BD5247FVE-TR [ROHM]

Power Supply Support Circuit, Fixed, 1 Channel, +4.7VV, CMOS, PDSO5, VSOF-5;
BD5247FVE-TR
型号: BD5247FVE-TR
厂家: ROHM    ROHM
描述:

Power Supply Support Circuit, Fixed, 1 Channel, +4.7VV, CMOS, PDSO5, VSOF-5

文件: 总10页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Voltage Detector IC Series  
Free Delay Time Setting  
CMOS Voltage Detector IC Series  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
No.09006EBT03  
Description  
ROHM’s BD52□□G/FVE and BD53□□G/FVE series are highly accurate, low current consumption reset IC series with a  
built-in delay circuit. The lineup was established with tow output types (Nch open drain and CMOS output) and detection  
voltages range from 2.3V to 6.0V in increments of 0.1V, so that the series may be selected according the application at  
hand.  
Features  
1) Detection voltage: 2.3V to 6.0V (Typ.), 0.1V steps  
2) High accuracy detection voltage: ±1.0%  
3) Ultra-low current consumption: 0.8µA (Typ.)  
4) Nch open drain output (BD52□□G/FVE), CMOS output (BD53□□G/FVE)  
5) Compact packages VSOF5: BD52□□FVE, BD53□□FVE  
SSOP5: BD52□□G, BD53□□G  
Applications  
All electronic devices that use micro controllers and logic circuits  
Selection Guide  
No.  
Specifications  
Description  
1
Output Circuit Format  
Detection Voltage  
Package  
2:Open Drain Output, 3:CMOS Output  
Example: Displays VS over a 2.3V to 6.0V range in  
0.1V increments.  
Part Number : BD5  
2
3
1
2
3
G:SSOP5 / FVE:VSOF5  
Lineup  
Detection  
Voltage  
6.0V  
5.9V  
5.8V  
5.7V  
5.6V  
5.5V  
5.4V  
5.3V  
5.2V  
5.1V  
5.0V  
4.9V  
4.8V  
4.7V  
4.6V  
4.5V  
4.4V  
4.3V  
4.2V  
Part  
Detection  
Part  
Detection  
Part  
Detection  
Voltage  
4.1V  
4.0V  
3.9V  
3.8V  
3.7V  
3.6V  
3.5V  
3.4V  
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
Part  
Marking  
Marking  
Marking  
Marking  
Number  
BD5260  
BD5259  
BD5258  
BD5257  
BD5256  
BD5255  
BD5254  
BD5253  
BD5252  
BD5251  
BD5250  
BD5249  
BD5248  
BD5247  
BD5246  
BD5245  
BD5244  
BD5243  
BD5242  
Voltage  
4.1V  
4.0V  
3.9V  
3.8V  
3.7V  
3.6V  
3.5V  
3.4V  
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
Number  
BD5241  
BD5240  
BD5239  
BD5238  
BD5237  
BD5236  
BD5235  
BD5234  
BD5233  
BD5232  
BD5231  
BD5230  
BD5229  
BD5228  
BD5227  
BD5226  
BD5225  
BD5224  
BD5223  
Voltage  
6.0V  
5.9V  
5.8V  
5.7V  
5.6V  
5.5V  
5.4V  
5.3V  
5.2V  
5.1V  
5.0V  
4.9V  
4.8V  
4.7V  
4.6V  
4.5V  
4.4V  
4.3V  
4.2V  
Number  
BD5360  
BD5359  
BD5358  
BD5357  
BD5356  
BD5355  
BD5354  
BD5353  
BD5352  
BD5351  
BD5350  
BD5349  
BD5348  
BD5347  
BD5346  
BD5345  
BD5344  
BD5343  
BD5342  
Number  
BD5341  
BD5340  
BD5339  
BD5338  
BD5337  
BD5336  
BD5335  
BD5334  
BD5333  
BD5332  
BD5331  
BD5330  
BD5329  
BD5328  
BD5327  
BD5326  
BD5325  
BD5324  
BD5323  
PW  
PV  
PU  
PT  
PS  
PR  
PQ  
PP  
PN  
PM  
PL  
PB  
PA  
RW  
RV  
RU  
RT  
RS  
RR  
RQ  
RP  
RN  
RM  
RL  
RB  
RA  
QV  
QU  
QT  
QS  
QR  
QQ  
QP  
QN  
QM  
QL  
QK  
QJ  
MV  
MU  
MT  
MS  
MR  
MQ  
MP  
MN  
MM  
ML  
MK  
MJ  
PK  
PJ  
RK  
RJ  
PH  
PG  
PF  
PE  
PD  
PC  
RH  
RG  
RF  
RE  
RD  
RC  
MH  
MG  
MF  
ME  
MD  
QH  
QG  
QF  
QE  
QD  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.B  
1/9  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Absolute maximum ratings (Ta=25°C)  
Parameter  
Power Supply Voltage  
Symbol  
Limits  
-0.3 ~ +10  
GND-0.3 ~ +10  
GND-0.3 ~ VDD+0.3  
540  
Unit  
V
VDD-GND  
Nch Open Drain Output  
CMOS Output  
Output Voltage  
VOUT  
Pd  
V
*1*3  
Power  
SSOP5  
VSOF5  
mW  
*2*3  
Dissipation  
210  
Operating Temperature  
Topr  
Tstg  
-40 ~ +105  
-55 ~ +125  
°C  
°C  
Ambient Storage Temperature  
*1 Use above Ta=25°C results in a 5.4mW loss per degree.  
*2 Use above Ta=25°C results in a 2.1mW loss per degree.  
*3 When a ROHM standard circuit board (70mm×70mm×1.6mm glass epoxy board) is mounted.  
Electrical characteristics (Unless Otherwise Specified Ta=-40 to 105°C)  
Limit  
Parameter  
Detection Voltage  
Symbol  
VDET  
Condition  
VDD=HL, RL=470kΩ  
Unit  
Min.  
VDET(T)  
×0.99  
Typ.  
Max.  
VDET(T)  
×1.01  
*1  
VDET(T)  
V
V
DET =2.3-3.1V  
-
0.80  
0.85  
0.90  
0.95  
0.75  
0.80  
0.85  
0.90  
-
2.40  
VDET =3.2-4.2V  
VDET =4.3-5.2V  
VDET =5.3-6.0V  
-
2.55  
µA  
Circuit Current when ON  
Circuit Current when OFF  
IDD1  
IDD2  
VDD=VDET-0.2V  
VDD=VDET+2.0V  
-
2.70  
-
2.85  
2.25  
V
DET =2.3-3.1V  
-
-
VDET =3.2-4.2V  
VDET =4.3-5.2V  
VDET =5.3-6.0V  
2.40  
µA  
-
2.55  
-
2.70  
VOL0.4V, Ta=25~105°C, RL=470kΩ  
VOL0.4V, Ta=-40~25°C, RL=470kΩ  
VDS=0.5V VDD=1.2V  
0.95  
1.20  
0.4  
-
Operating Voltage Range  
‘Low’ Output Current (Nch)  
VOPL  
IOL  
V
-
-
1.2  
-
mA  
-
VDS=0.5V VDD=2.4V  
VDS=0.5V VDD=4.8V VDET=2.3-4.2V  
2.0  
0.7  
5.0  
1.4  
-
VDS=0.5V VDD=6.0V VDET=4.3-5.2V  
VDS=0.5V VDD=8.0V VDET=5.3-6.0V  
0.9  
1.1  
1.8  
2.2  
-
‘High’ Output Current (Pch)  
Leak Current when OFF  
IOH  
mA  
-
*1  
Ileak VDD=VDS=10V  
VDD=VDET×1.1, VDET=2.3-2.6V, RL=470kΩ  
-
-
0.1  
VDD  
×0.60  
µA  
V
VDD  
×0.30  
VDD  
×0.40  
VDD  
×0.30  
VDD  
×0.35  
VDD  
×0.40  
5.5  
VDD  
×0.45  
VDD  
×0.50  
VDD  
×0.50  
9
VDD  
×0.60  
VDD  
×0.60  
VDD  
×0.60  
12.5  
-
VDD=VDET×1.1, VDET=2.7-4.2V, RL=470kΩ  
VDD=VDET×1.1, VDET=4.3-5.2V, RL=470kΩ  
VDD=VDET×1.1, VDET=5.3-6.0V, RL=470kΩ  
CT pin Threshold Voltage  
VCTH  
*1  
*1  
Output Delay Resistance  
CT pin Output Current  
RCT  
ICT  
VDD=VDET×1.1 VCT=0.5V  
VCT=0.1V VDD=0.95V  
VCT=0.5V VDD=1.5V  
MΩ  
15  
40  
µA  
150  
240  
-
Detection Voltage  
VDET/T Ta=-40°C to 105°C  
-
±100  
±360 ppm/°C  
Temperature coefficient  
VDET  
VDET  
VDET  
V
Hysteresis Voltage  
VS VDD=LHL, RL=470kΩ  
×0.03  
×0.05  
×0.08  
VS(T) : Standard Detection Voltage (2.3V to 6.0V, 0.1V step)  
RL: Pull-up resistor to be connected between VOUT and power supply.  
Designed Guarantee. (Outgoing inspection is not done on all products.)  
*1 Guarantee is Ta=25°C.  
www.rohm.com  
2009.06 - Rev.B  
2/9  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Block Diagrams  
BD52□□G/FVE  
BD53□□G/FVE  
VDD  
V
DD  
VOUT  
VOUT  
Vref  
Vref  
GND  
CT  
GND  
CT  
Fig.1  
Fig.2  
TOP VIEW  
TOP VIEW  
SSOP5  
VSOF5  
PIN No.  
Symbol  
VOUT  
VDD  
Function  
Reset Output  
PIN No.  
Symbol  
VOUT  
SUB  
Function  
1
2
3
4
1
2
Reset Output  
Substrate*  
Power Supply Voltage  
GND  
GND  
Capacitor connection terminal for  
output delay time  
3
CT  
N.C.  
Unconnected Terminal  
Capacitor connection terminal for  
output delay time  
4
5
GND  
VDD  
GND  
5
CT  
Power Supply Voltage  
*Connect the substrate to GND.  
www.rohm.com  
2009.06 - Rev.B  
3/9  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Reference Data (Unless specified otherwise, Ta=25°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
18  
15  
12  
9
45  
40  
35  
30  
25  
20  
15  
10  
5
BD5242G/FVE  
BD5242G/FVE  
BD5342G/FVE  
VDD=2.4V  
VDD=8.0V  
6
VDD=6.0V  
VDD=4.8V  
3
VDD=1.2V  
2.0  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0.0  
0.5  
1.0  
1.5  
2.5  
0
1
2
3
4
5
6
VDD SUPPLY VOLTAGE VDD[V]  
DRAIN-SOURCE VOLTAGE VDS[V]  
DRAIN-SOURCE VOLTAGE VDS[V]  
Fig.3 Circuit Current  
Fig.4 “Low” Output Current  
Fig.5 “High” Output Current  
9
8
7
6
5
4
3
2
1
0
1.0  
450  
400  
350  
300  
250  
200  
150  
100  
50  
BD5242G/FVE  
BD5242G/FVE  
【 】  
BD5242G/FVE  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=25  
Ta=25  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
1
2
3
4
5
VDD SUPPLY VOLTAGE VDD[V]  
V
DD SUPPLY VOLTAGE VDD[V]  
VDD SUPPLY VOLTAGE VDD[V]  
Fig.7 Operating Limit Voltage  
Fig.8 CT Terminal Current  
Fig.6 I/O Characteristics  
5.4  
5.0  
4.6  
4.2  
3.8  
3.4  
1.5  
1.5  
1.0  
0.5  
0.0  
BD5242G/FVE  
BD5242G/FVE  
BD5242G/FVE  
【 】  
Low to high(VDET+ΔVDET  
)
1.0  
0.5  
0.0  
High to low(VDET  
)
-40  
0
40  
80  
-40 -20  
0
20 40 60 80 100  
-40 -20  
TEMPERATURE Ta[ ]  
0
20 40 60 80 100  
TEMPERATURE Ta[  
]
TEMPERATURE Ta[  
]
Fig.9 Detection Voltage  
Release Voltage  
Fig.10 Circuit Current when ON  
Fig.11 Circuit Current when OFF  
1.5  
1.0  
0.5  
0.0  
10000  
13  
12  
11  
10  
9
8
7
6
5
BD5242G/FVE  
BD5242G/FVE  
BD5242G/FVE  
1000  
100  
10  
1
4
0.1  
3
2
1
0
0.01  
0.001  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
0.0001  
0.001  
0.01  
0.1  
TEMPERATURE Ta[  
]
TEMPERATURE Ta[  
]
CAPACITANCE OF CT CCT[μF]  
Fig.12 Operating Limit Voltage  
Fig.14 Delay Time (TPLH) and  
Fig.13 Ct Terminal Circuit Resistance  
CT Terminal External Capacitance  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.B  
4/9  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Setting of Detector Delay Time  
This detector IC can be set delay time at the rise of VDD by the capacitor connected to CT terminal.  
Delay time at the rise of VDD  
voltage(VDET+VDET  
TPLHTime until when Vout rise to 1/2 of VDD after VDD rise up and beyond the release  
)
V
DD-VCTH  
TPLH = -CCT×RCT×ln  
VDD  
C CT  
:
CT pin Externally Attached Capacitance  
RCT : CT pin Internal Impedance P.2 RCT refer.)  
VCTH  
:
CT pin Threshold VoltageP.2 VCTH refer.)  
Ln : Natural Logarithm  
Reference Data of Falling Time (TPHL) Output  
Examples of Falling Time (TPHL) Output  
Part Number  
BD5227G  
tPHL[µs] -40°C  
tPHL[µs] ,+25°C  
tPHL[µs],+105°C  
30.8  
26.8  
30  
26  
28.8  
24.8  
BD5327G  
*This data is for reference only.  
The figures will vary with the application, so please confirm actual operating conditions before use.  
Explanation of Operation  
For both the open drain type (Fig.15) and the CMOS output type (Fig.16), the detection and release voltages are used as  
threshold voltages. When the voltage applied to the VDD pins reaches the applicable threshold voltage, the VOUT terminal  
voltage switches from either “High” to “Low” or from “Low” to “High”. Because the BD52□□G/FVE series uses an open drain  
output type, it is possible to connect a pull-up resistor to VDD or another power supply [The output “High” voltage (VOUT) in  
this case becomes VDD or the voltage of the other power supply].  
VDD  
VDD  
VDD  
RL  
Q2  
Q1  
R1  
R2  
R1  
R2  
VDD  
RESET  
Vref  
Vref  
RESET  
VOUT  
VOUT  
Q1  
Q3  
Q3  
R3  
R3  
GND  
GND  
CT  
CT  
Fig.15 (BD52□□Type Internal Block Diagram)  
Fig.16 (BD53□□Type Internal Block Diagram)  
Timing Waveforms  
Example: the following shows the relationship between the input voltage VDD, the CT Terminal Voltage VCT and the output  
voltage VOUT when the input power supply voltage VDD is made to sweep up and sweep down (The circuits are those in  
Fig.15 and 16).  
1
When the power supply is turned on, the output is unsettled from  
DD  
V
after over the operating limit voltage (VOPL) until TPHL. There fore it is  
possible that the reset signal is not outputted when the rise time of  
VDD is faster than TPHL.  
When VDD is greater than VOPL but less than the reset release  
voltage (VDET+VDET), the CT terminal (VCT) and output (VOUT)  
VDET+ΔVDET  
VDET  
2
VOPL  
0V  
voltages will switch to L.  
