GRM188B11H102KD  
MCR03EZPF3301  
MCR03EZPF3901  
1uF  
MURATA  
GRM188B11A105KD  
GRM188B11H103KD  
Jumper  
C13  
R1  
1000pF MURATA  
0.01uF MURATA  
3.9kΩ  
3.3kΩ  
ROHM  
ROHM  
0Ω  
-
R2  
22uF  
KYOCERA  
CM32X5R226M10A  
BD3550HFN,BD3551HFN,BD3552HFN Evaluation Board Layout  
(2nd layer and 3rd layer is GND Line.)  
Silkscreen  
Bottom Layer  
TOP Layer  
10/16  
Recommended Circuit Example  
1
2
3
8
7
6
5
VCC  
EN  
GND  
C1  
R4  
C4  
R1  
FB  
R2  
C5  
4
VOUT1(1.2V)  
VIN  
C3  
C2  
Recommended  
Value  
Component  
R1/R2  
Programming Notes and Precautions  
3.9k/3.3k  
IC output voltage can be set with a configuration formula using the values for the internal  
reference output voltage (VFB)and the output voltage resistors (R1, R2). Select resistance  
values that will avoid the impact of the VREF current (±100nA). The recommended total  
resistance value is 10KΩ.  
C3  
22μF  
To assure output voltage stability, please be certain the Vo1, Vo2, and Vo3 pins and the  
GND pins are connected. Output capacitors play a role in loop gain phase compensation  
and in mitigating output fluctuation during rapid changes in load level. Insufficient  
capacitance may cause oscillation, while high equivalent series reisistance (ESR) will  
exacerbate output voltage fluctuation under rapid load change conditions. While a 22μF  
ceramic capacitor is recomended, actual stability is highly dependent on temperature and  
load conditions. Also, note that connecting different types of capacitors in series may result  
in insufficient total phase compensation, thus causing oscillation. In light of this information,  
please confirm operation across a variety of temperature and load conditions.  
Input capacitors reduce the output impedance of the voltage supply source connected to  
the (VCC) input pins. If the impedance of this power supply were to increase, input voltage  
(VCC) could become unstable, leading to oscillation or lowered ripple rejection function.  
While a low-ESR 1 μ F capacitor with minimal susceptibility to temperature is  
recommended, stability is highly dependent on the input power supply characteristics and  
the substrate wiring pattern. In light of this information, please confirm operation across a  
variety of temperature and load conditions.  
C1  
C2  
C4  
1μF  
22μF  
Input capacitors reduce the output impedance of the voltage supply source connected to  
the (VIN) input pins. If the impedance of this power supply were to increase, input voltage  
(VIN) could become unstable, leading to oscillation or lowered ripple rejection function.  
While a low-ESR 22 μ F capacitor with minimal susceptibility to temperature is  
recommended, stability is highly dependent on the input power supply characteristics and  
the substrate wiring pattern. In light of this information, please confirm operation across a  
variety of temperature and load conditions.  
0.01μF  
The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush  
current from going through the load (VIN to VO) and impacting output capacitors at power  
supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the  
UVLO function is deactivated. The temporary reference voltage is proportionate to time,  
due to the current charge of the NRCS pin capacitor, and output voltage start-up is  
proportionate to this reference voltage. Capacitors with low susceptibility to temperature  
are recommended, in order to assure a stable soft-start time.  
C5  
R4  
-
This component is employed when the C3 capacitor causes, or may cause, oscillation. It  
provides more precise internal phase correction.  
Several kΩ  
It is recommended that a resistance (several kΩ to several 10kΩ) be put in R4, in case  
several 10kΩ negative voltage is applied in EN pin.  
11/16  
Heat Loss  
Thermal design should allow operation within the following conditions. Note that the temperatures listed are the allowed  
temperature limits, and thermal design should allow sufficient margin from the limits.  
1. Ambient temperature Ta can be no higher than 100.  
2. Chip junction temperature (Tj) can be no higher than 150.  
Chip junction temperature can be determined as follows:  
Calculation based on ambient temperature (Ta)  
Tj=Ta+θj-a×W  
Reference values>  
1-layer substrate (copper foil density 0.2%)  
1-layer substrate (copper foil density 7%)  
2-layer substrate (copper foil density 65%)  
θj-a:HSON8 198.4/W  
92.4/W  
71.4/W  
Substrate size: 70×70×1.6mm3 (substrate with thermal via)  
It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in  
the inner layer (in using multiplayer substrate). This package is so small (size: 2.9mm×3.0mm) that it is not available to  
layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below).  
enable to get the superior heat radiation characteristic. (This figure is the image. It is recommended that the VIA size and  
the number is designed suitable for the actual situation.).  
Most of the heat loss that occurs in BD3550HFN,BD3551HFN,BD3552HFN is generated from the output Nch FET. Power  
loss is determined by the total VIN-Vo voltage and output current. Be sure to confirm the system input and output voltage  
and the output current conditions in relation to the heat dissipation characteristics of the VIN and Vo in the design. Bearing in  
mind that heat dissipation may vary substantially depending on the substrate employed (due to the power package  
incorporated in BD3550HFN,BD3551HFN,BD3552HFN) make certain to factor conditions such as substrate size into the  
thermal design.  
Power consumption (W) = Input voltage (VIN)- Output voltage (Vo) (VoVREF) ×Io(Ave)  
Example) Where VIN=1.8V, VO=1.2V, Io(Ave) = 1A,  
Power consumption (W)  
= 0.6(W)  
=
1.8(V)-1.2(V) ×1.0(A)  
12/16  
Input-Output Equivalent Circuit Diagram  
VCC  
VCC  
1kΩ  
1kΩ  
VIN  
NRCS  
1kΩ  
1kΩ  
1kΩ  
10kΩ  
10kΩ  
1kΩ  
VCC  
VCC  
1kΩ  
EN  
VFB  
1kΩ  
VO1  
VO2  
350kΩ  
100kΩ  
100kΩ  
1kΩ  
50kΩ  
10kΩ  
20pF  
Reference landing pattern  
MIE  
E3  
L2  
(Unit:mm)  
Lead pitch  
Lead pitch  
landing length  
landing pitch  
e
MIE  
2.50  
l2  
b2  
0.65  
0.40  
0.35  
central pad length  
central pad pitch  
D3  
E3  
2.90  
1.90  
*It is recommended to design suitable for the actual application.  
13/16  
Operation Notes  
1. Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any  
over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as  
fuses.  
2. Connecting the power supply connector backward  
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply  
lines. An external direction diode can be added.  
3. Power supply lines  
Please add a protection diode when a large inductance component is connected to the output terminal, and reverse-polarity  
power is possible at startup or in output OFF condition.  
(Example)  
OUTPUT PIN  
4. GND voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
5. Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
6. Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
7. Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
8. ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.  
9. Thermal shutdown circuit  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed  
only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not  
continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is  
assumed.  
TSD on temperature [°C]  
Hysteresis temperature [°C]  
(typ.)  
175  
(typ.)  
15  
BD3550HFN,BD3551HFN,BD3552HFN  
10. Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or  
removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure.  
Use similar precaution when transporting or storing the IC.  
14/16  
11. Regarding input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example, the relation between each potential is as follows:  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate,  
such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.  
Resistor  
Transistor (NPN)  
B
Pin A  
Pin B  
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P+  
N
P
P
Parasitic  
element  
N
N
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
12. Ground Wiring Pattern.  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing  
a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations  
caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring  
pattern of any external components, either.  
Heat Dissipation Characteristics  
HSON8  
[W]  
2.0  
(3) 1.75W  
(1) Substrate (copper foil density: 0.2%…1-layer)  
θj-a=198.4/W  
(2) Substrate (copper foil density: 7%…1-layer)  
1.5  
θj-a=92.4/W  
(3) Substrate (copper foil density: 65%…1-layer)  
θj-a=71.4/W  
(2) 1.35W  
(1) 0.63W  
1.0  
0.5  
0
0
25  
50  
75  
100  
125 150  
[]  
Ambient Temperature [Ta]  
15/16  
Type Designations (Ordering Information)  
B
D
3
5
5
X
H
F
N
T
R
-
Package Type  
Product Name  
TR Emboss tape reel opposite draw-out side: 1 pin  
BD355X  
HFN : HSON8  
HSON8  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
2.90 0.2  
0.475  
(2.2) (0.05)  
Direction  
of feed  
TR  
(The direction is the 1pin of product is at the upper light when you hold  
reel on the left hand and you pull out the tape on the right hand)  
8
7
6
5
5
6
7
8
+0.1  
0.13  
0.05  
1
2
3
4
4
3
2
1
0.32 0.10  
X X  
X
X X  
X
X X  
X
X X  
X
X X  
X
0.65  
X
X
X
X
X
X X  
X
X X  
X
X X  
X
X X  
X
X X  
X
Direction of feed  
1Pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.08T416A '08.10 ROHM ©  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account when  
designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no respon-  
sibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples of  
application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or  
exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility  
whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment or  
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic  
appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no  
responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended  
to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev3.0  

