BD6095GU [ROHM]

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type); Mulitifunction背光LED驱动器,用于小型液晶面板(电荷泵型)
BD6095GU
型号: BD6095GU
厂家: ROHM    ROHM
描述:

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
Mulitifunction背光LED驱动器,用于小型液晶面板(电荷泵型)

显示驱动器 驱动程序和接口 接口集成电路 泵 CD
文件: 总42页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LED Drivers for LCD Backlights  
Mulitifunction Backlight LED Driver  
for Small LCD Panels (Charge Pump Type)  
No.11040EAT31  
BD6095GUL,BD6095GU  
Description  
BD6095GUL/BD6095GU is “Intelligent LED Driver” that is the most suitable for the cellular phone.  
It has many functions that are needed to "the upper side" of the cellular phone.  
It has ALC function, that is “Low Power Consumption System” realized.  
It has “Contents Adaptive Interface” (External PWM control), that is “Low Power Consumption System” realized.  
It adopts the very thin CSP package that is the most suitable for the slim phone.  
Features  
1) Total 5LEDs driver for LCD Backlight  
It can set maximum 25.6mA /ch by 128steps (Current DAC) for LCD Display.  
3LEDs(LED1~LED3) are same controlled.  
Another 2LEDs(LED4~5) can be independent controlled. (Enable and Current setting)  
2LEDs(LED4~5) can be attributed to “Main Group”.  
“Main Group” can be controlled by Auto Luminous Control (ALC) system.  
“Main Group” can be controlled by external PWM signal.  
2) 1LED driver for Flash/Torch  
It can set maximum 120mA for Flash LED Driver.  
It has Flash mode and Torch mode, there can be changed by external pin or register.  
3) Auto Luminous Control (ALC)  
Main backlight can be controlled by ambient brightness.  
Photo Diode, Photo Transistor, Photo IC(Linear/Logarithm) can be connected.  
Bias source for ambient light sensor, gain and offset adjustment are built in.  
LED driver current as ambient level can be customized.  
4) 2ch Series Regulator (LDO)  
It has selectable output voltage by the register.  
LDO1,LDO2 : Iomax=150mA  
5) Charge Pump DC/DC for LED driver  
It has x1/x1.33/x1.5/x2 mode that will be selected automatically.  
Soft start functions  
Over voltage protection (Auto-return type)  
Over current protection (Auto-return type)  
6) Thermal shutdown (Auto-return type)  
7) I2C BUS FS mode (max 400kHz)  
8) VCSP50L3 (3.75mm2, 0.55mmt max) Small and thin CSP package (BD6095GUL)  
9) VCSP85H3 (3.75mm2, 1.0mmt max) Small and thin CSP package (BD6095GU)  
*This chip is not designed to protect itself against radioactive rays.  
*This material may be changed on its way to designing.  
*This material is not the official specification.  
Absolute Maximum Ratings (Ta=25 oC)  
Parameter  
Maximum voltage  
Symbol  
Ratings  
Unit  
VMAX  
Pd  
7
V
mW  
oC  
Power Dissipation  
1500  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
-35 ~ +85  
-55 ~ +150  
oC  
note)Power dissipation deleting is 12.0mW/ oC, when it’s used in over 25 oC. (It’s deleting is on the board that is ROHM’s standard)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
1/41  
BD6095GUL,BD6095GU  
Technical Note  
Operating conditions (VBATVIO, Ta=-35~85 oC)  
Parameter  
VBAT input voltage  
VIO pin voltage  
Symbol  
Ratrings  
Unit  
VBAT  
VIO  
2.7~5.5  
V
V
1.65~3.3  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Circuit Current】  
VBAT Circuit current 1  
VBAT Circuit current 2  
IBAT1  
IBAT2  
-
-
0.1  
0.5  
1.0  
3.0  
μA  
μA  
RESETB=0V, VIO=0V  
RESETB=0V, VIO=1.8V  
LDO1=LDO2=ON, ILDO=0mA  
Other blocks=OFF  
VBAT Circuit current 3  
VBAT Circuit current 4  
VBAT Circuit current 5  
VBAT Circuit current 6  
VBAT Circuit current 7  
IBAT3  
IBAT4  
IBAT5  
IBAT6  
IBAT7  
-
-
-
-
-
90  
61  
150  
65  
μA  
mA  
mA  
mA  
mA  
DC/DC x1mode, ILED=60mA  
VBAT=3.7V, LED Vf=3.0V  
DC/DC x1.33mode, ILED=60mA  
VBAT=3.1V, LED Vf=3.0V  
DC/DC x1.5mode, ILED=60mA  
VBAT=2.9V, LED Vf=3.5V  
DC/DC x2mode, ILED=60mA  
VBAT=3.2V, LED Vf=4.0V  
Only ALC block ON  
83  
94  
93  
104  
136  
124  
VBAT Circuit current 8  
IBAT8  
-
0.25  
1.0  
mA  
ADCYC=0.5s setting  
Except sensor current  
LED Driver】  
LED current Step (Setup)  
LED current Step (At slope)  
LED current Step (Flash)  
ILEDSTP1  
ILEDSTP2  
ILEDSTPFL  
128  
256  
32  
Step LED1~5  
Step LED1~5  
Step LEDFL  
White LED Maximum setup current IMAXWLED  
-
25.6  
120  
15  
-
-
mA  
mA  
mA  
mA  
%
LED1~5  
Flash LED Maximum setup current  
LED1~5 current accuracy  
Flash LED current accuracy  
LED current Matching  
IMAXFLED  
IWLED  
-
-7%  
-7%  
-
LEDFL  
+7%  
+7%  
4
ILED=15mA setting at VLED=1.0V  
ILED=60mA setting at VLED=1.0V  
Between LED1~5 at VLED=1.0V  
VLED=4.5V  
IFLED  
60  
ILEDMT  
ILKLED  
-
LED OFF Leak current  
DC/DCCharge Pump)】  
Maximum Output voltage  
Current Load  
-
-
1.0  
μA  
VoCP  
IOUT  
fosc  
4.65  
-
5.1  
-
5.55  
250  
1.2  
V
mA  
MHz  
VBAT3.2V, VOUT=4V  
Oscillator frequency  
0.8  
1.0  
Over Voltage Protection detect  
voltage  
Short Circuit current limit  
OVP  
Ilim  
-
-
-
6.0  
V
125  
250  
mA  
VOUT=0V  
I2C Input (SDA, SCL)】  
0.25 ×  
VIO  
VBAT  
+0.3  
LOW level input voltage  
VIL  
VIH  
-0.3  
-
-
-
V
V
V
0.75 ×  
VIO  
0.05 ×  
VIO  
HIGH level input voltage  
Hysteresis of Schmitt trigger input  
Vhys  
-
LOW level output voltage  
(SDA) at 3mA sink current  
VOL  
lin  
0
-
-
0.3  
3
V
Input current each I/O pin  
-3  
μA  
Input voltage = 0.1×VIO~0.9×VIO  
RESETB】  
0.25 ×  
VIO  
LOW level input voltage  
VIL  
-0.3  
-
V
0.75 ×  
VIO  
-3  
VBAT  
+0.3  
3
HIGH level input voltage  
Input current each I/O pin  
VIH  
Iin  
-
-
V
μA  
Input voltage = 0.1×VIO~0.9×VIO  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
2/41  
BD6095GUL,BD6095GU  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Regulator (LDO1)】  
1.164  
1.261  
1.455  
1.552  
1.746  
2.134  
2.328  
2.425  
2.522  
2.619  
2.716  
2.813  
2.910  
3.007  
3.104  
3.201  
-
1.20  
1.30  
1.50  
1.60  
1.80  
2.20  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
-
1.236  
1.339  
1.545  
1.648  
1.854  
2.266  
2.472  
2.575  
2.678  
2.781  
2.884  
2.987  
3.090  
3.193  
3.296  
3.399  
150  
V
V
Io=50mA  
Io=50mA  
Io=50mA  
Io=50mA  
V
V
V
Io=50mA <Initial Voltage>  
Io=50mA  
V
V
Io=50mA  
V
Io=50mA  
Output voltage  
Vo1  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
Output Current  
Dropout Voltage  
Load stability  
Io1  
mA  
Vo=1.8V  
Vsat1  
ΔVo11  
ΔVo12  
-
-
-
0.05  
10  
0.1  
60  
60  
V
VBAT=2.5V, Io=50mA, Vo=2.8V  
Io=1~150mA, Vo=1.8V  
mV  
mV  
Input voltage stability  
10  
VBAT=3.4~4.5V, Io=50mA, Vo=1.8V  
f=100Hz, Vin=200mVp-p, Vo=1.2V  
Io=50mA, BW=20Hz~20kHz  
Ripple Rejection Ratio  
RR1  
-
65  
-
dB  
Short circuit current limit  
Discharge resister at OFF  
Regulator (LDO2)】  
Ilim1  
-
-
200  
1.0  
400  
1.5  
mA  
Vo=0V  
ROFF1  
kΩ  
1.164  
1.261  
1.455  
1.552  
1.746  
2.134  
2.328  
2.425  
2.522  
2.619  
2.716  
2.813  
2.910  
3.007  
3.104  
3.201  
-
1.20  
1.30  
1.50  
1.60  
1.80  
2.20  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
-
1.236  
1.339  
1.545  
1.648  
1.854  
2.266  
2.472  
2.575  
2.678  
2.781  
2.884  
2.987  
3.090  
3.193  
3.296  
3.399  
150  
V
V
Io=50mA  
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA <Initial Voltage>  
Io=50mA  
Output voltage  
Vo2  
V
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
V
Io=50mA  
Output Current  
Dropout Voltage  
Load stability  
Io2  
mA  
Vo=2.5V  
Vsat2  
Δvo21  
Δvo22  
-
-
-
0.05  
10  
0.1  
60  
60  
V
VBAT=2.5V, Io=50mA, Vo=2.8V  
Io=1~150mA, Vo=2.5V  
mV  
mV  
Input voltage stability  
10  
VBAT=3.4~4.5V, Io=50mA, Vo=2.5V  
f=100Hz, Vin=200mVp-p, Vo=1.2V  
Io=50mA, BW=20Hz~20kHz  
Ripple Rejection Ratio  
RR2  
-
65  
-
dB  
Short circuit current limit  
Discharge resister at OFF  
Ilim2  
-
-
200  
1.0  
400  
1.5  
mA  
Vo=0V  
ROFF2  
kΩ  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
3/41  
BD6095GUL,BD6095GU  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Sensor Interface】  
2.850  
3.0  
3.150  
2.730  
30  
V
V
Io=200μA <Initial Voltage>  
Io=200μA  
SBIAS Output voltage  
VoS  
2.470  
2.6  
SBIAS Output current  
SSENS Input range  
IoS  
-
0
-
-
-
mA  
V
Vo=3.0V  
VoS x  
255/256  
VISS  
SBIAS Discharge resister at  
OFF  
ROFFS  
ADRES  
ADINL  
ADDNL  
RSSENS  
1.0  
8
-
1.5  
kΩ  
bit  
ADC resolution  
ADC non-linearity error  
-3  
-1  
1
+3  
+1  
-
LSB  
LSB  
MΩ  
ADC differential non-linearity  
error  
-
SSENS Input impedance  
WPWMIN】  
-
L level input voltage  
VILA  
VIHA  
-0.3  
1.4  
-
-
-
0.3  
V
V
VBAT  
+0.3  
H level input voltage  
Input current  
IinA  
3.6  
-
10  
-
μA  
μs  
Vin=1.8V  
PWM input minimum High  
pulse width  
PWpwm  
80  
GC1, GC2】  
L level output voltage  
VOLS  
VOHS  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
VoS  
-0.2  
H level output voltage  
FLASHCNT】  
L level input voltage  
VILF  
VIHF  
IinF  
-0.3  
1.4  
-
-
-
0.3  
V
V
VBAT  
+0.3  
H level input voltage  
Input current  
3.6  
10  
μA  
Vin=1.8V  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
4/41  
BD6095GUL,BD6095GU  
Technical Note  
Block Diagram / Application Circuit example  
1μF (6.3V)  
1μF (6.3V)  
1μF (6.3V)  
VBAT  
VBATCP  
VOUT  
VBAT1  
Charge Pump  
VBATLDO  
2.2μF  
(6.3V)  
x1 / x1.33 / x1.5 / x2  
10µF  
LED1  
LED2  
LED3  
LED4  
LED5  
OVP  
Charge Pump  
Mode Control  
LED terminal voltage feedback  
Back Light  
VIO  
RESETB  
SCL  
LEDFL  
TSD  
Level  
Shift  
I2C interface  
Flash  
SDA  
Digital Control  
WPWMIN  
FLASHCNT  
IREF  
To LED1~5  
LEDFL  
VREF  
LDO1  
Vo selectable  
Io=150mA  
LDO1O  
LDO2O  
1μF  
BH1600FVC SBIAS  
1μF  
LDO2  
Vo selectable  
Io=150mA  
1μF  
LED  
control  
Sensor  
I/F  
SSENS  
GC1  
GC2  
SGND  
ALC  
Fig.1 Block Diagram / Application Circuit example  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
5/41  
BD6095GUL,BD6095GU  
Technical Note  
Pin Arrangement Bottom View]  
T4  
LDO1O  
SSENS  
GC2  
VBAT1  
GC1  
SBIAS  
SGND  
SCL  
T3  
VIO  
C1N  
C2N  
C2P  
T2  
F
E
D
C
B
A
VBATLDO LDO2O  
WPWMIN  
LED3  
LED4  
T1  
LED1  
LED2  
LED5  
LEDFL  
FLASHCNT  
SDA  
RESETB  
VOUT  
C3N  
C1P  
LEDGND  
CPGND  
VBATCP  
C3P  
1
2
3
4
5
6
Index  
Total: 35 balls  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
6/41  
BD6095GUL,BD6095GU  
Technical Note  
Package  
BD6095GUL  
VCSP50L3  
SIZE :  
3.75mm  
A ball pitch : 0.5mm  
Height :  
0.55mm max  
BD6095  
Lot No.  
( Unit : mm )  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
7/41  
BD6095GUL,BD6095GU  
Technical Note  
BD6095GU  
VCSP85H3  
SIZE :  
3.75mm  
A ball pitch : 0.5mm  
Height :  
1.0mm max  
D6095  
Lot No.  
( Unit : mm )  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
8/41  
BD6095GUL,BD6095GU  
Technical Note  
Pin Functions  
ESD Diode  
Equivalent  
Circuit  
No Ball No.  
Pin Name  
I/O  
Functions  
For  
For  
Ground  
Power  
1
B5  
F4  
E1  
A1  
A6  
F6  
F1  
E6  
C4  
D4  
D5  
A3  
B3  
D6  
C5  
C6  
B6  
A4  
A5  
B4  
F2  
E2  
D2  
C2  
C1  
B1  
B2  
A2  
F5  
F3  
E4  
E3  
E5  
D1  
D3  
VBATCP  
VBAT1  
VBATLDO  
T1  
-
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
Power supply for charge pump  
Power supply  
A
A
A
S
S
M
N
C
H
I
2
-
3
-
-
Power supply for LDO  
4
I
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
Test Input Pin (short to Ground)  
Test Input Pin (short to Ground)  
Test Output Pin (Open)  
5
T2  
I
6
T3  
O
O
-
7
T4  
Test Output Pin (Open)  
8
VIO  
Power supply for I/O and Digital  
Reset input (L: reset, H: reset cancel)  
I2C data input / output  
I2C clock input  
9
RESETB  
SDA  
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I
SCL  
H
B
B
F
CPGND  
LEDGND  
C1N  
-
Ground  
-
-
Ground  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
I
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump output pin  
LDO1 output pin  
C1P  
G
F
C2N  
VBAT  
-
C2P  
G
F
C3N  
VBAT  
-
C3P  
G
A
Q
Q
E
E
E
E
E
E
VOUT  
LDO1O  
LDO2O  
LED1  
LED2  
LED3  
LED4  
LED5  
LEDFL  
SBIAS  
SSENS  
GC1  
-
VBAT  
VBAT  
-
LDO2 output pin  
LED cathode connection 1  
LED cathode connection 2  
LED cathode connection 3  
LED cathode connection 4  
LED cathode connection 5  
LED cathode connection for Flash  
I
-
I
-
I
-
I
-
I
-
O
I
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
Bias output for the Ambient Light Sensor  
Ambient Light Sensor input  
Q
N
X
X
B
L
O
O
-
Ambient Light Sensor gain control output 1  
Ambient Light Sensor gain control output 2  
Ground  
GC2  
SGND  
WPWMIN  
FLASHCNT  
I
GND  
GND  
External PWM input for Back Light  
External enable for Flash  
I
L
The LED terminal that isn't used is to short-circuit to the ground. But, the setup of a register concerned with LED that isn't used is prohibited.  
Total: 35 Pin  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
9/41  
BD6095GUL,BD6095GU  
Technical Note  
Equivalent Circuit  
A
B
G
K
O
S
VBAT  
C
H
L
VBAT  
E
F
VBAT  
VBAT  
VBAT  
VBAT  
VIO  
VIO  
I
VBAT  
VIO  
J
VBAT  
VIO  
VIO  
VIO  
VBAT  
VBAT  
VBAT  
M VBAT  
VBAT  
VBAT  
VBAT  
N
VBAT  
P
Q VBAT  
VBAT  
T
R
VBAT  
VBAT  
VBAT  
VBAT  
X
VoS  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
10/41  
BD6095GUL,BD6095GU  
Technical Note  
I2C BUS format  
The writing/reading operation is based on the I2C slave standard.  
Slave address  
A7  
1
A6  
1
A5  
1
A4  
0
A3  
1
A2  
1
A1  
0
R/W  
1/0  
Bit Transfer  
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes  
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.  
SDA  
SCL  
SDA a state of stability  
Data are effective  
SDA  
It can change  
START and STOP condition  
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L  
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL  
has been H, it will become STOP (P) conditions and an access end.  
SDA  
SCL  
S
P
STOP condition  
START condition  
Acknowledge  
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and  
a receiver returns the acknowledge signal by setting SDA to L.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
1
2
8
9
SCL  
S
clock pulse for  
acknowledgement  
START condition  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
11/41  
BD6095GUL,BD6095GU  
Technical Note  
Writing protocol  
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd  
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is  
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next  
transmission. After the transmission end, the increment of the address is carried out.  
*1  
*1  
0
A A7 A6 A5 A4 A3 A2 A1 A0 A D7D6D5D4D3D2D1D0 A  
register address  
DATA  
D7D6D5 D4D3D2D1D0 A  
DATA  
P
S
X
X
X
X
X
X
X
slave address  
register address  
increment  
register address  
increment  
R/W=0(write)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
*1: Write Timing  
Reading protocol  
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address  
accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the  
last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.  
S
1
A D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
P
X
X X X X X X  
slave address  
register address  
increment  
register address  
increment  
R/W=1(read)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
Multiple reading protocols  
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The  
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will  
read out 00h. After the transmission end, the increment of the address is carried out.  
S
A
A Sr  
1 A  
X X X X X X X  
slave address  
0
A7A6A5A4A3A2A1A0  
register address  
X X X X X X X  
slave address  
R/W=0(write)  
R/W=1(read)  
A
P
D7D6D5D4D3D2D1D0 A  
DATA  
D7D6D5D4D3D2D1D0  
DATA  
register address  
increment  
register address  
increment  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
P=STOP condition  
Sr=repeated START condition  
from master to slave  
from slave to master  
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation.  
It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is  
0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
12/41  
BD6095GUL,BD6095GU  
Technical Note  
Timing diagram  
SDA  
t BUF  
t SU;DAT  
t HD;STA  
t LOW  
SCL  
t SU;STO  
t SU;STA  
t HD;STA  
S
t HD;DAT  
Sr  
P
S
t HIGH  
Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=1.8V)  
Standard-mode  
Fast-mode  
Typ.  
Parameter  
I2C BUS format】  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Max.  
SCL clock frequency  
fSCL  
tLOW  
0
-
-
-
-
-
-
-
-
-
100  
0
-
-
-
-
-
-
-
-
-
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.0  
4.7  
0
-
1.3  
0.6  
0.6  
0.6  
0
-
tHIGH  
-
-
Hold time (repeated) START condition  
After this period, the first clock is generated  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
-
-
Set-up time for a repeated START condition  
Data hold time  
-
-
3.45  
0.9  
Data set-up time  
250  
4.0  
4.7  
-
-
-
100  
0.6  
1.3  
-
-
-
Set-up time for STOP condition  
Bus free time between a STOP  
and START condition  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
13/41  
BD6095GUL,BD6095GU  
Technical Note  
Register List  
Register data  
D3  
Address W/R  
Function  
D7  
-
D6  
-
D5  
-
D4  
-
D2  
-
D1  
-
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
W
W
W
W
W
W
W
W
W
-
-
SFTRST  
Software Reset  
-
LED5MD(1)  
TORCHEN  
IMLED(6)  
ISLED(6)  
-
LED5MD(0)  
SLEDEN  
IMLED(5)  
ISLED(5)  
-
LED4MD  
MLEDEN  
IMLED(4)  
ISLED(4)  
IFTLED(4)  
IFFLED(4)  
-
WPWMEN  
-
ALCEN  
LDO2EN  
IMLED(1)  
ISLED(1)  
IFTLED(1)  
IFFLED(1)  
MLEDMD  
LDO1EN  
IMLED(0)  
ISLED(0)  
IFTLED(0)  
IFFLED(0)  
LED, ALC Control  
Power Control  
FLASHEN  
-
“Main Group” LED Current Setting  
at non-ALC mode  
-
-
-
-
IMLED(3)  
ISLED(3)  
IFTLED(3)  
IFFLED(3)  
IMLED(2)  
ISLED(2)  
IFTLED(2)  
IFFLED(2)  
“Sub Group” LED Current Setting  
Flash LED “Torch mode”  
Current Setting  
Flash LED “Flash mode”  
Current Setting  
-
-
LDO2VSEL(3) LDO2VSEL(2) LDO2VSEL(1) LDO2VSEL(0) LDO1VSEL(3) LDO1VSEL(2) LDO1VSEL(1) LDO1VSEL(0)  
LDO1, LDO2 Vout Setting  
Main Current transition  
THL(3)  
THL(2)  
-
THL(1)  
-
THL(0)  
-
TLH(3)  
-
TLH(2)  
-
TLH(1)  
-
TLH(0)  
-
-
-
-
-
-
-
-
-
-
-
-
-
W
W
R
ADCYC(1)  
ADCYC(0)  
SOFS(2)  
-
GAIN(1)  
SOFS(1)  
-
GAIN(0)  
SOFS(0)  
-
STYPE  
SGAIN(3)  
AMB(3)  
IU0(3)  
IU1(3)  
IU2(3)  
IU3(3)  
IU4(3)  
IU5(3)  
IU6(3)  
IU7(3)  
IU8(3)  
IU9(3)  
IUA(3)  
IUB(3)  
IUC(3)  
IUD(3)  
IUE(3)  
IUF(3)  
VSB  
MDCIR  
SGAIN(1)  
AMB(1)  
IU0(1)  
IU1(1)  
IU2(1)  
IU3(1)  
IU4(1)  
IU5(1)  
IU6(1)  
IU7(1)  
IU8(1)  
IU9(1)  
IUA(1)  
IUB(1)  
IUC(1)  
IUD(1)  
IUE(1)  
IUF(1)  
SBIASON  
SGAIN(0)  
AMB(0)  
IU0(0)  
IU1(0)  
IU2(0)  
IU3(0)  
IU4(0)  
IU5(0)  
IU6(0)  
IU7(0)  
IU8(0)  
IU9(0)  
IUA(0)  
IUB(0)  
IUC(0)  
IUD(0)  
IUE(0)  
IUF(0)  
ALC mode setting  
SOFS(3)  
SGAIN(2)  
AMB(2)  
IU0(2)  
IU1(2)  
IU2(2)  
IU3(2)  
IU4(2)  
IU5(2)  
IU6(2)  
IU7(2)  
IU8(2)  
IU9(2)  
IUA(2)  
IUB(2)  
IUC(2)  
IUD(2)  
IUE(2)  
IUF(2)  
ADC Data adjustment  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Ambient level  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
IU0(6)  
IU1(6)  
IU2(6)  
IU3(6)  
IU4(6)  
IU5(6)  
IU6(6)  
IU7(6)  
IU8(6)  
IU9(6)  
IUA(6)  
IUB(6)  
IUC(6)  
IUD(6)  
IUE(6)  
IUF(6)  
IU0(5)  
IU1(5)  
IU2(5)  
IU3(5)  
IU4(5)  
IU5(5)  
IU6(5)  
IU7(5)  
IU8(5)  
IU9(5)  
IUA(5)  
IUB(5)  
IUC(5)  
IUD(5)  
IUE(5)  
IUF(5)  
IU0(4)  
IU1(4)  
IU2(4)  
IU3(4)  
IU4(4)  
IU5(4)  
IU6(4)  
IU7(4)  
IU8(4)  
IU9(4)  
IUA(4)  
IUB(4)  
IUC(4)  
IUD(4)  
IUE(4)  
IUF(4)  
Main Current at Ambient level 0h  
Main Current at Ambient level 1h  
Main Current at Ambient level 2h  
Main Current at Ambient level 3h  
Main Current at Ambient level 4h  
Main Current at Ambient level 5h  
Main Current at Ambient level 6h  
Main Current at Ambient level 7h  
Main Current at Ambient level 8h  
Main Current at Ambient level 9h  
Main Current at Ambient level Ah  
Main Current at Ambient level Bh  
Main Current at Ambient level Ch  
Main Current at Ambient level Dh  
Main Current at Ambient level Eh  
Main Current at Ambient level Fh  
Input "0” for "-".  
Prohibit to accessing the address that isn’t mentioned.  
The time indicated by register explanation is the TYP time made by dividing of the built-in OSC.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
14/41  
BD6095GUL,BD6095GU  
Technical Note  
Register Map  
Address 00h < Software Reset >  
Address  
00h  
R/W  
W
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
-
Bit2  
-
Bit1  
-
Bit0  
SFTRST  
Initial  
Value  
00h  
-
-
-
-
-
-
-
0
Bit [7:1] : (Not used)  
Bit0 : SFTRST Software Reset Command  
“0” :  
“1” :  
Reset cancel  
Reset (All register initializing)  
Refer to “The explanation of Reset” for detail.  
Address 01h < LED, ALC Control >  
Address  
01h  
R/W  
W
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
-
Bit2  
Bit1  
Bit0  
LED5MD(1) LED5MD(0) LED4MD  
WPWMEN  
ALCEN  
MLEDMD  
Initial  
Value  
00h  
-
0
0
0
-
0
0
0
Bit7 :  
(Not used)  
Bit [6:5] : LED5MD(1:0)  
LED5 Group Select (Main/Sub/OFF)  
“00” : LED5 OFF  
“01” : reserved  
“10” : LED5 “Sub Group”  
“11” : LED5 “Main Group”  
Refer to “The explanation of LED Driver” for detail.  
Bit4 :  
LED4MD  
“0” :  
LED4 Group Select (Main/Sub)  
LED4 “Sub Group”  
“1” :  
LED4 “Main Group”  
Refer to “The explanation of LED Driver” for detail.  
Bit3 :  
Bit2 :  
(Not used)  
WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)  
“0” :  
“1” :  
WPWMIN input invalid  
WPWMIN input valid  
Refer to “(11) Current Adjustment” of “The explanation of ALC” for detail.  
Bit1 :  
Bit0 :  
ALCEN  
“0” :  
“1” :  
ALC Function Control (ON/OFF)  
ALC function OFF  
ALC function ON  
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.  
MLEDMD  
“0” :  
“1” :  
“Main Group” LED Mode Select (Non ALC / with ALC)  
Non ALC mode  
ALC mode  
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
15/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 02h < Power Control >  
Address  
02h  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
-
Bit2  
-
Bit1  
Bit0  
FLASHEN TORCHEN SLEDEN  
MLEDEN  
LDO2EN  
LDO1EN  
Initial  
Value  
00h  
0
0
0
0
-
-
0
0
Bit [7:6] : FLASHEN, TORCHEN  
LEDFL Control (Flash ON / Torch ON / OFF)  
(At FLASHCNT=L)  
LEDFL: OFF,  
(At FLASHCNT=H)  
Flash mode ON  
Flash mode ON  
Flash mode ON  
"FLASHCNT" means external pin.  
“00” :  
“01” :  
“10” :  
“11” :  
LEDFL: Torch mode ON,  
LEDFL: Flash mode ON,  
reserved  
For Torch/Flash, refer to “Flash LED Current Setting” (address 05h, 06h)  
At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on.  
But, the setup of LED current becomes the minimum setting in this case.  
(Because the setting of LED current is reset at the time of RESETB=L.)  
Refer to “The explanation of LED Driver” for detail.  
Bit5 :  
Bit4 :  
SLEDEN  
“0” :  
Sub Group LED Control (ON/OFF)  
“Sub Group” LED OFF  
“1” :  
“Sub Group” LED ON  
MLEDEN Main Group LED Control (ON/OFF)  
“0” :  
“1” :  
“Main Group” LED OFF  
“Main Group” LED ON  
Bit [3:2] : (Not used)  
Bit1 :  
LDO2EN  
“0” :  
LDO2 Control (ON/OFF)  
LDO2 OFF  
“1” :  
LDO2 ON  
Bit0 :  
LDO1EN  
“0” :  
LDO1 Control (ON/OFF)  
LDO1 OFF  
“1” :  
LDO1 ON  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
16/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 03h < “Main Group” LED Current Setting at non-ALC mode >  
Address  
03h  
R/W  
W
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : IMLED(6:0)  
Main Group LED Current Setting at non-ALC mode  
“0000000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” : 12.6 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
“0111111” :  
12.8 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
17/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 04h < “Sub Group” LED Current Setting >  
Address  
04h  
R/W  
W
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ISLED(6) ISLED(5) ISLED(4) ISLED(3) ISLED(2) ISLED(1) ISLED(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : ISLED(6:0)  
Sub Group LED Current Setting  
“0000000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” : 12.6 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
“0111111” :  
12.8 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
18/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 05h < Flash LED “Torch mode” Current Setting >  
Address  
05h  
R/W  
W
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
IFTLED(4) IFTLED(3) IFTLED(2) IFTLED(1) IFTLED(0)  
Initial  
Value  
00h  
-
-
-
0
0
0
0
0
Bit [7:5] : (Not used)  
Bit [4:0] : IFTLED(4:0) Torch mode” of LEDFL Current Setting  
“00000” :  
“00001” :  
“00010” :  
“00011” :  
“00100” :  
“00101” :  
“00110” :  
“00111” :  
“01000” :  
“01001” :  
“01010” :  
“01011” :  
“01100” :  
“01101” :  
“01110” :  
“01111” :  
“10000” :  
“10001” :  
“10010” :  
“10011” :  
“10100” :  
“10101” :  
“10110” :  
“10111” :  
“11000” :  
“11001” :  
3.75 mA  
7.50 mA  
(Initial value)  
11.25 mA  
15.00 mA  
18.75 mA  
22.50 mA  
26.25 mA  
30.00 mA  
33.75 mA  
37.50 mA  
41.25 mA  
45.00 mA  
48.75 mA  
52.50 mA  
56.25 mA  
60.00 mA  
63.75 mA  
67.50 mA  
71.25 mA  
75.00 mA  
78.75 mA  
82.50 mA  
86.25 mA  
90.00 mA  
93.75 mA  
97.50 mA  
“11010” : 101.25 mA  
“11011” : 105.00 mA  
“11100” : 108.75 mA  
“11101” : 112.50 mA  
“11110” : 116.25 mA  
“11111” : 120.00 mA  
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
19/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 06h < Flash LED “Flash mode” Current Setting >  
Address  
06h  
R/W  
W
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
IFFLED(4) IFFLED(3) IFFLED(2) IFFLED(1) IFFLED(0)  
Initial  
Value  
00h  
-
-
-
0
0
0
0
0
Bit [7:5] : (Not used)  
Bit [4:0] : IFFLED(4:0) “Flash mode” of LEDFL Current Setting  
“00000” :  
“00001” :  
“00010” :  
“00011” :  
“00100” :  
“00101” :  
“00110” :  
“00111” :  
“01000” :  
“01001” :  
“01010” :  
“01011” :  
“01100” :  
“01101” :  
“01110” :  
“01111” :  
“10000” :  
“10001” :  
“10010” :  
“10011” :  
“10100” :  
“10101” :  
“10110” :  
“10111” :  
“11000” :  
“11001” :  
3.75 mA  
7.50 mA  
(Initial value)  
11.25 mA  
15.00 mA  
18.75 mA  
22.50 mA  
26.25 mA  
30.00 mA  
33.75 mA  
37.50 mA  
41.25 mA  
45.00 mA  
48.75 mA  
52.50 mA  
56.25 mA  
60.00 mA  
63.75 mA  
67.50 mA  
71.25 mA  
75.00 mA  
78.75 mA  
82.50 mA  
86.25 mA  
90.00 mA  
93.75 mA  
97.50 mA  
“11010” : 101.25 mA  
“11011” : 105.00 mA  
“11100” : 108.75 mA  
“11101” : 112.50 mA  
“11110” : 116.25 mA  
“11111” : 120.00 mA  
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
20/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 07h < LDO1 Vout Control, LDO2 Vout Control >  
Address  
07h  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
LDO2VSEL(3)LDO2VSEL(2)LDO2VSEL(1)LDO2VSEL(0)LDO1VSEL(3)LDO1VSEL(2)LDO1VSEL(1)LDO1VSEL(0)  
Initial  
Value  
74h  
0
1
1
1
0
1
0
0
Bit [7:4] : LDO2VSEL(3:0)  
LDO2 Output Voltage Control  
“0000” : 1.20 V  
“0001” : 1.30 V  
“0010” : 1.50 V  
“0011” : 1.60 V  
“0100” : 1.80 V  
“0101” : 2.20 V  
“0110” : 2.40 V  
“0111” : 2.50 V  
“1000” : 2.60 V  
“1001” : 2.70 V  
“1010” : 2.80 V  
“1011” : 2.90 V  
“1100” : 3.00 V  
“1101” : 3.10 V  
“1110” : 3.20 V  
“1111” : 3.30 V  
(Initial value)  
Bit [3:0] : LDO1VSEL(3:0)  
“0000” : 1.20 V  
“0001” : 1.30 V  
“0010” : 1.50 V  
“0011” : 1.60 V  
“0100” : 1.80 V  
“0101” : 2.20 V  
“0110” : 2.40 V  
“0111” : 2.50 V  
“1000” : 2.60 V  
“1001” : 2.70 V  
“1010” : 2.80 V  
“1011” : 2.90 V  
“1100” : 3.00 V  
“1101” : 3.10 V  
“1110” : 3.20 V  
“1111” : 3.30 V  
LDO1 Output Voltage Control  
(Initial value)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
21/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 08h < Main Current transition >  
Address  
08h  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
THL(3)  
THL(2)  
THL(1)  
THL(0)  
TLH(3)  
TLH(2)  
TLH(1)  
TLH(0)  
Initial  
Value  
C7h  
1
1
0
0
0
1
1
1
Bit [7:4] : THL(3:0)  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
Main LED current Down transition per 0.2mA step  
0.256 ms  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
“1111” :  
Setting time is counted based on the switching frequency of Charge Pump.  
The above value becomes the value of the Typ (1MHz) time.  
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.  
Bit [3:0] : TLH(3:0)  
Main LED current Up transition per 0.2mA step  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
0.256 ms  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
Setting time is counted based on the switching frequency of Charge Pump.  
The above value becomes the value of the Typ (1MHz) time.  
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
22/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 0Bh < ALC mode setting >  
Address  
0Bh  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ADCYC(1) ADCYC(0) GAIN(1)  
GAIN(0)  
STYPE  
VSB  
MDCIR  
SBIASON  
Initial  
Value  
81h  
1
0
0
0
0
0
0
1
Bit [7:6] : ADCYC(1:0)  
ADC Measurement Cycle  
0.52 s  
1.05 s  
“00” :  
“01” :  
“10” :  
“11” :  
1.57 s (Initial value)  
2.10 s  
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.  
Bit [5:4] : GAIN(1:0)  
Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.)  
“00” :  
“01” :  
“10” :  
“11” :  
Auto Change (Initial value)  
High  
Low  
Fixed  
Refer to “(3) Gain control” of “The explanation of ALC” for detail.  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
STYPE  
“0” :  
Ambient Light Sensor Type Select (Linear/Logarithm)  
For Linear sensor (Initial value)  
For Log sensor  
“1” :  
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.  
VSB  
“0” :  
“1” :  
SBIAS Output Voltage Control  
SBIAS output voltage 3.0V  
SBIAS output voltage 2.6V  
(Initial value)  
Refer to “(2) I/V conversion” of “The explanation of ALC” for detail.  
MDCIR  
“0” :  
LED Current Reset Select by Mode Change  
LED current non-reset when mode change  
LED current reset when mode change  
(Initial value)  
“1” :  
Refer to “(10) LED current reset when mode change” of “The explanation of ALC” for detail.  
SBIASON  
“0” :  
SBIAS Control (ON/OFF)  
Measurement cycle synchronous  
Usually ON (at ALCEN=1) (Initial value)  
“1” :  
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
23/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 0Ch < ADC Data adjustment >  
Address  
0Ch  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SOFS(3)  
SOFS(2)  
SOFS(1)  
SOFS(0) SGAIN(3) SGAIN(2) SGAIN(1) SGAIN(0)  
Initial  
Value  
00h  
0
0
0
0
0
0
0
0
Bit [7:4] : SOFS(3:0) AD Data Offset Adjustment  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
-8 LSB  
-7 LSB  
-6 LSB  
-5 LSB  
-4 LSB  
-3 LSB  
-2 LSB  
-1 LSB  
non-adjust  
+1 LSB  
+2 LSB  
+3 LSB  
+4 LSB  
+5 LSB  
+6 LSB  
+7 LSB  
Offset adjust is performed to ADC data.  
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.  
Bit [3:0] : SGAIN(3:0)  
AD Data Gain Adjustment  
reserved  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
reserved  
-37.50%  
-31.25%  
-25.00%  
-18.75%  
-12.50%  
-6.25%  
non-adjust  
+6.25%  
+12.50%  
+18.75%  
+25.00%  
+31.25%  
+37.50%  
reserved  
Gain adjust is performed to ADC data.  
The data after adjustment are round off by 8-bit data.  
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
24/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 0Dh < Ambient level (Read Only) >  
Address  
0Dh  
R/W  
R
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
AMB(3)  
AMB(2)  
AMB(1)  
AMB(0)  
Initial  
Value  
-
-
-
-
-
-
-
-
-
Bit [7:4] : (Not used)  
Bit [3:0] : AMB(3:0)  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
Ambient Level  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
The data can be read through I2C.  
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
25/41  
BD6095GUL,BD6095GU  
Technical Note  
Address 0Eh~1Dh < Main Current at Ambient level 0h~Fh >  
Address  
R/W  
W
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0Eh~1Dh  
IU*(6)  
IU*(5)  
IU*(4)  
IU*(3)  
IU*(2)  
IU*(1)  
IU*(0)  
Initial  
Value  
-
Refer to after page for initial table.  
“*” means 0~F.  
Bit7 :  
(Not used)  
Bit [6:0] : IU*(6:0)  
Main Current at Ambient Level for 0h~Fh  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” : 12.6 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
“0111111” :  
12.8 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
26/41  
BD6095GUL,BD6095GU  
Technical Note  
Explanation for operate  
1. The explanation of Reset  
There are two kinds of reset, software reset and hardware reset.  
Software reset  
All the registers are initialized by SFTRST="1".  
SFTRST is an automatically returned to "0". (Auto Return 0).  
Hardware reset  
It shifts to hardware reset by changing RESETB pin “H” “L”.  
The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address.  
It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”.  
RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.  
Even if RESETB=L, at FLASHCNT=H, Flash mode becomes ON by minimum setting.  
Reset Sequence  
When hardware reset was done during software reset, software reset is canceled whenhardware reset is canceled.  
(Because the initial value of software reset is “0”)  
2. The explanation of Thermal shutdown  
The blocks which thermal shutdown function is effective in the following.  
Charge pump  
LED Driver  
LDO1, LDO2, SBIAS  
A thermal shutdown function works in about 190oC.  
Detection temperature has a hysteresis, and detection release temperature is about 170 oC.(Design reference value)  
3. The explanation of Charge Pump for LED driver  
Charge Pump block is designed for the power supply for LED driver.  
It has the x1.0/x1.33/x1.5/x2.0 mode. It changes to the most suitable mode automatically by Vf of LED and the battery  
voltage. It has the mode of x1.33 and it can be higher efficiency than traditional.  
Start  
Charge Pump circuit operates when any LED turns ON.  
Soft start  
When the start of the Charge Pump circuit is done, it has the soft start function to prevent a rush current.  
VBAT  
TVBATON  
TVBATOFF  
VIO  
TVIOON=min  
0.1ms  
TVIOOFF=min  
1ms  
RESETB  
TRSTB=min  
0.1ms  
TRST=min  
0ms  
EN (*1)  
TSOFT  
VOUT  
LED Current  
(*1) An EN signal in the upper figure means the following;  
“EN is high” = Any LED turns ON  
But if Ta >TSD, EN Signal doesn’t become effective.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
27/41  
BD6095GUL,BD6095GU  
Technical Note  
Charge Pump Mode transition  
The transition of boost multiple transits automatically by Vf of LED and the battery voltage.  
STANDBY  
ALL off  
Any LED on  
Ta<TTSD  
1
VBAT>2.3V(typ)  
SOFT  
CP x1.0 mode  
After “VOUT>1.5V(typ)” detected, 142us(typ) wait  
CP x1.0 mode  
X1.0  
mode up=”H”  
mode down=”H”  
CP x1.33 mode  
X1.33  
mode up=”H”  
mode down=”H”  
CP x1.5mode  
X1.5  
X2.0  
mode up=”H”  
mode down=”H”  
CP x2.0mode  
All LED OFF  
RESET  
BD6095GUL/BD6095GU changes the four charge pump movement mode automatically to realize low consumption power.  
< Mode Up >  
A LED terminal voltage is monitored, and the movement mode is changed to ×1×1.33, ×1.33×1.5 and ×1.5×2  
automatically when a LED terminal voltage is lower than 0.2V (typ).  
At this time, the maximum output voltage of the charge pump is restricted to 5.1V (typ).  
< Mode Down >  
The rise in the battery voltage, the off control of LED lighting, “Main Group” LED current value and the data writing to  
the address 04h,05h,06h (LED Current Setting) is monitored, and the movement mode is changed to  
×2×1.5×1.33×1 automatically.  
This mode down movement lasts until a mode up movement happens.  
At Flash mode and Torch mode, the mode down doesn't happen.  
The thresholds of rise in a battery voltage are 2.9V, 3.3V, 3.7V and 4.1V (typ).  
And, as for the off control of LED lighting, it is shown that MLEDEN, SLEDEN, TORCHEN, FLASHEN and  
FLASHCNT transited in “1” “0”.  
Over Voltage protection / Over Current protection  
Charge Pump circuit output (VOUT) is equipped with the over-voltage protection and the over current protection  
function. A VOUT over-voltage detection voltage is about 5.5V(typ). (VOUT at the time of rise in a voltage)  
A detection voltage has a hysteresis, and a detection release voltage is about 5.1V(typ).  
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection  
function.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
28/41  
BD6095GUL,BD6095GU  
Technical Note  
4. The explanation of LED Driver  
LED1~LED3  
LED1~LED3 are same controlled. These are using for “Main backlight” and we call it “Main Group”.  
Current setting: IMLED(6:0)  
ON/OFF: MLEDEN (ON=1, OFF=0)  
LED4~LED5  
LED4 and LED5 can be independent controlled. There are attributed to “Main Group” or “Sub Group”.  
If these are attributed to “Main Group”, these are controlled by same as LED1~LED3.  
<Independent Control>  
Current setting: ISLED(6:0)  
ON/OFF: SLEDEN (ON=1, OFF=0)  
<Attribute to “Main Group”>  
Current setting: IMLED(6:0)  
ON/OFF: MLEDEN (ON=1, OFF=0)  
The number of LED Lighting (LED1~LED5)  
The number of lighting for Main/Sub LED can be set up grouping by the register  
The setting of the number of lighting is as the following.  
The Main/Sub LED is independently controlled by register MLEDEN, SLEDEN.  
Main/Sub  
Setting Example  
3 / 0 , 3 / 1  
4 / 0  
LED5MD(1) LED5MD(0)  
LED4MD  
LED1  
LED2  
LED3  
LED4  
LED5  
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Main  
Sub  
Main  
Sub  
OFF  
OFF  
Sub  
3 / 0 , 3 / 2  
4 / 0 , 4 / 1  
4 / 0 , 4 / 1  
5 / 0  
Main  
Sub  
Sub  
Main  
Main  
Main  
The change of the Grouping setting with turning it on is prohibited.  
The LED terminal that isn’t used must be connected to the ground.  
LEDFL  
LEDFL is for Flash. It has the two mode, “Torch” and “Flash”.  
Torch mode current: IFTLED(4:0)  
Flash mode current: IFFLED(4:0)  
ON/OFF: TORCHEN, FLASHEN, FLASHCNT (refer to “Power Control” address 02h)  
Flash mode is started by the rise edge of FLASHEN or FLASHCNT.  
At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on.  
(But, the setup of LED current becomes the minimum setting in this case because current setting is reset.)  
Please set FLASHCNT=L when you don't turn on Flash.  
TORCHEN  
TORCHEN  
FLASHEN or  
FLASHCNT  
FLASHEN or  
FLASHCNT  
IFFLED (4:0)  
IFFLED (4:0)  
IFTLED (4:0)  
LED current  
LED current  
< Torch mode >  
< Flash mode >  
< Torch mode >  
< OFF >  
< Flash mode >  
< OFF >  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
29/41  
BD6095GUL,BD6095GU  
Technical Note  
5. The explanation of ALC (Auto Luminous Control)  
LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.  
• Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear/logarithm)) is  
possible by building adjustment feature of Sensor bias, gain adjustment and offset adjustment.  
• Ambient data is changed into ambient level by digital data processing, and it can be read through I2C I/F.  
• Register setting can customize a conversion to LED current. (Initial value is pre-set.)  
• Natural dimming of LED driver is possible with the adjustment of the current transition speed.  
Usually ON / intermittent  
PWM enabling  
Output Voltage  
WPWMIN  
Offset Correction  
SBIAS  
ADC  
SBIAS  
Conversion  
Table  
Gain Correction  
Sensor type  
Slope Timer  
Mode Select  
LCD  
BackLight  
LED*  
Average  
Sensor  
Slope  
Data  
Current  
SSENS  
Logarithmic Conv.  
Ambient Level detect  
process  
Correction  
Conversion  
Main Group  
LED Driver  
GC1  
GC2  
Gain  
Control  
Main current setting  
Sensor Gain Control  
Ambient Level  
Sensor I/F  
LED control  
* Wave form in this explanation just shows operation image, not shows absolute value precisely.  
(1) Auto Luminous Control ON/OFF  
ALC block can be independent setting ON/OFF.  
It can use only to measure the Ambient level.  
Register : ALCEN  
Register : MLEDEN  
Register : MLEDMD  
Refer to under about the associate ALC mode and Main LED current.  
ALCEN MLEDEN MLEDMD  
Sensor I/F  
LED control  
OFF  
Mode  
Main LED current  
0
0
0
1
1
1
0
1
1
0
1
1
x
0
1
x
0
1
OFF  
-
OFF  
IMLED(6:0)  
IU0(6:0) (*1)  
-
Non ALC  
mode  
( AMB(3:0)=0h )  
ON  
OFF  
ON  
ON  
ALC mode  
IMLED(6:0)  
ALC mode (*2)  
(*1) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h.  
So, Main LED current is selected IU0(6:0).  
(*2) At this mode, Main LED current is selected IU0(6:0)~IUF(6:0)  
It becomes current value corresponding to each brightness.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
30/41  
BD6095GUL,BD6095GU  
Technical Note  
(2) I/V conversion  
The bias voltage and external resistance for the I-V conversion (Rs)  
are adjusted with adaptation of sensor characteristic  
The bias voltage is selectable by register setup.  
Register : VSB  
“0” : SBIAS output voltage 3.0V  
“1” : SBIAS output voltage 2.6V  
Ambient  
SBIAS  
SBIAS  
SSENS voltage  
VCC  
VSSENS  
Rs is large  
Iout  
Sensor IC  
A/D  
IOUT  
SSENS  
SGND  
GND  
Rs  
BD6095GUL  
Rs is small  
Rs : Sense resistance (A sensor output current is changed into the voltage value.)  
SBIAS : Bias power supply terminal for the sensor (3.0V / 2.6V by register setting)  
SSENS : Sense voltage input terminal  
Ambient  
SSENS Voltage = Iout x Rs  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
31/41  
BD6095GUL,BD6095GU  
Technical Note  
(3) Gain control  
Sensor gain switching function is built in to extend the dynamic range.  
It is controlled by register setup.  
When automatic gain control is off, the gain status can be set up  
in the manual.  
High Gain mode  
Register : GAIN(1:0)  
GC1 and GC2 are outputted corresponding to each gain status.  
Low Gain mode  
Ambient  
Auto Gain mode  
Ambient  
Example 3  
Example 1 (Use BH1600FVC)  
Example 2  
SBIAS  
SBIAS  
SBIAS  
SSENS  
VCC  
SSENS  
IOUT  
SSENS  
Application  
example  
BH1600  
GC1  
GC1  
GC1  
GC1  
GC2  
GC2  
GC2  
GC2  
GND  
SGND  
SGND  
SGND  
Resister values are relative  
Manual  
Manual  
Operating mode  
Auto  
00  
Auto  
Fixed  
High  
01  
Low  
10  
High  
01  
Low  
10  
GAIN(1:0) setting  
Gain status  
00  
11  
-
High Low High  
L
Low High Low High  
Low  
L
GC1 output  
L
L
GC2 output  
L
L
L
L
L
: This means that it becomes High with A/D measurement cycle synchronously.  
(*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
32/41  
BD6095GUL,BD6095GU  
Technical Note  
(4) A/D conversion  
The detection of ambient data is done periodically for the low power.  
SBIAS and ADC are turned off except for the ambient measurement.  
The sensor current may be shut in this function, it can possible to decrease the current consumption.  
SBIAS pin and SSENS pin are pull-down in internal when there are OFF.  
SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)  
Register : ADCYC(1:0)  
Register : SBIASON  
16 times  
ALCEN  
ADCYC(1:0)  
ADC Cycle  
SBIAS Output  
Twait= 64ms(typ) (Wait time)  
When SBIASON=1  
ADC Movement  
TAD= 16.4ms(typ)  
AD start signal  
(A/D conversion time)  
GC1, GC2  
GC1, GC2=00  
TADone= 1.024ms(typ)  
16 times measurement  
AMB(3:0)  
AMB(3:0)  
Toprt= 80.4ms(typ)  
(Operate time)  
(5) ADC data Gain / offset adjustment  
To correct the characteristic dispersion of the sensor,  
Gain and offset adjustment to ADC output data is possible.  
They are controlled by register setup.  
Register : SGAIN(3:0)  
Register : SOFS(3:0)  
< Gain Adjustment >  
Gain adjustment  
SGAIN(3:0)  
Ambient  
Ambient  
Ambient  
< Offset Adjustment >  
Offset adjustment  
SOFS(3:0)  
Ambient  
Ambient  
Ambient  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
33/41  
BD6095GUL,BD6095GU  
Technical Note  
(6) Average filter  
Average filter is built in to rid noise or flicker.  
Average is 16 times  
(7) Ambient level detection  
Averaged A/D value is converted to Ambient level corresponding to Gain control and sensor type.  
Ambient level is judged to rank of 16 steps by ambient data.  
The type of ambient light sensor can be chosen by register.  
(Linear type sensor / Logarithm type sensor)  
Register : STYPE  
“0” : For Linear sensor  
“1” : For Log sensor  
Ambient level is output through I2C.  
Register : AMB(3:0)  
STYPE  
0
1
xx  
-
GAIN(1:0)  
00  
10  
01  
11  
-
Gain  
Status  
Low  
High  
Low  
High  
Ambient  
level  
SSENS voltage  
VoS×0256  
VoS×17256  
VoS×18256  
VoS×26256  
VoS×27256  
VoS×36256  
VoS×37256  
VoS×47256  
VoS×48256  
VoS×59256  
VoS×60256  
VoS×71256  
VoS×72256  
VoS×83256  
VoS×84256  
VoS×95256  
VoS×96256  
VoS×107256  
VoS×108256  
VoS×119256  
VoS×120256  
VoS×131256  
VoS×132256  
VoS×143256  
VoS×144256  
VoS×155256  
VoS×156256  
VoS×168256  
VoS×169256  
VoS×181256  
VoS×182256  
VoS×255256  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×7256  
VoS×8256  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×7256  
VoS×8256  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×6256  
VoS×7256  
VoS×0256  
VoS×1256  
VoS×0256  
VoS×1256  
VoS×12256  
VoS×13256  
VoS×21256  
VoS×22256  
VoS×37256  
VoS×38256  
VoS×65256  
VoS×66256  
VoS×113256  
VoS×114256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×12256  
VoS×13256  
VoS×21256  
VoS×22256  
VoS×37256  
VoS×38256  
VoS×65256  
VoS×66256  
VoS×113256  
VoS×114256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×9256  
VoS×10256  
VoS×13256  
VoS×14256  
VoS×19256  
VoS×20256  
VoS×27256  
VoS×28256  
VoS×38256  
VoS×39256  
VoS×53256  
VoS×54256  
VoS×74256  
VoS×75256  
VoS×104256  
VoS×105256  
VoS×144256  
VoS×145256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×6256  
VoS×7256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×6256  
VoS×7256  
VoS×11256  
VoS×12256  
VoS×20256  
VoS×21256  
VoS×36256  
VoS×37256  
VoS×64256  
VoS×65256  
VoS×114256  
VoS×115256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×11256  
VoS×12256  
VoS×20256  
VoS×21256  
VoS×36256  
VoS×37256  
VoS×64256  
VoS×65256  
VoS×114256  
VoS×115256  
VoS×199256  
VoS×200256  
VoS×255256  
This is in case of not adjustments of the gain/offset control.  
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.  
” : This means that this zone is not outputted in this mode.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
34/41  
BD6095GUL,BD6095GU  
Technical Note  
(8) LED current assignment  
LED current can be assigned as each of 16 steps of the ambient level.  
Setting of a user can do by overwriting, though it prepares for the  
table setup in advance.  
Register : IU*(6:0)  
Conversion table  
can be changed  
Ambient Level  
Conversion Table (initial value)  
Ambient  
Level  
Ambient  
Level  
Setting data  
Current value  
Setting data  
Current value  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
11h  
13h  
15h  
18h  
1Eh  
25h  
2Fh  
3Bh  
3.6mA  
4.0mA  
4.4mA  
5.0mA  
6.2mA  
7.6mA  
9.6mA  
12.0mA  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
48h  
56h  
5Fh  
63h  
63h  
63h  
63h  
63h  
14.6mA  
17.4mA  
19.2mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
(9) Slope process  
Slope process is given to LED current to dim naturally.  
LED current changes in the 256Step gradation in sloping.  
Current Data which is set  
LED Current  
Up(darkbright),Down(brightdark) LED current transition speed  
are set individually.  
Register : THL(3:0)  
Register : TLH(3:0)  
THL  
(3:0)  
Main LED current changes as follows at the time as the slope.  
TLH (THL) is setup of time of the current step 2/256.  
TLH(3:0)  
Up/Down transition Speed  
is set individually  
TLH  
time  
Zoom  
25.6mA  
256  
THL  
=0.1mA  
TLH(3:0)  
time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
35/41  
BD6095GUL,BD6095GU  
Technical Note  
(10) LED current reset when mode change  
When mode is changed (ALCNon ALC),  
it can select the way to sloping.  
Register : MDCIR  
NonALC  
mode  
ALC  
mode  
NonALC  
mode  
IMLED(6:0)  
IMLED(6:0)  
“0” : LED current non-reset when mode change  
“1” : LED current reset when mode change  
IU*(6:0)  
MDCIR= “0”  
0mA  
time  
NonALC  
mode  
ALC  
mode  
NonALC  
mode  
IMLED(6:0)  
IMLED(6:0)  
IU*(6:0)  
MDCIR= “1”  
0mA  
time  
(11) Current adjustment  
When it is permitted by the register setting, PWM drive by the external terminal (WPWMIN) is possible.  
Register : WPWMEN  
It is suitable for the intensity correction by external control,  
because PWM based on Main LED current of register setup or ALC control.  
WPWMIN  
WPWMEN  
Back light current  
(External input)  
0
0
1
1
L
H
L
ON  
ON  
PWM input invalid  
PWM input valid  
Forced OFF  
ON  
H
Current ON is depending on “MLEDEN”.  
M L E D E N  
In te rn a l S o ft-S ta rt T im e  
D C /D C  
O u tp u t  
in p u t  
W P W M IN  
W P W M E N  
L E D C u rre n t  
It c a n b e in p u tte d W P W M IN b e fo re M L E D E N = 1 .  
It c a n b e s e t W P W M E N = 1 b e fo re M L E D E N = 1 .  
P W M m o ve m e n t is e ffe c tive a t th e tim e L E D c u rre n t ris e u p .  
P W M H ig h p u ls e w id th m u s t b e m o re th a n 8 0 µ s .  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
36/41  
BD6095GUL,BD6095GU  
Technical Note  
6. The explanation of I/O  
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.  
VBAT  
VIO  
RESETB=L, Output “H”  
SCL  
(SDA)  
Level  
Shift  
EN  
LOGIC  
RESETB  
7. The explanation of the start of LDO1~LDO2  
It must start as follows.  
VBAT  
TVBATON  
TVBATOFF  
VIO  
TVIOON=min  
0.1ms  
TVIOOFF=min  
1ms  
RESETB  
TRSTB=min  
0.1ms  
TRST=min  
0ms  
LDO1EN or LDO2EN  
TRISE  
=
max 1ms(TBD)  
LDO1O or LDO2O  
(LDO output)  
<Start Sequence>  
VBAT ON (Enough rise up) VIO ON (Enough rise up) Reset release LDO ON  
(Register access acceptable)  
<End Sequence>  
LDO OFF Reset VIO OFF (Enough fall down) VBAT OFF  
8. The explanation of the terminal management of the function that isn’t used  
Set up the terminal that isn't used as follows.  
The LED terminal which isn't used : Short to ground  
Don't do the control concerned with this terminal.  
T1, T2 : Short to ground  
T3, T4 : Open  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
37/41  
BD6095GUL,BD6095GU  
Technical Note  
PCB pattern of the Power dissipation measuring board  
1st layer(component)  
2nd layer  
3rd layer  
4th layer  
5th layer  
6th layer  
7th layer  
8th layer(solder)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
38/41  
BD6095GUL,BD6095GU  
Technical Note  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Power supply and ground line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay  
attention to the interference by common impedance of layout pattern when there are plural power supplies and ground  
lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external  
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between  
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the  
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low  
temperature, thus determining the constant.  
(3) Ground voltage  
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric  
transient.  
(4) Short circuit between pins and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the  
pin and the power supply or the ground pin, the ICs can break down.  
(5) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(6) Input pins  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower  
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input  
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to  
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.  
(7) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(8) Thermal shutdown circuit (TSD)  
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,  
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating  
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do  
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(9) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(10) LDO  
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it  
has the possibility that an operation becomes unstable.  
(11) About the pin for the test, the un-use pin  
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a  
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our  
company person in charge.  
(12) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width  
of ground wiring, and routing of wiring.  
(13) About the function description or application note or more.  
The function description and the application notebook are the design materials to design a set. So, the contents of the  
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the  
external elements.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
39/41  
BD6095GUL,BD6095GU  
Technical Note  
Power dissipation (On the ROHM’s standard board)  
1.6  
1500mW  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
Ta(℃)  
Information of the ROHM’s standard board  
Material : glass-epoxy  
Size :  
Refer to after page.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
40/41  
BD6095GUL,BD6095GU  
Technical Note  
Ordering part number  
-
B D  
6
0
9
5
G U  
L
E
2
Part No.  
Part No.  
6095  
Package  
GUL : VCSP50L3  
GU : VCSP85H3  
Packaging and forming specification  
E2: Embossed tape and reel  
VCSP50L3(BD6095GUL)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
1PIN MARK  
Quantity  
E2  
Direction  
of feed  
3.75 0.1  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
S
(
)
0.08  
S
φ
35- 0.25 0.05  
A
0.05  
A B  
F
φ
(
0.15)INDEX POST  
E
D
C
B
A
B
1
2 3 4 5 6  
Direction of feed  
1pin  
0.625 0.1  
P=0.5×5  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
VCSP85H3 (BD6095GU)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
1PIN MARK  
Quantity  
2500pcs  
E2  
Direction  
of feed  
3.75 0.05  
0.06  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
S
φ
35- 0.3 0.05  
A
0.05  
A B  
0.15)INDEX POST  
F
φ
(
E
D
C
B
A
B
1
2 3 4 5 6  
Direction of feed  
1pin  
0.625 0.05  
P=0.5×5  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
41/41  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD6095GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6095GUL_11

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD60A00NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX-TR

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX_12

White LED Driver
ROHM

BD60A00NUX_13

White LED Driver With PWM Brightness Control
ROHM

BD60A60NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60AX0NUX-TR

White LED Driver With PWM Brightness Control
ROHM

BD60BC0FP

Fixed Positive LDO Regulator, 6V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD60BC0FPE2

Fixed Positive LDO Regulator, 6V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD60BC0T

Fixed Positive LDO Regulator, 6V, PSFM3, ROHS COMPLIANT, TO-220FP, 3 PIN
ROHM

BD60BC0WFP

Fixed Positive LDO Regulator, 6V, PSSO5, ROHS COMPLIANT, TO-252, 5 PIN
ROHM