CT  
V
3
1/2 VDD  
If VDD exceeds the reset release voltage (VDET+VDET), then  
VOUT switches from L to H (with a delay to the CT terminal).  
4
If VDD drops below the detection voltage (VDET) when the power  
supply is powered down or when there is a power supply fluctuation,  
VOUT switches to L (with a delay of TPHL).  
OUT  
V
TPLH  
TPHL  
TPLH  
TPHL  
5
The potential difference between the detection voltage and the  
release voltage is known as the hysteresis width (VDET). The  
system is designed such that the output does not flip-flop with power  
supply fluctuations within this hysteresis width, preventing  
malfunctions due to noise.  
Fig.17  
www.rohm.com  
2009.06 - Rev.B  
5/9  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Circuit Applications  
1) Examples of a common power supply detection reset circuit  
VDD1  
VDD2  
Application examples of BD52□□G/FVE series (Open  
Drain output type) and BD53□□G/FVE series (CMOS  
output type) are shown below.  
RL  
Microcontroller  
BD52□□□  
CASE1: the power supply of the microcontroller (VDD2)  
differs from the power supply of the reset detection  
(VDD1).  
CT  
CL  
Noise-filtering  
Capacitor)  
Use the open drain output type (BD52□□G/FVE) attached  
a load resistance (RL) between the output and VDD2. (As  
shown Fig.15)  
GND  
Fig.18 Open Collector Output Type  
CASE2: the power supply of the microcontroller (VDD1) is  
same as the power supply of the reset detection (VDD1).  
Use CMOS output type (BD53□□G/FVE) or open drain  
output type (BD52□□G/FVE) attached a load resistance  
(RL) between the output and Vdd1. (As shown Fig.16)  
VDD1  
Microcontroller  
BD53□□□  
When a capacitance CL for noise filtering is connected to  
the VOUT pin (the reset signal input terminal of the  
microcontroller), please take into account the waveform of  
the rise and fall of the output voltage (VOUT).  
CT  
CL  
Noise-filtering  
Capacitor)  
GND  
Fig.19 CMOS Output Type  
2) The following is an example of a circuit application in which an OR connection between two types of detection voltages  
resets the microcontroller.  
VDD1  
VDD2  
VDD3  
RL  
BD52□□□  
BD52□□□  
RST  
microcontroller  
NO.1  
NO.2  
CT  
CT  
GND  
Fig.20  
When there are many power supplies of the system, power supplies VDD1 and VDD2 are being monitored separately, and it is  
necessary to reset the microcomputer, it is possible to use an OR connection on the open drain output type BD52□□G/FVE  
series to pull-up to the desired voltage (VDD3) as shown in Fig.17 and make the output “High” voltage matches the power  
supply voltage VDD3 of the microcontroller.  
www.rohm.com  
2009.06 - Rev.B  
6/9  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
3) Examples of the power supply with resistor dividers  
In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through  
current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output  
oscillatory state).  
(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level  
switches from “High” to “Low” or vice versa.)  
V1  
IDD  
R2  
R1  
I1  
Through  
Current  
DD  
V
BD52□□  
BD53□□  
OUT  
V
CIN  
L
C
GND  
VDD  
VDET  
0
Fig.21  
A voltage drop of [the through-current (I1)] × [input resistor (R2)] is caused by the through current, and the input voltage to  
descends, when the output switches from “Low” to “High”. When the input voltage decreases and falls below the detection  
voltage, the output voltage switches from “High” to “Low”. At this time, the through-current stops flowing through output  
“Low”, and the voltage drop is eliminated. As a result, the output switches from “Low” to “High”, which again causes the  
through current to flow and the voltage drop. This process is repeated, resulting in oscillation.  
Temp - IDD(BD52xx)  
VDD - IDD Peak Current Ta=25°C  
BU43xx  
BU42xx  
BD52xx  
BD53xx  
VDD3V  
VDD5V  
VDD7V  
VDD10V  
10  
1
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.01  
0.001  
3
4
5
6
7
8
9
10  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
VDD[V]  
Temp[°C]  
Fig.22 Current Consumption vs. Power Supply Voltage  
*This data is for reference only.  
The figures will vary with the application, so please confirm actual operating conditions before use.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.B  
7/9  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Operation Notes  
1 . Absolute maximum range  
Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the  
failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given  
when a specific mode to be beyond absolute maximum ratings is considered.  
2 . GND potential  
GND terminal should be a lowest voltage potential every state.  
Please make sure all pins, which are over ground even if, include transient feature.  
3 . Electrical Characteristics  
Be sure to check the electrical characteristics that are one the tentative specification will be changed by temperature,  
supply voltage, and external circuit.  
4 . Bypass Capacitor for Noise Rejection  
Please put into the capacitor of 1µF or more between VDD pin and GND, and the capacitor of about 1000pF between VOUT  
pin and GND, to reject noise. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently  
for the point.  
5 . Short Circuit between Terminal and Soldering  
Don’t short-circuit between Output pin and VDD pin, Output pin and GND pin, or VDD pin and GND pin. When soldering the  
IC on circuit board, please be unusually cautious about the orientation and the position of the IC. When the orientation is  
mistaken the IC may be destroyed.  
6 . Electromagnetic Field  
Mal-function may happen when the device is used in the strong electromagnetic field.  
7 . The VDD line inpedance might cause oscillation because of the detection current.  
8 . A VDD -GND capacitor (as close connection as possible) should be used in high VDD line impedance condition.  
9 . Lower than the mininum input voltage makes the VOUT high impedance, and it must be VDD in pull up (VDD) condition.  
10. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause  
unexpected operations. Application values in these conditions should be selected carefully. If the leakage is assumed  
between the VOUT terminal and the GND terminal, the pull-up resistor should be less than 1/10 of the assumed leak  
resistance. If 10Mleakage is assumed between the CT terminal and the GND terminal, 1Mconnection between the CT  
terminal and the VDD terminal would be recommended. The value of RCT depends on the external resistor that is  
connected to CT terminal, so please consider the delay time that is decided by τ×RCT×CCT changes.  
11. External parameters  
The recommended parameter range for CT is 100pF~0.1µF and RL is 50k~1M. There are many factors (board layout,  
etc) that can affect characteristics. Please verify and confirm using practical applications.  
12. Power on reset operation  
Please note that the power on reset output varies with the VDD rise up time. Please verify the actual operation.  
13. Precautions for board inspection  
Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be  
certain to use proper discharge procedure before each process of the test operation.  
To prevent electrostatic accumulation and discharge in the assembly process, thoroughly ground yourself and any  
equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer  
and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is  
OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.  
14. When the power supply, is turned on because of in certain cases, momentary Rash-current flow into the IC at the logic  
unsettled, the couple capacitance, GND pattern of width and leading line must be considered.  
www.rohm.com  
2009.06 - Rev.B  
8/9  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD52□□G, BD52□□FVE, BD53□□G, BD53□□FVE series  
Part Number Selection  
B
D
5
2
2
3
G
T
R
BD52: Adjustable Delay Time  
CMOS Reset IC  
Reset Voltage Value  
23: 2.3V to (0.1V step)  
60: 6.0V  
Package  
Taping Specifications  
Embossed Taping  
G: SSOP5  
Open Drain Type  
FVE: VSOF5  
BD53: Adjustable Delay Time  
CMOS Reset IC  
CMOS Output Type  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9 0.2  
6
°
4
Tape  
Embossed carrier tape  
3000pcs  
5
4
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
+0.05  
0.04  
0.42  
0.1  
0.95  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
(Unit : mm)  
VSOF5  
<Tape and Reel information>  
1.6 0.05  
1.0 0.05  
Tape  
Embossed carrier tape  
3000pcs  
5
4
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
1
2
3
0.13 0.05  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.22 0.05  
0.5  
Reel  
(Unit : mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.B  
9/9  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY