BD37067FV-E2 [ROHM]

Sound Processor for car audio built-in 2nd order post filter;
BD37067FV-E2
型号: BD37067FV-E2
厂家: ROHM    ROHM
描述:

Sound Processor for car audio built-in 2nd order post filter

文件: 总38页 (文件大小:2567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Analog Sound Processors series  
Sound Processor for car audio  
built-in 2nd order post filter  
BD37067FV-M  
General Description  
Key Specifications  
It is built-in input selector of 6 stereo source and output  
to ADC after adjusting signal level. And built-in 2nd order  
post filter to reduce out of band noise and 6ch Volume  
circuit. Moreover, it is simple to design set by built-in  
TDMA noise reduction systems.  
TotalHarmonic Distortion  
Maximum Input Voltage:  
0.003%(Typ)  
2.2VRMS(Typ)  
55dB(Min)  
2.1VRMS(Typ)  
8μVRMS(Typ)  
2.5μVRMS(Typ)  
-70dB (Typ)  
Common Mode Rejection Ratio:  
Maximum Output Voltage:  
Output Noise Voltage:  
Residual Output Noise Voltage:  
Ripple Rejection:  
Features  
AEC-Q100 (Grade3) Qualified  
Built-in differential input selector that can select  
single-ended / differential input  
Operating Temperature Range:  
-40 ˚C to +85˚C  
Reduce the pop noise when switching gain due to  
built-in advanced switch circuit  
Package  
SSOP-B40  
W(Typ) x D(Typ) x H(Max)  
13.60mm x 7.80mm x 2.00mm  
Less out-of-band noise of DAC by built-in 2nd order  
post filter.  
Built-in buffered ground isolation amplifier to realize  
high CMRR characteristics  
Built-in TDMA noise reduction circuit reduces the  
additional components for external filter.  
Package is SSOP-B40. Putting same direction  
input-terminals and output-terminals make PCB  
layout easier and PCB area smaller.  
Available to control by 3.3V / 5V for I2C-bus  
controller.  
Applications  
It is the optimal for the car audio. Besides, it is  
possible to use for the audio equipment of mini  
Compo, micro Compo.  
SSOP-B40  
Typical Application Circuit  
VCC  
INC  
INS  
IG1  
IG2  
10µF 10µF  
OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INF1 INR2  
INR1  
GND  
24  
SDA  
23  
SCL  
10µF 10µF  
10µF  
10µF  
10µF  
10µF  
10µF 10µF  
2.2µF 2.2µF 2.2µF 2.2µF 2.2µF 2.2µF  
10µF  
27  
VREF  
VCC2  
VCC1  
26  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
28  
22  
21  
25  
36  
VREF  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
I2C-bus LOGIC  
Front Mixing  
Sub  
Selector  
Fader : +23dB to -79dB-/1dBstep  
Input Gain : +23dB to -15dB/1dBstep  
Front Mixing : on/off  
Sub  
Gain Adjust  
Main Gain Adjust  
Fader  
Fader  
Fader  
Fader  
Fader  
Fader  
ATT  
ATT★  
ATT★  
ATT★  
ATT★  
ATT★  
Advanced Switch  
2nd order LPF  
Fader  
Fader  
Fader  
Fader  
Fader  
Fader  
Boost★  
Boost★  
Boost★  
Boost★  
Boost★  
Boost★  
2nd order LPF: fc=70kHz  
Main/Sub Gain Adjust 0dB/6dB  
Anti-TDMA noise circuit  
Rear  
Selector  
Front  
Selector  
Input Gain  
Input selector (2 single  
GND  
-
end and  
GND  
4
stereo ISO)  
GND  
Differential  
amp  
Differential  
amp  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
ISO  
amp  
ISO  
ISO  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
100kΩ  
100kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TEST1 TEST2  
2.2µF 2.2µF 2.2µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 10µF 2.2µF 2.2µF  
MIN  
A1  
A2  
B1  
B2  
CP1  
CN  
CP2  
DP1 DN  
DP2  
EP1  
EN  
EP2  
FP1  
FN1  
FN2  
FP2  
Figure 1. Typical Application Circuit  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/34  
TSZ2211114001  
 
 
 
 
 
BD37067FV-M  
Contents  
General Description ................................................................................................................................................... 1  
Features..................................................................................................................................................................... 1  
Applications................................................................................................................................................................ 1  
Key Specifications...................................................................................................................................................... 1  
Typical Application Circuit.......................................................................................................................................... 1  
Contents..................................................................................................................................................................... 2  
Pin Configuration ....................................................................................................................................................... 3  
Pin Descriptions......................................................................................................................................................... 3  
Block Diagram............................................................................................................................................................ 4  
Absolute Maximum Ratings (Ta=25˚C)...................................................................................................................... 4  
Operating Range ....................................................................................................................................................... 4  
Electrical Characteristic ............................................................................................................................................. 5  
Typical Performance Curve(s) ................................................................................................................................... 7  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Electrical specifications and timing for bus lines and I/O stages....................................................................................9  
I2C-bus Format ............................................................................................................................................................10  
I2C-bus Interface Protocol............................................................................................................................................10  
Slave Address..............................................................................................................................................................10  
Select Address & Data................................................................................................................................................. 11  
About power on reset ..................................................................................................................................................17  
About start-up and power off sequence on IC .............................................................................................................17  
About Advanced Switch Circuit................................................................................................................................19  
Application Example ................................................................................................................................................25  
Thermal Derating Curve ..........................................................................................................................................26  
I/O Equivalence Circuit ............................................................................................................................................27  
Application Information ............................................................................................................................................29  
1.  
2.  
3.  
4.  
5.  
6.  
Absolute maximum rating voltage................................................................................................................................29  
About a signal input part..............................................................................................................................................29  
About output load characteristics.................................................................................................................................29  
About TEST1,2 terminal(19,20pin) ..............................................................................................................................30  
About signal input terminals ........................................................................................................................................30  
About changing gain of Input Gain and Fader Volume................................................................................................30  
Operational Notes....................................................................................................................................................31  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply.........................................................................................................................31  
Power Supply Lines.....................................................................................................................................................31  
Ground Voltage............................................................................................................................................................31  
Ground Wiring Pattern.................................................................................................................................................31  
Thermal Consideration ................................................................................................................................................31  
Recommended Operating Conditions..........................................................................................................................31  
Inrush Current..............................................................................................................................................................31  
Operation Under Strong Electromagnetic Field ...........................................................................................................31  
Testing on Application Boards .....................................................................................................................................31  
Inter-pin Short and Mounting Errors ............................................................................................................................32  
Regarding the Input Pin of the IC ................................................................................................................................32  
9.  
10.  
11.  
Ordering Name Selection ........................................................................................................................................33  
Physical Dimension Tape and Reel Information......................................................................................................33  
Marking Diagram......................................................................................................................................................33  
Revision History.......................................................................................................................................................34  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/34  
TSZ2211115001  
 
