BD6541SGTR [ROHM]

High Voltage Operation CMOS Operational Amplifiers:Input/Output Full Swing; 高电压运行CMOS运算放大器:输入/输出全面启动
BD6541SGTR
型号: BD6541SGTR
厂家: ROHM    ROHM
描述:

High Voltage Operation CMOS Operational Amplifiers:Input/Output Full Swing
高电压运行CMOS运算放大器:输入/输出全面启动

运算放大器
文件: 总21页 (文件大小:483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ROHM’s Selection Operational Amplifier/Comparator Series  
High Voltage Operation CMOS  
Operational Amplifiers:Input/Output Full Swing  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM,BD7542F/FVM,BD7542SF/FVM  
No.09049EBT05  
Description  
High voltage operable CMOS Op-Amp BD7561/BD7541 family and BD7562/BD7542 family Integrate one or two independent  
input-output fullswing Op-amps and phase compesation capacitorson a single chip.  
Especially, characteristics are wide operating voltagerange of +5[V]+14.5[V](single power supply),low supply current and little  
input bias current.  
(BD7561SG  
Operation guaranteed up t o + 105)  
High speed  
Single  
(BD7562SF/FVMOperation guaranteed up to + 105)  
Dual  
(BD7541SG  
Low power  
Single  
Dual  
Operation guaranteed up to +  
Operation guaranteed up to +  
105)  
105)  
(BD7542SF/FVM  
Features  
1) Wide operating supply voltage(5[V]~+14.5[V])  
2) 5[V]~+14.5[V](single supply)  
±2.5[V]±7.25[V](split supply)  
3) Input and Output full swing  
4) Internal phase compensation  
5) High slew rate (BD7561 family, BD7562 family)  
6) Low supply current (BD7541 family, BD7542 family)  
7) High large signal voltage gain  
8) Internal ESD protection  
Human body model (HBM) ±4000[V](Typ.)  
9) Wide temperature range  
-40[]~+85[]  
(BD7561G,BD7562 family, BD7541G,BD7542 family)  
-40[]~+105[] (BD7561SG,BD7562S family, BD7541SG,BD7542S family)  
Pin Assignment  
VDD  
OUT2  
IN2-  
1
2
3
4
8
7
6
5
OUT1  
VDD  
OUT  
1
2
3
5
4
IN+  
CH1  
- +  
IN1-  
+
-
VSS  
IN-  
CH2  
+ -  
IN1+  
VSS  
IN2+  
SOP8  
MSOP8  
SSOP5  
BD7561G  
BD7561SG  
BD7541G  
BD7541SG  
BD7562F  
BD7562SF  
BD7542F  
BD7542SF  
BD7562FVM  
BD7562SFVM  
BD7542FVM  
BD7542SFVM  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
1/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
Rating  
BD7561GBD7562 F/FVM  
Parameter  
Symbol  
Unit  
BD7561SGBD7562S F/FVM  
BD7541SGBD7542S F/FVM  
BD7541GBD7542 F/FVM  
Supply Voltage  
VDD-VSS  
Vid  
15.5  
V
V
Differential Input Voltage(*1)  
Input Common-mode Voltage Range  
Operating Temperature  
VDD-VSS  
Vicm  
(VSS-0.3)(VDD0.3)  
V
Topr  
-40~+85  
-40~+105  
Storage Temperature  
Tstg  
-55~+125  
125  
Maximum Junction Temperature  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application of voltage in excess of absolute maximum rating or use out absoluted maximum rated temperature environment may cause deterioration of characteristics.  
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more then VSS.  
Electric Characteristics  
BD7561 family (Unless otherwise specified VDD=+12[V], VSS=0[V], Ta=25[])  
Guaranteed limit  
Temperature  
Parameter  
Symbol  
BD7561G,BD7561SG  
Unit  
Condition  
range  
Min.  
Typ.  
1
Max.  
25℃  
Full range  
25℃  
-
9
Input Offset Voltage (*2)(*4)  
Vio  
mV VDD=514.5[V],VOUT=VDD/2  
-
-
10  
Input Offset Current (*2)  
Input Bias Current (*2)  
Iio  
Ib  
-
1
-
pA  
pA  
-
-
25℃  
-
1
-
25℃  
-
370  
-
550  
RL=All Op-Amps  
AV=0[dB],VDD=5[V],VIN=2.5[V]  
RL=All Op-Amps  
Full range  
25℃  
-
600  
Supply Current (*4)  
IDD  
μA  
-
440  
-
650  
AV=0[dB],VDD=12[V],VIN=6.0[V]  
Full range  
25℃  
-
700  
High Level Output Voltage  
Low Level Output Voltage  
Large Single Voltage Gain  
VOH  
VOL  
AV  
VDD-0.1  
-
-
V
V
RL=10[k]  
RL=10[k]  
25℃  
-
70  
0
-
VSS+0.1  
25℃  
95  
-
-
12  
-
dB RL=10[k]  
Input Common-mode Voltage Range Vicm  
25℃  
V
VDD-VSS=12[V]  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (*3)  
Output Sink Current (*3)  
Slew Rate  
CMRR  
PSRR  
IOH  
IOL  
25℃  
45  
60  
3
60  
80  
8
dB  
-
-
25℃  
-
dB  
25℃  
-
mA VDD-0.4[V]  
mA VSS+0.4[V]  
V/μs CL=25[pF]  
25℃  
4
14  
0.9  
1.0  
50°  
0.05  
-
SR  
25℃  
-
-
Gain Bandwidth Product  
Phase Margin  
FT  
25℃  
-
-
MHz CL=25[pF], AV=40[dB]  
θ
25℃  
-
-
-
CL=25[pF], AV=40[dB]  
VOUT=1[Vp-p],f=1[kHz]  
Total Harmonic Distortion  
THD  
25℃  
-
-
%
(*2) Absolute value  
(*3) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
(*4) Full rangeBD7561Ta=-40[]+85[] BD7561STa=-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
2/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7562 family (Unless otherwise specified VDD=+12[V], VSS=0[V], Ta=25[])  
Guaranteed limit  
Temperature  
range  
BD7562F/FVM  
BD7562SF/FVM  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
1
Max.  
