BD57020MWV-E2 [ROHM]

Power Supply Support Circuit, Fixed, 1 Channel, UQFN-40;
BD57020MWV-E2
型号: BD57020MWV-E2
厂家: ROHM    ROHM
描述:

Power Supply Support Circuit, Fixed, 1 Channel, UQFN-40

文件: 总42页 (文件大小:1380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Wireless Power Consortium / Qi Compliant series  
Wireless Power Transmitter IC  
BD57020MWV  
General Description  
Key Specifications  
Input Power Supply Voltage Range: 4.2 V to 5.3 V  
BD57020MWV is an integrated IC for the wireless power  
transmitter. This device is composed of inverters for the  
coil drive, controller for the communication of the Qi  
compliant and demodulating circuit, GPIO, TCXO buffer,  
and I2C interface.  
Input Adapter Voltage Range:  
Drive Frequency Range:  
4.6 V to 20 V  
110kHz to 205kHz  
-20°C to +85°C  
Operating Temperature Range:  
BD57020MWV works as a controller in the wireless  
power transmitter based on the Qi compliant by using it  
with a general-purpose microcomputer.  
Package  
UQFN040V5050  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 5.00mm x 1.00mm  
BD57020MWV is applied to Qi ver.1.2 BPP / EPP  
(Baseline Power Profile / Extended Power Profile).  
Features  
WPC / Qi ver.1.2 BPP / EPP (Baseline Power Profile  
/ Extended Power Profile) support.  
Half Bridge / Full Bridge inverter  
Foreign object detection  
GPIO 4CH  
I2C bus interface  
5.0mm x 5.0mm UQFN package 40 pin  
Applications  
WPC compliant devices  
PC  
Cradle for charge stand  
Typical Application Circuit  
3.3V  
CS  
+
-
ADPIN  
19V  
BD57015GWL  
Power  
BD57020MWV  
MOSFET  
NN  
Rectification  
LDO  
Mod  
Load  
Driver  
Full Bridge  
1
MCU  
OVPIN  
SW1 30  
29  
Data  
3.3V  
2
LDO33B  
HSIDE1  
Voltage  
&
Current  
Sensing  
3.3V  
3
4
LDO33A  
VDD  
LSIDE1 28  
PGND 27  
LSIDE2 26  
Voltage  
&
Current  
Sensing  
Demodulator  
Qi packet  
Controller  
5
6
7
8
9
TCXOEN  
TCXOIN  
TCXOOUT  
GPIO0  
BD57020MWV  
25  
HSIDE2  
SW2 24  
Transmitter(TX)  
Receiver(RX)  
BOOT2  
23  
GPIO1  
Figure 2. Product position in wireless  
power supply system  
22  
21  
TEST  
COIL_IN  
10 GPIO2  
ADPIN  
I2C IF  
MONI1  
CS  
ADC  
ML610Q772  
Figure 1. Typical application circuit  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/38  
TSZ22111 14 001  
BD57020MWV  
Absolute Maximum Ratings  
Parameter  
VIN, ADPV, ADPI, SW1, SW2 voltage  
BOOT1, BOOT2 voltage  
Symbol  
VIN_H1  
VIN_H2  
VOUT_H  
Rating  
Unit  
V
-0.3 to 24.0  
-0.3 to 31.0  
-0.3 to 31.0  
V
HSIDE1, HSIDE2 voltage  
V
OVPIN, VDDIO, CLKIN, CLKSET, FSKIN,  
SCL, RESETB, TEST, ADDR voltage  
VIN_L1  
-0.3 to 7.0  
V
VDD, TCXOIN voltage  
COIL_IN voltage  
VIN_L2  
VIN_L3  
-0.3 to 4.5  
-4.5 to 7.0  
V
V
LDO33A, LDO33B , INTB, LSIDE1, LSIDE2,  
OVPOUT, MONI0, MONI1 voltage  
VOUT_L1  
-0.3 to 7.0  
V
TCXOEN, TCXOOUT voltage  
SDA voltage  
VOUT_L2  
VINOUT_L1  
VINOUT_L2  
Pd  
-0.3 to 4.5  
-0.3 to7.0  
-0.3 to 4.5  
V
V
GPIO0, GPIO1, GPIO2, GPIO3 voltage  
Power dissipation  
V
3.26 (Note 1  
)
W
°C  
°C  
Operating ambient temperature range  
Ta  
-20 to +85  
Storage temperature range  
Tstg  
-55 to +150  
(Note 1) Derate by 26 mW/°C when operating above Ta=25°C (Mount on 4-layer 74.2mm x 74.2mm x 1.6mm board with front and back layer heat radiation  
copper foil 4.5 mm x 4.5 mm, second and third layer heat radiation copper foil 74.2 mm x 74.2 mm).  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions (Ta= -20°C to +85°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VIN terminal input voltage range  
VDD terminal input voltage range  
VDDIO terminal voltage range  
Adapter input voltage range  
VIN  
4.2  
3.1  
3.1  
4.6  
32  
5.0  
3.3  
3.3  
-
5.3  
3.5  
3.5  
20  
V
V
VDD  
VDDIO  
VADPV  
V
V
TCXO terminal input frequency range FTCXO  
-
52  
MHz  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
2/38  
TSZ22111 15 001  
BD57020MWV  
Electrical Characteristics (Unless otherwise specified VIN=5V VDD=3.3V Ta=25°C)  
Limit  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
Whole Chip  
Operating circuit current 1  
Operating circuit current 2  
Protection block (the IC outside)  
External OCP operating voltage  
Protective circuit (the IC inside)  
VIN Over voltage lockout  
Hysteresis on OVLO  
ICC1  
ICC2  
-
-
2.0  
3.0  
mA  
mA  
TCXOIN=0kHz  
15.0  
23.0  
TCXOIN=32MHz  
VOCP  
125  
160  
195  
mV  
RS=100mΩ  
VOVLO_VIN  
VOVLO_HYS  
VUVLO_VIN  
6.1  
140  
3.3  
6.4  
200  
3.6  
6.7  
260  
3.9  
V
mV  
V
VIN: 5.0 → 8.0V  
VIN: 8.0 → 5.0V  
VIN: 5.0 → 0V  
VIN Under voltage lockout  
Hysteresis on UVLO  
VUVLO_HYS  
VUVLOD_VDD  
VUVLOR_VDD  
VUVLOD_VDDIO  
VUVLOD_VDDIO  
IOCP  
140  
2.25  
2.55  
2.25  
2.55  
-
200  
2.50  
2.80  
2.50  
2.80  
0.48  
260  
2.75  
3.05  
2.75  
3.05  
0.65  
mV  
V
VIN: 0 → 5.0V  
VDD UVLO detection voltage  
VDD UVLO release voltage  
VDDIO UVLO detection voltage  
VDDIO UVLO release voltage  
Internal OCP operating current  
LDO33A block  
VDD: 3.3 → 0V  
VDD: 0 → 3.3V  
VDDIO: 3.3 → 0V  
VDDIO: 0 → 3.3V  
V
V
V
A
LDO33A output voltage  
VLDO33A  
ILDO33A  
3.2  
-
3.3  
-
3.4  
30  
V
Isource=10mA  
Isource=10mA  
LDO33A maximum output current  
LDO33B block  
mA  
LDO33B output voltage  
LDO33B maximum output current  
Demodulating circuit block  
COIL_IN leak current 1  
VLDO33B  
ILDO33B  
3.2  
-
3.3  
-
3.4  
30  
mV  
mA  
ILEAKCOILIN1  
ILEAKCOILIN2  
-
-
-
50  
-
µA  
µA  
VCOIL_IN=3.3V  
VCOIL_IN=-3.3V  
COIL_IN leak current 2  
-150  
TCXO_BUFF block  
TCXOIN input current  
ITCXOIN  
-
-
0
-
1.0  
52  
µA  
VDD=VTCXOIN=4.5V  
Input frequency range  
FTCXOIN  
MHz  
VDD  
x 0.2  
TCXOEN L level output voltage  
TCXOEN H level output voltage  
VOHTXCOEN  
-
-
V
Isink=1.0mA  
VDD  
x 0.8  
VOLTXCOEN  
ZOTCXOOUT  
-
-
-
V
Isource=1.0mA  
TCXOOUT output impedance  
Inverter block  
-
1.0  
kΩ  
Drive frequency  
Minimum Duty Ratio  
Dead Time  
FDRIVE  
Dutymin  
TDead  
110  
-
205  
kHz  
%
-
-
-
-
25  
-
-
-
-
200  
1.0  
0.8  
ns  
Ω
TCXOIN=32MHz  
Source resistance  
Sink resistance  
RSOURCE  
RSINK  
Ω
GPIO block  
VDD  
x 0.3  
GPIO L level input voltage  
GPIO H level input voltage  
VOLGPIO  
VOHGPIO  
-
-
-
V
V
VDD  
x 0.7  
-
GPIO pull-down resistor  
GPIO pull-up resister  
RPDGPIO  
RPUGPIO  
-
-
100  
100  
kΩ  
kΩ  
-
VDD  
x 0.2  
GPIO L level output voltage  
GPIO H level output voltage  
VILGPIO  
VIHGPIO  
-
-
-
V
V
Isink=1.0mA  
VDD  
x 0.8  
-
Isource=1.0mA  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/38  
TSZ22111 15 001  
BD57020MWV  
Limit  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Max  
FSKIN terminal  
VDDIO  
x 0.3  
FSKIN L level input voltage  
VILFSKIN  
VIHFSKIN  
-
-
V
V
VDDIO  
x 0.7  
FSKIN H level input voltage  
CLKIN terminal  
-
VDDIO  
x 0.3  
CLKIN L level input voltage  
VILCLKIN  
VIHCLKIN  
-
-
-
V
V
VDDIO  
x 0.7  
CLKIN H level input voltage  
ADDR terminal  
-
VDDIO  
x 0.3  
ADDR L level input voltage  
VILADDR  
VIHADDR  
-
-
-
V
V
VDDIO  
x 0.7  
ADDR H level input voltage  
-
INTB terminal  
Open Drain ability on INTB  
INTB leak current  
RESETB terminal  
VLINTB  
-
-
380  
-
500  
2.0  
mV  
µA  
Isink=5.0mA  
VINTB=7.0V  
ILEAKINTB  
VDD  
x 0.3  
RESETB L level input voltage  
RESETB H level input voltage  
VILRSTB  
-
-
V
VDD  
x 0.7  
VIHRSTB  
-
-
-
V
RESETB pull-up resister  
I2C interface  
RPDRSTB  
-
100  
kΩ  
SCL, SDA L level input voltage  
SCL, SDA H level input voltage  
SCL, SDA L level input current  
SCL, SDA H level input current  
SDA L level output voltage  
VILI2C  
VIHI2C  
IILI2C  
-
1.50  
-1.0  
-
-
-
-
-
-
0.50  
-
V
V
-
µA  
µA  
mV  
IIHI2C  
1.0  
400  
VOLI2C  
-
Isink=3.0mA  
Pin Configuration  
(TOP VIEW)  
30  
29  
28  
1
2
3
4
OVPIN  
SW1  
HSIDE1  
LSIDE1  
LDO33B  
LDO33A  
VDD  
27  
26  
25  
PGND  
LSIDE2  
HSIDE2  
5
6
7
8
9
TCXOEN  
TCXOIN  
TCXOOUT  
GPIO0  
24  
23  
SW2  
BOOT2  
22  
21  
GPIO1  
TEST  
10  
COIL_IN  
GPIO2  
Figure 3. Pin Configuration  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
4/38  
TSZ22111 15 001  
BD57020MWV  
Pin Description  
Pin No.  
1
Pin Name  
OVPIN  
LDO33B  
LDO33A  
VDD  
Function  
I/O  
5.0V input, connected to OVPOUT.  
3.3V LDO output.  
I
O
O
I
2
3
3.3V LDO output.  
4
3.3V supply.  
5
TCXOEN  
TCXOIN  
TCXOOUT  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
VDDIO  
CLKIN  
CLKSET  
FSKIN  
SCL  
Connected to External oscillator. Control signal output.  
Connected to External oscillator.  
O
I
6
7
Connected to External oscillator.  
O
I/O  
I/O  
I/O  
I/O  
I
General-purpose input and output terminal.  
8
General-purpose input and output terminal.  
General-purpose input and output terminal.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
General-purpose input and output terminal.  
3.3V supply.  
Clock input terminal, leave this pin open.  
Test terminal, leave this pin open.  
FSK control signal input.  
I
I
I
I2C clock input  
I
SDA  
I2C Data input and output.  
I/O  
O
I/O  
I
INTB  
Interrupt detection output.  
RESETB  
AGND  
COIL_IN  
TEST  
Control logic reset  
Analog ground.  
Coil current / voltage input.  
I
Test terminal, connected to GND.  
Connected to Boot strap capacitor.  
Connected to the source of high side FET and the drain of low side FET.  
Connected to the gate of high side FET.  
Connected to the gate of low side FET.  
Power ground.  
I
BOOT2  
SW2  
I
I
HSIDE2  
LSIDE2  
PGND  
LSIDE1  
HSIDE1  