BD37067FV-M  
Pin Configuration  
SSOP-B40  
(TOP VIEW)  
A1  
A2  
1
2
3
4
5
6
7
8
9
40 OUTC  
39 OUTS  
38 OUTR1  
37 OUTR2  
36 OUTF1  
35 OUTF2  
34 INF2  
33 INF1  
32 INR2  
31 INR1  
30 INS  
B1  
B2  
CP1  
CN  
CP2  
DP1  
DN  
DP2 10  
EP1 11  
EN 12  
29 INC  
28 IG1  
EP2 13  
FP1 14  
FN1 15  
FN2 16  
FP2 17  
MIN 18  
TEST1 19  
TEST2 20  
27 IG2  
26 VCC1  
25 VREF  
24 GND  
23 SDA  
22 SCL  
21 VCC2  
Figure 2. Pin configuration  
Pin Descriptions  
Pin No.  
Pin Name  
Description  
A input terminal of 1ch  
Pin No.  
21  
Pin Name  
VCC2  
Description  
1
A1  
A2  
VCC2 terminal for power supply  
I2C Communication clock terminal  
I2C Communication data terminal  
GND terminal  
2
3
A input terminal of 2ch  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SCL  
SDA  
B1  
B input terminal of 1ch  
4
B2  
B input terminal of 2ch  
GND  
5
CP1  
CN  
C positive input terminal of 1ch  
C negative input terminal  
C positive input terminal of 2ch  
D positive input terminal of 1ch  
D negative input terminal  
D positive input terminal of 2ch  
E positive input terminal of 1ch  
E negative input terminal  
E positive input terminal of 2ch  
F positive input terminal of 1ch  
F negative input terminal of 1ch  
F negative input terminal of 2ch  
F positive input terminal of 2ch  
Mixing input terminal  
VREF  
VCC1  
IG2  
BIAS terminal  
6
VCC1 terminal for power supply  
Input Gain output terminal of 2ch  
Input Gain output terminal of 1ch  
Center input terminal  
7
CP2  
DP1  
DN  
8
IG1  
9
INC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DP2  
EP1  
EN  
INS  
Subwoofer input terminal  
Rear input terminal of 1ch  
Rear input terminal of 2ch  
Front input terminal of 1ch  
Front input terminal of 2ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Subwoofer output terminal  
Center output terminal  
INR1  
INR2  
INF1  
EP2  
FP1  
FN1  
FN2  
FP2  
MIN  
TEST1  
TEST2  
INF2  
OUTF2  
OUTF1  
OUTR2  
OUTR1  
OUTS  
OUTC  
TEST terminal  
TEST terminal  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/34  
TSZ2211115001  
BD37067FV-M  
Block Diagram  
INC  
29  
INS  
30  
IG1  
28  
IG2 VCC1  
OUTC OUTS OUTR1OUTR2 OUTF1 OUTF2 INF2 INF1 INR2 INR1  
VREF GND  
25  
VCC2  
21  
SCL  
22  
SDA  
23  
40  
39  
38  
37  
35  
34  
33  
32  
31  
27  
26  
24  
36  
VREF  
100kΩ  
100kΩ  
100kΩ 100kΩ 100kΩ  
100kΩ  
I2C-bus LOGIC  
Front Mixing  
Sub  
Selector  
Fader : +23dB to -79dB-/1dBstep  
Input Gain : +23dB to -15dB/1dBstep  
Sub  
Main Gain Adjust  
Fader  
Fader  
Fader  
Fader  
Fader  
Fader  
Gain Adjust  
Front Mixing : on/off  
ATT  
ATT★  
ATT★  
ATT★  
ATT★  
ATT★  
Advanced Switch  
2nd order LPF  
Fader  
Boost  
Fader  
Boost★  
Fader  
Boost★  
Fader  
Boost★  
Fader  
Boost★  
Fader  
Boost★  
2nd order LPF: fc=70kHz  
Main/Sub Gain Adjust 0dB/6dB  
Anti-TDMA noise circuit  
Rear  
Selector  
Front  
Selector  
Input Gain  
Input selector (2 single-end and 4 stereo ISO)  
Differential  
amp  
Differential  
amp  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
amp  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ  
100kΩ  
100kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
MIN  
19  
20  
TEST1 TEST2  
A1  
A2  
B1  
B2  
CP1  
CN  
CP2  
DP1 DN  
DP2 EP1  
EN EP2  
FP1  
FN1 FN2  
FP2  
Figure 3. Block diagram and pin assign  
Absolute Maximum Ratings (Ta=25˚C)  
Parameter  
Symbol  
Rating  
10  
Unit  
V
Power Supply Voltage  
VCC (VCC1,2)  
VCC+0.3 to GND-0.3  
Input Voltage  
VIN  
V
Only SCL, SDA 7 to GND-0.3  
Power Dissipation  
Pd  
1.12(Note1)  
W
Storage Temperature  
TSTG  
-55 to +150  
˚C  
(Note1) This value decreases 9mW/°C for Ta=25°C or more.  
ROHM standard board shall be mounted. Thermal resistance θja = 111.1(°C/W).  
ROHM Standard board size70x70x1.6()  
materialA FR4 grass epoxy board(3% or less of copper foil area)  
Operating Range  
Parameter  
Power Supply Voltage  
Temperature  
Symbol  
VCC (VCC1,2)  
Topr  
Min  
7.0  
-40  
Typ  
8.5  
-
Max  
9.5  
Unit  
V
+85  
˚C  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/34  
TSZ2211115001  
BD37067FV-M  
Electrical Characteristic  
(Unless specified particularly, Ta=25˚C, VCC1,2=8.5V, f=1kHz, VIN=1VRMS, RG=600Ω, RL=10kΩ,  
A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB, Input point=A1/A2, Monitor point=IG1/IG2)  
Limit  
Parameter  
Symbol  
IQ_VCC  
Unit  
mA  
Conditions  
Min  
Typ  
Max  
53  
Current upon no signal  
35  
No signal  
(IQ_VCC1+IQ_VCC2  
)
Input Impedance (A)  
RIN_S  
RIN_D  
70  
100  
250  
130  
325  
kΩ  
kΩ  
Input Impedance (B, C, D, E, F)  
175  
Voltage Gain  
GV  
CB  
-1.5  
-1.5  
+0  
+0  
+1.5  
+1.5  
0.05  
dB  
dB  
%
Gv=20log(VOUT/VIN)  
CB = GV1-GV2  
Channel Balance  
TotalHarmonicDistortion  
VOUT =1VRMS  
BW=400-30kHz  
THD+N  
0.003  
RG = 0Ω  
BW = IHF-A  
VIM at THD+N(VOUT)=1%  
BW=400-30kHz  
RG = 0Ω  
CTC=20log(VOUT/VOUT´)  
BW = IHF-A  
RG = 0Ω  
CTS=20log(VOUT/VOUT´)  
Output Noise Voltage(Note1)  
Maximum Input Voltage  
VNO1  
VIM  
3.1  
2.2  
8.0  
μVRMS  
2.0  
VRMS  
Crosstalk Between Channels(Note1)  
Crosstalk Between Selectors(Note1)  
CTC  
CTS  
-100  
-100  
-90  
-90  
dB  
dB  
BW = IHF-A  
XP1 and XN input  
XP2 and XN input  
CMRR=20log(VIN/VOUT  
Common Mode Rejection Ratio  
(C, D, E, F) (Note1)  
CMRR  
55  
65  
dB  
)
BW = IHF-A, [X=C,D,E,F]  
Input gain -15dB  
Gin=20log(VOUT/VIN)  
Minimum Input Gain  
Maximum Input Gain  
GIN MIN  
-17  
21  
-15  
23  
-13  
25  
dB  
dB  
Input gain 23dB  
VIN =100mVRMS  
GIN MAX  
Gin=20log(VOUT/VIN)  
Gain Set Error  
GIN ERR  
ROUT  
-2  
-
+0  
+2  
50  
dB  
GAIN=-15 to +23dB  
Output Impedance  
Ω
VIN =100mVRMS  
THD+N=1%  
BW=400-30kHz  
Maximum Output Voltage  
VOM  
2.0  
2.2  
VRMS  
(Note1) VP-9690A (Average value detection, effective value display) filter by Panasonic is used for measurement. Input and output are in-phase.  
(Unless specified particularly, Ta=25˚C, VCC1,2=8.5V, f=1kHz, VIN=0.9VRMS, RG=600Ω, RL =10kΩ,  
A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
Max  
50  
Output Impedance  
Maximum OutputVoltage  
ROUT  
VOM  
Ω
VIN =100mVRMS  
THD+N=1%  
BW=400-30kHz  
2.0  
2.1  
VRMS  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/34  
TSZ2211115001  
BD37067FV-M  
(Unless specified particularly, Ta=25˚C, VCC1,2=8.5V, f=1kHz, VIN=0.9VRMS, RG=600Ω, RL=10kΩ,  
A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Gain=23dB  
VIN=100mVRMS  
GF=20log(VOUT/VIN)  
Gain Adjust=0dB  
Min  
21  
Typ  
Max  
25  
Maximum Boost Gain  
Channel Balance  
GF BST  
23  
dB  
dB  
CB  
-1.5  
+0  
+1.5  
CB = GV1-GV2  
TotalHarmonicDistortion  
THD+N  
VNO1  
0.003  
8
0.05  
16  
%
BW=400-30KHz  
RG = 0Ω  
BW = IHF-A  
Output Noise Voltage(Note1)  
μVRMS  
Fader = -dB  
μVRMS RG = 0Ω  
BW = IHF-A  
Residual Output Noise Voltage(Note1)  
Maximum Input Voltage  
VNOR  
2.0  
2.5  
2.1  
8.0  
VIM at THD+N(VOUT)=1%  
BW=400-30KHz  
Gain Adjust = 0dB  
RG = 0Ω  
CTC=20log( VOUT/VOUT´)  
BW = IHF-A  
Fader = -dB  
GF=20log( VOUT/ VIN)  
BW = IHF-A  
VIM  
VRMS  
dB  
Crosstalk Between Channels(Note1)  
Maximum Attenuation(Note1)  
CTC  
GF MIN  
-100  
-100  
-90  
-90  
dB  
Gain Set Error  
GF ERR  
GF ERR1  
GF ERR2  
-2  
-2  
-3  
+0  
+0  
+0  
+2  
+2  
+3  
dB  
dB  
dB  
Gain=+1 to +23dB  
Attenuation Set Error 1  
Attenuation Set Error 2  
Attenuation=0 to -15dB  
Attenuation=-16 to -47dB  
Attenuation Set Error 3  
GF ERR3  
-4  
+0  
+4  
dB  
Attenuation=-48 to -79dB  
f=1kHz  
Ripple Rejection  
Input Impedance  
MaximumInput voltage  
PSRR  
RIN_M  
VIM_M  
70  
-70  
100  
2.2  
-40  
130  
-
dB  
kΩ  
VRR=100mVRMS  
RRVCC=20log(VOUT/VCC)  
VIM at THD+N(VOUT)=1%  
BW=400-30KHz  
MIN input  
2.0  
VRMS  
Front Mixing=OFF  
GMX=20log( VOUT/VIN  
BW=IHF-A  
)
Maximum Attenuation(Note1)  
GMX MIN  
-
-100  
-85  
dB  
MIN input  
Front Mixing=ON  
GMX=20log( VOUT/VIN  
Mixing Gain  
GMX  
-2  
+0  
+2  
dB  
)
Input Impedance  
RIN_M  
70  
100  
130  
kΩ  
Gain=6dB  
VIN=100mVRMS  
GF=20log(VOUT/VIIN)  
Boost Gain  
GF BST  
4
6
8
dB  
-1.5  
+0  
+1.5  
dB  
CB = GV1-GV2  
Channel Balance  
CB  
(Note1) VP-9690A (Average value detection, effective value display) filter by Panasonic is used for measurement. Input and output are in-phase.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
6/34  
BD37067FV-M  
Typical Performance Curve(s)  
40  
35  
30  
25  
20  
15  
10  
10  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
(IQ_VCC=IQ_VCC1+IQ_VCC2  
)
5
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
VCC [V]  
Frequency [Hz]  
Figure 4. IQ_VCC vs. VCC  
Figure 5. Gain vs. Frequency  
10  
10  
1
10  
8
6
f=10kHz  
1
4
f=100,1kHz  
2
0.1  
0.1  
0.01  
0.001  
0
-2  
-4  
-6  
-8  
-10  
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
VIN [VRMS  
]
Frequency [Hz]  
Figure 7. THD+N, VO vs VIN  
(Gain Adjust=+6dB)  
Figure 6. Gain vs. Frequency  
(Gain Adjust=+6dB)  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/34  
TSZ2211115001  
BD37067FV-M  
0
-20  
-40  
-60  
-80  
0
-20  
RG=1kΩ  
-40  
RG=470Ω  
RG =0Ω  
-60  
-80  
-100  
-120  
-100  
10  
10  
100  
1k  
10k  
100k  
100  
1k  
Frequency [Hz]  
10k  
100k  
Frequency [Hz]  
Figure 9. CTC vs. Frequency  
Figure 8. CMRR vs. Frequency  
0
-20  
5
0
LPF Pass  
-40  
-5  
LPF ON  
-60  
-10  
-15  
-20  
-80  
-100  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 10. PSRR vs. Frequency  
Figure 11. Gain vs Frequency  
(LPF ON/Pass)  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/34  
TSZ2211115001  
BD37067FV-M  
I2C-bus Control Signal Specification  
1. Electrical specifications and timing for bus lines and I/O stages  
SDA  
tBUF  
tHD;STA  
tSP  
tLOW  
SCL  
tSU;STO  
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
Sr  
S
P
P
Figure 12. Definition of timing on the I2C-bus  
Table 1. Characteristics of the SDA and SCL bus lines for I2C-bus devices  
Parameter  
Fast-modeI2C-bus  
Symbol  
Unit  
Min  
Max  
400  
kHz  
1
2
SCL Clock Frequency  
fSCL  
tBUF  
0
Bus Free time between a STOP and START condition  
1.3  
μsec  
Hold Time (repeated) START condition. After this period, the first clock  
pulse is generated  
3
tHD;STA  
0.6  
μsec  
4
5
6
LOW Period of the SCL Clock  
tLOW  
1.3  
0.6  
0.6  
μsec  
μsec  
μsec  
HIGH Period of the SCL Clock  
tHIGH  
tSU;STA  
Set-up time for a Repeated START Condition  
7
8
9
Data Hold Time  
tHD;DAT  
tSU;DAT  
tSU;STO  
0*  
μsec  
μsec  
μsec  
Data set-up Time  
100  
0.6  
Set-up Time for STOP Condition  
All values referred to VIH min. and VIL max. Levels (see Table 2.).  
Table 2. Characteristics of the SDA and SCL I/O stages for I2C- bus devices  
Fast-modeI2C-bus  
Parameter  
Symbol  
Unit  
Min  
-0.5  
2.3  
Max  
+1  
-
10 LOW level input voltage: Fixed input levels  
11 HIGH level input voltage: Fixed input levels  
VIL  
V
V
VIH  
12 Pulse width of spikes, which must be suppressed by the input filter.  
tSP  
VOL1  
Ii  
0
0
50  
0.4  
+10  
nsec  
V
LOW level output voltage (open drain or open collector): At 3mA sink  
current  
13  
Input current each I/O pin with an input voltage between 0.4V and 0.9  
VDD max.  
14  
-10  
μA  
HD;STA  
HD;DAT  
SU;DAT  
SU;STO  
2µsec  
1µsec  
1µsec  
2µsec  
SCL  
SDA  
BUF  
4µsec  
LOW  
3µsec  
HIGH  
1µsec  
SCL clock frequency:250kHz  
Figure 13. I2C data transmission timing  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/34  
TSZ2211115001  
BD37067FV-M  
2. I2C-bus Format  
MSB  
Slave Address  
8bit  
LSB  
MSB  
Select Address  
8bit  
LSB  
MSB  
LSB  
S
1bit  
A
1bit  
A
1bit  
Data  
8bit  
A
P
1bit 1bit  
S
= Start condition (Recognition of start bit)  