25℃  
Full range  
25℃  
-
9
Input Offset Voltage (*2)(*4)  
Vio  
mV VDD=514.5[V],VOUT=VDD/2  
-
-
10  
Input Offset Current (*2)  
Input Bias Current (*2)  
Iio  
Ib  
-
1
-
pA  
pA  
-
-
25℃  
-
1
-
25℃  
-
750  
-
1300  
RL=All Op-Amps  
AV=0[dB],VDD=5[V],VIN=2.5[V]  
RL=All Op-Amps  
Full range  
25℃  
-
1500  
Supply Current (*4)  
IDD  
μA  
-
900  
-
1400  
AV=0[dB],VDD=12[V],VIN=6.0[V]  
Full range  
25℃  
-
1600  
High Level Output Voltage  
Low Level Output Voltage  
Large Single Voltage Gain  
VOH  
VOL  
AV  
VDD-0.1  
-
-
V
V
RL=10[k]  
RL=10[k]  
25℃  
-
70  
0
-
VSS+0.1  
25℃  
95  
-
-
12  
-
dB RL=10[k]  
Input Common-mode Voltage Range Vicm  
25℃  
V
VDD-VSS=12[V]  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (*3)  
Output Sink Current (*3)  
Slew Rate  
CMRR  
PSRR  
IOH  
IOL  
25℃  
45  
60  
3
60  
80  
8
dB  
-
-
25℃  
-
dB  
25℃  
-
mA VDD-0.4[V]  
mA VSS+0.4[V]  
V/μs CL=25[pF]  
25℃  
4
14  
0.9  
1.0  
50°  
0.05  
-
SR  
25℃  
-
-
Gain Bandwidth Product  
Phase Margin  
FT  
25℃  
-
-
MHz CL=25[pF], AV=40[dB]  
θ
25℃  
-
-
-
CL=25[pF], AV=40[dB]  
VOUT=1[Vp-p],f=1[kHz]  
Total Harmonic Distortion  
THD  
25℃  
-
-
%
(*2) Absolute value  
(*3) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
(*4) Full rangeBD7562Ta=-40[]+85[]  
BD7562STa=-40[]+105[]  
BD7541 family (Unless otherwise specified VDD=+12[V], VSS=0[V], Ta=25[])  
Guaranteed limit  
Temperature  
Parameter  
Symbol  
BD7541G,BD7541SG  
Unit  
Condition  
range  
Min.  
Typ.  
Max.  
25℃  
Full range  
25℃  
-
-
-
1
-
9
10  
-
Input Offset Voltage (*5)(*7)  
Vio  
mV VDD=514.5[V],VOUT=VDD/2  
Input Offset Current (*5)  
Input Bias Current (*5)  
Iio  
Ib  
1
pA  
pA  
-
-
25℃  
-
1
-
25℃  
Full range  
25℃  
-
170  
-
300  
RL=All Op-Amps  
AV=0[dB],VDD=5[V],VIN=2.5[V]  
RL=All Op-Amps  
-
400  
Supply Current (*7)  
IDD  
μA  
-
180  
-
320  
AV=0[dB],VDD=12[V],VIN=6.0[V]  
Full range  
25℃  
-
420  
High Level Output Voltage  
Low Level Output Voltage  
Large Single Voltage Gain  
VOH  
VOL  
AV  
VDD-0.1  
-
-
V
V
RL=10[k]  
RL=10[k]  
25℃  
-
70  
0
-
VSS+0.1  
25℃  
95  
-
-
12  
-
dB RL=10[k]  
Input Common-mode Voltage Range Vicm  
25℃  
V
VDD-VSS=12[V]  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (*6)  
Output Sink Current (*6)  
Slew Rate  
CMRR  
PSRR  
IOH  
IOL  
25℃  
45  
60  
2
60  
80  
4
dB  
-
-
25℃  
-
dB  
25℃  
-
mA VDD-0.4[V]  
mA VSS+0.4[V]  
V/μs CL=25[pF]  
25℃  
3
7
-
SR  
25℃  
-
0.3  
0.6  
50°  
1
-
Gain Bandwidth Product  
Phase Margin  
FT  
25℃  
-
-
MHz CL=25[pF], AV=40[dB]  
θ
25℃  
-
-
-
CL=25[pF], AV=40[dB]  
VOUT=1[Vp-p],f=1[kHz]  
Total Harmonic Distortion  
THD  
25℃  
-
9
%
(*5) Absolute value  
(*6) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
(*7) Full rangeBD7541Ta=-40[]+85[] BD7541STa=-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
3/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7542 family (Unless otherwise specified VDD=+12[V], VSS=0[V], Ta=25[])  
Guaranteed limit  
Temperature  
range  
BD7542 F/FVM  
BD7542S F/FVM  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
25℃  
Full range  
25℃  
-
-
-
1
-
9
10  
-
Input Offset Voltage (*5)(*7)  
Vio  
mV VDD=514.5[V],VOUT=VDD/2  
Input Offset Current (*5)  
Input Bias Current (*5)  
Iio  
Ib  
1
pA  
pA  
-
-
25℃  
-
1
-
25℃  
Full range  
25℃  
-
340  
-
650  
RL=All Op-Amps  
AV=0[dB],VDD=5[V],VIN=2.5[V]  
RL=All Op-Amps  
-
850  
Supply Current (*7)  
IDD  
μA  
-
400  
-
780  
AV=0[dB],VDD=12[V],VIN=6.0[V]  
Full range  
25℃  
-
900  
High Level Output Voltage  
Low Level Output Voltage  
Large Single Voltage Gain  
VOH  
VOL  
AV  
VDD-0.1  
-
-
V
V
RL=10[k]  
RL=10[k]  
25℃  
-
70  
0
-
VSS+0.1  
25℃  
95  
-
-
12  
-
dB RL=10[k]  
Input Common-mode Voltage Range Vicm  
25℃  
V
VDD-VSS=12[V]  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (*6)  
Output Sink Current (*6)  
Slew Rate  
CMRR  
PSRR  
IOH  
IOL  
25℃  
45  
60  
2
60  
80  
4
dB  
-
-
25℃  
-
dB  
25℃  
-
mA VDD-0.4[V]  
mA VSS+0.4[V]  
V/μs CL=25[pF]  
25℃  
3
7
-
SR  
25℃  
-
0.3  
0.6  
50°  
0.05  
-
Gain Bandwidth Product  
Phase Margin  
FT  
25℃  
-
-
MHz CL=25[pF], AV=40[dB]  
θ
25℃  
-
-
-
CL=25[pF], AV=40[dB]  
VOUT=1[Vp-p],f=1[kHz]  
Total Harmonic Distortion  
THD  
25℃  
-
-
%
(*5) Absolute value  
(*6) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
(*7) Full rangeBD7542Ta=-40[]+85[] BD7542STa=-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
4/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Example of electrical characteristics  
BD7561 family  
BD7561 family  
BD7561 family  