SW1  
O
O
I
Connected to the gate of low side FET.  
Connected to the gate of high side FET.  
Connected to the source of high side FET and the drain of low side FET.  
Connected to Boot strap capacitor.  
Slave Address change.  
O
O
I
BOOT1  
ADDR  
I
I
OVPOUT  
VIN  
5.0V output, connected to OVPIN.  
5.0V Input power supply  
O
I
VIN  
5.0V Input power supply  
I
MONI0  
MONI1  
ADPI  
Coil current value output.  
O
O
I
Input voltage value output.  
Sense transmitter Input current.  
Sense transmitter Input voltage.  
Reference ground.  
ADPV  
I
REFGND  
I
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
5/38  
TSZ22111 15 001  
BD57020MWV  
Block Diagram  
UVLO  
OVP  
BOOT1  
HSIDE1  
OVPIN  
POWER_SENSE  
DRIVER  
DRIVER  
SW1  
LDO33B  
LDO  
VDD  
LSIDE1  
BOOT2  
HSIDE2  
SW2  
LDO33A  
VDD  
LDO  
TSD  
OSC  
VDD  
CONTROL  
Logic  
LSIDE2  
PGND  
TCXOEN  
TCXOIN  
TCXOOUT  
VDD  
VDD  
TCXO Buff  
COIL_IN  
MONI0  
DEMOD  
GPIO0  
GPIO1  
GPIO  
IO  
GPIO2  
GPIO3  
Figure 4. Block diagram  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/38  
TSZ22111 15 001  
BD57020MWV  
Description of Blocks  
1. Pre-driver block  
Transmitter (Tx) includes inverter circuits to input AC electricity into both ends of the primary coil and to produce the  
electromotive force on the secondary side by electromagnetic induction. BD57020MWV includes two pre-driver blocks to  
support Half Bridge inverter and Full Bridge inverter configurations. For the Half Bridge inverter configuration, it is  
necessary to set the pre-driver 1 (PWM0 signal). For the Full Bridge inverter configuration, it is necessary to set the  
pre-driver 1 and pre-driver 2 (PWM1 signal). The output power control modes are the frequency control, the duty control  
and the phase control. The pre-driver block prevents a through current by monitoring the on/off timing of low side FET and  
high side FET.  
For high efficiency, the bootstrap drive system which sets the H side-L side to Nch FET is adopted. It is necessary to put a  
capacitor (0.1 0.47 µF) between the BOOT1 (BOOT2) terminal and the SW1 (SW2) terminal to maintain the voltage  
potential between these pins. Install a ceramic capacitor as close to these pins as possible.  
2. Digital Ping  
Tx inputs AC electricity into the primary coil and by electromagnetic induction develops an electromotive force on the  
secondary coil which starts the Receiver (Rx). This phase is called Digital Ping. Tx keeps transmitting power as long as it  
receives Digital Ping from the Rx. Tx controls the transmission power based on a packet including the power incoming  
information from Rx. The following registers are used to configure Digital Ping.  
(1) PWM0PRD: Setting register for the period of PWM0 signal  
This register is used to set the period of PWM0 signal. The PWM0 signal sets the period of the pulse to be output from  
pre-driver 1 with a count level. The relation between the period of PWM0 signal and source clock is determined by the  
following formula:  
SourceClock  
TargetClock  
PWM 0PRD round  
1  
Where round” means rounding off to the nearest whole number and the source clock is from the TCXO.  
For example, if source clock=32MHz and target clock=100kHz, PWM0PRD register is set to the following value:  
32000  
100  
PWM 0PRD round  
1319 0x013F  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
PWM0  
PRDL  
PWM0  
PRDH  
PWM0  
PRD7  
PWM0  
PRD15  
PWM0  
PRD6  
PWM0  
PRD14  
PWM0  
PRD5  
PWM0  
PRD13  
PWM0  
PRD4  
PWM0  
PRD12  
PWM0  
PRD3  
PWM0  
PRD11  
PWM0  
PRD2  
PWM0  
PRD10  
PWM0  
PRD1  
PWM0  
PRD9  
PWM0  
PRD0  
PWM0  
PRD8  
0x20  
0x21  
0x00  
0x00  
R/W  
R/W  
After PWM0DTYH (0x23) is written, this register is updated with the new data.  
(2) PWM0DTY: Setting register for the duty of PWM0 signal  
This register is used to set the duty of PWM0 signal. PWM0 signal is the output signal at pre-driver 1. The duty of PWM0  
signal is set with the count number of the source clock. After this register has been written, when the counter number of  
PWM0 signal becomes 0, the data of PWM0PRD register and PWM0DTY register are updated with the new data. The  
relation between the duty of PWM0 signal and source clock is determined by the following formula:  
Duty   
PWM 0DTY int  
PWM 0PRD 1   
100  
Where intmeans rounding down to the nearest whole number and the source clock is from TCXO.  
For example, if source clock= 32MHz and target clock=100kHz with duty=50%, PWM0DTY register is set to the following  
value:  
50   
PWM 0DTY int  
320 1  
160 0x00A0  
100  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
7/38  
TSZ22111 15 001  
BD57020MWV  
Duty is defines as the ratio between the amount of time when the output is high in one period to the whole period of  
PWM0 signal. The enable range of PWM0DTY register is from 0x0001 to (PWM0PRD-1). PWM0 will not be generated if  
the PWM0DTY register is set to a value greater than or equal to the value in PWM0PRD register.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
PWM0  
DTYL  
PWM0  
DTYH  
PWM0  
DTY7  
PWM0  
DTY15  
PWM0  
DTY6  
PWM0  
DTY14  
PWM0  
DTY5  
PWM0  
DTY13  
PWM0  
DTY4  
PWM0  
DTY12  
PWM0  
DTY3  
PWM0  
DTY11  
PWM0  
DTY2  
PWM0  
DTY10  
PWM0  
DTY1  
PWM0  
DTY9  
PWM0  
DTY0  
PWM0  
DTY8  
0x22  
0x23  
0x00  
R/W  
R/W  
0x00  
(3) PWM1PHS: Setting register for the phase difference between PWM1 signal and PWM0 signal  
This register is used to set the phase difference between PWM1 signal and PWM0 signal with the count number of the  
source clock. PWM1 signal is a signal with the same period and duty as PWM0 signal. After PWM0DTYH register (0x23)  
is written and the counter number of PWM0PRD register becomes 0, the data of this register is updated with the new  
data. The enable range of this register is from 0x0001 to (PWM0PRD). PWM1 signal will not be generated if the  
PWM1PHS register is set to a value greater than or equal to the value in PWM0PRD register. It is also necessary to write  
0x23 in PWM0DTYH register after this register has been written.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
PWM1  
PHSL  
PWM1  
PHSH  
PWM1  
PHS7  
PWM1  
PHS15  
PWM1  
PHS6  
PWM1  
PHS14  
PWM1  
PHS5  
PWM1  
PHS13  
PWM1  
PHS4  
PWM1  
PHS12  
PWM1  
PHS3  
PWM1  
PHS11  
PWM1  
PHS2  
PWM1  
PHS10  
PWM1  
PHS1  
PWM1  
PHS9  
PWM1  
PHS0  
PWM1  
PHS8  
0x24  
0x25  
0x00  
R/W  
R/W  
0x00  
(4) PWM0GEN: Setting register for the dead time of PWM0 signal  
This register is used to set the dead time of PWM0 signal. The relation between the dead time and the source clock is  
defined by the following formula:  
2
DeadTime   
SourceClock  
For example, if source clock=32MHz, Dead Time is the smallest value and it is 62.5nsec.  
Additionally, please set this register to the following value.  
Full Bridge inverter: PWMGEN0= 0x49  
Half Bridge inverter: PWMGEN0= 0x10  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
P0DLY  
D1  
P0DLY  
D0  
P0DLY  
C2  
P0DLY  
C1  
P0DLY  
C0  
P0DLY  
B2  
P0DLY  
B1  
P0DLY  
B0  
PWMGEN0  
0x30  
0x92  
(5) PWM1GEN: Setting register for the dead time of PWM1 signal  
This register is used to set the dead time of PWM1 signal. The relation between the dead time and source clock is  
determined by the following formula:  
2
DeadTime   
SourceClock  
For example, if source clock=32MHz, Dead Time is the smallest value and it is 62.5nsec.  
Additionally, please set this register to the following value.  
Full Bridge inverter: PWMGEN1= 0x49  
Half Bridge inverter: PWMGEN1= 0x10  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
P1DLY  
D1  
P1DLY  
D0  
P1DLY  
C2  
P1DLY  
C1  
P1DLY  
C0  
P1DLY  
B2  
P1DLY  
B1  
P1DLY  
B0  
PWMGEN1  
0x31  
0x92  
(6) PWRCTRL: Setting register for the operation mode  
This register is used to set the operation mode and the base clock for the internal movement. By setting the power mode  
bit (PWMD0, PWMD1), the operation mode is changed. The operation mode is Digital Ping when PWMD=0x0.  
Meanwhile, the operation mode is Analog Ping, which is also the low power consumption mode, when PWMD=0x1. On  
the other hand, the operation is Stop Mode when PWMD=0x3. During Stop Mode, all blocks are stopped.  
BD57020MWV uses the input clock signal from TCXOIN terminal for source clock of the internal movement.  
Please set this register with TCXSEL = 1, and connect TCXO with frequency between 32 to 52MHz to TCXOIN terminal.  
When TCXSEL = 1 and TCXEN = 1, TCXOEN terminal becomes high output but when TCXSEL = 1 and TCXEN = 0,  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
8/38  
TSZ22111 15 001  
BD57020MWV  
TCXOEN terminal becomes low output. Please set this register with OSCSEL= 1 to use an internal oscillator clock for  
measuring Analog Ping internal period.  
[7:6]  
[5:4]  
Reserved  
PWMD0, PWMD1: Setting bit for operation mode  
(0x0: Digital Ping mode  
0x1: Analog Ping mode  
0x2: Reserved  
0x3: Stop mode)  
[3]  
[2]  
Reserved  
OSCSEL: Control bit for using internal oscillator  
(0x1: Enable  
0x0: Disable)  
[1]  
[0]  
TCXEN: Control bit for using external TCXO  
(0x1: Enable (High output)  
0x0: Disable (Low output))  
TCXSEL: Selection bit for using external TCXO  
(0x1: Enable  
0x0: Disable)  
Initial  
R/W  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
OSCSEL  
b1  
TCXEN  
b0  
TCXSEL  
Value  
* 1  
* 1  
* 1  
PWRCTRL  
0x0F  
-
-
PWMD1  
PWMD0  
-
0x07  
R/W  
*1 prohibited  
(7) PDCTRL: Control register for the pre-driver output  
This register is used to enable pre-driver 1 and pre-driver 2. Pre-driver 1 drives HSIDE1 terminal and LSIDE1 terminal  
while pre-driver 2 drives HSIDE2 terminal and LSIDE2 terminal. When PDEN=1, the pulse is produced at HSIDE1  
terminal and LSIDE1 terminal. When PDEN=0, the pulse is stopped. When PWM1EN=1, the pulse is produced at  
HSIDE2 terminal and LSIDE2 terminal. When PWM1EN=0, the pulse is stopped.  
Refer to 3. FSK (Frequency Shift Keying) for the explanation of PSWEN and PS256.  
[7:5]  
[4]  
Reserved  
PWM1EN: Control bit for pre-driver 2  
(0x1: Enable  
Reserved  
0x0: Disable)  
[3]  
[2]  
[1]  
[0]  
PS256: Change the PWM output to every 256 cycles  
PSWEN: Control of the PWM change function  
PDEN: Control bit for pre-driver 1  
(0x1: Enable  
0x0: Disable)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
PWM1  
EN  
* 1  
* 1  
* 1  
* 1  
PDCTRL0  
0x12  
-
-
-
-
PS256  
PSWEN  
PDEN  
0x00  
*1 prohibited  
3. FSK (Frequency Shift Keying)  
BD57020MWV transmits a packet to Rx using Frequency Shift Keying (FSK) to establish communication with Rx. When Tx  
transmits a packet using FSK, Tx changes the frequency of the PWM0 signal by pre-driver 1 into the drive frequency (fd)  
and the modulation frequency (fmod) every 256 periods. That drive frequency is the frequency of the PWM0 signal which  
set in 2.(1).That FSK modulation frequency is the frequency of the PWM0 signal which set in 3. The setting of FSK sets the  
following registers.  
(1) PWMXPRD: Setting register for the period of the PWM0 signal at FSK  
This register is used to set the period of PWM0 signal when PSWEN=1 (PDCTRL0: 0x12) and FSKIN terminal = high.  
The relation between the period of PWM0 signal and source clock is determined by the formula below, and it is  
expressed in the same formula as PWM0PRD.  
SourceClock  
TargetClock  
PWMXPRD round  
 1  
Where round” means rounding off to the nearest whole number.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
PWMX  
PRDL  
PWMX  
PRDH  
PWMX  
PRD7  
PWMX  
PRD15  
PWMX  
PRD6  
PWMX  
PRD14  
PWMX  
PRD5  
PWMX  
PRD13  
PWMX  
PRD4  
PWMX  
PRD12  
PWMX  
PRD3  
PWMX  
PRD11  
PWMX  
PRD2  
PWMX  
PRD10  
PWMX  
PRD1  
PWMX  
PRD9  
PWMX  
PRD0  
PWMX  
PRD8  
0x26  
0x27  
0x00  
0x00  
R/W  
R/W  
(2) PWMXDTY: Setting register for the duty of the PWM0 signal at FSK  
This register is used to set the duty of PWM0 signal when PSWEN=1 (PDCTRL0: 0x12) and FSKIN terminal = high. The  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
9/38  
TSZ22111 15 001  
BD57020MWV  
relation between the duty of PWM0 signal and source clock is determined by the formula below, and it is expressed in a  
same formula as PWM0DTY.  
Duty   
PWMXDTY int  
PWMXPRD 1   
100  
Where intmeans rounding down to the nearest whole number.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
PWMX  
DTYL  
PWMX  
DTYH  
PWMX  
DTY7  
PWMX  
DTY15  
PWMX  
DTY6  
PWMX  
DTY14  
PWMX  
DTY5  
PWMX  
DTY13  
PWMX  
DTY4  
PWMX  
DTY12  
PWMX  
DTY3  
PWMX  
DTY11  
PWMX  
DTY2  
PWMX  
DTY10  
PWMX  
DTY1  
PWMX  
DTY9  
PWMX  
DTY0  
PWMX  
DTY8  
0x28  
0x29  
0x00  
0x00  
R/W  
R/W  
(3) PDCTRL: Control register for pre-driver output  
This register is used to change the frequency of PWM0 signal by setting PSWEN and PS256. When PSWEN=1, the  
frequency and duty of PWM0 signal are changed by input signal of FSKIN terminal.  
When PSWEN = 0, the data of PWM0 signal is updated to the data of PWM0PRD and PWM0DTY.  
When of PSWEN = 1 and FSKIN terminal = Low, the data of PWM0 signal is updated to the data of PWM0PRD  
register and PWM0DTY register.  
When of PSWEN = 1 and FSKIN terminal = High, the data of PWM0 signal is updated to the data of PWMXPRD  
register and PWMXDTY register.  
When PS256 is 1, the period and the duty of PWM0 are changed by input signal of FSKIN terminal every 256 cycles.  
After having taken in a change of external terminal FSKIN, during 256 cycles of the output frequency, the next change  
isnt taken. Furthermore, an interrupt occurs every 256 cycles of the output frequency when PXIEN bit of register  
INTENB (0x04) is 1. Whenever an interrupt occurs, the output frequency from a pre-driver is changed by changing input  
of external terminal FSKIN every 256 cycles. Refer to 2.Digital Ping (7) PDCTRL for the explanation of bits.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
PWM1  
EN  
* 1  
* 1  
* 1  
* 1  
PDCTRL0  
0x12  
-
-
-
-
PS256  
PSWEN  
PDEN  
0x00  
*1 prohibited  
4. Analog Ping  
BD57020MWV outputs pulse signal from primary coil to detect if Rx was put on the interface of the Tx. The presence of Rx  
is confirmed if BD57020MWV detects a change in the coil current or voltage. When the change of the coil current or voltage  
reaches the threshold value of the Analog Ping detection, the state shifts to Digital Ping. Additionally, BD57020MWV will  
generate an interrupt after Analog Ping executes a set number of times. In Analog Ping, it is necessary to drive a primary  
coil near the resonant frequency. The setting of the frequency is performed right before an output of Analog Ping, like Digital  
Ping. Set the following registers to configure Analog Ping.  
(1) APGCTRL: Control register for Analog Ping  
This register is used to set the start and stop of Analog Ping and the expected value of Rx detection by Analog Ping.  
BD57020MWV starts Analog Ping when APEN=1 is set. The period and duty of PWM0 should be set before APEN is set  
to 1. BD57020MWV stops Analog Ping when APEN=0 is set. When the state of the COIL_IN terminal is matched with the  
expected value of this register, BD57020MWV detects Rx. When APEN is 1, BD57020MWV becomes the stand-by state,  
the circuit electric current decreases.BD57020MWV will execute Analog ping until any of the two conditions is met: 1.)  
Analog Ping finishes the set number of repeated execution without detecting any Rx. 2.) Rx is detected wherein it  
generates an interrupt and stops Analog Ping. The expected value of Analog Ping is configured as follows:  
[7]  
APEN: Control bit for Analog Ping  
(0x1: Enable  
Reserved  
APEX0, APEX1: Expected value of Analog ping  
(0x1: Detect the Rx 0x0: Not detect the Rx  
0x0Disable)  
[6:2]  
[1:0]  
0x2, 0x3: Reserved)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
* 1  
APGCTRL  
0x16  
APEN  
-
-
-
-
-
APEX1  
APEX0  
0x00  
*1 prohibited  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/38  
TSZ22111 15 001  
BD57020MWV  
(2) APGSTT: Analog Ping status register  
This register shows status of Analog Ping.  
[7]  
Reserved  
[6:4]  
APSTA2, APSTA1, APSTA0: Analog Ping status  
0x0: Stop  
0x1: Under the standby set in APGIVT  
0x3: Under the power output set in APGIDUR  
0x5: Under the measurement set in APGMSR  
0x6: A state of the input accorded with a value of the APEX.  
BD57020MWV generates an interrupt and stop.  
0x7: The number of Analog Ping cycles reaches the set number.  
BD57020MWV generates an interrupt and stop.  
Others: Reserved  
[3:0]  
Reserved  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
* 1  
APGSTT  
0x17  
-
APSTA2  
APSTA1  
APSTA0  
-
-
-
-
0x00  
*1 prohibited  
(3) APGITVL: Setting register for the interval time of Analog Ping  
This register is used to set the interval time of Analog Ping. If The Analog Ping detection interval is set short, time from  
Rx establishment on Tx to Tx starting power feeding is short. However, the power consumption of Tx increases The  
Analog Ping detection interval is set by interval with internal oscillation clock (typ.100kHz). The relation between the  
interval time and input clock is determined by the following formula:  
APGITV  
IntervalTimeInputClock 1  
For example, if Input Clock=100kHz and time of Interval Time=500msec, the value of APGITV register is set to the  
following value:  
APGITV  
500100 149999 0xC34F  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
APG  
ITV7  
APG  
ITV15  
APG  
ITV6  
APG  
ITV14  
APG  
ITV5  
APG  
ITV13  
APG  
ITV4  
APG  
ITV12  
APG  
ITV3  
APG  
ITV11  
APG  
ITV2  
APG  
ITV10  
APG  
ITV1  
APG  
ITV9  
APG  
ITV0  
APG  
ITV8  
APGITVL  
APGITVH  
0x18  
0x19  
0x00  
0x00  
R/W  
R/W  
(4) APGDUR: Setting register for the duration time of Analog Ping  
This register is used to set the duration time of Analog Ping. Duration time is defined as the time frame wherein  
BD57020MWV produces the pulse output and drives the primary coil. The input clock from TCXOIN terminal is a source  
clock. The relation between the duration time and source clock is determined by the following formula:  
1
APGDUR int DurationTimeSourceClock   
1  
1000  
Where intmeans rounding down to the nearest whole number.  
For example, if the time of duration is 100µsec and Source Clock is 32MHz, the value of APGDUR register is set to the  
following value:  
1
APGDUR int 10032000  
13199 0x0C7F  
1000  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
APG  
DUR7  
APG  
DUR6  
APG  
DUR5  
APG  
DUR4  
APG  
DUR3  
APG  
APG  
DUR2  
APG  
APG  
DUR1  
APG  
APG  
DUR0  
APG  
APGDURL  
0x1A  
0x1B  
0x00  
0x00  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
APGDURH  
-
-
-
-
DUR11  
DUR9  
DUR8  
DUR7  
*1 prohibited  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
11/38  
TSZ22111 15 001  
BD57020MWV  
(5) APGMSR: Setting register for the measurement time of Analog Ping  
This register is used to set the measurement time of Analog Ping. Measurement time is defined as the time frame after  
the duration time wherein BD57020MWV monitors the state of COIL_IN to confirm the presence of Rx. The input clock  
from TCXOIN terminal is a source clock. The relation between the measurement time and source clock is determined by  
the following formula:  
1
APGMSR int MeasurementTimeSourceClock   
1  
1000  
Where intmeans rounding down to the nearest whole number.  
For example, if Measurement Time=10µsec and Source Clock is 32MHz, APGMSR register is set to the following value:  
1
APGMSR int 1032000  
1319 0x013F  
1000  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
APG  
MSR7  
APG  
MSR6  
APG  
MSR5  
APG  
MSR4  
APG  
MSR3  
APGMS  
R11  
APG  
MSR2  
APGMS  
R10  
APG  
MSR1  
APGMS  
R9  
APG  
MSR0  
APGMS  
R8  
APGMSRL  
0x1C  
0x1D  
0x00  
0x00  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
APGMSRH  
-
-
-
-
*1 prohibited  
(6) APGCNT: Setting register for the execution number of times of Analog Ping  
This register is used to set the number of times Analog Ping carries out automatically. If APGCNT= 0, Analog Ping is  
carried out until APEN bit of APGCTRL register is 0. If APIEN=1 in the INTENB register, when the number of Analog Ping  
execution times reaches the set number, BD57020MWV generates an interrupt signal. BD57020MWV keeps generating  
an interrupt signal until APEN bit of APGCTRL register is 0.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
APG  
CNT7  
APG  
CNT6  
APG  
CNT5  
APG  
CNT4  
APG  
CNT3  
APG  
CNT2  
APG  
CNT1  
APG  
CNT0  
APGCNT  
0x1E  
0x00  
5. Interrupt control  
BD57020MWV generates various interrupt signals. These are configured by the following registers.  
(1) INTSTT: Interrupt status register  
This register shows an interrupt status when an interrupt factor occurred. When any bit of this register is set,  
BD57020MWV generates an interrupt signal on INTB terminal. When the bit is set to 1, the interrupt signal is cleared.  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Reserved  
APINT: An interrupt signal of Analog Ping occurs.  
Reserved  
AGINT: An interrupt signal by the protection movement occurs.  
EINT: An interrupt signal due to the parity error or the framing error of the received packet.  
CINT: An interrupt signal due to the check sum error of the received packet.  
RINT2: An interrupt signal due to the normal completion of reception by demodulator 2.  
RINT1: An interrupt signal due to the normal completion of reception by demodulator 1.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
INTSTT  
0x03  
-
APINT  
-
AGINT  
EINT  
CINT  
RINT2  
RINT1  
0x00  
*1 prohibited  
(2) INTENB: Control register for an interrupt  
This register is used to control an interrupt signal. When the interrupt factor that is set to 1 by this register occurred, a bit  
to support of the interrupt status register is set. But there is no bit of the interrupt status register (INTSTT) corresponding  
to PXIEN of the interrupt enable register (INTENB). Because the admitted interrupt occurs in 1 pulse by PXIEN, the  
status at the time of the outbreak of interrupt is not maintained.  
[7]  
[6]  
[5]  
[4]  
[3]  
PXIEN: Control bit for an interrupt signal every 256 cycles by PWM change function  
APINT: Control bit for an interrupt signal in Analog Ping  
Reserved  
AGINT: Control bit for an interrupt signal by protection movement  
EINT: Control bit for an interrupt signal by the parity error or the framing error during the packet reception  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
12/38  
BD57020MWV  
[2]  
[1]  
CINT: Control bit for an interrupt signal by the check sum error during the packet reception  
RINT2: Control bit for an interrupt signal by normal completion at demodulator 2 during the packet  
reception  
[0]  
RINT1: Control bit for an interrupt signal by normal completion at demodulator 1 during the packet  
reception  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
INTENB  
0x04  
PXIEN  
APIEN  
-
AGIEN  
EIEN  
CIEN  
RIEN2  
RIEN1  
0x00  
*1 prohibited  
6. AM demodulator block  
BD57020MWV has the two AM demodulator blocks for communication with Rx. The characteristics of demodulator blocks  
are different to improve communication stability. The following registers are used for the configuration of the demodulator  
blocks.  
(1) RXCTRL: Control register for Packet reception  
This register is used to control the demodulating blocks. If PRE1 bit=1, the demodulator 1 is enabled to receive the  
packets. If PRE2 bit=1, the demodulator 2 is enabled to receive the packets. It is possible to set both PRE1 bit and PRE2  
bit to 1 at the same time, then demodulator 1 and demodulator 2 works independently. The digital filters of the  
demodulators are enabled if FTE1 bit and FTE2 bit are set to 1 in this register. In order to raise communication stability,  
please be sure that the digital filters are enabled.  
If other demodulator is receiving a packet even if reception error (frame error, parity error or check sum error) occurs in  
demodulator 1 or demodulator 2 while CTRL is 0, it does not generate an interrupt.  
If CTRL bit = 1 and a reception error occurs on demodulator 1 or demodulator 2, BD57020MWV generates an interrupt  
signal immediately.  
[7]  
CTRL: Setting bit of exclusive control function  
(0x1: Enable  
Reserved  
0x0: Disable)  
[6]  
[5]  
FTE2: Setting bit for the digital filter of the demodulator 2  
(0x1: Enable 0x0: Disable)  
FTE1: Setting bit for the digital filter of the demodulator 1  
[4]  
(0x1: Enable  
Reserved  
PRE2: Setting bit for the demodulator 2  
(0x1: Enable 0x0: Disable)  
PRE1: Setting bit for the demodulator 1  
0x0: Disable)  
[3:2]  
[1]  
[0]  
(0x1: Enable  
0x0: Disable)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
RXCTRL  
0x01  
CTRL  
-
FTE2  
FTE1  
-
-
PRE2  
PRE1  
0x00  
*1 prohibited  
(2) RXSTT: Packet reception status register  
This register holds the status of the packet reception of the demodulator. If packet reception with demodulator 1 is  
completed normally, RCV1 becomes 1. If packet reception with demodulator 2 is completed normally, RCV2 becomes 1.  
If check sum error occurs during the packet reception with demodulator 1 or demodulator 2, CERR becomes 1. If parity  
error or framing error occurs during the packet reception with demodulator 1 or demodulator 2, PERR becomes 1.  
The factors of the framing error during packet reception are as follows:  
Stop bit is not found.  
Reception was completed in the middle of a byte.  
The packet size that is calculated from the value of the header byte is different from the one that is received.  
In addition, RCV1, RCV2, CERR and RERR, latch when packet reception is completed. These are cleared if RINT1,  
RINT2, CINT and RINT (INTSTT: 0x03) are written 1.These are overwritten when the next packet is received.  
When demodulator 1 is receiving packet, BSY1 becomes 1. When demodulator 2 is receiving packet, BSY2 becomes 1.  
[7]  
[6]  
[5:4]  
[3]  
BSY2: Demodulator 2 is busy receiving a packet  
BSY1: Demodulator 1 is busy receiving a packet  
Reserved  
PERR: Parity error or framing error occurred during the packet reception with either demodulator 1 or  
demodulator 2  
[2]  
[1]  
[0]  
CERR: Check sum error occurred during the packet reception with either demodulator 1 or demodulator 2  
RCV2: Packet reception is completed normally with demodulator 2.  
RCV1: Packet reception is completed normally with demodulator 1.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/38  
TSZ22111 15 001  
BD57020MWV  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
* 1  
* 1  
RXSTT  
0x02  
BSY2  
BSY1  
-
-
RERR  
CERR  
RCV2  
RCV1  
0x00  
*1 prohibited  
(3) CLKDIV: Register for setting Clock frequency division  
This register sets the fundamental period of the demodulator. This set the fundamental period (CLKDIV) with a count  
level. The value of CLKDIV must be set so that Target Clock becomes 16kHz (62.5µsec). CLKDIV is determined by the  
following formula:  
SourceClock  
CLKDIV int  
 1  
TargetClock 2  
Where intmeans rounding down to the nearest whole number.  
For example, if Source Clock is 32MHz, CLKDIV set to the following value:  
32000  
CLKDIV int  
1999 0x03E7  
162  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
CLK  
0x0C  
CLK  
DIV6  
CLK  
CLK  
DIV5  
CLK  
CLK  
DIV4  
CLK  
CLK  
DIV3  
CLK  
CLK  
DIV2  
CLK  
CLK  
DIV1  
CLK  
DIV9  
CLK  
DIV0  
CLK  
DIV8  
CLKDIV1L  
CLKDIV1H  
0xE7  
0x03  
R/W  
R/W  
DIV7  
CLK  
0x0D  
DIV15  
DIV14  
DIV13  
DIV12  
DIV11  
DIV10  
(4) FLTPRD: Register for setting filter fundamental period  
This register appoints the fundamental period of the digital filter. This set the fundamental period (FLTPRD) with a count  
level. The value of CLKDIV must be set so that Target Clock becomes 2kHz (500µsec). FLTPRD is determined by the  
following formula:  
SourceClock  
TargetClock  
FLTPRD round  
1  
Where round” means rounding off to the nearest whole number.  
For example, when Source Clock is 32MHz, CLKDIV is set to the following value:  
32000  
2
FLTPRD round  
115999 0x3E7F  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
FLT  
PRD7  
FLT  
FLT  
PRD6  
FLT  
FLT  
PRD5  
FLT  
FLT  
PRD4  
FLT  
FLT  
PRD3  
FLT  
FLT  
PRD2  
FLT  
FLT  
PRD1  
FLT  
FLT  
PRD0  
FLT  
FLTPRDL  
FLTPRDH  
0xA0  
0xA1  
0x00  
0x00  
R/W  
R/W  
PRD15  
PRD14  
PRD13  
PRD12  
PRD11  
PRD10  
PRD9  
PRD8  
(5) RXSTT_1: Packet reception status register 1  
This register shows the packet reception status of demodulator 1.  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
PRE1: In searching the preamble of the packet with demodulator 1  
BSY1: In receiving a packet with demodulator 1  
RDN1:Packet reception is completed with demodulator 1  
ERF1:Framing error occurs during the packet reception with demodulator 1  
ERP1:Parity error occurs during the packet reception with demodulator 1  
ERC1:Check sum error occurs during the packet reception with demodulator 1  
RCV2:Packet reception is completed with demodulator 2 normally  
RCV1:Packet reception is completed with demodulator 1 normally  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
RXSTT_1  
0x52  
PRE1  
BSY1  
RDN1  
ERF1  
ERP1  
ERC1  
RCV2  
RCV1  
0x00  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
14/38  
TSZ22111 15 001  
BD57020MWV  
(6) RXSTT_2: Packet reception status register 2  
This register shows the packet reception status of demodulator 2.  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
PRE2: In searching the preamble of the packet with demodulator 2  
BSY2: In receiving a packet with demodulator 2  
RDN2:Packet reception is completed with demodulator 2  
ERF2:Framing error occurs during the packet reception with demodulator 2  
ERP2:Parity error occurs during the packet reception with demodulator 2  
ERC2:Check sum error occurs during the packet reception with demodulator 2  
RCV1:Packet reception is completed with demodulator 1 normally  
RCV2:Packet reception is completed with demodulator 2 normally  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
RXSTT_2  
0x53  
PRE2  
BSY2  
RDN2  
ERF2  
ERP2  
ERC2  
RCV1  
RCV2  
0x00  
(7) RXCNT_X: Reports the Rx byte counter  
This register reports the total number of bytes received from demodulator 1 or 2.  
[7:5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Reserved  
RXxCNT4 (x: 0, 1)  
RXxCNT3 (x: 0, 1)  
RXxCNT2 (x: 0, 1)  
RXxCNT1 (x: 0, 1)  
RXxCNT0 (x: 0, 1)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
RX1  
CNT4  
RX2  
RX1  
CNT3  
RX2  
RX1  
CNT2  
RX2  
RX1  
CNT1  
RX2  
RX1  
CNT0  
RX2  
*1  
*1  
*1  
RXCNT_1  
0x50  
0x51  
-
-
-
0x00  
0x00  
R
R
*1  
*1  
*1  
RXCNT_2  
-
-
-
CNT4  
CNT3  
CNT2  
CNT1  
CNT0  
*1 prohibited  
(8) RXDAT_1: Packet data register 1  
This enables to show the data of the packet that is received with demodulator 1. Size of the buffers receiving Qi packet  
is 32 bytes. The longest packet prescribed in Qi is 29 bytes (including a header and the check sum byte). So  
BD57020MWV receive the packet of all kinds. The buffer to receive Qi packet is one to be 32 bytes, and the packet that  
is received is stored by the top of the buffer memory and is overwritten when BD57020MWV receive the next packet.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
0x60  
:
RXDAT_1  
Last 32 Bytes received by Demodulator 1  
0x00  
0x7F  
(9) RXDAT_2: Packet data register 2  
This enables to show the data of the packet that is received with demodulator 2. Size of the buffers receiving Qi packet  
is 32 bytes. The buffer to receive Qi packet is one to be 32 bytes, and the packet that is received is stored by the top of  
the buffer memory and is overwritten when BD57020MWV receive the next packet.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
0x80  
:
RXDAT_2  
Last 32 Bytes received by Demodulator 2  
0x00  
0x9F  
7. About the input power detection  
During wireless power transmission, when a foreign object such as a piece of metal exists on the charge interface between  
Tx and Rx, it generates heat, which poses a risk to cause burns and may even damage the Rx. BD57020MWV monitors  
the input power to the Tx and finds transmission electricity and detects the existence of the foreign object by comparing the  
transmission electricity with the received power electricity information (Received Power Packet) from Rx. BD57020MWV  
calculates the input power by monitoring the input voltage and the input current of the Tx.  
About the input voltage (ADPV terminal voltage) detection, BD57020MWV can output the voltage of ADPV terminal voltage  
×0.1 from MONI1 terminal by the following register setting. In addition, it uses an external current detection amplifier about  
the input current detection. From them, the transmission electricity is calculated.  
(1) AINSEL: Analog input choice register  
By this register, MONI1 terminal outputs the voltage of ADPV terminal voltage ×0.1.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
15/38  
TSZ22111 15 001  
BD57020MWV  
[7:2]  
[1]  
Reserved  
AIN1SEL1  
(0x1ADPV terminal voltage)  
Reserved  
[0]  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
AIN1  
SEL1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
*1  
AINSEL  
0x08  
-
-
-
-
-
-
-
0x00  
*1 prohibited  
8. Low Drop OUT (LDO) block  
BD57020MWV is equipped with two LDO blocks. On LDO33A terminal, it is assumed that the power supply of the  
microcomputer is connected. Capacitors (0.47 ~ 2.0µF) are necessary between the LDO terminals (LDO33A and LDO33B)  
and GND. Please place the capacitors as close to LDO33A and LDO33B terminals as possible.  
9. About a general-purpose terminal (GPIO)  
BD57020MWV has four GPIO terminals as a general-purpose terminal. The following registers are used to configure the  
GPIO terminals.  
(1) GPDIR: Input and output direction setting register of the GPIO port  
This register sets each GPIO port as an input terminal or output terminal. If set to 1, the port becomes an output  
terminal. On the other hand, if set to 0, the port becomes an input terminal.  
[7:4]  
[3:0]  
Reserved  
PDX (X: 0- 3)  
(0x1: Enable output on GPIOX  
0x0Enable input on GPIOX)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
GPDIR  
0x42  
-
-
-
-
PD3  
PD2  
PD1  
PD0  
0x00  
*1 prohibited  
(2) GPIN: Input state confirmation register of the GPIO terminal  
This register defines the state of the GPIO port. Only the bit set as an input port in the input and output direction  
setting registers of the GPIO port is enabled. When H is input into the port, the corresponded register becomes 1.  
When L was input into the port, the corresponded register becomes 0.  
[7:4]  
Reserved  
[3:0]  
PIX (X: 0- 3)  
(0x1: High input on GPIOX  
0x0Low input on GPIOX)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
* 1  
* 1  
* 1  
* 1  
GPIN  
0x40  
-
-
-
-
PI3  
PI2  
PI1  
PI0  
-
*1 prohibited  
(3) GPOUT: Output setting register of the GPIO terminal  
This register sets an output level to the GPIO port. Only the bit set as an output port in the input and output direction  
setting registers of the GPIO port is enabled. When the register is 1, the corresponded port outputs H. When the  
register is 0, the corresponded port outputs L.  
[7:4]  
Reserved  
[3:0]  
POX (X: 0- 3)  
(0x1: High output on GPIOX  
0x0Low output on GPIOX)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
GPOUT  
0x41  
-
-
-
-
PO3  
PO2  
PO1  
PO0  
0x00  
*1 prohibited  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
16/38  
TSZ22111 15 001  
BD57020MWV  
(4) GPPU: The pull-up resistance of GPIO port setting register  
This register sets the pull-up resistance of each GPIO port. If set to 1, the resistance connected to VDD power supply is  
enabled. If set to 0, it is disabled.  
[7:4]  
[3:0]  
Reserved  
PPUX (X: 0- 3)  
(0x1: Enable pull-up resistor on GPIOX  
0x0Disable)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
PPU3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
GPPU  
0x43  
-
-
-
-
PPU2  
PPU1  
PPU0  
0x00  
*1 prohibited  
(5) GPPD: The pull-down resistance of GPIO port setting register  
This register sets the pull-down resistance of each GPIO port. If set to 1, the resistance connected to GND is enabled. If  
set to 0, it is disabled. The initial value of this register is 0x0F, and the pull-down resistance is enabled.  
[7:4]  
[3:0]  
Reserved  
PPDX (X: 0- 3)  
(0x1: Enable pull-down resistor on GPIOX  
0x0Disable)  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
PPD3  
b2  
b1  
b0  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
GPPD  
0x44  
-
-
-
-
PPD2  
PPD1  
PPD0  
0x0F  
*1 prohibited  
10. Reporting the identify  
BD57020MWV has a register to report its identify and version. These are read only.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
IDENT  
0x00  
DID7  
DID6  
DID5  
DID4  
DID3  
DID2  
DID1  
DID0  
0x21  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/38  
TSZ22111 15 001  
BD57020MWV  
11. Protective circuit  
BD57020MWV has the following functions as a protection feature.  
Protection  
name  
Detection  
terminal  
Detection condition  
VIN > 6.4V  
Release condition  
VIN <6.2V  
Protection type  
System disabled  
OVLO_VIN  
UVLO_VIN  
VIN  
VIN  
VIN  
VIN <3.4V  
VIN > 3.6V  
System disabled  
System disabled  
ICC <IOCP =  
0.48A  
Internal OCP  
ICC > IOCP = 0.48A  
ADPV - ADPI  
<160mV  
And  
ADPV  
ADPI  
ADPV - ADPI > VOCP  
= 160mV  
Pre-driver block stop  
The LSIDE = HSIDE = L output  
External OCP  
Register (Note 1  
)
0xB1 = 0x08 *  
Pre-driver block stop (Note 2  
LSIDE = H, HSIDE = L  
)
UVLO_ADPV  
UVLO_VDD  
ADPV  
VDD  
VIN <4.3V  
VDD <2.5V  
VDDIO <2.5V  
VIN > 4.5V  
Power-on reset cancellation  
RESETB = L  
VDD > 2.8V  
UVLO_VDDIO  
VDDIO  
VDDIO > 2.8V  
IO block Disable  
(Note1) It is necessary to reset it from a register to cancel external overcurrent protection. It can reset external overcurrent protection by writing in 0x08 at  
address 0xB1. However, please set 0 by all means because this register does not automatically return to 0 after setting it to 0x08.  
(Note2) BD57020MWV can mask the pre-driver block stop even if it detects UVLO_ADPV depending on the register setting.  
(1) ANA_STAT: Status register for internal blocks  
This register reports the status for internal blocks.  
[7:5]  
[4]  
Reserved  
TCX_READY  
(0x1: Fault detected  
OCP  
(0x1: Fault detected  
TSD  
(0x1: Fault detected  
UVLO42  
(0x1: Fault detected  
OVLO_VIN  
0x0No fault)  
0x0No fault)  
0x0No fault)  
0x0No fault)  
0x0No fault)  
[3]  
[2]  
[1]  
[0]  
(0x1: Fault detected  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R
TCX_RE  
ADY  
*1  
*1  
*1  
ANA_STAT  
0xB0  
-
-
-
OCP  
TSD  
UVLO  
OVLO  
0x00  
*1 prohibited  
(2) ANA_ERR_CRL: OCP error configure register  
This register configures the reset for OCP. If OCP_ERCL is set to 1, the OCP error is cleared. However, please set 0 by  
all means because this bit does not automatically return to 0 after setting it to 1.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
ANN_ERR_  
CRL  
OCP  
ERCL  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
0xB1  
-
-
-
-
-
-
-
0x00  
*1 prohibited  
(3) ERR_MODE: Error mode setting register in UVLO_ADPV  
This register configures the error mode in UVLO_ADPV. If ERR_SEL = 1, the pre-driver block works regardless of  
UVLO_ADPV. If ERR_SEL = 0, the pre-driver block stops if it detects UVLO_ADPV.  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
ERR_  
SEL  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
ERR_MODE  
0xC4  
-
-
-
-
-
-
-
0x00  
*prohibited  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
18/38  
TSZ22111 15 001  
BD57020MWV  
About External OCP movement  
BD57020MWV monitors the input current to the Tx. If there is an excessive flow of electric current, it will stop the operation  
of the pre-driver block. Then, LSIDE1 (LSIDE2) terminal and the  
HSIDE1 (HSIDE2) terminal become the L output.  
The relation of current limit ILIM and the current sense resistor RS, is  
determined by the following formula:  
Adapter  
Voltage  
RS  
V
ILIM  
OCP [A]  
RS  
ADPV  
ADPI  
Where VOCP is the OCP detecting voltage.  
For example, ILIM becomes 1.6A if RS=100mΩ and VOCP=160mV (typ).  
The value of RS is between 30 ~ 47when Adapter Voltage is 5V. And  
the value of RS is between 30 ~ 100mΩ when Adapter Voltage is 12V or  
19V. Please be careful enough on the occasion of the value setting with  
the set.  
Figure 5. The input current detection  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
19/38  
TSZ22111 15 001  
BD57020MWV  
12. Command interface  
12-1.Command Interface  
I2C bus method is used in command interface with host CPU on BD57020MWV.  
In BD57020MWV, not only writing but read-out is possible except for some registers.  
Besides the slave address in BD57020MWV, one byte select address can be Specified, written and readout.  
The format of I2C bus slave mode is shown below.  
The slave address of BD57020MWV is 0x44 (7Bit) while ADDR terminal input is L. It is 0x45 (7Bit) while ADDR terminal  
input is H.  
MSB  
Slave Address  
LSB  
MSB  
LSB  
MSB  
A
LSB  
S
A
Select Address  
Data  
A
P
S:  
Start condition  
Slave Address: Putting up the bit of read mode (H") or write mode (L") after slave address (7bit) set with ADDR, the data  
of eight bits in total will be sent. (MSB first)  
A:  
The acknowledge bit in each byte adds into the data when acknowledge is sent and received. When data  
is correctly sent and received, "L" will be sent and received. There was no acknowledging for "H".  
1 byte select address is used in BD57020MWV. (MSB first)  
Select Address:  
Data:  
P:  
Data byte, data (the MSB first) sent and received  
Stop Condition  
MSB  
6
5
LSB  
SDA  
SCL  
Start Condition  
Stop Condition  
When SDA, SCL=H”  
When SDA, SCL=H”  
Figure 6. Command Interface  
SDA  
SCL  
S
Sr  
Repeated Start  
Condition  
Start Condition  
Figure 7. Repeated Start Condition  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
20/38  
TSZ22111 15 001  
BD57020MWV  
12-2.Data Format  
Write format  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
A
C
K
A
C
K
A
C
K
S
P
Slave Address  
(7bit)  
R
/W  
Select Address  
(8bit)  
Write Data  
(8bit)  
Acknowledge from  
slave device  
Acknowledge from  
slave device  
Acknowledge from  
slave device  
Start Condition  
'0' Write  
Stop Condition  
Figure 8. Write Data Format  
Read format  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
A
C
K
A
C
K
N
A
K
S
P
Slave Address  
(7bit)  
R
/W  
Read Data  
(8bit)  
Read Data  
(8bit)  
Acknowledge from  
slave device  
Acknowledge from  
master device  
Non acknowledge  
from master device  
Start Condition  
'1' Read  
Stop Condition  
Figure 9. Read Data Format  
Read Data from specified Select Address  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
Read Data  
A
C
K
A
C
K
A
C
K
N
A
C
S
Sr  
P
Slave Address  
(7bit)  
R
/W  
Select Address  
(8bit)  
Slave Address  
(7bit)  
R
/W  
Read Data from Select Address  
'0' Write  
Repeated Start Condition  
'1' Read  
Figure 10. Read Data from specified Select Address (1)  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
Read Data  
A
C
K
A
C
K
A
C
K
N
A
C
S
P
S
P
Slave Address  
(7bit)  
R
/W  
Select Address  
(8bit)  
Slave Address  
(7bit)  
R
/W  
Read Data from Select Address  
'0' Read  
'1' Read  
Figure 11. Read Data from specified Select Address (2)  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/38  
TSZ22111 15 001  
BD57020MWV  
12-3.Control signal specifications  
Bus line, I/O stage electrical specification and timing  
S D A  
tB U F  
tF  
tH D S T A  
tR  
tL O W  
S C L  
tH D S T A  
tH D D A T  
tH IG H  
tS U D A T  
tS U S T A  
tS U S T O  
P
S
S r  
P
Figure 12. Timing chart  
Table 12-1. SDAI and SCLI bus-line characteristic (Unless specified, Ta = 25 degrees Celsius, VDD=3.3V)  
Draft mode  
Parameter  
Sign  
fSCL  
tBUF  
Unit  
kHz  
μs  
Min.  
0
Max.  
400  
1
2
SCL clock frequency  
Bus free time between a "stop" condition and "start"  
conditions  
1.3  
It is a "start" condition (retransmission) in hold time.  
After this period,  
3
tHDSTA  
0.6  
μs  
The first clock pulse is generated.  
LOW state hold time of the SCL clock  
HIGH state hold time of the SCL clock  
Setup time of the retransmission "start" condition  
Data hold time  
4
5
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
1.3  
0.6  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
pF  
6
0.6  
0 Note1)  
7
8
Data setup time  
100  
9
Rise time of SDA and the SCL traffic light  
Fall time for SDA and SCL signaling  
Setup time of the "stop" condition  
Capacitive load of each bus line  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
10  
11  
12  
tF  
tSUSTO  
Cb  
400  
The above-mentioned numerical values are all the values corresponding to VIH min and VIL max level.  
Note1) To exceed an undefined area on falling edged of SCLI, transmission device should internally offer the hold-time of 300ns or more for SDAI signal  
(VIH min of SCLI signal).  
The above-mentioned characteristic is a theory value in IC design and it doesn't be guaranteed by shipment inspection.  
When problem occurs by any chance, we talk in good faith and correspond.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/38  
TSZ22111 15 001  
BD57020MWV  
12-4.List of registers  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
IDENT  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
:
DID7  
CTRL  
BSY2  
DID6  
-
BSY1  
APINT  
APIEN  
DID5  
FTE2  
DID4  
FTE1  
-
AGINT  
AGIEN  
DID3  
-
RERR  
RINT  
RIEN  
DID2  
-
CERR  
CINT  
CIEN  
DID1  
PRE2  
RCV2  
RINT2  
RIEN2  
DID0  
PRE1  
RCV1  
RINT1  
RIEN1  
0x21  
0x00  
0x00  
0x00  
0x00  
R
R/W  
R
R/W  
R/W  
* 1  
* 1  
* 1  
RXCTRL  
RXSTT  
INTSTT  
INTENB  
* 1  
* 1  
-
* 1  
* 1  
-
-
* 1  
PXIEN  
-
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
AINSEL  
-
-
-
-
-
-
-
-
-
0x00  
-
-
0x07  
AIN1  
SEL1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
0x08  
-
-
-
-
-
-
-
R/W  
0x09  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
0x0B  
CLK  
DIV7  
CLK  
CLK  
DIV6  
CLK  
CLK  
DIV5  
CLK  
CLK  
DIV4  
CLK  
CLK  
DIV3  
CLK  
CLK  
DIV2  
CLK  
CLK  
DIV1  
CLK  
DIV9  
CLK  
DIV0  
CLK  
DIV8  
CLKDIV1L  
CLKDIV1H  
0x0C  
0x0D  
0xE7  
0x03  
R/W  
R/W  
DIV15  
DIV14  
DIV13  
DIV12  
DIV11  
DIV10  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
PWRCTRL  
0x0E  
0x0F  
0x10  
:
-
-
-
-
-
-
-
-
-
-
* 1  
* 1  
* 1  
-
-
PWMD1  
PWMD0  
-
OSCSEL  
TCXEN  
TCXSEL  
0x07  
R/W  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
PDCTRL0  
Reserved  
-
-
-
-
-
-
-
-
-
0x00  
-
-
0x11  
PWM1  
EN  
* 1  
* 1  
* 1  
* 1  
0x12  
-
-
-
-
PS256  
PSWEN  
PDEN  
R/W  
0x13  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
-
-
-
-
-
-
-
-
-
0x15  
0x16  
0x17  
* 1  
* 1  
* 1  
* 1  
* 1  
APGCTRL  
APGSTT  
APEN  
-
-
-
-
-
-
APEX1  
-
APEX0  
-
0x00  
0x00  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
* 1  
APSTA2  
APSTA1  
APSTA0  
-
-
APG  
ITV7  
APG  
ITV15  
APG  
APG  
ITV6  
APG  
ITV14  
APG  
DUR6  
APG  
ITV5  
APG  
ITV13  
APG  
DUR5  
APG  
ITV4  
APG  
ITV12  
APG  
DUR4  
APG  
ITV3  
APG  
ITV11  
APG  
DUR3  
APG  
DUR11  
APG  
ITV2  
APG  
ITV10  
APG  
DUR2  
APG  
DUR9  
APG  
ITV1  
APG  
ITV9  
APG  
APG  
ITV0  
APG  
ITV8  
APG  
APGITVL  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
APGITVH  
APGDURL  
APGDURH  
APGMSRL  
APGMSRH  
DUR7  
DUR1  
APG  
DUR0  
APG  
* 1  
* 1  
* 1  
* 1  
-
-
-
-
DUR8  
APG  
MSR1  
APGMS  
R9  
DUR7  
APG  
MSR0  
APGMS  
R8  
APG  
MSR7  
APGMS  
R15  
APG  
MSR6  
APGMS  
R14  
APG  
MSR5  
APGMS  
R13  
APG  
MSR4  
APGMS  
R12  
APG  
APG  
MSR3  
APGMS  
R11  
MSR2  
APGMS  
R10  
APG  
APG  
APG  
APG  
APG  
APG  
APG  
APG  
APGCNT  
0x1E  
0x1F  
0x20  
0x00  
-
CNT7  
CNT6  
CNT5  
CNT4  
CNT3  
CNT2  
CNT1  
CNT0  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
PWM0  
PRD7  
PWM0  
PRD15  
PWM0  
DTY7  
PWM0  
DTY15  
PWM1  
PHS7  
PWM1  
PHS15  
PWMX  
PRD7  
PWMX  
PRD15  
PWMX  
DTY7  
PWMX  
DTY15  
PWM0  
PRD6  
PWM0  
PRD14  
PWM0  
DTY6  
PWM0  
DTY14  
PWM1  
PHS6  
PWM1  
PHS14  
PWMX  
PRD6  
PWMX  
PRD14  
PWMX  
DTY6  
PWMX  
DTY14  
PWM0  
PRD5  
PWM0  
PRD13  
PWM0  
DTY5  
PWM0  
DTY13  
PWM1  
PHS5  
PWM1  
PHS13  
PWMX  
PRD5  
PWMX  
PRD13  
PWMX  
DTY5  
PWMX  
DTY13  
PWM0  
PRD4  
PWM0  
PRD12  
PWM0  
DTY4  
PWM0  
DTY12  
PWM1  
PHS4  
PWM1  
PHS12  
PWMX  
PRD4  
PWMX  
PRD12  
PWMX  
DTY4  
PWMX  
DTY12  
PWM0  
PRD3  
PWM0  
PRD11  
PWM0  
DTY3  
PWM0  
DTY11  
PWM1  
PHS3  
PWM1  
PHS11  
PWMX  
PRD3  
PWMX  
PRD11  
PWMX  
DTY3  
PWMX  
DTY11  
PWM0  
PRD2  
PWM0  
PRD10  
PWM0  
DTY2  
PWM0  
DTY10  
PWM1  
PHS2  
PWM1  
PHS10  
PWMX  
PRD2  
PWMX  
PRD10  
PWMX  
DTY2  
PWMX  
DTY10  
PWM0  
PRD1  
PWM0  
PRD9  
PWM0  
DTY1  
PWM0  
PRD0  
PWM0  
PRD8  
PWM0  
DTY0  
PWM0PRDL  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM0PRDH  
PWM0DTYL  
PWM0DTYH  
PWM1PHSL  
PWM1PHSH  
PWMXPRDL  
PWMXPRDH  
PWMXDTYL  
PWMXDTYH  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
PWM0  
DTY9  
PWM0  
DTY8  
PWM1  
PHS1  
PWM1  
PHS9  
PWMX  
PRD1  
PWMX  
PRD9  
PWMX  
DTY1  
PWM1  
PHS0  
PWM1  
PHS8  
PWMX  
PRD0  
PWMX  
PRD8  
PWMX  
DTY0  
PWMX  
DTY9  
PWMX  
DTY8  
0x2A  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
-
0x2F  
P0DLY  
D1  
P0DLY  
D0  
P0DLY  
C2  
P0DLY  
C1  
P0DLY  
C0  
P0DLY  
B2  
P0DLY  
B1  
P0DLY  
B0  
PWMGEN0  
*1 prohibited  
0x30  
0x92  
R/W  
*0x in the head of for each character means a hex digit.  
If there is nothing, it means decimal numeral  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
23/38  
BD57020MWV  
Initial  
Value  
Address  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
R/W  
P1DLY  
D1  
P1DLY  
D0  
P1DLY  
C2  
P1DLY  
C1  
P1DLY  
C0  
P1DLY  
B2  
P1DLY  
B1  
P1DLY  
B0  
PWMGEN1  
0x31  
0x92  
0x32  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
-
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
:
* 1  
* 1  
* 1  
* 1  
GPIN  
-
-
-
-
PI3  
PO3  
PD3  
PPU3  
PPD3  
PI2  
PO2  
PD2  
PPU2  
PPD2  
PI1  
PO1  
PD1  
PPU1  
PPD1  
PI0  
PO0  
PD0  
PPU0  
PPD0  
-
R
* 1  
* 1  
* 1  
* 1  
GPOUT  
GPDIR  
GPPU  
GPPD  
-
-
-
-
0x00  
0x00  
0x00  
0xFF  
R/W  
R/W  
R/W  
R/W  
* 1  
* 1  
* 1  
* 1  
-
-
-
-
* 1  
* 1  
* 1  
* 1  
-
-
-
-
* 1  
* 1  
* 1  
* 1  
-
-
-
-
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
-
0x4F  
RX1  
CNT4  
RX2  
CNT4  
ERF1  
ERF2  
RX1  
CNT3  
RX2  
CNT3  
ERP1  
ERP2  
RX1  
CNT2  
RX2  
CNT2  
ERC1  
ERC2  
RX1  
CNT1  
RX2  
CNT1  
RCV2  
RCV2  
RX1  
CNT0  
RX2  
CNT0  
RCV1  
RCV1  
* 1  
* 1  
* 1  
RXCNT_1  
RXCNT_2  
0x50  
0x51  
-
-
-
0x00  
0x00  
R/W  
R/W  
* 1  
* 1  
* 1  
-
-
-
RXSTT_1  
RXSTT_2  
0x52  
0x53  
0x54  
:
0x5F  
0x60  
:
0x7F  
0x80  
:
PRE1  
PRE2  
BSY1  
BSY2  
RDN1  
RDN2  
0x00  
0x00  
R
R
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
RXDAT_1  
RXDAT_2  
-
-
-
-
-
-
-
-
-
-
Last 32 Bytes received by Demodulator 1  
Last 32 Bytes received by Demodulator 2  
0x00  
0x00  
R
R
0x9F  
FLT  
PRD7  
FLT  
FLT  
PRD6  
FLT  
FLT  
PRD5  
FLT  
FLT  
PRD4  
FLT  
FLT  
PRD3  
FLT  
FLT  
PRD2  
FLT  
FLT  
PRD1  
FLT  
FLT  
PRD0  
FLT  
FLTPRDL  
FLTPRDH  
0xA0  
0xA1  
0x00  
0x00  
R/W  
R/W  
PRD15  
PRD14  
PRD13  
PRD12  
PRD11  
PRD10  
PRD9  
PRD8  
0xA2  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
-
0xAF  
TCX_RE  
ADY  
* 1  
* 1  
* 1  
ANA_STAT  
0xB0  
0xB1  
-
-
-
OCP  
TSD  
UVLO  
OVLO  
0x02  
0x00  
R
ANA_ERR_  
CLR  
OCP  
ERCL  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
-
-
-
-
-
-
-
R/W  
0xB2  
:
0xC3  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
0x00  
-
-
ERR_  
SEL  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
ERR_MODE  
0xC4  
-
-
-
-
-
-
-
R/W  
0xC5  
:
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
* 1  
Reserved  
-
-
-
-
-
-
-
-
-
0xFF  
*1 prohibited  
*0x in the head of for each character means a hex digit.  
If there is nothing, it means decimal numeral  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
24/38  
BD57020MWV  
Typical Performance Curves  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
16.0  
15.0  
14.0  
13.0  
12.0  
-20  
0
20  
40  
60  
80  
-20  
0
20  
Temp []  
40  
60  
80  
Temp []  
Figure 13. ICC1 [mA] vs. Temp. [°C]  
(TCXOIN CLK = 0kHz)  
Figure 14. ICC2 [mA] vs. Temp. [°C]  
(TCXOIN CLK = 32MHZ)  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
-20  
0
20  
40  
60  
80  
0
10  
20  
30  
40  
Temp. []  
Output Current [mA]  
Figure 15. Output Voltage VLDO33A [V] vs. Temp. [°C]  
(Output Current = 0mA)  
Figure 16. Output Voltage VLDO33A [V] vs  
Output current [mA]  
(Temp. = 25°C)  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/38  
TSZ22111 15 001  
BD57020MWV  
Typical Performance Curves - continued  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
RxOutput Power [W]  
RxOutput Power [W]  
Figure 17-2. System Efficiency [%] vs Rx Output Power [W]  
(Rx=BD57015GWL,Vout=10V)  
Figure 17-1. System Efficiency [%] vs Rx Output Power [W]  
(Rx=BD57011GWL,Vout=5V)  
Timing Chart  
19V  
ADPV  
5V  
VIN  
3.3V  
LDO33A  
3.3V  
LDO33B  
TCXOEN  
・・・  
・・・  
・・・  
・・・  
・・・  
・・・  
・・・  
・・・  
・・・  
・・・  
LSIDE1  
Analog Ping  
100 usec  
Digital Ping  
70msec  
Min = 1msec  
Figure 18. Start up sequence  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/38  
TSZ22111 15 001  
BD57020MWV  
Application Example  
1) Recommended Circuit Diagram  
RVIN2  
U4  
INA199A1  
RVIN3  
RTVIN  
DTVIN  
RVIN1  
RSOUT  
1
2
3
6
5
REF  
GND  
V+  
OUT  
MONI0_PA0  
3.3V  
CSOUT  
RSIN-  
PGND  
CSIN  
IN-  
IN+  
M9  
PGND  
4
RSIN+  
CPA2  
PGND  
PGND PGND  
RS1  
GND  
COM-CH  
CADP3  
CADP4  
RPPH  
M1  
VADPV  
RS2  
GNDADPV  
CADP1  
CADP2  
RPPG  
GND PGND  
CS1  
5V  
M2  
CVIN1  
RPPEN  
CS2  
CS3  
GND  
LTX1  
LED4  
CDC1 CDC2  
RDCH  
GND  
GND  
RLED4  
M8  
DCHCTRL  
RGPU  
M6  
GND  
GND  
GND  
M7  
RTVQ RVQ1  
RVQ2  
GND  
CBOOT1  
RGPD  
GND  
RH1  
MOS_H1  
RH2  
RHD2  
MOS_H2  
M3  
HSIDE2  
LSIDE2  
3.3VB  
GND  
GND  
RHD1  
3.3V  
DVQ  
RQPD  
1
30  
29  
28  
27  
26  
25  
RQIN1  
RQIN2  
LTX2  
OVPIN  
SW1  
CV33B  
CV33A  
RL1  
RLD1  
RL2  
2
3
MOS_L1  
LDO33B  
LDO33A  
VDD  
HSIDE1  
LSIDE1  
PGND  
GND  
GND  
MOS_L2  
M5  
RLD2  
GND  
4
5
CCOILV  
U1  
BD57020MWV  
3.3V  
5V  
TCXOEN  
LSIDE2  
HSIDE2  
LSIDE2  
HSIDE2  
CQOUT1  
CQOUT2  
PGND  
U3  
BU7241G  
6
RQOUT1  
TCXOIN  
TCXOOUT  
GPIO0  
3.3V  
RREFH  
7
24  
23  
22  
21  
1
5
4
GND GND  
TCXOIN  
SW2  
BOOT2  
TEST  
IN+  
VDD  
OUT  
CBOOT2  
8
RVDH  
CPA  
GND  
RQOUT2  
TG_GPIO0  
TG_GPIO1  
RCLMP  
CCLMP  
RREFL1  
2
3
RTCXOUT  
OSC  
VSS  
IN-  
9
GPIO1  
GND  
GND  
10  
GND  
RREFL2  
GND  
ROSC  
TG_GPIO2  
GPIO2  
COIL_IN  
RVDL  
PGND  
* Thermal Pad is connected to the GND.  
3.3V  
COSC1  
COSC2  
RVDL2  
M4  
GND  
GND  
GND  
GND  
TG_GPIO3  
M10  
RCOILIN_CPO  
RSCL  
GND  
RSDA  
PGND  
CSCL  
CSDA  
JP5  
JP6  
GND  
3.3VB  
LED3  
PGND  
GND  
RLED3  
CAIN0  
GND  
1
2
3
4
24  
PB7  
TEST  
PD1  
PB0  
C2  
C8  
23  
22  
21  
20  
19  
18  
17  
PC7  
VDD  
U2  
ML610Q772  
NC4  
VSS  
NC20  
PB6  
PB5  
PB4  
5
6
RX-D  
PB1  
PB2  
PB3  
PA2  
3.3VB  
GND  
R8  
RCOILIN_GPO  
7
8
RESET_N  
TEST  
GND  
PWRPATH_EN_GPO  
LED2  
LED1  
VPP  
For Debugger  
RLED2  
RLED1  
GND  
MONI1-PA1  
CAIN1  
C4  
GND  
Changing the software may cause the changing the circuit diagram.  
Figure 19. Typical application circuit diagram  
2) Parts list  
Parts Name  
Recommended Value  
24  
Unit  
µH  
Recommended Part  
760 308 110  
Maker  
Würth  
Number  
1
Tx Coil  
LTX  
IC  
U1  
-
-
-
-
-
BD57020MWV  
ML610Q772  
BU7241G  
ROHM  
LAPIS  
ROHM  
TI  
1
1
1
1
1
U2  
-
U3  
U4  
-
-
INA199A1  
OSC  
32  
MHz NX3225GA  
NDK  
FET/Tr  
MOS_H2, MOS_L2  
MOS_H1, MOS_L1, M7  
M1  
10  
10  
-7  
A
A
A
A
A
RQ3E100GN  
RQ3E100GN  
RQ1E070RP  
RUE002N02  
RUR020N02  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
2
3
1
5
3
M2, M4, M6, M8, M10  
M3, M5, M9  
Diode/LED  
0.2  
2
DVQ  
6.8  
V
V
-
EDZTE616.8B  
EDZTE616.2B  
SML-P11MT  
ROHM  
ROHM  
ROHM  
1
1
4
DTVIN  
6.2  
LED1, LED2, LED3, LED4  
VF<2.0V  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/38  
TSZ22111 15 001  
BD57020MWV  
Parts Name  
Coil/Trans  
COM_CH  
Capacitor  
CADP1  
Recommended Value  
-
Unit Recommended Part  
Maker  
-
Number  
SHORT  
ohm  
-
0.1  
10  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
µF  
pF  
F
-
-
-
-
MURATA  
MURATA  
MURATA  
MURATA  
1
1
1
CADP2  
CADP3  
10  
22  
CADP4  
1
1
0.033  
0.033  
0.033  
1
CS1  
CS2  
GRM32D7U2E333JW31 MURATA  
GRM32D7U2E333JW31 MURATA  
GRM32D7U2E333JW31 MURATA  
1
CS3  
1
CVIN1  
-
-
-
-
-
-
-
-
-
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
-
1
1
0.22  
10  
1
CBOOT1, CBOOT2  
CDC1, CDC2  
CV33B  
2
1
1
1
CV33A  
10  
-
CSCL  
1
OPEN  
1
CSDA  
CAIN0  
0.1  
0.01  
1000  
-
µF  
µF  
pF  
F
MURATA  
MURATA  
CAIN1  
1
1
CCOILV  
CCLMP  
GRM21A7U2E102JW31 MURATA  
-
-
-
-
-
-
-
-
-
-
-
-
OPEN  
0.01  
0.01  
0.1  
-
CPA  
µF  
µF  
µF  
F
MURATA  
MURATA  
MURATA  
-
1
CPA2  
CSIN  
1
1
CSOUT  
CQOUT1  
CQOUT2  
COSC1, COSC2  
C2  
OPEN  
47  
µF  
µF  
F
MURATA  
MURATA  
-
1
1
1
-
1
OPEN  
µF  
pF  
pF  
MURATA  
MURATA  
MURATA  
1
1
1
4700  
2200  
C4  
C8  
Resistor  
RS1, RS2  
RTCXOUT  
RH1, RH2  
RHD1, RHD2  
RL1, RL2  
RLD1, RLD2  
RTVIN  
100  
1
20  
mΩ  
MΩ  
Ω
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
2
1
2
2
MΩ  
Ω
2
2
20  
-
Ω
OPEN  
100  
680  
1
kΩ  
Ω
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
1
3
1
1
1
3
1
1
1
1
1
2
1
1
RVIN1, RVIN2, RVIN3  
RDCH  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Ω
1.5  
3.3  
1.5  
3
RSCL  
RSDA  
RLED1, RLED2, RLED3  
RLED4  
RPPH  
100  
100  
100  
100  
47  
RPPEN  
RPPG  
RTVQ  
RVQ1, RVQ2  
RQPD  
RGPD  
100  
100  
kΩ  
kΩ  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
28/38  
TSZ22111 15 001  
BD57020MWV  
Parts Name  
RGPU  
Recommended Value  
Unit Recommended Part  
Maker  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Number  
10  
12  
2
kΩ  
Ω
-
1
RQIN1, RQIN2  
RQOUT1  
RQOUT2  
RREFH  
RREFL1  
RREFL2  
ROSC  
-
2
kΩ  
kΩ  
kΩ  
MΩ  
kΩ  
Ω
-
-
1
1
200  
100  
1
-
1
-
-
1
1
4.7  
-
-
SHORT  
33  
6.2  
6.2  
-
RVDH  
RVDL  
kΩ  
kΩ  
kΩ  
Ω
MCR10EZHF333  
ROHM  
ROHM  
ROHM  
-
ROHM  
ROHM  
ROHM  
ROHM  
1
1
-
-
-
-
-
-
-
RVDL2  
RCLMP  
RSIN-  
1
OPEN  
1
1
Ω
1
1
1
1
RSIN+  
Ω
1
RSOUT  
R8  
kΩ  
kΩ  
36  
3) Selection of Components Externally Connected  
Component  
Symbol  
CBOOT1, CBOOT2  
CV33A, CV33B  
RL1, RL2  
Limit  
Unit  
µF  
µF  
Ω
BOOT1 (2) terminal strapping  
capacity  
0.1 to 0.47  
0.47 to 2.0  
1.0 to 30  
1.0 to 30  
30 to 100  
LDO33A (B) terminal  
strapping capacity  
L Side FET gate resistance  
H Side FET gate resistance  
Input current sense resistance  
RH1, RH2  
Ω
RS  
mΩ  
About the above operating condition, it is the value in the IC only. Please be careful enough on the occasion of the value setting with the set.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
29/38  
TSZ22111 15 001  
BD57020MWV  
Power Dissipation  
(UQFN040V5050 Package)  
Use a thermal design that allows for a sufficient margin by taking into account the permissible power dissipation (Pd) in  
actual operating conditions.  
3.5  
3.26W  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
25  
50  
AMBIENT TEMPERATURE : Ta [°C]  
* 74.2mm x 74.2mm x 1.6mm Glass Epoxy Board  
75  
100  
125  
150  
(front and back layer heat radiation copper foil 4.5 mm x 4.5 mm,  
second and third layer heat radiation copper foil 74.2 mm x 74.2 mm)  
Figure 20. Power Dissipation Curve (Pd-Ta Curve)  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
30/38  
TSZ22111 15 001  
BD57020MWV  
I/O equivalent circuits  
VIN, OVPOUT terminal  
BOOT1, HSIDE1, SW1, LSIDE1, PGND terminal  
(BOOT2, HSIDE2, SW2, LSIDE2)  
OVPOUT  
VIN  
BOOT1 (2)  
HSIDE1 (2)  
SW1 (2)  
OVPOUT  
LSIDE1 (2)  
PGND  
OVPIN, LDO33A (LDO33B) terminal  
VDD,TCXOIN, TCXOOUT terminal  
VDD  
VDD  
VDD  
OVPIN  
TCXOIN  
LDO33A(B)  
VDD  
TCXOOUT  
TCXOEN terminal  
VDDIO,  
FSKIN (CLKSET, CLKIN, ADDR, TEST) terminal  
VDD  
VDDIO  
VDDIO  
TCXOEN  
CLKIN  
CLKSET  
FSKIN  
ADDR  
TEST  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
31/38  
TSZ22111 15 001  
BD57020MWV  
GPIO0 (GPIO1, 2, 3) terminal  
SCL terminal  
SDA terminal  
VDD  
VDDIO  
VDDIO  
VDD  
SDA  
SCL  
VDD  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
VDD  
INTB terminal  
MONI0 terminal  
RESETB terminal  
INTB  
VDD  
VDD  
VDD  
MONI0  
RESETB  
COIL_IN terminal  
ADPV, ADPI terminal  
ADPV  
ADPI  
COIL_IN  
MONI1 terminal  
MONI1  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
32/38  
TSZ22111 15 001  
BD57020MWV  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
33/38  
TSZ22111 15 001  
BD57020MWV  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 21. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
34/38  
TSZ22111 15 001  
BD57020MWV  
Ordering Information  
B D 5 7 0 2 0 M W V -  
E 2  
Part Number  
Package  
Packaging and forming specification  
MWV: UQFN040V5050 E2: Embossed tape and reel  
Marking Diagrams  
UQFN040V5050 (TOP VIEW)  
Part Number Marking  
D 5 7 0 2 0  
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
35/38  
TSZ22111 15 001  
BD57020MWV  
Physical Dimension, Tape and Reel Information  
Package Name  
UQFN040V5050  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
36/38  
BD57020MWV  
Revision History  
Date  
Revision  
001  
Changes  
27.Jul.2015  
New Release  
P1 Figure2.  
Deleted the line.  
P2 Recommended Operating Conditions  
VADPV Min = 4.8V  
VADPV Min = 4.6V  
P5 Pin Description MONI1  
Input voltage value and input current value output.  
Input voltage value  
10.Aug.2015  
002  
P15 About the input power detection  
Changed the paragraphs.  
P25 Figure19.  
Circuit diagram modified.  
P25 to P27 Parts list  
Parts list modified.  
P1  
Figure 1.  
Modified the figure.  
P3  
Electrical Characteristics  
Corrected the font of unit.  
P7  
1. Pre-driver block  
Changed the sentence.  
Corrected the font of unit.  
P11  
Corrected the font of unit.  
P12 (5) APGMSR  
Corrected the font of unit.  
P13 (1) RXCTRL  
Changed the sentence.  
P14 (3) CLKDIV  
Corrected the font of unit.  
P14 (4) FLTPRD  
Corrected the font of unit.  
(4) APGDUR  
25.Mar.2016  
003  
P17  
About External OCP movement  
Changed the sentence.  
P24  
Typical Performance Curves  
Changed a name of the efficiency data.  
Figure 17.  
Figure 17-1.  
Added to the efficiency data. Figure 17-2.  
P25  
Modified the circuit diagram.  
P25 to P27 2) Parts list  
Modified the parts list.  
1) Recommended Circuit Diagram  
P1  
General Description / Features / Package  
Change the sentence.  
P7  
(1) PWM0PRD, (2) PWM0DTY  
Change the sentence.  
P9  
Added the explanation.  
P9 3. FSK  
Modified the sentence.  
P9 (1) PWMXPRD  
(6) PWRCTRL  
Change the sentence.  
P10 (2) PWMXDTY  
Change the sentence.  
P10 (3) PDCTRL  
6.Feb.2017  
004  
Added the explanation.  
P11 (2) APGSTT  
Modified the sentence.  
P11 (4) APGDUR  
Change the sentence.  
P12 (5) APGMSR  
Change the sentence.  
P12 5. Interrupt control  
Modified the sentence  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
37/38  
TSZ22111 15 001  
BD57020MWV  
Date  
Revision  
Changes  
P12 (1) INTSTT  
Change the sentence.  
P13 (2) INTENB  
Change the sentence.  
P13 (1) RXCTRL, (2) RXSTT  
Change the sentence.  
Added the explanation..  
P14 (3) CLKDIV, (4) FLTPRD, (5) RXSTT_1  
Change the sentence.  
P15 (6) RXSTT_2  
Change the sentence.  
P15 (7) RXCNT  
Added the explanation.  
P15 (8) RXDAT_1, (6) RXDAT_2  
Change the sentence.  
6.Feb.2017  
004  
P16, 17 (1) (5)  
Added the explanation.  
P17  
10. Reporting the Identify  
Added the explanation  
P17 (1)ANA_STAT, (2) ANA_ERR_CRL  
Added the explanation.  
P18  
(1)ANA_STAT, (2) ANA_ERR_CRL  
Added the explanation.  
P19 About External OCP movement  
Change the sentence  
P23, 24 List of registers  
Modified  
www.rohm.com  
TSZ02201-0F2F0AK00130-1-2  
6.Feb.2017 Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
38/38  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BD57020MWV - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BD57020MWV  
UQFN040V5050  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  

相关型号:

BD57021MWV-E2

Telecom Circuit, 1-Func, UQFN-40
ROHM

BD580S

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD580T

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD580YS

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD580YT

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD590S

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD590T

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD590YS

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD590YT

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
PANJIT

BD5F

Energy Limiting (BA-BE Series)
HAMMOND

BD5G

Energy Limiting (BA-BE Series)
HAMMOND

BD5LL20AEFV-C (开发中)

BD5LL20AEFV-C is 5-channel SPI-input low side switch developed as engine control. It has built-in open load detection function, over current protection function, thermal shutdown function, and active clamp function. It also has a 5 V output LDO as a power supply for the microcontroller and a built-in K-LINE communication circuit, making it suitable for motorcycle engine control.
ROHM