相关型号:

BD3551HFN-TR

暂无描述
ROHM

BD3552HFN

Silicon monolithic integrated circuit 1ch Series Regulator Driver IC
ROHM

BD3552HFN-TL

Regulator, 1 Output, CMOS, PDFP8,
ROHM

BD355N

35 Ampere Standard Type Negative Block Rectifier Diodes for Automotive Alternators
THINKISEMI

BD355P

35 Ampere Standard Type Negative Block Rectifier Diodes for Automotive Alternators
THINKISEMI

BD35613EFJ

Fixed Positive LDO Regulator, PDSO8, ROHS COMPLIANT, HTSOP-8
ROHM

BD35613EFJ-E2

Fixed Positive LDO Regulator, PDSO8, ROHS COMPLIANT, HTSOP-8
ROHM

BD35613HFN

Fixed Positive LDO Regulator, PDSO8, ROHS COMPLIANT, HSON-8
ROHM

BD35613HFN-TR

Fixed Positive LDO Regulator, PDSO8, ROHS COMPLIANT, HSON-8
ROHM

BD35613HFV

Fixed Positive LDO Regulator, PDSO6, ROHS COMPLIANT, HVSOF-6
ROHM

BD35613HFV-TR

Fixed Positive LDO Regulator, PDSO6, ROHS COMPLIANT, HVSOF-6
ROHM

BD35615EFJ

Fixed Positive LDO Regulator, PDSO8, ROHS COMPLIANT, HTSOP-8
ROHM