BD7561 family  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
800  
600  
400  
200  
0
-40℃  
25℃  
BD7561G  
BD7561SG  
85℃  
105℃  
0
50  
100  
150  
0
50  
100  
150  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 1  
Fig. 2  
Fig. 3  
Derating Curve  
Derating Curve  
Supply Current – Supply Voltage  
BD7561 family  
BD7561 family  
BD7561 family  
800  
600  
400  
200  
0
16  
12  
8
16  
12  
8
-40℃  
14.5V  
14.5V  
12V  
85℃  
25℃  
12V  
5V  
5V  
105℃  
4
4
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 4  
Fig. 5  
Fig. 6  
Supply Current – Ambient Temperature  
Output Voltage High – Supply Voltage  
Output Voltage High – Ambient Temperature  
(RL=10[k])  
(RL=10[k])  
BD7561 family  
BD7561 family  
BD7561 family  
40  
80  
40  
-40℃  
30  
60  
30  
20  
10  
0
14.5V  
85℃  
105℃  
25℃  
20  
10  
40  
20  
12V  
85℃  
25℃  
-40℃  
5V  
105℃  
0
0
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
8
9
10  
11  
12  
13  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 8  
OUTPUT VOLTAGE [V]  
Fig. 9  
Fig. 7  
Output Voltage Low – Supply Voltage  
Output Voltage Low – Ambient Temperature  
Output Source Current – Output Voltage  
(RL=10[k])  
(RL=10[k])  
(VDD=12[V])  
BD7561 family  
BD7561 family  
BD7561 family  
40  
100  
15  
80  
12  
9
14.5V  
30  
-40℃  
60  
14.5V  
25℃  
20  
12V  
40  
6
12V  
105℃  
10  
20  
3
85℃  
5V  
5V  
0
0
0
-60 -30  
0
30  
60  
90 120  
-1  
0
1
2
3
-60 -30  
0
30  
60  
90 120  
OUTPUT VOLTAGE [V]  
Fig. 11  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 10  
Fig. 12  
Output Source Current – Ambient  
Temperature(VOUT=VDD-0.4[V])  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VDD=12[V])  
(VOUT=VDD-11.6[V])  
()The above data is ability value of sample, it is not guaranteed. BD7561-40[]+85[] BD7561S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
5/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7561 family  
BD7561 family  
BD7561 family  
12V  
BD7561 family  
10.0  
15  
10  
5
10.0  
7.5  
5.0  
7.5  
5.0  
14.5V  
-40℃  
85℃  
25℃  
2.5  
25℃  
2.5  
-40℃  
0.0  
0
0.0  
105℃  
105℃  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
85℃  
-5  
5V  
-10  
-15  
4
8
12  
16  
-1 0 1 2 3 4 5 6 7 8 9 10111213  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 13  
Fig. 14  
Fig. 15  
Input Offset Voltage – Supply Voltage  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Ambient Temperature  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Input Voltage  
(VDD=12[V])  
BD7561 family  
BD7561 family  
BD7561 family  
160  
160  
120  
100  
-40℃  
25℃  
14.5V  
140  
120  
100  
80  
140  
105℃  
12V  
85℃  
80  
60  
40  
20  
0
120  
105℃  
85℃  
25℃  
100  
5V  
-40℃  
80  
60  
60  
-60 -30  
0
30  
60  
90 120  
4
8
12  
16  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
Fig. 17  
SUPPLY VOLTAGE [V]  
Fig. 16  
SUPPLY VOLTAGE [V]  
Fig. 18  
Large Signal Voltage Gain  
– Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(VDD=12[V])  
BD7561 family  
BD7561 family  
BD7561 family  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
4
3
2
1
0
5V  
14.5V  
14.5V  
12V  
12V  
5V  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 19  
AMBIENT TEMPERATURE [°C]  
Fig. 20  
AMBIENT TEMPERATURE [°C]  
Fig. 21  
Common Mode Rejection Ratio  
– Ambient Temperature  
(VDD=12[V])  
Power Supply Rejection Ratio  
– Ambient Temperature  
Slew Rate L-H – Ambient Temperature  
BD7561 family  
BD7561 family  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
14.5V  
Gain  
12V  
5V  
0
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08  
FREQUENCY [Hz]  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 22  
Slew Rate H-L – Ambient  
Temperature  
Fig. 23  
Gain - Frequency  
()The above data is ability value of sample, it is not guaranteed. BD7561-40[]+85[] BD7561S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
6/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7562 family  
BD7562 family  
BD7562 family  
BD7562 family  
1200  
1000  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
800  
600  
400  
200  
0
-40℃  
25℃  
BD7562F  
BD7562SF  
BD7562FVM  
BD7562SFVM  
85℃  
105℃  
0
50  
100  
150  
0
50  
100  
150  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 24  
Fig. 25  
Fig. 26  
Derating Curve  
Derating Curve  
Supply Current – Supply Voltage  
BD7562 family  
BD7562 family  
BD7562 family  
14.5V  
16  
12  
8
16  
12  
8
1200  
1000  
800  
600  
400  
200  
0
-40℃  
14.5V  
12V  
85℃  
12V  
25℃  
5V  
5V  
105℃  
4
4
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 27  
Fig. 28  
Fig. 29  
Supply Current – Ambient Temperature  
Output Voltage High – Supply Voltage  
Output Voltage High – Ambient Temperature  
(RL=10[k])  
(RL=10[k])  
BD7562 family  
BD7562 family  
BD7562 family  
40  
40  
80  
30  
30  
20  
10  
0
60  
-40℃  
14.5V  
85℃  
105℃  
25℃  
40  
20  
10  
20  
12V  
85℃  
25℃  
-40℃  
5V  
105℃  
0
0
8
9
10  
11  
12  
13  
-60 -30  
0
30  
60  
90 120  
4
8
12  
16  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 30  
Fig. 31  
Fig. 32  
Output Voltage Low – Supply Voltage  
Output Voltage Low – Ambient Temperature  
Output Source Current – Output Voltage  
(VDD=12[V])  
(RL=10[k])  
(RL=10[k])  
BD7562 family  
BD7562 family  
BD7562 family  
100  
40  
15  
80  
12  
9
14.5V  
30  
-40℃  
60  
14.5V  
20  
25℃  
12V  
40  
6
12V  
105℃  
10  
20  
3
85℃  
5V  
5V  
0
0
0
-1  
0
1
2
3
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
OUTPUT VOLTAGE [V]  
Fig. 34  
AMBIENT TEMPERATURE [°C]  
Fig. 35  
AMBIENT TEMPERATURE [°C]  
Fig. 33  
Output Source Current – Ambient  
Temperature  
Output Sink Current – Output Voltage  
(VDD=12[V])  
Output Sink Current – Ambient Temperature  
(VOUT=VDD-11.6[V])  
()The above data is ability value of sample, it is not guaranteed. BD7562-40[]+85[] BD7562S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
7/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7562 family  
BD7562 family  
BD7562 family  
BD7562 family  
10.0  
15  
10  
5
10.0  
7.5  
5.0  
7.5  
5.0  
14.5V  
12V  
-40℃  
85℃  
25℃  
25℃  
-40℃  
2.5  
2.5  
0.0  
0
0.0  
105℃  
105℃  
-2.5  
-5.0  
-7.5  
-10.0  
85℃  
-2.5  
-5.0  
-7.5  
-10.0  
-5  
5V  
-10  
-15  
-60 -30  
0
30  
60  
90 120  
-1 0 1 2 3 4 5 6 7 8 9 10111213  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 36  
Fig. 37  
Fig. 38  
Input Offset Voltage – Supply Voltage  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Ambient Temperature  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Input Voltage  
(VDD=12[V])  
BD7562 family  
BD7562 family  
BD7562 family  
160  
160  
120  
-40℃  
85℃  
12V  
85℃  
14.5V  
100  
80  
60  
40  
20  
0
-40℃  
140  
120  
100  
80  
140  
120  
25℃  
105℃  
105℃  
25℃  
100  
5V  
80  
60  
60  
4
8
12  
16  
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 41  
AMBIENT TEMPERATURE [°C]  
Fig. 40  
Fig. 39  
Large Signal Voltage Gain  
– Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(VDD=12[V])  
BD7562 family  
BD7562 family  
5V  
BD7562 family  
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
12V  
14.5V  
14.5V  
40  
12V  
5V  
0
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 43  
AMBIENT TEMPERATURE [°C]  
Fig. 44  
AMBIENT TEMPERATURE [°C]  
Fig. 42  
Common Mode Rejection Ratio  
– Ambient Temperature  
(VDD=12[V])  
Power Supply Rejection Ratio  
– Ambient Temperature  
Slew Rate L-H – Ambient Temperature  
BD7562 family  
BD7562 family  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
14.5V  
Gain  
12V  
5V  
0
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
FREQUENCY [Hz]  
Fig. 45  
Slew Rate H-L – Ambient  
Fig. 46  
Gain - Frequency  
Temperature  
()The above data is ability value of sample, it is not guaranteed. BD7562-40[]+85[] BD7562S-40[]+105[]  
www.rohm.com  
2012.09 - Rev.B  
8/20  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7541 family  
BD7541 family  
BD7541 family  
BD7541 family  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
400  
300  
200  
100  
0
25℃  
-40℃  
BD7541G  
BD7541SG  
85℃  
105℃  
4
8
12  
16  
0
50  
100  
150  
0
50  
100  
150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 48  
AMBIENT TEMPERATURE [°C]  
Fig. 47  
Fig. 49  
Derating Curve  
Derating Curve  
Supply Current – Supply Voltage  
BD7541 family  
BD7541 family  
BD7541 family  
400  
300  
200  
100  
0
16  
12  
8
16  
12  
8
-40℃  
14.5V  
14.5V  
12V  
85℃  
25℃  
12V  
5V  
5V  
105℃  
4
4
-60 -30  
0
30  
60  
90 120  
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 50  
Fig. 51  
Fig. 52  
Supply Current – Ambient Temperature  
Output Voltage High – Supply Voltage  
Output Voltage High – Ambient Temperature  
(RL=10[k])  
(RL=10[k])  
BD7541 family  
BD7541 family  
BD7541 family  
80  
80  
40  
-40℃  
60  
60  
40  
20  
0
30  
14.5V  
85℃  
25℃  
105℃  
40  
20  
85℃  
5V  
20  
10  
-40℃  
25℃  
12V  
5V  
105℃  
0
0
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
8
9
10  
11  
12  
13  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
OUTPUT VOLTAGE [V]  
Fig. 53  
Fig. 54  
Fig. 55  
Output Voltage Low – Supply Voltage  
Output Voltage Low – Ambient Temperature  
Output Source Current – Output Voltage  
(VDD=12[V])  
(RL=10[k])  
(RL=10[k])  
BD7541 family  
BD7541 family  
BD7541 ファミリ  
50  
10  
20  
8
6
4
2
0
40  
15  
-40℃  
14.5V  
30  
14.5V  
25℃  
10  
20  
12V  
12V  
105℃  
5
10  
85℃  
5V  
5V  
0
0
-60 -30  
0
30  
60  
90 120  
-1  
0
1
2
3
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 56  
Fig. 57  
Fig. 58  
Output Source Current – Ambient  
Temperature  
Output Sink Current – Output Voltage  
(VDD=12[V])  
Output Sink Current – Ambient Temperature  
(VOUT=VDD-11.6[V])  
()The above data is ability value of sample, it is not guaranteed. BD7541-40[]+85[] BD7541S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
9/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7541 family  
BD7541 family  
BD7541 family  
BD7541 family  
10.0  
10.0  
7.5  
15  
10  
5
7.5  
14.5V  
12V  
5.0  
5.0  
-40℃  
85℃  
25℃  
25℃  
-40℃  
2.5  
2.5  
0.0  
0
0.0  
105℃  
105℃  
85℃  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
-5  
5V  
-10  
-15  
-1 0  
1 2 3 4 5 6 7 8 9 10111213  
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
INPUT VOLTAGE [V]  
Fig. 61  
SUPPLY VOLTAGE [V]  
Fig. 59  
AMBIENT TEMPERATURE [°C]  
Fig. 60  
Input Offset Voltage – Supply Voltage  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Ambient Temperature  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Input Voltage  
(VDD=12[V])  
BD7541 family  
BD7541 family  
BD7541 family  
160  
160  
120  
-40℃  
25℃  
12V  
100  
80  
60  
40  
20  
0
105℃  
140  
120  
100  
80  
140  
105℃  
120  
85℃  
-40℃  
85℃  
25℃  
14.5V  
100  
5V  
80  
60  
60  
-60 -30  
0
30  
60  
90 120  
4
8
12  
16  
4
8
12  
16  
AMBIENT TEMPERATURE [°C]  
Fig. 63  
SUPPLY VOLTAGE [V]  
Fig. 62  
SUPPLY VOLTAGE [V]  
Fig. 64  
Large Signal Voltage Gain  
– Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(VDD=12[V])  
BD7541 family  
BD7541 family  
BD7541 family  
2.0  
1.5  
1.0  
0.5  
0.0  
120  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
14.5V  
12V  
14.5V  
5V  
12V  
40  
5V  
0
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 67  
AMBIENT TEMPERATURE [°C]  
Fig. 65  
AMBIENT TEMPERATURE [°C]  
Fig. 66  
Common Mode Rejection Ratio  
– Ambient Temperature  
(VDD=12[V])  
Power Supply Rejection Ratio  
– Ambient Temperature  
Slew Rate L-H – Ambient Temperature  
BD7541 family  
BD7541 family  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Phase  
14.5V  
Gain  
12V  
5V  
0
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 68  
FREQUENCY [Hz]  
Fig. 69  
Slew Rate H-L – Ambient Temperature  
Gain - Frequency  
()The above data is ability value of sample, it is not guaranteed. BD7541-40[]+85[] BD7541S-40[]+105[]  
www.rohm.com  
2012.09 - Rev.B  
10/20  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7542 family  
BD7542 family  
BD7542 family  
BD7542 family  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
800  
600  
400  
200  
0
BD7542F  
-40℃  
BD7542SF  
25℃  
BD7542FVM  
BD7542SFVM  
85℃  
105℃  
4
8
12  
16  
0
50  
100  
150  
0
50  
100  
150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 70  
Fig. 71  
Fig. 72  
Derating Curve  
Derating Curve  
Supply Current – Supply Voltage  
BD7542 family  
BD7542 family  
BD7542 family  
800  
600  
400  
200  
0
16  
12  
8
16  
12  
8
14.5V  
-40℃  
14.5V  
12V  
85℃  
25℃  
5V  
12V  
5V  
105℃  
4
4
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 75  
AMBIENT TEMPERATURE [°C]  
Fig. 73  
Fig. 74  
Supply Current – Ambient Temperature  
Output Voltage High – Supply Voltage  
Output Voltage High – Ambient Temperature  
(RL=10[k])  
(RL=10[k])  
BD7542 family  
BD7542 family  
BD7542 family  
80  
80  
40  
-40℃  
60  
60  
40  
20  
0
30  
14.5V  
25℃  
85℃  
105℃  
40  
20  
0
20  
85℃  
10  
-40℃  
105℃  
5V  
12V  
25℃  
0
8
9
10  
11  
12  
13  
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
OUTPUT VOLTAGE [V]  
Fig. 78  
SUPPLY VOLTAGE [V]  
Fig. 76  
AMBIENT TEMPERATURE [°C]  
Fig. 77  
Output Voltage Low – Supply Voltage  
Output Voltage Low – Ambient Temperature  
Output Source Current – Output Voltage  
(VDD=12[V])  
(RL=10[k])  
(RL=10[k])  
BD7542 family  
BD7542 family  
BD7542 family  
50  
20  
10  
40  
8
6
4
2
0
15  
-40℃  
14.5V  
30  
14.5V  
10  
25℃  
20  
12V  
12V  
85℃  
5
10  
105℃  
5V  
5V  
0
0
-60 -30  
0
30  
60  
90 120  
-1  
0
1
2
3
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 81  
Fig. 79  
Fig. 80  
Output Source Current – Ambient Temperature  
(VOUT=VDD-0.4[V])  
Output Sink Current – Output Voltage  
(VDD=12[V])  
Output Sink Current – Ambient Temperature  
(VOUT=VDD-11.6[V])  
()The above data is ability value of sample, it is not guaranteed. BD7561-40[]+85[] BD7561S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
11/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
BD7542 family  
BD7542 family  
BD7542 family  
BD7542 family  
12V  
10.0  
7.5  
15  
10  
5
10.0  
7.5  
14.5V  
5.0  
5.0  
-40℃  
85℃  
25℃  
25℃  
-40℃  
2.5  
2.5  
0.0  
0
0.0  
105℃  
105℃  
-2.5  
-5.0  
-7.5  
-10.0  
85℃  
-2.5  
-5.0  
-7.5  
-10.0  
-5  
5V  
-10  
-15  
4
8
12  
16  
-1 0 1 2 3 4 5 6 7 8 9 10111213  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
INPUT VOLTAGE [V]  
Fig. 84  
AMBIENT TEMPERATURE [°C]  
Fig. 83  
Fig. 82  
Input Offset Voltage – Supply Voltage  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Ambient Temperature  
(Vicm=VDD, VOUT=VDD/2)  
Input Offset Voltage – Input Voltage  
(VDD=12[V])  
BD7542 family  
BD7542 family  
BD7542 family  
160  
160  
120  
25℃  
14.5V  
12V  
105℃  
100  
80  
60  
40  
20  
0
140  
140  
120  
100  
80  
-40℃  
120  
105℃  
85℃  
-40℃  
85℃  
25℃  
5V  
100  
80  
60  
60  
4
8
12  
16  
4
8
12  
16  
-60 -30  
0
30  
60  
90 120  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 85  
Fig. 86  
Fig. 87  
Large Signal Voltage Gain  
– Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(VDD=12[V])  
BD7542 family  
BD7542 family  
BD7542 family  
2.0  
1.5  
1.0  
0.5  
0.0  
120  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
12V  
14.5V  
14.5V  
5V  
12V  
40  
5V  
0
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 88  
Fig. 89  
Fig. 90  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
– Ambient Temperature  
Slew Rate L-H – Ambient Temperature  
– Ambient Temperature  
(VDD=12[V])  
BD7542 family  
BD7542 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
14.5V  
Gain  
12V  
5V  
0
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08  
FREQUENCY [Hz]  
-60 -30  
0
30  
60  
90 120  
AMBIENT TEMPERATURE [°C]  
Fig. 91  
Fig. 92  
Slew Rate H-L – Ambient  
Temperature  
Gain - Frequency  
()The above data is ability value of sample, it is not guaranteed. BD7561-40[]+85[] BD7561S-40[]+105[]  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
12/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Schematic diagram  
Fig. 93. Schematic diagram  
Test circuit1 NULL method  
VDD,VSS,EK,Vicm Unit : [V]  
Parameter  
Input Offset Voltage  
VF  
S1  
ON  
ON  
S2  
ON  
ON  
S3  
OFF  
ON  
VDD  
12  
VSS  
EK  
Vicm Calculation  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
0
0
-6  
12  
6
1
2
-0.5  
-11.5  
Large Signal Voltage Gain  
12  
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
ON  
ON  
ON  
ON  
OFF  
OFF  
12  
0
0
-6  
3
4
12  
5
Power Supply Rejection Ratio  
-2.5  
0
14.5  
-Calculation-  
|VF1|  
1+Rf/Rs  
1. Input Offset Voltage (Vio)  
Vio  
[V]  
=
(1+Rf/Rs)  
Av  
[dB]  
=20Log  
2. Large Signal Voltage Gain (Av)  
|VF2-VF3|  
1.8×(1+Rf/Rs)  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
CMRR  
[dB]  
[dB]  
= 20Log  
|VF4-VF5|  
3.8×(1+Rf/Rs)  
PSRR= 20Log  
|VF6-VF7|  
0.1[μF]  
Rf =50[k]  
0.01[μF]  
15[V]  
500[k]  
VDD  
DUT  
SW1  
EK  
Vo  
Ri=1[M]  
RS 50[]  
500[k]  
0.015[μF]  
0.015[μF]  
NULL  
SW3  
RS 50[]  
Ri=1[M]  
1000[pF]  
VF  
RL  
Vicm  
SW2  
50[k]  
VRL  
-15[V]  
VSS  
Fig. 94. Test circuit 1 (one channel only)  
13/20  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Test circuit2 switch condition  
Unit : [V]  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW  
8
SW  
9
SW  
10  
SW  
11  
SW  
12  
SW No.  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
Maximum Output Voltage RL=10 [k] OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
Output Current  
Slew Rate  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
Maximum Frequency  
ON OFF OFF ON  
ON OFF OFF OFF ON OFF OFF ON  
VIN  
[V]  
12[V]  
SW3  
SW4  
12[VP-P  
]
R2 100[k]  
VDD=3[V]  
0[V]  
t
Input waveform  
VOUT  
[V]  
SR= ΔV / Δt  
SW1  
SW2  
12[V]  
SW8  
SW9  
SW10  
SW11  
SW12  
SW5  
SW6  
SW7  
R1  
1[k]  
GND  
ΔV  
RL  
CL  
VIN-  
VIN+  
Vo  
Δt  
0[V]  
t
Output waveform  
Fig. 95.. Test circuit2  
Fig. 96.. Slew rate input output wave  
Test circuit3 Channel separation  
R2=100[k]  
R2=100[k]  
VDD  
VDD  
R1=1[k]  
R1=1[k]  
VOUT1  
=1[Vrms]  
V
V
VOUT2  
R1//R2  
R1//R2  
VIN  
VSS  
VSS  
100×VOUT1  
CS=20Log  
VOUT2  
Fig. 97.. Test circuit3  
www.rohm.com  
2012.09 - Rev.B  
14/20  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Description of electrical characteristics  
Described here are the terms of electric characteristics used in this technical note. Items and symbols used are also shown.  
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general document.  
1. Absolute maximum ratings  
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Power supply voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply  
terminalwithout deterioration or destruction of characteristics of internal circuit.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without  
deterioration and destruction of characteristics of IC.  
1.3 Input common-mode voltage range (Vicm)  
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without deterioration or  
destruction of characteristics. Input common-mode voltage range of the maximum ratings not assure normal operation of  
IC. When normal Operation of IC is desired, the input common-mode voltage of characteristics item must be followed.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25( normal temperature).  
As for package product, Pd is determined by the temperature that can be permitted by IC chip in the package(maximum  
junction temperature)and thermal resistance of the package.  
2. Electrical characteristics item  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the input  
voltage difference required for setting the output voltage at 0 [V].  
2.2 Input offset current (Iio)  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.3 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at  
non-inverting terminal and input bias current at inverting terminal.  
2.4 Circuit current (ICC)  
Indicates the IC current that flows under specified conditions and no-load steady status.  
2.5 High level output voltage / Low level output voltage(VOH/VOL)  
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into high-level  
output voltage and low-level output voltage. High-level output voltage indicates the upper limit of output voltage. Low-level  
output voltage indicates the lower limit.  
2.6 Large signal voltage gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and  
inverting terminal.It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.7 Input common-mode voltage range (Vicm)  
Indicates the input voltage range where IC operates normally.  
2.8 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the fluctuation of DC.  
CMRR (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.9 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC.  
PSRR(Change of power supply voltage)/(Input offset fluctuation)  
2.10 Channel separation(CS)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of  
driven channel.  
www.rohm.com  
2012.09 - Rev.B  
15/20  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
2.11 Slew rate (SR)  
Indicates the time fluctuation ratio of voltage output when step input signal is applied.  
2.12 Unity gain frequency (ft)  
Indicates a frequency where the voltage gain of Op-Amp is 1.  
2.13 Total harmonic distortion + Noise (THDN)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.14 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series  
with input terminal.  
Derating curve  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature).  
IC is heatedwhen it consumed power, and the temperature of IC ship becomes higher than ambient temperature.  
The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable  
power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and  
thermal resistance of package (heat dissipation capability).  
The maximum junction temperature is typically equal to the maximum value in the storage package (heat dissipation capability).  
The maximum junction temperature is typically equal to the maximum value in the storage temperature range.  
Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package.  
The parameter which indicates this heat dissipation capability (hardness of heat release) is called thermal resistance, represented  
by the symbol θj-a[/W]. The temperature of IC inside the package can be estimated by this thermal resistance.  
Fig.98 (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction  
temperature Tj, and power dissipation Pd can be calculated by the equation below :  
θja (Tj-Ta) / Pd  
[/W]  
・・・・・ ()  
Derating curve in Fig.98 (b) indicates power that can be consumed by IC with reference to ambient temperature.  
Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by  
thermal resistance θja.  
Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package condition, wind  
velocity, etc even when the same of package is used.  
Thermal reduction curve indicates a reference value measured at a specified condition. Fig99(c)-(f) show a derating curve  
for an example of BU7561family, BU7562family, 7541family, 7542family.  
Power dissipation of LSI [W]  
Pd(max)  
θja  
(Tj Ta) / Pd  
[
/W]  
P2  
θja2 <θja1  
θja2  
Ambient temperature Ta []  
Package surface temperature []  
P1  
Tj(max)  
θja1  
0
50  
75  
100  
150  
25  
125  
Chip surface temperature Tj []  
Power dissipation P [W]  
Ambient temperature Ta []  
BD7561/BD7541  
Tj(max)  
(a) Thermal resistance  
(b) Derating curve  
Fig. 98. Thermal resistance and derating  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
16/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
1000  
800  
600  
400  
200  
0
800  
600  
BD7562F(*9  
BD7542F(*9  
620[mw]  
480[mw]  
BD7561G(*8)  
540[mw  
BD7541G(*8)  
BD7562FVM(*10)  
BD7542FVM(*10)  
400  
200  
0
85  
0
50  
100  
150  
85  
0
50  
100  
150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
(d) BD7562F/FVM BD7542F/FVM  
(c) BD7561G  
1000  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
BD7562SF(*9  
BD7542SF(*9  
620[mw]  
480[mw]  
BD7561SG(*8)  
BD7541SG(*8)  
540[mw  
BD7562SFVM(*10)  
BD7542SFVM(*10)  
105  
100  
105  
0
50  
150  
0
50  
100  
150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
(f) BD7562S F/FVM BD7542S F/FVM  
(e) BD7561SG  
(*8)  
5.4  
(*9)  
6.2  
(*10)  
4.8  
Unit  
[mW/]  
When using the unit above Ta=25[], subtract the value above per degree[]. Permissible dissipation is the value  
when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm] (cooper foil area below 3[]) is mounted.  
Fig. 99. Derating curve  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
17/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
N0tes for use  
1) Absolute maximum ratings  
Absolute maximum ratings are the values which indicate the limits,within which the given voltage range can be safely  
charged to the terminal.However, it does not guarantee the circuit operation.  
2) Applied voltage to the input terminal  
For normal circuit operation of voltage comparator, please input voltage for its input terminal within input common mode  
voltage VDD+0.3[V].Then, regardless of power supply voltage,VSS-0.3[V] can be applied to inputterminals without  
deterioration or destruction of its characteristics.  
3) Operating power supply (split power supply/single power supply)  
The voltage comparator operates if a given level of voltage is applied between VDD and VSS. Therefore, the operational  
amplifier can be operated under single power supply or split power supply.  
4) Power dissipation (Pd)  
If the IC is used under excessive power dissipation. An increase in the chip temperature will cause deterioration of the  
radical characteristics of IC. For example, reduction of current capability. Take consideration of the effective power  
dissipation andthermal design with a sufficient margin. Pd is reference to the provided power dissipation curve.  
5) Short circuits between pins and incorrect mounting  
Short circuits between pins and incorrect mounting when mounting the IC on a printed circuits board, take notice of the  
direction and positioning of the IC.If IC is mounted erroneously, It may be damaged. Also, when a foreign object is inserted  
between output, between output and VDD terminal or VSS terminal which causes short circuit, the IC may be damaged.  
6) Using under strong electromagnetic field  
Be careful when using the IC under strong electromagnetic field because it may malfunction.  
7) Usage of IC  
When stress is applied to the IC through warp of the printed circuit board, The characteristics may fluctuate due to the  
piezo effect. Be careful of the warp of the printed circuit board.  
8) Testing IC on the set board  
When testing IC on the set board, in cases where the capacitor is connected to the low impedance,make sure to discharge  
per fabrication because there is a possibility that IC may be damaged by stress.  
When removing IC from the set board, it is essential to cut supply voltage.As a countermeasure against the static  
electricity, observe proper grounding during fabrication processand take due care when carrying and storage it.  
9) The IC destruction caused by capacitive load  
The transistors in circuits may be damaged when VDD terminal and VSS terminal is shorted with the charged output  
terminal capacitor. When IC is used as a operational amplifier or as an application circuit,where oscillation is not activated  
by an output capacitor, the output capacitor must be kept below 0.1[μF] in order to prevent the damage mentioned above.  
10) Decupling capacitor  
Insert the deculing capacitance between VDD and VSS, for stable operation of operational amplifier.  
11) Latch up  
Be careful of input vltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up operation.  
And protect the IC from abnormaly noise.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
18/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
Ordering part number  
B D  
7
5
6
2
F
V
M
-
T
R
ローム形名  
品番  
パッケージ  
G: SSOP5  
F: SOP8  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8)  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
7561 , 7561S  
7541 , 7541S  
7562 , 7562S  
7542 , 7542S  
FVM: MSOP8  
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
+
6
°
4°  
4
°
Quantity  
2500pcs  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9 0.2  
6
°
4
Tape  
Embossed carrier tape  
5
4
Quantity  
3000pcs  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
+0.05  
0.04  
0.42  
0.95  
0.1  
Direction of feed  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
19/20  
BD7561G,BD7561SG,BD7541G,BD7541SG,  
BD7562F/FVM,BD7562SF/FVM, BD7542F/FVM,BD7542SF/FVM  
Technical Note  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
3000pcs  
+
6°  
4°  
Quantity  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
–0.03  
0.145  
0.475  
S
0.22  
–0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.09 - Rev.B  
20/20  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
R1120A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY