BD5LL20AEFV-C (开发中) [ROHM]

BD5LL20AEFV-C is 5-channel SPI-input low side switch developed as engine control. It has built-in open load detection function, over current protection function, thermal shutdown function, and active clamp function. It also has a 5 V output LDO as a power supply for the microcontroller and a built-in K-LINE communication circuit, making it suitable for motorcycle engine control.;
BD5LL20AEFV-C (开发中)
型号: BD5LL20AEFV-C (开发中)
厂家: ROHM    ROHM
描述:

BD5LL20AEFV-C is 5-channel SPI-input low side switch developed as engine control. It has built-in open load detection function, over current protection function, thermal shutdown function, and active clamp function. It also has a 5 V output LDO as a power supply for the microcontroller and a built-in K-LINE communication circuit, making it suitable for motorcycle engine control.

文件: 总48页 (文件大小:2165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive IPD Series  
5ch Low Side Switch with Built-in LDO  
BD5LL20AEFV-C  
General Description  
Key Specifications  
BD5LL20AEFV-C is 5-channel SPI-input low side switch  
developed as engine control. It has built-in open load  
detection function, over current protection function,  
thermal shutdown function, and active clamp function. It  
also has a 5 V output LDO as a power supply for the  
microcontroller and a built-in K-LINE communication  
circuit, making it suitable for motorcycle engine control.  
Power Supply Operating Range VX:  
Power Supply Operating Range VS:  
LDO Output Voltage:  
LDO Over Current Threshold Value: 250 mA (Min)  
On Resistance(Note 1)  
200 mΩ / 540 mΩ (Typ)  
Over Current Threshold Value: 2.0 A / 0.5 A (Min)  
Active Clamp Energy(Note 1)  
300 mJ / 250 mJ  
6 V to 18 V  
6 V to 8 V  
5.0 V (Typ)  
:
:
Operating Temperature Range: -40 °C to +150 °C  
(Note 1) (OUT1 ,OUT2, OUT3) / (OUT4, OUT5) value  
Features  
AEC-Q100 Qualified(Note 1)  
Package  
W (Typ) x D (Typ) x H (Max)  
6.5 mm x 6.4 mm x 1.0 mm  
HTSSOP-B20  
Monolithic Power Management IC with Control Block  
(CMOS) and a Power MOSFET mounted on a Single  
Chip  
Each Channel Control/Error can be detected by 16 bit  
SPI Commands  
Built-in Open Load Detection Function (OLD)  
Built-in Over Current Protection Function (OCP)  
Built-in Thermal Shutdown Function (TSD)  
Built-in Active Clamp Function  
Built-in 5 V Output LDO  
Built-in K-LINE Communication Circuit  
Surface-mount HTSSOP-B20 Packaging  
(Note 1) Grade 1  
HTSSOP-B20  
Application  
Driving Resistive and Inductive Load  
Typical Application Circuit  
Battery  
VS  
VS  
+
V5O  
+
OUT1  
IN1  
CSB  
SI  
OUT2  
OUT3  
μ-con  
SCLK  
SO  
OUT4  
OUT5  
KIO  
RX  
VX  
TX  
AGND PGND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
1/45  
 
 
 
 
 
 
BD5LL20AEFV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Application ......................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Definition.........................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................5  
Thermal Resistance........................................................................................................................................................................6  
Recommended Operating Conditions...........................................................................................................................................10  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................12  
Measurement Circuits...................................................................................................................................................................23  
Timing Chart .................................................................................................................................................................................27  
K-LINE Timing Chart.....................................................................................................................................................................28  
SPI Specification...........................................................................................................................................................................29  
Register Map ................................................................................................................................................................................32  
Protection Function.......................................................................................................................................................................33  
Over Current Protection................................................................................................................................................................34  
Thermal Shutdown........................................................................................................................................................................34  
Open Load Detection (OLD) .........................................................................................................................................................35  
Output Overhead Detection (OFD) ...............................................................................................................................................36  
Application Example .....................................................................................................................................................................37  
Selection of Components Externally Connected...........................................................................................................................37  
I/O Equivalence Circuits................................................................................................................................................................38  
Operational Notes.........................................................................................................................................................................40  
Ordering Information.....................................................................................................................................................................43  
Marking Diagram ..........................................................................................................................................................................43  
Physical Dimension and Packing Information...............................................................................................................................44  
Revision History............................................................................................................................................................................45  
www.rohm.com  
TSZ02201-0G5G1G400200-1-2  
© 2023 ROHM Co., Ltd. All rights reserved.  
2/45  
TSZ22111 • 15 • 001  
13.Jan.2023 Rev.001  
 