Slave Address = Recognition of slave address. 7 bits in upper order are optional.  
The last bit must be “L” for writing.  
A
= Acknowledge bit (Recognition of acknowledgement)  
Select Address = Address for each function  
Data  
P
= Data of each function  
= Stop condition (Recognition of stop bit)  
3. I2C-bus Interface Protocol  
1) Basic form  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data  
MSB LSB  
A
P
2) Automatic increment(Select Address increases (+1) according to the number of data)  
Slave Address Select Address Data1 Data2  
MSB LSB MSB LSB MSB LSB MSB LSB  
S
A
A
A
A
・・・・ Data N  
MSB LSB  
A
P
(Example)Data 1 shall be set as data of address specified by Select Address.  
Data 2 shall be set as data of address specified by Select Address +1.  
Data N shall be set as data of address specified by Select Address +(N-1).  
3) Configuration unavailable for transmission (In this case, only Select Address 1 is set.)  
S
Slave Address  
A
Select Address1  
A
Data  
A
Select Address 2  
A
Data  
A
P
MSB LSB MSB  
LSB MSB LSB MSB  
LSB MSB LSB  
(Note)If any data is transmitted as Select Address 2 next to data,  
It is recognized as data, not as Select Address 2.  
4. Slave Address  
MSB  
A6  
1
LSB  
R/W  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
80(hex)  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/34  
TSZ2211115001  
BD37067FV-M  
5. Select Address & Data  
Select  
MSB  
D7  
Data  
D3  
LSB  
D0  
Address  
(hex)  
Items  
D6  
0
D5  
D4  
D2  
0
D1  
0
Advanced  
Switch  
ON/OFF  
Advanced Switch  
time of Input  
Initial Setup 1  
01  
0
0
0
Gain/Fader  
Rear  
Front  
Selector Selector  
Initial Setup 2  
Input Selector  
02  
05  
0
0
Sub Selector  
0
0
0
0
0
0
0
Input Selector  
Input Gain  
Input Gain  
06  
28  
29  
2A  
2B  
2C  
2D  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader Center  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Subwoofer  
Front  
Mixing  
ON/OFF  
Sub  
Gain  
Adjust  
Main  
Gain  
Adjust  
LPF setup  
Mixing  
30  
LPF fc  
0
0
0
0
0
0
0
0
0
System Reset  
FE  
1
0
1
Advanced switch  
Note) Set up bit (It is written with “0” by the above table) which hasn’t been used in “0”.  
Notes on data format  
1. Advanced switchfunction is available for the hatched parts on the above table.  
2. In case of transferring data continuously, Select Address(hex) flows by Automatic increment function, as shown  
below.  
0102050628292A2B2C2D30  
3. Input selector that is not corresponded for “Advanced switch” function, cannot reduce the noise caused when  
changing the input selector. Therefore, it is recommended to turn on mute when changing these settings.  
4. In case of setting to infinite -∞” by using Fader when input selector setting is changed, please consider Advanced  
switchtime.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/34  
TSZ2211115001  
BD37067FV-M  
Select Address 01 (hex)  
Advanced Switch time of  
Input Gain/Fader  
MSB  
D7  
LSB  
D0  
Mode  
D6  
0
D5  
0
0
1
1
D4  
0
D3  
D2  
0
D1  
0
4.7 msec  
7.1 msec  
11.2 msec  
14.4 msec  
Advanced  
Switch  
ON/OFF  
1
0
0
0
1
MSB  
D7  
0
Advanced Switch ON/OFF  
LSB  
D0  
Mode  
D6  
0
D5  
D4  
D3  
D2  
0
D1  
0
Advanced Switch  
time of Input  
Gain/Fader  
OFF  
ON  
0
0
1
Select Address 02 (hex)  
Mode  
MSB  
D7  
Front Selector  
LSB  
D0  
0
D6  
0
D5  
D4  
D3  
D2  
0
D1  
Rear  
Selector  
FRONT  
INSIDE THROUGH  
0
0
Sub Selector  
1
MSB  
D7  
Rear Selector  
LSB  
D0  
Mode  
D6  
0
D5  
D4  
D3  
D2  
0
D1  
0
REAR  
Front  
Selector  
0
0
Sub Selector  
FRONT COPY  
1
MSB  
D7  
Sub Selector  
LSB  
D0  
Mode(Note1)  
D6  
0
D5  
0
D4  
D3  
D2  
0
D1  
OUTC(INS)  
OUTS(INS)  
OUTC(INR1)  
OUTS(INR2)  
OUTC (INC)  
OUTS(INS)  
0
1
0
1
0
1
1
Rear  
Selector  
Front  
Selector  
0
0
Prohibition  
(Note1) xxx(INxx) : xxxmeans Output terminal, (INxx)means Output signal”  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/34  
TSZ2211115001  
BD37067FV-M  
Select Address 05 (hex)  
MSB  
D7  
Input Selector  
LSB  
Mode  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
A
B single  
C single  
D single  
E single  
F single  
C diff  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
0
0
0
D diff  
E diff  
1
0
0
0
F full-diff  
1
0
0
1
1
1
0
1
1
1
0
1
Prohibition  
: Initial condition  
List of active input terminal when set input selector  
Lch positive input  
terminal  
Lch negative  
input terminal  
Rch positive  
input terminal  
Rch negative  
input terminal  
Mode  
A
1pin(A1)  
3pin(B1)  
-
2pin(A2)  
4pin(B2)  
-
B
-
-
C single  
D single  
E single  
F single  
C diff  
5pin(CP1)  
8pin(DP1)  
11pin(EP1)  
14pin(FP1)  
5pin(CP1)  
8pin(DP1)  
11pin(EP1)  
-
7pin(CP2)  
10pin(DP2)  
13pin(EP2)  
17pin(FP2)  
7pin(CP2)  
10pin(DP2)  
13pin(EP2)  
-
-
-
-
-
-
-
6pin(CN)  
9pin(DN)  
12pin(EN)  
6pin(CN)  
9pin(DN)  
12pin(EN)  
D diff  
E diff  
F full-diff  
14pin(FP1)  
15pin(FN1)  
17pin(FP2)  
16pin(FN2)  
About Ground Isolation Amplifier〕  
EP1  
1ch Signal Input  
11  
1ch  
GND Isolation  
Amplifie  
Ground Isolation Amplifier C diff to E diff  
EN  
12  
Please select this mode when you use them as  
a ground isolation amplifier.  
2ch  
EP2  
13  
GND Isolation  
Amplifie  
2ch Signal Input  
FP1  
14  
1ch  
1ch Signal Input  
2ch Signal Inptu  
FN1  
15  
Differential  
Amplifier  
Full Differential Amplifier : F full-diff  
FN2  
16  
Please select this mode when you use it as  
a differential amplifier  
2ch  
Differential  
Amplifier  
FP2  
17  
Figure 14. About Ground Isolation Amplifier  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/34  
TSZ2211115001  
BD37067FV-M  
Select Address 06 (hex)  
Mode  
MSB  
D7  
Input Gain  
D4  
LSB  
D0  
0
D6  
D5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D3  
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
D2  
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
D1  
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
Prohibition  
0
+23dB  
+22dB  
+21dB  
+20dB  
+19dB  
+18dB  
+17dB  
+16dB  
+15dB  
+14dB  
+13dB  
+12dB  
+11dB  
+10dB  
+9dB  
+8dB  
+7dB  
+6dB  
+5dB  
+4dB  
+3dB  
+2dB  
+1dB  
0dB  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
-1dB  
-2dB  
-3dB  
-4dB  
-5dB  
-6dB  
-7dB  
-8dB  
-9dB  
-10dB  
-11dB  
-12dB  
-13dB  
-14dB  
-15dB  
1
1
Prohibition  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/34  
TSZ2211115001  
BD37067FV-M  
Select Address 28, 29, 2A, 2B, 2C, 2D (hex)  
MSB  
D7  
0
Fader Gain / Attenuation  
LSB  
D0  
0
Gain & ATT  
Prohibition  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
0
+23dB  
+22dB  
+21dB  
0
1
1
0
1
0
0
1
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
1
+10dB  
+9dB  
+8dB  
+7dB  
+6dB  
+5dB  
+4dB  
+3dB  
+2dB  
+1dB  
0dB  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-1dB  
-2dB  
-3dB  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
-78dB  
-79dB  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
1
1
1
0
1
0
0
0
0
Prohibition  
1
1
1
1
1
1
1
0
-dB  
1
1
1
1
1
1
1
1
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/34  
TSZ2211115001  
BD37067FV-M  
Select Address 30(hex)  
Mode  
MSB  
D7  
Main Gain Adjust  
LSB  
D0  
0
D6  
D5  
0
D4  
D3  
D2  
0
D1  
0dB  
Front  
Mixing  
Sub Gain  
Adjust  
LPF fc  
0
0
+6dB  
1
MSB  
D7  
Sub Gain Adjust  
LSB  
D0  
Main  
Gain  
Adjust  
Mode  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
0
0dB  
Front  
Mixing  
LPF fc  
0
0
+6dB  
1
MSB  
D7  
LPF fc  
LSB  
D0  
Main  
Gain  
Adjust  
Mode  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
70kHz  
PASS  
Front  
Mixing  
Sub Gain  
Adjust  
1
MSB  
D7  
0
Front Mixing ON/OFF  
LSB  
D0  
Main  
Gain  
Adjust  
Mode  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
OFF  
ON  
Sub Gain  
Adjust  
LPF fc  
0
0
1
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/34  
TSZ2211115001  
BD37067FV-M  
6. About power on reset  
It is possible for the reset circuit inside the IC to initialize when supply voltage is turned on. Please send data to all  
address as initial data when the supply is turned on, and turn on mute until all initial data are sent.  
Limit  
Item  
Symbol  
tRISE  
Unit  
Condition  
Min  
33  
Typ  
Max  
Rise time of VCC1,2  
VCC1,2 voltage of  
release power on  
reset  
μsec VCC rise time from 0V to 5V  
VPOR  
4.1  
V
7. About start-up and power off sequence on IC  
VCC Typ  
t2-t1250µsec  
7.0V  
VCC1  
/VCC2  
5.0V  
POR Max.  
POR Min.  
3.0V  
OFF Voltage  
1.0V  
1.0V  
t1 t2  
20msec  
I2C-bus Select  
Address  
01(hex)  
External  
MUTE  
normal term  
power off  
start-up  
Figure 15. Power off and start-up sequence  
This IC will become active-state by sending data of Select Address 01(hex) on I2C-bus after 20msec from that VCC1 and  
VCC2 reaches over 7.0V. Therefore, this command must always send in start-up sequence. In addition, External MUTE  
means recommended period that the muting outside IC.  
About output terminal(27,28,35 to 40pin) vs. VCC  
Bias voltage of output terminal (27,28,35 to 40pin) keep fixed voltage in operational range of VCC.  
Figure 16. OUT(27,28,35 to 40pin)_DC-Bias = 4.15V fixed.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/34  
TSZ2211115001  
BD37067FV-M  
Fader Volume Attenuation of the Detail  
(dB)  
+23  
+22  
+21  
+20  
+19  
+18  
+17  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
D7 D6 D5 D4 D3 D2 D1 D0  
(dB)  
-29  
-30  
-31  
-32  
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
-64  
-65  
-66  
-67  
-68  
-69  
-70  
-71  
-72  
-73  
-74  
-75  
-76  
-77  
-78  
-79  
-∞  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/34  
TSZ2211115001  
BD37067FV-M  
About Advanced Switch Circuit  
1Advanced switch technology  
1-1. Advanced switch effects  
Advanced switch technology is ROHM original technology that can prevent from switching pop noise. If changing the  
gain setting (for example Fader) immediately, the audible signal will become discontinuously and pop noise will be  
occurred. This Advanced switch technology will prevent this discontinuous signal by completing the signal waveform  
and will significantly reduce the noise.  
select  
slave  
data  
I2C-bus  
28 86  
80  
If the gain instantly changes after the data is transmitted, the DC  
fluctuation will occur as much as before and after the oscillation  
different. This technology makes this fluctuation changes slow.  
DC level change  
Advanced switch  
waveform  
Figure 17. The explanation of advanced switch waveform  
This Advanced switch circuit will start operating when the data is transmitted from microcontroller.  
Advanced switch waveform is shown as the figure above. For preventing switching noise, this IC will operate  
optimally by internal processing after the data is transmitted from microcontroller.  
However, sometimes the switching waveform is not like the intended form depends on the transmission timing.  
Therefore, below is the example of the relationship between the transmission timing and actual switching time. Please  
consider this relationship for the setting.  
1-2. The kind of the Transferring Data  
Data setting that is not corresponded to Advanced switch  
(Page11 Select Address & Data Data format without hatching)  
There is no particular rule about transferring data.  
Data setting that is corresponded to Advanced switch  
Page11 Select Address & Data Data format with hatching)  
There is no particular rule about transferring data, but Advanced switch must follow the switching sequence as  
mentioned in2as follows.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/34  
TSZ2211115001  
BD37067FV-M  
2Data transmission that is corresponded to Advanced switch  
2-1. Switching time of Advanced switch  
Switching time includes [tWAIT(Wait time)], [tSFT (A→B switching time)] and [tSFT (B→A switching time)].  
25msec is needed per 1 switching. (tSOFT = tWAIT + 2 * tSFT  
,
tWAIT =2.3msec, tSFT =11.2msec)  
[wait time]  
=tWAIT  
[AB switching time]  
=tSFT  
[BA switching time]  
=tSFT  
Current XdB  
Send YdB  
Change YdB  
W
A B  
B A  
Advanced Switch Time(tSOFT  
)
In the figure above, Start/Stop state is expressed as Aand temporary state is expressed as B.  
The switching sequence of Advanced switch consists of the cycle A(start)B(temporary)A(stop). Therefore, switching  
sequence will not stop at B state.  
For example, switching is performed from A(Initial gain)B(set gain)A(set gain) when switching from initial gain to set  
gain. And switching time (tSFT) of AB or BA are equal.  
2-2. About the data transmission’s timing in same block state and switching operation  
■ Transmitting example 1  
This is an example when transmitting data in same block with “enough interval for data transmission”.  
(enough interval for data transmission : 1.4 x tSOFT * 1.4includes tolerance margin.)  
Definition of example expression :  
F1=Fader 1ch Front, F2=Fader 2ch Front, R1=Fader 1ch Rear, R2=Fader 2ch Rear  
C=Fader Center, S=Fader Subwoofer, MIX=Front Mixing  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
tSOFT * 1.4 msec  
W
A B  
B A  
W
A B  
B A  
Advanced Switch time  
F1 output  
Transmitting example 2  
This is an example when the transmission interval is not enough (smaller than “Transmission example 1”). When  
the data is transmitted during first switching operation, the second data will be reflected after the first switching  
operation. In this case, there is no wait time (tWAIT) before the second switching operation.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
W
A B  
B A  
A B  
B A  
Advanced Switch time  
F1 output  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/34  
TSZ2211115001  
BD37067FV-M  
Transmitting example 3  
This is an example of switching operation when transmission interval is smaller than Transmission example 2).  
When the data is transmitted during the first switching operation, and transmission timing is just during AB  
switching operation, the second data will be reflected at BA switching term.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
W
A B  
B A  
Advanced Switch time  
F1 output  
Transmitting example 4  
The below figure shows an example of switching operation that the data are transmitted serially with smaller  
transmission interval than Transmission example 3.  
IC has internal data-storage buffer and buffer transmitted data as storage data constantly.  
However, only the latest data is kept so, in this example, +4dB data transmitted secondly is ignored.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 7C  
(F1 +4dB)  
80 28 FF  
(F1 -dB)  
W
B A  
B A  
A B  
F1 output  
A B  
Advanced Switch time  
Transmitting example 5  
Transmitted data is firstly buffered and written to setting data which set gain. However, when there is no  
difference between transmitted data and setting data such as refresh data, advanced switch operation doesnt  
start.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 80  
(F1 0dB)  
Refresh Data  
F1 Advanced Switch  
W
A B  
B A  
Advanced Switch time  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/34  
TSZ2211115001  
BD37067FV-M  
2-3. Mixing ON/OFF switching operation of Front Mixing  
The action of the Mixing switching waveform is different in OFF to ON or ON to OFF.  
Transmission example 1  
This is an example of Mixing OFF to ON state.  
slave select data ack  
I2C-bus  
80 30 80  
(MIX ON)  
W
A B  
B A  
Advanced Switch time  
F1 output  
This is an example of Mixing ON to OFF state  
slave select data ack  
I2C-bus  
80 30 00  
(MIX OFF)  
W
A B  
B A  
Advanced Switch time  
F1 output  
Transmission example 2  
This is an example when transmission ON to OFF in short interval during to Mixing switching operation.  
This is an example of in case of transmitted data of another status(MIX OFF) in during AB transmission timing.  
slave select data ack  
I2C-bus  
80 30 80  
(MIX ON)  
80 30 00  
(MIX OFF)  
W
B A  
A B  
Advanced Switch time  
F1 output  
This is an example of in case of transmitted data of another status(MIX OFF) in during BA transmission timing.  
slave select data ack  
I2C-bus  
80 30 80  
(MIX ON)  
80 30 00  
(MIX OFF)  
W
B A  
B A  
A B  
A B  
Advanced Switch time  
F1 output  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/34  
TSZ2211115001  
BD37067FV-M  
Transmission example 3  
This is an example when transmission OFF to ON in short interval during to Mixing switching operation.  
This is an example of in case of transmitted data of another status(MIX ON) in during AB transmission timing.  
slave select data ack  
I2C-bus  
80 30 00  
(MIX OFF)  
80 30 80  
(MIX ON)  
W
B A  
A B  
Advanced Switch time  
F1 output  
This is an example of in case of transmitted data of another status(MIX ON) in during BA transmission timing.  
slave select data ack  
I2C-bus  
80 30 00  
(MIX OFF)  
80 30 80  
(MIX ON)  
W
B A  
B A  
A B  
A B  
Advanced Switch time  
F1 output  
2-3. About the data transmitting timing and the switching movement in several block state  
When data are transmitted to several blocks, treatment in the BS (block state) unit is carried out inside the IC. The  
order of advanced switch movement start is decided in advance dependent on BS.  
S0  
S1  
S  
S3  
Input Gain  
06(hex)  
Mixing  
Fader R1  
2A(hex)  
Fader R2  
2B(hex)  
Fader C  
2C(hex)  
Fader S  
2D(hex)  
30(hex)  
Fader F1  
28(hex)  
Fader F2  
29(hex)  
Select address  
The order of advanced switch start  
Note) It is possible that blocks in the same BS start switching at the same timing.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
23/34  
BD37067FV-M  
Transmitting example 1  
About the transmission to several blocks also, as explained in the previous section, though there is no restriction of the  
I2C-bus data transmitting timing, the start timing of switching follows the figure of previous page, the order of advanced  
switch start.  
Therefore, it isn't based on the data transmitting order, and an actual switching order becomes as the figure of previous  
page, The order of advanced switch start.  
Each block data is being transmitted separately in the transmitting example 1, but it becomes the same result even if data  
are transmitted by automatic increment.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 2A 80  
(R1 0dB)  
80 2C 80  
(C 0dB)  
F1 Advanced Switch  
R1 Advanced Switch  
C Advanced Switch  
W
A B  
B A  
A B  
B A  
A B  
B A  
Advanced Switch time  
F1 output  
R1 output  
C output  
■ Transmitting example 2  
In the case that data transmission order and actual switching order is different, or data is transmitted to the block in  
other BS before the advanced switch operation finished, switching of next BS starts after current switching.  
ex:①F1 -6dB  
80 xx xx  
ꢀ ②F1 -20dB  
② ③ ④  
ꢀ ③C -6dB  
ꢀ ④R1 -6dB  
I2C-bus  
F1 Advanced Switch  
R1 Advanced Switch  
C Advanced Switch  
F1 Advanced Switch  
W
A B  
B A  
A B  
B A  
A B  
B A  
A B  
B A  
Advanced Switch time  
Active channel  
Active channel  
OutputF1  
Initial Initial → ①  
① → ②  
Active channel  
OutputR1  
OutputC  
Initial  
Initial  
Initial → ④  
Active channel  
Initial → ③  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/34  
TSZ2211115001  
BD37067FV-M  
Application Example  
VCC  
INC  
INS  
IG1  
IG2  
10µF 10µF  
OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INF1 INR2  
INR1  
SCL  
GND SDA  
10µF 10µF  
10µF  
10µF  
10µF 10µF  
10µF  
10µF  
2.2µF 2.2µF 2.2µF 2.2µF 2.2µF 2.2µF  
10µF  
VREF  
VCC2  
VCC1  
28  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
27  
26  
24  
22  
25  
23  
21  
36  
VREF  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
I2C-bus LOGIC  
Front Mixing  
Sub  
Selector  
Fader : +23dB to -79dB-/1dBstep  
Input Gain : +23dB to -15dB/1dBstep  
Front Mixing : on/off  
Sub  
Gain Adjust  
Main Gain Adjust  
Fader  
Fader  
Fader  
Fader  
Fader  
Fader  
ATT  
ATT★  
ATT★  
ATT★  
ATT★  
ATT★  
Advanced Switch  
2nd order LPF  
Fader  
Fader  
Fader  
Fader  
Fader  
Fader  
Boost★  
Boost★  
Boost★  
Boost★  
Boost★  
Boost★  
2nd order LPF: fc=70kHz  
Main/Sub Gain Adjust 0dB/6dB  
Anti-TDMA noise circuit  
Rear  
Selector  
Front  
Selector  
Input Gain  
Input selector (2 single  
GND  
- end and 4 stereo ISO)  
Differential  
amp  
Differential  
amp  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
amp  
ISO  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
250kΩ  
100kΩ  
100kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TEST1 TEST2  
2.2µF 2.2µF 2.2µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 10µF 2.2µF 2.2µF  
MIN  
A1  
A2  
B1  
B2  
CP1  
CN  
CP2  
DP1 DN  
DP2  
EP1  
EN  
EP2  
FP1  
FN1  
FN2  
FP2  
Figure 18. Application Example  
Notes on wiring  
Please connect the decoupling capacitor of a power supply as close as possible to GND.  
Lines of GND shall be one-point connected.  
Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.  
Lines of SCL and SDA of I2C-bus shall not be parallel if possible. The lines shall be shielded, if they are adjacent  
to each other.  
Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.  
About TEST1,2 terminal(19,20pin), please use with OPEN.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/34  
TSZ2211115001  
BD37067FV-M  
Thermal Derating Curve  
About the thermal design by the IC  
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum  
ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two  
standpoints of immediate damage and long-term reliability of operation.  
Reference data  
SSOP-B40  
1.5  
Measurement condition: ROHM  
Standard board  
board Size70mm x 70mm x 1.6mm  
1.12W  
materialA FR4 grass epoxy board  
1.0  
0.5  
0.0  
(3% or less of copper foil area)  
θja = 111.1˚C /W  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature Ta˚C)  
Figure 19. Temperature Derating Curve  
Note) Values are actual measurements and are not guaranteed.  
Note) Power dissipation values vary according to the board on which the IC is mounted.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/34  
TSZ2211115001  
BD37067FV-M  
I/O Equivalence Circuit  
Terminal  
No  
Terminal  
Name  
Terminal  
Voltage  
Equivalent Circuit  
Terminal Description  
Terminal for signal input  
VCC  
1
A1  
A2  
4.15V  
2
The input impedance is 100kΩ(Typ).  
29  
30  
31  
32  
33  
34  
18  
INC  
.
INS  
INR1  
INR2  
INF1  
INF2  
MIN  
100kΩ  
GND  
Input terminal  
3
4
B1  
B2  
4.15V  
Single/Differential mode is selectable.  
The input impedance is 250kΩ(Typ).  
5
CP1  
CN  
6
7
CP2  
DP1  
DN  
VCC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
DP2  
EP1  
EN  
250kΩ  
EP2  
FP1  
FN1  
FN2  
FP2  
GND  
Input Gain output terminal  
VCC  
27  
28  
IG2  
IG1  
4.15V  
GND  
VCC  
Fader output terminal  
35  
36  
37  
38  
39  
40  
OUTF2  
OUTF1  
OUTR2  
OUTR1  
OUTS  
4.15V  
OUTC  
GND  
The figures in the pin explanation and input/output equivalent circuit is designed value, it doesnt guarantee the value.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/34  
TSZ2211115001  
BD37067FV-M  
Terminal  
No  
Terminal  
Name  
Terminal  
Voltage  
Equivalent Circuit  
Terminal Description  
Power supply terminal  
21,26  
VCC  
8.5V  
(VCC1,2)  
Terminal for clock input of I2C-bus  
communication  
22  
SCL  
VCC  
(Note) When this pin is shorted to next pin(VCC), it  
may result in property degradation and destruction of  
the device.  
1.65V  
GND  
VCC  
Terminal for data input of I2C-bus  
communication  
23  
SDA  
1.65V  
GND  
VCC  
Ground terminal  
BIAS terminal  
24  
25  
GND  
0V  
VREF  
4.15V  
Voltage for reference bias of analog signal  
system. The simple precharge circuit and  
simple discharge circuit for an external  
capacitor are built in.  
12.5kΩ  
4.15V  
GND  
The figures in the pin explanation and input/output equivalent circuit is designed value, it doesnt guarantee the value.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/34  
TSZ2211115001  
BD37067FV-M  
Application Information  
1. Absolute maximum rating voltage  
When voltage is impressed to VCC exceeding absolute maximum rating voltage, circuit current increases rapidly  
and it may result in property degradation and destruction of a device.  
When impressed by a VCC terminal (21,26pin) especially by serge examination etc., even if it includes an of  
operation voltage +serge pulse component, be careful not to impress voltage (about 14V VCC terminal) much higher  
than absolute maximum rating voltage.  
2. About a signal input part  
In the signal input terminal, the value of the input coupling capacitor C(F) should be sufficient to match the value of input  
impedance RIN(Ω) inside the IC. The first HPF characteristic of CR is as shown below.  
G[dB]  
C [F]  
0
A(f)  
G
RIN  
Frequency[Hz]  
f
(2πfCRIN)2  
A(f)=  
1+(2πfCRIN)2  
Figure 20. Input Equivalent Circuit  
3. About output load characteristics  
The usages of load for output are below (reference). Please use the load more than 10 kΩ(Typ).  
Output terminal  
Terminal  
No.  
Terminal  
Name  
IG1  
Terminal  
No.  
Terminal  
Name  
OUTF1  
OUTF2  
Terminal  
No.  
Terminal  
Name  
OUTR1  
OUTR2  
Terminal  
No.  
Terminal  
Name  
OUTC  
OUTS  
28  
27  
36  
35  
38  
37  
40  
39  
IG2  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
IG1/IG2  
VCC1,2=8.5V  
THD+N=1%,f=1kHz  
BW=400 to 30kHz  
OUTF1/F2/R1/R2/C/S  
VCC1,2=8.5V  
THD+N=1%,f=1kHz  
BW=400 to 30kHz  
0.5  
0
0.5  
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Load Resistance [Ω]  
Load Resistance [Ω]  
Figure 21. Output load characteristic at VCC1,2=8.5V (Reference)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
29/34  
BD37067FV-M  
Application Information continued  
4. About TEST1,2 terminal(19,20pin)  
About TEST1,2 terminal(19,20pin), please use with OPEN.  
5. About signal input terminals  
Because the inner impedance of the terminal becomes 100 kΩ or 250 when the signal input terminal makes a  
terminal open, the plunge noise from outside sometimes becomes a problem. When there is an unused signal input  
terminal, design so it is shorted to ground.  
6. About changing gain of Input Gain and Fader Volume  
In case of the boost of the input gain and fader volume when changing to the high gain which exceeds  
20 dB especially, the switching pop noise sometimes becomes big.  
In this case, we recommend changing every 1 dB step without changing a gain at once.  
Also, the pop noise sometimes can reduce by making advanced switch time long, too.  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/34  
TSZ2211115001  
BD37067FV-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip  
may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the maximum junction temperature rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
31/34  
BD37067FV-M  
Operational Notes continued  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 22. Example of monolithic IC structure  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
32/34  
TSZ2211115001  
BD37067FV-M  
Ordering Name Selection  
F
V
B D 3  
7
0
6
7
ME 2  
Package  
FV: SSOP-B40  
Product Rank  
M: for Automotive  
Part Number  
Packaging and forming specification  
E2: Embossed tape and reel  
(SSOP-B40)  
Physical Dimension Tape and Reel Information  
Marking Diagram  
SSOP-B40(TOP VIEW)  
Part Number Marking  
LOT Number  
BD37067FV  
1PIN MARK  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/34  
TSZ2211115001  
BD37067FV-M  
Revision History  
Date  
Revision  
Changes  
13.MAR.2014  
14.NOV.2016  
001  
002  
New Release  
Additional specification about advanced switch operation  
Additional specification of power supply sequence  
Change document style of specification  
www.rohm.com  
TSZ02201-0C2C0E100140-1-2  
14.NOV.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/34  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BD37067FV-M - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BD37067FV-M  
SSOP-B40  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2000  
Taping  
inquiry  
Yes  

相关型号:

BD37067FV-M

Sound Processor for car audio built-in 2nd order post filter
ROHM

BD37067FV-M_16

Sound Processor for car audio built-in 2nd order post filter
ROHM

BD37068FV-E2

Sound Processor for car audio built-in High-Voltage function and 2nd order post filter
ROHM

BD37068FV-M

Sound Processor for car audio built-in High-Voltage function and 2nd order post filter
ROHM

BD37068FV-ME2

Sound Processor for car audio built-in High-Voltage function and 2nd order post filter
ROHM

BD37068FV-M_16

Sound Processor for car audio built-in High-Voltage function and 2nd order post filter
ROHM

BD37069FV-E2

Sound Processor for Car Audio with Built-in High-Voltage Amplifier
ROHM

BD37069FV-M

Sound Processor for Car Audio with Built-in High-Voltage Amplifier
ROHM

BD37069FV-ME2

Sound Processor for Car Audio with Built-in High-Voltage Amplifier
ROHM

BD370A

Medium Power Amplifiers and Switches
ETC

BD370B

暂无描述
NSC

BD370B-16

BD370B-16
NSC