BD5LL20AEFV-C  
Pin Configuration  
(TOP VIEW)  
VS  
IN1  
PGND  
OUT1  
OUT1  
OUT2  
PGND  
OUT3  
OUT4  
OUT5  
VX  
V5O  
AGND  
CSB  
SCLK  
SI  
EXP-PAD  
SO  
RX  
TX  
KIO  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
1
2
VS  
LDO power supply  
OUT1 control input  
Connected to GND via an internal pull-down resistor.  
IN1  
3
4
V5O  
5 V output  
AGND  
Analog GND  
SPI enable  
5
6
7
CSB  
SCLK  
SI  
Connected to V5O via an internal pull-up resistor.  
Serial clock input  
Connected to GND via an internal pull-down resistor.  
Serial data input  
Connected to GND via an internal pull-down resistor.  
8
9
SO  
RX  
Serial data output  
K-LINE output  
K-LINE input  
Connected to V5O via an internal pull-up resistor.  
10  
TX  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-
KIO  
VX  
K-LINE bus connection  
K-LINE power supply  
ch5 output  
OUT5  
OUT4  
OUT3  
PGND  
OUT2  
OUT1  
OUT1  
PGND  
EXP-PAD  
ch4 output  
ch3 output  
Power GND  
ch2 output  
ch1 output  
ch1 output  
Power GND  
The EXP-PAD is connected to GND.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
3/45  
BD5LL20AEFV-C  
Definition  
IVS  
IIN1  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
VS  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
VS  
VOUT1  
IN1  
V5O  
CSB  
SCLK  
SI  
VIN1  
V5O  
VCSB  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
IV5O  
ICSB  
ISCLK  
ISI  
VSCLK  
VSI  
ISO  
SO  
VSO  
IKIO  
RX  
KIO  
VX  
VRX  
VKIO  
IVX  
VX  
TX  
VTX  
GND  
Block Diagram  
VS  
V5O  
TSD  
OCP  
LDO  
OUT1  
TSD  
OCP  
OLD  
POR  
IN1  
For OUT1  
x2  
x2  
OUT2  
OUT3  
TSD  
OCP  
OLD  
CSB  
SI  
Control  
Logic  
SPI  
SCLK  
SO  
OUT4  
OUT5  
TSD  
OCP  
RX  
TX  
VX  
TSD  
OCP  
K-LINE  
KIO  
AGND  
PGND  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
4/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Absolute Maximum Ratings (Tj = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
VX Power Supply Voltage  
VS Power Supply Voltage  
Output Voltage OUT1, OUT2, OUT3, OUT4, OUT5  
Output Current OUT1, OUT2, OUT3  
Output Current OUT4, OUT5  
Output Voltage SO  
VX  
VS  
-0.3 to +30  
-0.3 to +10  
-0.3 to +30 (Internal Limit)(Note 1)  
2.0 (Internal Limit)(Note 2)  
0.5 (Internal Limit)(Note 2)  
-0.3 to +7  
V
V
VOUT1-5  
IOUT123  
IOUT45  
V
A
A
VSO  
V
Output Voltage RX  
VRX  
-0.3 to +7  
V
Input Voltage CSB,SI,SCLK  
Input Voltage IN1,TX  
VCSB, VSCLK, VSI  
VIN1, VTX  
VKIO  
-0.3 to +7  
V
-0.3 to +7  
V
Input Voltage KIO  
-0.3 to +30  
V
Maximum Junction Temperature  
Storage Temperature Range  
Tjmax  
Tstg  
150  
°C  
°C  
-55 to +150  
Active Clamp Energy (Single Pulse) OUT1, OUT2,  
OUT3, Tj(START) = 25 °C, IOUT1(START) = 1.0 A  
Active Clamp Energy (Single Pulse) OUT1, OUT2,  
OUT3, Tj(START) = 150 °C, IOUT1(START) = 1.0 A  
Active Clamp Energy (Single Pulse) OUT4, OUT5  
Tj(START) = 25 °C, IOUT2(START) = 0.5 A  
Active Clamp Energy (Single Pulse) OUT4, OUT5  
Tj(START) = 150 °C, IOUT2(START) = 0.5 A  
(Note 1) Limited by the active clamp function.  
(Note 2) Limited by the over current protection function.  
EAS123(25 °C)  
EAS123(150 °C)  
EAS45(25 °C)  
EAS45(150 °C)  
300  
75  
mJ  
mJ  
mJ  
mJ  
250  
50  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Caution 3: When IC is turned off with an inductive load, reverse energy has to be dissipated in the IC. This energy can be calculated by the following equation:  
1
퐵퐴푇  
= ꢀ퐼푂푈푇(푆푇퐴푅푇)× ꢂ1 −  
2
퐵퐴푇 푂푈푇(퐶퐿)  
Where:  
L is the inductance of the inductive load.  
IOUT(START) is the output current at the time of turning off.  
VOUT(CL) is the output clamp voltage.  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the inductive load is turned off.  
When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the reverse energy EL is active clamp  
energy EAS123 (Figure 1.), EAS45 (Figure 2.) or under when inductive load is used.  
10000  
1000  
100  
10  
10000  
Tj = 25 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = 150 °C  
1000  
100  
10  
1
1
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
Output Current(Start) :IOUT(START) [A]  
Output Current(Start) :IOUT(START) [A]  
Figure 1. Active Clamp Energy (Single Pulse) vs  
Output Current(Start)  
Figure 2. Active Clamp Energy (Single Pulse) vs  
Output Current(Start)  
(OUT1, OUT2, OUT3)  
(OUT4, OUT5)  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
5/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Thermal Resistance (Note 1)  
Parameter  
Symbol  
Typ  
Unit  
Condition  
HTSSOP-B20  
95.6  
33.8  
24.4  
°C/W  
°C/W  
°C/W  
1s(Note 2)  
2s(Note 3)  
2s2p(Note 4)  
Between Junction and Surroundings Temperature  
Thermal Resistance  
θJA  
(Note 1) The thermal impedance is based on JESD51-2A(Still-Air) standard.  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure, 2 oz. copper.)  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layers (2s).  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, copper (top & reverse side) 2 oz.)  
(Note 4) JESD51-5/-7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm, copper (top & reverse side/inner layers) 2 oz./1 oz.)  
PCB Layout 1 layer (1s)  
100 mm2  
Figure 3. PCB Layout 1 Layer (1s)  
600 mm2  
1200 mm2  
Footprint  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.57 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top Layer)  
Copper Foil Area Dimension  
0.070 mm (Cu: 2 oz)  
Footprint/100 mm2/600 mm2/1200 mm2  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
6/45  
BD5LL20AEFV-C  
Thermal Resistance – continued  
PCB Layout 2 layers (2s)  
Top Layer  
Bottom Layer  
Top Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥ 0.6 mm  
Cross Section  
Figure 4. PCB-layout 2-layer (2s)  
Dimension  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Finish Thickness  
Board Dimension  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
1.2 mm/0.3 mm  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
7/45  
BD5LL20AEFV-C  
Thermal Resistance – continued  
PCB Layout 4 layers (2s2p)  
TOP Layer  
Top Layer  
2nd/Bottom Layers  
3rd Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥ 0.6 mm  
Cross Section  
Figure 5. PCB-layout 4-layer (2s2p)  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Copper Thickness (Inner Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
0.035 mm  
1.2 mm/0.3 mm  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
8/45  
BD5LL20AEFV-C  
Thermal Resistance – continued  
Transient Thermal Resistance (Single Pulse)  
1000  
100  
10  
1
1s footprint  
2s  
2s2p  
0.1  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Pulse Time [s]  
Figure 6. Transient Thermal Resistance  
Thermal Resistance (θJA vs Copper Foil area 1s)  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
Copper Fiol Area 1s [mm2]  
Figure 7. Thermal Resistance  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
9/45  
BD5LL20AEFV-C  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VX Power Supply Voltage  
VS Power Supply Voltage  
Operating Temperature  
LDO Output Capacitance  
VX  
VS  
6.0  
6.0  
-40  
68  
12.0  
7.0  
+25  
-
18.0  
8.0  
V
V
Tj  
+150  
270  
°C  
µF  
CV5O  
Electrical Characteristics (Unless otherwise specified VX = 6 V to 18 V, VS = 6V to 8V, Tj = -40 °C to 150 °C)  
Parameter  
VS Circuit Current  
Symbol  
IVS  
Min  
Typ  
3.0  
Max  
6.0  
Unit  
mA  
Conditions  
VIN1 = 0 V  
-
LDO  
V5O Output Voltage  
V5O Over Current Threshold Value  
Load Regulation  
V5O  
4.9  
5.0  
500  
-
5.1  
-
V
1 mA < IV5O < 250 mA  
V5O = 4.5 V  
IOCP(V5O)  
ΔV5O-Load  
ΔV5O-Line  
ΔV5O-Drop  
250  
mA  
mV  
mV  
mV  
-
-
-
50  
10  
500  
1 mA < IV5O < 250 mA  
IV5O = 1 mA, 6 V < VS < 8 V  
IV5O = 250 mA  
Line Regulation  
-
Low Dropout Voltage  
200  
Power Supply Ripple Rejection  
Ratio  
PSRR  
-
60  
-
dB  
CV5O = 220 μF, f = 1 kHz  
Input (CSB, SCLK, SI, IN1)  
V5O  
0.2  
x
Low Level Input Voltage  
VIL  
0
-
V
V5O  
0.7  
x
High Level Input Voltage  
Input Hysteresis Voltage  
VIH  
VHYS  
IIL1  
-
0.45  
0
V5O  
0.7  
V
0.2  
-10  
-100  
25  
V
Low Level Input Current 1  
(except CSB)  
+10  
-25  
100  
+10  
μA  
μA  
μA  
μA  
VSCLK, VSI, VIN1 = 0 V  
VCSB = 0 V  
Low Level Input Current 2 (CSB)  
IIL2  
-50  
50  
0
High Level Input Current 1  
(except CSB)  
IIH1  
VSCLK, VSI, VIN1 = 5 V  
VCSB = V5O  
High Level Input Current 2 (CSB)  
Serial Out Output  
IIH2  
-10  
SO Low Level Output Voltage  
SO High Level Output Voltage  
Serial Out Output Leakage Current  
VSOL  
VSOH  
-
0.15  
0.6  
-
V
V
ISO = 1 mA  
V5O - 0.6 V5O - 0.3  
ISO = -1 mA  
VSO = 0 V / 5 V  
ISO(OFF)  
-5  
0
+5  
μA  
Power MOS Output OUT1, OUT2, OUT3  
-
-
200  
300  
40  
6
250  
375  
90  
mΩ  
mΩ  
μA  
μs  
IOUT = 1 A, Tj = 25 °C  
IOUT = 1 A, Tj = 150 °C  
VOUT = 24 V  
Output On Resistance  
RDS(ON)123  
Output Sink Current During OLD  
Turn-On Time  
IOLD  
tON123  
15  
-
12  
RL = 24 Ω, VBAT = 12 V  
RL = 24 Ω, VBAT = 12 V  
Turn-Off Time  
tOFF123  
SRON123  
SROFF123  
VCL123  
-
6
12  
μs  
Slew Rate (On)  
1.3  
2.0  
30  
2.5  
3.5  
35  
4.0  
6.0  
40  
V/μs RL = 24 Ω, VBAT = 12 V  
V/μs RL = 24 Ω, VBAT = 12 V  
Slew Rate (Off)  
Output Clamp Voltage  
V
IOUT = 1 mA (Output Off)  
Power MOS Output OUT1, OUT2, OUT3 Protection Circuit  
Over Current Threshold Value  
Over Current Detection Time  
IOCP123  
tOCP123  
2
3.5  
45  
5.5  
90  
A
22  
μs  
Open Load Detection  
Release Voltage  
Open Load Detection  
Detect Voltage  
Output Overhead Detection  
Detect Voltage  
Output Overhead Detection  
Release Voltage  
VOLD(OFF)  
VOLD(ON)  
VOFD(ON)  
VOFD(OFF)  
1.2  
1.0  
1.2  
1.0  
2.5  
2.0  
2.5  
2.0  
3.5  
3.1  
3.5  
3.1  
V
V
V
V
Output Off Setting  
Output Off Setting  
Output On Setting  
Output On Setting  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
10/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Electrical Characteristics – continued (Unless otherwise specified VX = 6 V to 18 V, VS = 6V to 8V, Tj = -40 °C  
to 150 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Power MOS Output OUT4, OUT5  
-
-
540  
880  
0
675  
1100  
1
mΩ  
mΩ  
μA  
μA  
μs  
IOUT = 0.2 A, Tj = 25 °C  
IOUT = 0.2 A, Tj = 150 °C  
VOUT = 24 V, Tj = 25 °C  
VOUT = 24 V, Tj = 150 °C  
RL = 60 Ω, VBAT = 12 V  
RL = 60 Ω, VBAT = 12 V  
Output On Resistance  
Output Leakage Current  
RDS(ON)45  
-
IOUT(L)45  
-
0.5  
15  
3
Turn-On Time  
tON45  
tOFF45  
-
25  
Turn-Off Time  
-
30  
50  
μs  
Slew Rate (On)  
Slew Rate (Off)  
Output Clamp Voltage  
SRON45  
SROFF45  
VCL45  
0.4  
0.4  
30  
1.0  
1.0  
35  
2.2  
2.2  
40  
V/μs RL = 60 Ω, VBAT = 12 V  
V/μs RL = 60 Ω, VBAT = 12 V  
V
IOUT = 1 mA (Output Off)  
Power MOS Output OUT4, OUT5 Protection Circuit  
Over Current Threshold Value  
Over Current Detection Time  
K-LINE  
IOCP45  
tOCP45  
0.5  
22  
0.9  
45  
1.4  
90  
A
μs  
VX Circuit Current  
IVX  
-
0.03  
0.10  
0.4  
-
mA  
V
VTX = 0 V  
RX Low Level Output Voltage  
RX High Level Output Voltage  
RX Output Delay Time  
VRXL  
VRXH  
tRXD  
-
-
-
-
IRX = 1 mA  
IRX = -1 mA  
V5O - 0.4  
V
-
2
μs  
V5O  
0.2  
x
TX Low Level Input Voltage  
TX High Level Input Voltage  
VIL(TX)  
0
-
-
V
V
V5O  
0.7  
x
VIH(TX)  
VHYS(TX)  
RTX  
V5O  
TX Input Hysteresis Voltage  
TX Pull-up Resistor  
0.1  
0.3  
10  
-
0.5  
20  
1.4  
3
V
kΩ  
V
5
-
KIO Low Level Output Voltage  
KIO Output Leakage Current  
KIO Over Current Threshold Value  
KIO Output Delay Time  
VKIOL  
RKIO = 480 Ω  
VKIO = 18 V  
IKIO(L)  
IOCP(KIO)  
tKIOD  
-
0
μA  
mA  
μs  
40  
-
-
140  
2
-
RKIO = 480 Ω  
Switching Time Measurement Waveform  
OUT2, OUT3, OUT4, OUT5 (Control by SPI)  
OUT1 (Control by IN1)  
SRON = (VBAT * 0.8) / tFALL  
SROFF = (VBAT * 0.8) / tRISE  
[V]  
[V]  
CSB  
IN1  
for SPI  
[t]  
[t]  
0
0
[V]  
[V]  
tON  
tOFF  
tON  
tOFF  
VBAT  
VBAT*0.9  
OUT1  
VBAT  
VBAT*0.9  
OUT2, OUT3  
OUT4 ,OUT5  
VBAT*0.1  
VBAT*0.1  
[t]  
[t]  
0
0
tFALL  
tRISE  
tFALL  
tRISE  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
11/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
5
4
3
2
1
0
5
4
3
2
1
0
0
2
4
6
8
10  
-50  
0
50  
100  
150  
VS Power Supply Voltage: VS [V]  
Junction Temperature: Tj [ºC]  
Figure 8. VS Circuit Current vs VS Power Supply Voltage  
Figure 9. VS Circuit Current vs Junction Temperature  
10  
5.1  
Tj = -40 °C  
Tj = 25 °C  
8
Tj = 150 °C  
5.05  
6
4
2
0
5
4.95  
4.9  
0
2
4
6
8
10  
-50  
0
50  
100  
150  
VS Power Supply Voltage: VS [V]  
Junction Temperature: Tj [ºC]  
Figure 10. V5O Output voltage vs VS Power Supply Voltage  
Figure 11. V5O Output voltage vs Junction Temperature  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
12/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
6
5
4
3
2
1
0
1000  
800  
600  
400  
200  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 150 °C  
0
200  
400  
600  
800  
1000  
-50  
0
50  
100  
150  
V5O Output Current: IV5O [mA]  
Junction Temperature: Tj [ºC]  
Figure 12. V5O Output voltage vs V5O Output Current  
Figure 13. V5O Over Current Threshold Value vs Junction  
Temperature  
50  
40  
30  
20  
10  
0
10  
8
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj[ºC]  
Junction Temperature: Tj[ºC]  
Figure 14. Load Regulation vs Junction Temperature  
Figure 15. Line Regulation vs Junction Temperature  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
500  
400  
300  
200  
100  
0
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 150 °C  
0
50  
100  
150  
200  
250  
10  
100  
1k  
10k  
100k  
V5O Output Current:IV5O [mA]  
Frequency: f [Hz]  
Figure 16. Low Dropout Voltage vs V5O Output Current  
Figure 17. Power Supply Ripple Rejection Ratio vs  
Frequency  
5
4
100  
80  
60  
40  
20  
0
VIH  
3
IIH1  
VIL  
2
1
0
IIL1  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj[ºC]  
Junction Temperature: Tj [ºC]  
Figure 18. High Level Input Voltage / Low Level Input Voltage  
vs Junction Temperature  
Figure 19. High Level Input Current 1 / Low Level Input  
Current 1 vs Junction Temperature  
www.rohm.com  
TSZ02201-0G5G1G400200-1-2  
© 2023 ROHM Co., Ltd. All rights reserved.  
14/45  
TSZ22111 • 15 • 001  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
5
4
3
2
1
0
0
-20  
IIH2  
VSOH  
-40  
IIL2  
-60  
-80  
VSOL  
-100  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj[ºC]  
Junction Temperature: Tj [ºC]  
Figure 20. High Level Input Current 2 / Low Level Input  
Current 2 vs Junction Temperature  
Figure 21. SO High Level Output Voltage / SO Low Level  
Output Voltage vs Junction Temperature  
5
4
3
2
400  
350  
300  
250  
200  
150  
100  
50  
1
SO = 5 V  
SO = 0 V  
0
-1  
-2  
-3  
-4  
-5  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 22. Serial Out Output Leakage Current vs Junction  
Temperature  
Figure 23. Output On Resistance vs Junction Temperature  
(OUT1, OUT2, OUT3)  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
15/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
12  
10  
8
90  
65  
40  
15  
tOFF123  
6
tON123  
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 24. Output Sink Current During OLD vs Junction  
Temperature  
Figure 25. Turn-On Time / Turn-Off Time  
vs Junction Temperature  
(OUT1, OUT2, OUT3)  
6
5
4
40  
38  
36  
34  
32  
30  
SROFF123  
3
SRON123  
2
1
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 26. Slew Rate (On) / Slew Rate (Off)  
vs Junction Temperature  
Figure 27. Output Clamp Voltage vs Junction Temperature  
(OUT1, OUT2, OUT3)  
(OUT1, OUT2, OUT3)  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
16/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
90  
80  
70  
60  
50  
40  
30  
20  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 28. Over Current Threshold Value vs Junction  
Temperature  
Figure 29. Over Current Detection Time vs Junction  
Temperature  
(OUT1, OUT2, OUT3)  
(OUT1, OUT2, OUT3)  
3.5  
3.5  
3
2.5  
2
3
2.5  
2
VOLD(OFF)  
VOFD(ON)  
VOLD(ON)  
VOFD(OFF)  
1.5  
1.5  
1
1
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 30. Open Load Detection Detect Voltage / Open Load  
Detection Release Voltage  
Figure 31. Output Overhead Detection Detect Voltage /  
Output Overhead Detection Release Voltage  
vs Junction Temperature  
vs Junction Temperature  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
17/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
1200  
1000  
800  
600  
400  
200  
0
5
4
3
2
1
0
Tj = 25 °C  
Tj = 150 °C  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
Junction Temperature: Tj [ºC]  
Output Voltage: VOUT4, VOUT5 [V]  
Figure 32. Output On Resistance vs Junction Temperature  
(OUT4, OUT5)  
Figure 33. Output Leakage Current vs Output Voltage  
(OUT4, OUT5)  
3
2
1
0
50  
40  
30  
tOFF45  
20  
tON45  
10  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 34. Output Leakage Current vs Junction Temperature  
(OUT4, OUT5)  
Figure 35. Turn-On Time / Turn-Off Time  
vs Junction Temperature  
(OUT4, OUT5)  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
18/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
2
1.6  
1.2  
0.8  
0.4  
40  
38  
36  
34  
32  
30  
SROFF45  
SRON45  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 36. Slew Rate (On) / Slew Rate (Off)  
vs Junction Temperature  
Figure 37. Output Clamp Voltage vs Junction Temperature  
(OUT4, OUT5)  
(OUT4, OUT5)  
1.5  
1.0  
0.5  
0.0  
90  
80  
70  
60  
50  
40  
30  
20  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 38. Over Current Threshold Value vs Junction  
Figure 39. Over Current Detection Time vs Junction  
Temperature  
Temperature  
(OUT4, OUT5)  
(OUT4, OUT5)  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
19/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
5
4
3
2
1
0
0.10  
0.08  
0.06  
0.04  
Tj = -40 °C  
Tj = 25 °C  
Tj = 150 °C  
0.02  
0.00  
0
5
10  
15  
20  
25  
30  
-50  
0
50  
100  
150  
VX Power Supply Voltage: VX [V]  
Junction Temperature: Tj [ºC]  
Figure 40. VX Circuit Current vs VX Power Supply Voltage  
Figure 41. VX Circuit Current vs Junction Temperature  
5
2
RISE  
FALL  
VRXH  
4
3
2
1
1.5  
1
0.5  
VRXL  
0
-50  
0
-50  
0
50  
100  
150  
0
50  
100  
150  
Junction Temperature: Tj[ºC]  
Junction Temperature: Tj [ºC]  
Figure 42. RX High Level Output Voltage / RX Low Level  
Output Voltage vs Junction Temperature  
Figure 43. RX Output Delay Time vs Junction Temperature  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
20/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
5
4
3
2
1
0
20  
15  
10  
5
VIH(TX)  
VIL(TX)  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 44. TX High Level Input Voltage / TX Low Level Input  
Voltage vs Junction Temperature  
Figure 45. TX Pull-up Resistor vs Junction Temperature  
1.4  
1.2  
1
3
Tj = -40 °C  
Tj = 25 °C  
Tj = 150 °C  
2
0.8  
0.6  
0.4  
0.2  
0
1
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
Junction Temperature: Tj [ºC]  
KIO Output Voltage: VKIO [V]  
Figure 46. KIO Low Level Output Voltage vs Junction  
Temperature  
Figure 47. KIO Output Leakage Current vs KIO Output  
Voltage  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
21/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VX = 12 V, VS = 7 V, Tj = 25 °C)  
3
2
1
0
140  
120  
100  
80  
60  
40  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 48. KIO Output Leakage Current vs Junction  
Temperature  
Figure 49. KIO Over Current Threshold Value vs Junction  
Temperature  
2
RISE  
FALL  
1.5  
1
0.5  
0
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Figure 50. KIO Output Delay Time vs Junction Temperature  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
22/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Measurement Circuits  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
OUT1  
VS  
VX  
OUT1  
RL1  
IN1  
IN1  
RL2  
RL3  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CV5O  
IV5O  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
RL4  
SO  
SO  
RL5  
RX  
TX  
RX  
TX  
RKIO  
5 V  
AGND  
PGND  
AGND  
PGND  
Figure 51.  
Figure 52.  
VS Circuit Current  
VX Circuit Current  
V5O Output voltage  
Load Regulation  
Line Regulation  
Low Dropout Voltage  
VX  
VX  
VS  
CVS  
CVX  
CVS  
CVX  
0.1 Vp-p  
1 kHz  
VS  
VS  
VX  
OUT1  
VS  
VX  
OUT1  
IN1  
IN1  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CV5O  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
SO  
SO  
RX  
TX  
RX  
TX  
AGND  
PGND  
AGND  
PGND  
Figure 53.  
V5O Over Current Threshold Value  
Figure 54.  
Power Supply Ripple Rejection Ratio  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
23/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Measurement Circuits – continued  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
OUT1  
VS  
VX  
OUT1  
IN1  
IN1  
for IN1  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CV5O  
for SO  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
SO  
SO  
for SPI  
ISO  
RX  
TX  
RX  
TX  
for RX  
for TX  
0 V / 12 V  
AGND  
PGND  
AGND  
PGND  
IRX  
for KIO  
Figure 55.  
Figure 56.  
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
High Level Input Current 1  
Low Level Input Current 1  
High Level Input Current 2  
Low Level Input Current 2  
TX Pull-up Resistor  
SO High Level Output Voltage  
SO Low Level Output Voltage  
RX High Level Output Voltage  
RX Low Level Output Voltage  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
OUT1  
VS  
VX  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
IN1  
IN1  
5 V  
IOUT1~5  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
V5O  
CV5O  
CV5O  
ch On  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
SO  
SO  
RX  
TX  
RX  
TX  
KIO  
0 V  
VSO  
AGND  
PGND  
AGND  
PGND  
Figure 57.  
Serial Out Output Leakage Current  
Figure 58.  
Output On Resistance  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
24/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Measurement Circuits – continued  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
OUT1  
VS  
VX  
OUT1  
RL1  
RL2  
RL3  
RL4  
RL5  
RKIO  
IN1  
IN1  
0 V to 5 V  
0 V  
or  
5 V to 0 V  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CV5O  
ch Off  
ch On/Off  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
MCU  
SO  
SO  
RX  
TX  
RX  
TX  
0 V to 5 V  
or  
5 V to 0 V  
5 V  
VOUT1~5  
VKIO  
AGND  
PGND  
AGND  
PGND  
VBAT  
:Monitor  
Figure 59.  
Figure 60.  
Output Sink Current During OLD  
Output Leakage Current  
KIO Output Leakage Current  
Turn-On Time  
Turn-Off Time  
Slew Rate (On)  
Slew Rate (Off)  
RX Output Delay Time  
KIO Output Delay Time  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
VS  
VX  
OUT1  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
IN1  
IN1  
0 V  
5 V  
IOUT1~5  
V5O  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CV5O  
ch Off  
ch On  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
MCU  
SO  
SO  
RX  
TX  
RX  
TX  
KIO  
0 V  
AGND  
PGND  
AGND  
PGND  
Figure 61.  
Output Clamp Voltage  
Figure 62.  
Over Current Threshold Value  
Over Current Detection Time  
KIO Over Current Threshold Value  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
25/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Measurement Circuits – continued  
VX  
VX  
VS  
VS  
CVS  
CVX  
CVS  
CVX  
VS  
VX  
VS  
VX  
OUT1  
OUT2  
OUT3  
OUT1  
OUT2  
OUT3  
IN1  
IN1  
5 V  
0 V  
V5O  
V5O  
CV5O  
CV5O  
ch On  
ch Off  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
MCU  
SO  
SO  
RX  
TX  
RX  
TX  
KIO  
KIO  
AGND  
PGND  
AGND  
PGND  
Figure 63.  
Open Load Detection Detect Voltage  
Open Load Detection Release Voltage  
Figure 64.  
Output Overhead Detection Detect Voltage  
Output Overhead Detection Release Voltage  
VX  
VS  
CVS  
CVX  
VS  
VX  
OUT1  
IN1  
V5O  
OUT2  
OUT3  
OUT4  
OUT5  
KIO  
CV5O  
CSB  
SCLK  
SI  
SO  
RX  
TX  
RKIO  
0 V  
AGND  
PGND  
Figure 65.  
KIO Low Level Output Voltage  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
26/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Timing Chart  
VX  
6 V (Min)  
Turn on VX to 6 V or more  
t
t
t
VS  
V5O  
CSB  
7 V  
Turn on VS to 6 V or more  
6 V (Min)  
LDO Turn on time  
2.2 ms (Typ)  
5 V  
4 V (Max)  
t
t
More than 10 ms  
SI  
SCLK  
Access enable  
Send SPI signal 10 ms later  
after V5O is over 4 V.  
IN1  
t
t
More than 10 ms  
OUTn  
VX  
n is ch nummber.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
27/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
K-LINE Timing Chart  
TX  
V5O  
0.7 * V5O  
0.2 * V5O  
0
[t]  
[t]  
[t]  
tKIOD  
(H to L)  
tKIOD  
(L to H)  
KIO  
VX  
0.5 * VX  
0
tRXD  
(H to L)  
tRXD  
(L to H)  
RX  
V5O  
0.5 * V5O  
0
Output waveform During Inductive Load Operation  
[V]  
IN1  
0
[t]  
VCL  
[V]  
VOUT  
VBAT  
IOUT x RDS(ON)  
[t]  
[t]  
0
[A]  
VBAT  
RL + RDS(ON)  
IOUT  
0
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
28/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
SPI Specification  
·SPI Overview  
When CSB = H  
The SO pin is High-Z.  
When CSB = L  
Outputs to SO at the rising edge of SCLK.  
SI is loaded into the register at the falling edge of SCLK.  
MSB  
LSB  
LSB  
X
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
SO  
SI  
MSB  
CSB  
SCLK  
·SPI Protocol  
The SO response to SPI access is returned at the next SPI access as shown in the following figure.  
SI  
frame A  
frame B  
frame C  
(previous  
response)  
response to  
frame A  
response to  
frame B  
SO  
·Response when accessing with RE = 0 and with RE = 1  
When accessing with RE = 0, respond “Standard Diagnostic”.  
When accessing with RE = 1, respond the value of the specified register.  
SI  
RE = 0  
RE = 1 (register A)  
(new command)  
(previous  
response)  
Standard  
Diagnostic  
register A  
content  
SO  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
29/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
SPI Specification – continued  
·SPI Timing Chart  
tCSB(lead)  
tCSB(lag)  
tCSB(td)  
0.7V5O  
0.2V5O  
tSCLK(P)  
CSB  
tSCLK(su)  
tSCLK(hd)  
tSCLK(H)  
tSCLK(L)  
0.7V5O  
0.2V5O  
SCLK  
tSI(su)  
tSI(hd)  
0.7V5O  
0.2V5O  
SI  
Don't care  
Hi-Z  
TER_IN  
MSB  
14  
1
LSB  
Don't care  
tSO(td)  
tSO(dd)  
tSO(dis)  
tSO(en)  
0.7V5O  
0.2V5O  
Hi-Z  
SO  
x
TER  
MSB  
14  
1
LSB  
x
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK Frequency  
SCLK Period  
fSCLK  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
tSCLK(su)  
tSCLK(hd)  
tCSB(lead)  
tCSB(lag)  
tCSB(td)  
tSI(su)  
0
200  
50  
50  
50  
50  
250  
250  
250  
20  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
SCLK High Time  
SCLK Low Time  
SCLK Setup Time  
SCLK Hold Time  
CSB Lead Time  
CSB Lag Time  
-
-
-
-
-
-
Transfer Delay Time  
Data Setup Time  
Data Hold Time  
SPI Output Enable Time(Note 1)  
SPI Output Disable Time(Note 1)  
-
-
tSI(hd)  
-
tSO(en)  
200  
250  
100  
200  
tSO(dis)  
tSO(dd)  
-
SPI Output Data Delay Time(Note 1)(Note 2)  
ERR Output Through Delay Time(Note 1)  
-
tSO(td)  
-
(Note 1) Not 100 % tested.  
(Note 2) SO pin capacitance = 20 pF  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
30/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
SPI Specification – continued  
·SI Data Structure  
Bit[15]  
RE  
Bit[14]  
WE  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
Bit[7]  
Data  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Address  
TEST  
RE  
0: The SO pin outputs "Standard Diagnostic" at the next SPI access.  
1: The SO pin outputs the register value specified by Address at the next SPI access.  
WE  
0: Not Write.  
1: Write.  
TEST  
Be sure to set 0.  
Data  
When WE = 1, various settings are enabled by writing '0' or '1' to Data.  
For details, refer to "Register Map".  
·"Standard Diagnostic" (when RE = 0 setting in the previous SPI access)  
Initial Value 0x4000  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
TSD  
KLINE  
0
INIT  
0
0
0
TER  
0
OLD3  
OLD2  
OLD1  
ERR5  
ERR4  
ERR3  
ERR2  
ERR1  
INIT  
0: Normal (after power on, from the second time SPI access).  
1: After power on, first time SPI access.  
TER  
0: Normal  
1: SPI communication error  
When High pulse input of SCLK is other than (16 times + 8 x m, m is an integer 0 or above) in the low level section of CSB, a  
communication error is judged.  
TSDKLINE  
0: Normal  
1: Thermal shutdown of K-LINE section  
Once detected, it latches." Standard Diagnostic" is cleared by read access.  
DIAG_OLDn (n shows ch number)  
0: Normal  
1: Open load detection of OUT1, OUT2, OUT3  
Once detected, it latches." Standard Diagnostic" is cleared by read access.  
ERRn (n shows ch number)  
0: Normal  
1: Over current protection, thermal shutdown, or output overhead detection (OUT1, OUT2, OUT3 only) for OUTn  
(Logical OR of DIAG_OCPn, DIAG_TSDn, and DIAG_OFDn)  
·SO Output Data Structure (when RE = 1 setting in the previous SPI access)  
Bit[15]  
1
Bit[14]  
WE  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
Bit[7]  
Data  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Address  
ERRALL  
WE, Address  
Outputs WE and Address values that were set during the previous SPI access.  
ERRALL  
Outputs 1 when either open load detection, output overhead detection, over current protection or thermal shutdown is detected  
on at least one channel.  
(Logical OR of DIAG_OLDn, DIAG_OFDn, DIAG_OCPn, DIAG_TSDn and DIAG_TSD_KLINE for all channels)  
Data  
Outputs the register value of Address that were set during the previous SPI access.  
www.rohm.com  
TSZ02201-0G5G1G400200-1-2  
© 2023 ROHM Co., Ltd. All rights reserved.  
31/45  
TSZ22111 • 15 • 001  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Register Map  
Address TEST  
Bit[13:9] Bit[8]  
Data  
Register  
Access  
Register Name  
Initial  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
0
OUTCTRL  
STATUS_IN  
DIAG_OUT32  
DIAG_OUT541  
HWCR  
R/W  
RO  
0x00  
0x06  
0x0A  
0x0B  
0x0C  
0x1E  
0
0
0
0
0
1
0
0
0
OUTCTRL5  
OUTCTRL4  
OUTCTRL3  
OUTCTRL2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
DIAG_OFD3  
DIAG_TSD5  
RST  
0
0
0
0
0
0
0
0
0
STATUS_IN1  
DIAG_TSD2  
DIAG_TSD1  
0
RO  
0
DIAG_OCP3  
DIAG_TSD3  
DIAG_OFD2  
DIAG_OCP2  
RO  
DIAG_OCP5  
DIAG_OCP4  
DIAG_TSD4  
DIAG_OFD1  
DIAG_OCP1  
WO  
WO  
0
0
0
0
0
0
0
0
0
0
T_TESTMODE  
0
TESTMODE  
Register Name  
OUTCTRL  
Register Access  
Read / Write  
Address  
0x00h  
Explanation of Data  
OUTCTRLn bit (n represents the channel number)  
'0': OUTn off setting  
'1': OUTn on setting  
STATUS_IN1 bit  
STATUS_IN  
Read Only  
0x06h  
'0': IN1 L input, OUT1 Off Setting  
'1': IN1 H input, OUT1 On Setting  
Reads the error flags of OUT1 to OUT5.  
DIAG_OFDn bit  
'0': Normal  
'1': Output overhead detection  
Once detected, it latches.  
Cleared by read access to DIAG_OFDn.  
DIAG_OCPn bit  
'0': Normal  
'1': Over current protection detection  
It latches, if over current protection is detected at the same time  
as thermal shutdown or if continue detecting over current  
protection for a certain period of time.  
DIAG_OUT32  
DIAG_OUT541  
0x0Ah  
0x0Bh  
Read Only  
Cleared by read access to DIAG_OCPn.  
If over current protection is detected on OUT2 to OUT5, the  
OUTCTRLn bit of the corresponding channel is cleared to '0' and  
the output is turned off.  
After clearing DIAG_OCPn, OUTn is turned on by setting  
OUTCTRLn to '1' again.  
DIAG_TSDn bit  
'0': Normal  
'1': Thermal shutdown detection  
Once detected, it latches.  
Cleared by read access to DIAG_TSDn.  
RST  
HWCR  
Write Only  
Write Only  
0x0Ch  
0x1Eh  
'0': Normal  
'1': Hardware reset (auto clear)  
TESTMODE  
'0': Normal  
'1': Test Mode  
T_TESTMODE  
If IN pin is 5.6 V (Min) or more and "1" is written to this register, IC  
enters test mode. For this reason, do not access to this register.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
32/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Protection Function  
Protection Function  
Detection and Release Conditions  
Output Behavior  
Current limitation  
OUT1  
2 A (Min)  
2 A (Min)  
Output latch after 45 μs (Typ)  
of current-limit state has  
elapsed  
OUT2  
OUT3  
Detection  
Conditions  
Output latch after 45 μs (Typ)  
of current-limit state has  
elapsed  
OUT4  
OUT5  
0.5 A (Min)  
Over Current  
Protection  
2 A (Min) or less  
(automatic recovery)  
OUT1  
Normal operation  
Write '1' to OUTCTRL2 or  
OUTCTRL3 after read Output latch is released  
access to DIAG_OUT32  
OUT2  
OUT3  
Release  
Conditions  
Write '1' to OUTCTRL4 or  
OUTCTRL5 after read Output latch is released  
access to DIAG_OUT541  
OUT4  
OUT5  
Low Side  
Switch  
Detection  
Condition  
Release  
Condition  
Detection Output off state and  
Tj ≥ 150 °C (Min)  
Tj ≤ 125 °C (Min)  
Output stop  
Thermal Shutdown  
Normal operation  
Normal operation  
Open Load  
Detection  
Condition Output voltage 2.0 V (Typ) or less  
(Only OUT1, OUT2  
and OUT3 are  
supported)  
Output Overhead  
Detection  
(Only OUT1, OUT2  
and OUT3 are  
supported)  
Release  
Output off state and  
Normal operation  
Normal operation  
Normal operation  
Condition Output voltage 2.5 V (Typ) or more  
Detection Output on and  
Condition Output voltage 2.5 V (Typ) or more  
Release  
Output on and  
Condition Output voltage 2.0 V (Typ) or less  
Detection  
Condition  
IV5O ≥ 250 mA (Min)  
-
Over Current  
Protection  
Release  
Condition  
IV5O < 250 mA (Min)  
-
Detection  
Tj ≥ 150 °C (Min)  
Condition  
LDO output stopped  
Normal operation  
Thermal Shutdown  
LDO  
Release  
Tj ≤ 125 °C (Min)  
Condition  
Detection  
Condition  
Low side output stopped  
KIO output stopped  
V5O ≤ 3.0 V (Min)  
Power-on Reset  
Release  
V5O ≥ 4.0 V (Min)  
Condition  
Normal operation  
Current limitation  
Normal operation  
KIO output stopped  
Normal operation  
Detection  
Output current 40 mA (Min)  
Condition  
KIO Over Current  
Protection  
Release  
Output current 40 mA (Min) or less  
Condition  
K-LINE  
Detection  
Condition  
Tj ≥ 150 °C (Min)  
Thermal Shutdown  
Release  
Tj ≤ 125 °C (Min)  
Condition  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
33/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Over Current Protection  
If a current exceeding the over current detection value flows to the low side output, over current protection is applied and an error  
flag (DIAG_OCPn) is output.  
For OUT1, the current flowing to the output is limited when over current protection is applied.  
Normal  
Over Current State  
Flag Latch State  
Normal  
IN1  
Battery voltage  
OUT1  
OUT1  
2 A (Min)  
IOUT1  
DIAG_OCP1  
45 µs (Typ)  
Read Access to DIAG_OCP1  
For OUT2 to OUT5, the output is turned off when over current protection is applied. In this case, OUTCTRLn is set to '0'; read  
access to DIAG_OCPn clears the error flag and setting OUTCTRLn to '1' turns on the output.  
Over Current  
Normal  
Latch  
Normal  
OUTCTRLn  
OUTn  
Battery voltage  
Write 1 to OUTCTRLn  
OUT2, OUT3  
2 A (Min)  
OUT4, OUT5  
0.5 A (Min)  
IOUTn  
DIAG_OCPn  
45 µs (Typ)  
Read Access to DIAG_OCPn  
Thermal Shutdown  
Turns off the low side output, LDO output, and KIO output when Tj rises 150 °C (Min) or above. Turns back on when Tj falls  
125 °C (Min) or below.  
Normal  
TSD State  
Normal  
OUTCTRLn  
OUTn  
Battery voltage  
150 °C (Min)  
125 °C (Min)  
Tj  
DIAG_TSDn  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
34/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Open Load Detection (OLD)  
VBAT  
RL  
OUT  
Power  
MOS  
DIAG_OLDn  
IOLD  
SO  
GND  
OUT1, OUT2, and OUT3 have an open load detection (OLD) function: output inflow current IOLD is applied to OUT, and as load RL  
increases, output voltage VOUT decreases, and when it falls below VOLD(ON) , an open load detection state occurs and an error flag  
is output.  
The value of RL that detects OLD is obtained from the following formula.  
퐵퐴푇 푂퐿퐷(푂푁)  
≥  
푂퐿퐷  
VBAT : Battery voltage  
VOLD(ON) : Open load detection voltage 3.1 V (Max)  
IOLD : Output inflow current during open detection operation 90 μA (Max)  
Normal  
OLD State  
Normal  
OUTCTRLn  
OUTn  
Output load is open.  
2.5 V (Typ)  
2.0 V (Typ)  
Open state is  
resolved.  
Time of mask OLD.  
25 µs (Typ)  
DIAG_OLDn  
Read Access  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
35/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Output Overhead Detection (OFD)  
VBAT  
RL  
OUT  
Power  
MOS  
DIAG_OFDn  
SO  
GND  
OUT1, OUT2, and OUT3 have an output overhead detection (OFD) function.  
When the output transistor is on, if the output voltage of OUT1 to OUT3 exceeds VOFD(ON), a state of top fault detection occurs,  
and an error flag is output.  
Normal  
OFD State  
Normal  
OUTCTRLn  
OUTn  
Short state is  
released.  
2.5 V (Typ)  
Output is shorted  
to power.  
Time of mask OFD.  
25 µs (Typ)  
DIAG_OFDn  
Read Access  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
36/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Application Example  
Battery  
CVS  
VS  
V5O  
CV5O2 CV5O  
TSD  
OCP  
LDO  
RKIO  
OUT1  
TSD  
OCP  
OLD  
POR  
ZOUT1  
RIN1  
IN1  
For OUT1  
x2  
x2  
OUT2  
OUT3  
TSD  
OCP  
OLD  
RCSB  
RSI  
CSB  
SI  
Control  
Logic  
SPI  
RSCLK  
SCLK  
SO  
μcon  
OUT4  
OUT5  
TSD  
OCP  
RSO  
RRX  
RTX  
RX  
TX  
VX  
TSD  
OCP  
K-LINE  
Other  
Device  
KIO  
CVX  
AGND  
PGND  
Selection of Components Externally Connected  
Symbol  
Value  
Purpose  
RIN1, RCSB, RSI, RSCLK, RSO 1 kΩ  
Register for microcontroller protection against negative voltage surge.  
Register for microcontroller protection against negative voltage surge.  
KIO Pull-up Resistor  
RRX, RTX  
RKIO  
1 kΩ  
480 Ω  
0.1 μF  
0.1 μF  
220 μF  
0.1 μF  
CVX  
Capacitor for noise rejection on power supply lines(Note 1)  
Capacitor for noise rejection on power supply lines(Note 1)  
LDO Output Capacitor(Note 1)(Note 2)  
CVS  
CV5O  
CV5O2  
LDO Output Capacitor(Note 1)(Note 3)  
Zener diode for the reverse energy absorption when inductive load is  
ZOUT1  
-
turned off(Note 4)  
(Note 1) It is recommended to insert capacitors as close as possible between VX and PGND, between VS and AGND, and between V5O and AGND.  
(Note 2) Connect large capacitor to stabilize the output.  
(Note 3) When using a capacitor with ESR of 1 Ω or more in CV5O, insert a ceramic capacitor (CV5O2) in parallel.  
(Note 4) Connect it when driving an inductive load that exceeds active clamp energy of this product. The same is true for OUT2 to OUT5.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
37/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
I/O Equivalence Circuits  
Pin No.  
Pin Name  
I/O Equivalence Circuit  
1
1
VS  
4
2
100 kΩ  
2
IN1  
4
1
3
3
4
5
V5O  
50 kΩ  
4
AGND  
CSB  
-
3
100 kΩ  
5
4
6
7
8
SCLK  
6.7  
100 kΩ  
4
SI  
3
8
4
SO  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
13.Jan.2023 Rev.001  
38/45  
BD5LL20AEFV-C  
I/O Equivalence Circuits – continued  
Pin No.  
Pin Name  
I/O Equivalence Circuit  
3
9
9
RX  
16,20  
3
10 kΩ  
10  
10  
11  
12  
TX  
KIO  
VX  
16,20  
2.5 kΩ  
12  
125 kΩ  
11  
16,20  
12  
2.5 kΩ  
16,20  
13  
14  
15  
16  
17  
OUT5  
OUT4  
OUT3  
PGND  
OUT2  
13,14,15,  
17,18,19  
18  
19  
OUT1  
PGND  
16,20  
20  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
39/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all  
power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground  
caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground  
voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions.  
The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the  
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage  
from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin  
shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional  
solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected  
operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground  
line.  
www.rohm.com  
TSZ02201-0G5G1G400200-1-2  
© 2023 ROHM Co., Ltd. All rights reserved.  
40/45  
TSZ22111 • 15 • 001  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Operational Notes – continued  
10. Regarding the Input and Output Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference  
among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as  
applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 66. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature  
and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always be  
within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This protection  
function is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in  
applications characterized by continuous operation or transitioning of the protection function.  
14. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the inductive  
load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the  
reverse energy EL is active clamp tolerance EAS (refer to Figure 1.2.) or under when inductive load is used.  
www.rohm.com  
TSZ02201-0G5G1G400200-1-2  
© 2023 ROHM Co., Ltd. All rights reserved.  
41/45  
TSZ22111 • 15 • 001  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Operational Notes – continued  
15. Power Supply Steep Fluctuation  
If the voltage of the power supply pin (VS) falls sharply, the output pin (OUT) may temporarily turn off as shown in Figure 67.  
If the power supply pin is expected to fall sharply, take measures such as inserting a capacitor between the power supply pin  
and the ground pin so that it falls within the recommended usage range shown in Figure 68.  
2.5  
V[V]  
VS  
2.0  
1.5  
1.0  
0.5  
0.0  
Deprecated use range  
VS(FALL)  
VS  
tVS(FALL)  
0
t
VOUT[V]  
Recommended use range  
VBAT  
VOUT  
0 V  
0
t
0
10  
20  
30  
[μs]  
tVS(FALL)  
Figure 67. Output OFF operation when power supply  
fluctuates sharply  
Figure 68. Recommended use range  
16. GND Pin Connection  
Connect all ground pins to ground.  
17. Same Pin Connection  
Connect all OUT1 pins to same line.  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
42/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Ordering Information  
B D 5 L L 2 0 A E F V  
-
CE 2  
5: 5ch  
Package  
Product Rank  
L: low side switch  
EFV: HTSSOP-B20  
C: For Automotive  
Packaging Specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
5 L L 2 0 A  
Pin 1 Mark  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
43/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
44/45  
13.Jan.2023 Rev.001  
BD5LL20AEFV-C  
Revision History  
Date  
Revision  
001  
Changes  
13.Jan.2023  
New Release  
www.rohm.com  
© 2023 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400200-1-2  
45/45  
13.Jan.2023 Rev.001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD6.4/3/25-4S2

1 FUNCTIONS, FERRITE BEAD
YAGEO

BD60-940

Single-Phase Full-Wave Bridge Rectifie
ETC

BD6018GU

コミュニケーションLSI
ETC

BD60203EFV

BD60203EFV是能驱动2个DC有刷电机的含2个电路的H桥电机驱动器。通过恒流PWM控制可实现高效率驱动。内置各种保护电路。还内置锁定检测用电路,可输出通知电机锁定状态的支持Wired-Or的异常检测信号,有利于实现组件的高可靠性。
ROHM

BD6020GU

Power supply for CCD camera of mobile phone
ROHM

BD6021KV

コミュニケーションLSI
ETC

BD60223FP

BD60223FP是额定电源36V、额定输出电流1.5A的低功耗双极PWM恒流驱动器。输入接口采用CLK-IN驱动方式,通过内置DAC,励磁模式可适用于FULL STEP、HALF STEP、QUARTER STEP、1/16 STEP模式。电流衰减方式方面可任意设定FAST DECAY/SLOW DECAY的比率,可对所有电机实现很好的控制状态。另外,也可使用一个系统电源进行驱动,有助于提高整机设计的便利性。
ROHM

BD6023AGU

Power supply for CCD camera/White LED driver/RGB LED driver of mobile phone
ROHM

BD6023AGU-E2

Power Management Circuit, PBGA64,
ROHM

BD6023AGU_09

Silicon Monolithic Integrated Circuit
ROHM

BD6025GU

Power supply for CCD camera/White LED driver/RGB LED driver for mobile phone
ROHM

BD6025GU-E2

Power Management Circuit, PBGA64,
ROHM