BD6709FS-E2 [ROHM]

Brushless DC Motor Controller, 1.2A, BCDMOS, PDSO16, ROHS COMPLIANT, SSOP-16;
BD6709FS-E2
型号: BD6709FS-E2
厂家: ROHM    ROHM
描述:

Brushless DC Motor Controller, 1.2A, BCDMOS, PDSO16, ROHS COMPLIANT, SSOP-16

电动机控制 CD 光电二极管
文件: 总41页 (文件大小:1916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
DC Brushless Motor Drivers for Cooling Fans  
Speed Controllable  
Single-phase Full-wave  
DC Brushless Fan Motor Drivers  
BD6709FS, BD6718FV, BD6721FS, BD6722FS  
Description  
This is the summary of models that suit for 12V speed controllable fan for desktop PC and general consumer equipment.  
They employ Bi-CDMOS process, and realize low ON resistance, low power consumption. They incorporate lock protection  
and automatic restart circuit, current limiting circuit.  
Features  
1) Power Tr incorporated (BD6709FSBD6721FS)  
2) Pre-driver compatible for external Tr (BD6718FV)  
3) Low side power Tr incorporated half pre-driver (BD6722FS)  
4) Current limiting circuit  
5) PWM soft switching driver (BD6721FSBD6722FS)  
6) Soft start circuit (BD6722FS)  
7) Lock protection and automatic restart circuit  
8) Rotating speed pulse signal (FG) output  
9) Lock alarm signal (AL) output (BD6718FVBD6721FSBD6722FS)  
Application  
For 12V fan for desktop PC, server and general consumer equipment  
Lineup  
12V speed controllable  
single-phase full-wave  
BD6709FS  
BD6718FV  
Soft switching not available  
Soft switching available  
Power Tr incorporated  
Pre-driver  
Power Tr incorporated  
Half pre-driver  
BD6721FS  
BD6722FS  
Jan. 2007  
Absolute Maximum Ratings  
BD6709FS  
Parameter  
Symbol  
Limit  
Unit  
Supply voltage  
Vcc  
Pd  
17  
812.5*  
-40+95  
-55+150  
1.2**  
10  
V
mW  
Power dissipation  
Operation temperature  
Storage temperature  
Output current  
Topr  
Tstg  
Iomax  
IFG  
A
FG signal output current  
FG signal output voltage  
Junction temperature  
mA  
V
VFG  
Tjmax  
15  
150  
Reduce by 6.5mW/over 25.  
(On 70.0mm×70.0mm×1.6mm glass epoxy board)  
** This value is not to exceed Pd.  
BD6718FV  
Parameter  
Symbol  
Limit  
Unit  
Supply voltage  
Vcc  
Pd  
15  
V
mW  
Power dissipation  
812.5*  
Operation temperature  
Storage temperature  
High side output voltage  
Low side output voltage  
Low side output current  
FG signal output current  
FG signal output voltage  
AL signal output current  
AL signal output voltage  
VREF current ability  
Topr  
Tstg  
-40+95  
-55+150  
VOH  
VOL  
Iomax  
IFG  
36  
15  
20  
8
V
V
mA  
mA  
V
VFG  
IAL  
15  
8
mA  
V
VAL  
15  
4
IVREF  
IHB  
mA  
mA  
HB current ability  
8
Junction temperature  
Tjmax  
150  
Reduce by 6.5mW/over 25.  
(On 70.0mm×70.0mm×1.6mm glass epoxy board)  
BD6721FS  
Parameter  
Symbol  
Limit  
Unit  
Supply voltage  
Power dissipation  
Vcc  
Pd  
20  
812.5*  
-40+100  
-55+150  
1.0**  
10  
V
mW  
Operation temperature  
Storage temperature  
Output current  
Topr  
Tstg  
Iomax  
IFG  
A
FG signal output current  
FG signal output voltage  
AL signal output current  
AL signal output voltage  
VREF current ability  
Junction temperature  
mA  
V
VFG  
IAL  
20  
10  
mA  
V
VAL  
20  
IVREF  
Tjmax  
8
mA  
150  
Reduce by 6.5mW/over 25.  
(On 70.0mm×70.0mm×1.6mm glass epoxy board)  
** This value is not to exceed Pd.  
2/40  
BD6722FS  
Parameter  
Symbol  
Limit  
Unit  
Vcc  
Pd  
20  
812.5*  
-40+100  
-55+150  
34  
V
mW  
V
Supply voltage  
Power dissipation  
Topr  
Operation temperature  
Storage temperature  
High side output voltage  
Low side output voltage  
Low side output current  
Signal output current  
Signal output voltage  
VREF current ability  
VTH input voltage  
Tstg  
VOH  
VOL  
34  
V
Iomax  
IFG/IAL  
VFG/VAL  
IVREF  
VVTH  
Tjmax  
1.5**  
10  
A
mA  
V
20  
8
mA  
V
15  
Junction temperature  
150  
Reduce by 6.5mW/over 25.  
(On 70.0mm×70.0mm×1.6mm glass epoxy board)  
** This value is not to exceed Pd.  
OPERATING CONDITIONS  
BD6709FS  
Parameter  
Symbol  
Vcc  
Limit  
Unit  
V
Operating supply voltage range  
Hall input voltage range  
6.014.0  
VH  
0.5Vcc-1.5  
V
BD6718FV  
Parameter  
Operating supply voltage range  
Hall input voltage range  
Symbol  
Vcc  
Limit  
Unit  
V
4.514.0  
0Vcc-2.0  
VH  
V
BD6721FS  
Parameter  
Operating supply voltage range  
Hall input voltage range  
Symbol  
Vcc  
Limit  
Unit  
V
5.017.0  
0Vcc-2.0  
0Vcc-2.0  
0Vcc-2.0  
VH  
V
VTH input voltage range  
VVTH  
VVMIN  
V
VMIN input voltage range  
V
BD6722FS  
Parameter  
Operating supply voltage range  
Hall input voltage range  
Symbol  
Vcc  
Limit  
Unit  
V
5.017.0  
0Vcc-2.0  
0Vcc-2.0  
VH  
V
VMIN input voltage range  
VVMIN  
V
3/40  
ELECTRICAL CHARACTERISTICS(Unless otherwise specified Ta=25,Vcc=12V)  
BD6709FS  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Characteristics  
Min.  
3.0  
±5  
-
Typ.  
6.0  
Max.  
9.0  
Circuit current  
Icc  
mA  
mV  
V
Fig.1  
Fig.2  
Hall input hysteresis  
Output low voltage  
VHYS  
VOL  
±10  
0.2  
±15  
0.3  
Io=200mA  
Fig.3,4  
Io=-200mA  
Output high voltage  
VOH  
-
0.2  
0.3  
V
Voltage between output and  
Vcc  
Fig.5,6  
Lock detection ON time  
Lock detection OFF time  
FG output low voltage  
FG output leak current  
OSC low voltage  
TON  
TOFF  
VFGL  
IFGL  
0.30  
2.5  
-
0.50  
4.0  
-
0.70  
5.5  
0.3  
50  
2.5  
4.0  
-
sec  
sec  
V
Fig.7  
Fig.8  
IFG=5mA  
VFG=15V  
Fig.9,10  
-
-
μA  
V
-
VOSCL  
VOSCH  
FOSC  
GLA  
1.5  
3.0  
-
2.0  
3.5  
25 *  
-
Fig.11  
OSC high voltage  
V
FIg.12  
OSC frequency  
kHz  
dB  
V
COSC=470pF  
-
-
-
Level amp gain  
50  
-
-
Level amp output low voltage  
VLAOL  
0.9  
1.2  
ILAOUT=1mA  
ILAOUT=-1mA  
Voltage between output and  
Vcc  
Level amp output high voltage  
VLAOH  
-
1.2  
1.5  
V
-
VREF voltage  
VREF  
Vcofs  
4.0  
-
4.4  
-
4.8  
30  
V
IVREF=-1mA  
Fig.14,15  
CL-CS offset voltage  
mV  
* This voltage is reference, not guarantee.  
BD6718FV  
Limit  
Typ.  
8.0  
±10  
10  
Parameter  
Symbol  
Unit  
Conditions  
Characteristics  
Min.  
4.0  
±5  
5
Max.  
12.0  
±15  
20  
Circuit current  
Icc  
VHYS  
IH  
mA  
mV  
mA  
μA  
Fig.16  
Fig.17  
Fig.18  
-
Hall input hysteresis  
H side output current  
H side output leak current  
IHL  
-
-
100  
Io=-10mA  
L side output high voltage  
VLH  
-
0.2  
0.35  
V
Voltage between output and  
Fig.19  
Vcc  
L side output low voltage  
Lock detection ON time1  
Lock detection OFF time1  
Lock detection ON time2  
Lock detection OFF time2  
FG output low voltage  
AL output low voltage  
FG output leak current  
AL output leak current  
OSC low voltage  
VLL  
TON1  
TOFF1  
TON2  
TOFF2  
VFGL  
VALL  
IFGL  
-
0.15  
1.5  
0.15  
3.0  
-
0.2  
0.3  
3.0  
0.3  
6.0  
0.3  
0.3  
-
0.35  
0.5  
5.0  
0.5  
10  
V
sec  
sec  
sec  
sec  
V
Io=10mA  
Fig.20  
Fig.21  
Fig.22  
Fig.21  
Fig.23  
Fig.24  
Fig.24  
-
SEL(6PIN)OPEN or H  
SEL(6PIN)OPEN or H  
SEL(6PIN)=L  
SEL(6PIN)=L  
IFG=5mA  
0.4  
0.4  
50  
-
V
IAL=5mA  
-
μA  
μA  
V
VFG=15V  
IALL  
-
-
50  
VAL=15V  
-
VOSCL  
VOSCH  
FOSC  
VREF  
VHB  
0.4  
1.2  
-
0.7  
1.5  
25 *  
2.5  
1.5  
-
1.0  
1.8  
-
Fig.25  
Fig.26  
-
OSC high voltage  
V
OSC frequency  
kHz  
V
COSC=470pF  
IVREF=-1mA  
VREF voltage  
2.2  
1.2  
3
2.8  
1.8  
-
Fig.27  
Fig.28  
-
Hall bias voltage  
V
CR current ability  
ICR  
mA  
V
VCR=1.5V  
ICR=0.5mA  
CR output low voltage  
CR discharge time  
VCR  
-
0.3  
18.5  
0.5  
28  
Fig.29  
Fig.30  
TCR  
9
μsec  
* This voltage is reference, not guarantee.  
4/40  
BD6721FS  
Limit  
Typ.  
7.0  
Parameter  
Symbol  
Unit  
Conditions  
Characteristics  
Min.  
4.0  
Max.  
10.0  
±15  
Circuit current  
Icc  
mA  
mV  
Fig.31  
Fig.32  
Hall input hysteresis  
VHHYS  
±5  
±10  
Io=300mA  
Upper and Lower total  
Output voltage  
VO  
-
0.6  
0.9  
V
Fig.3336  
Lock detection ON time  
Lock detection OFF time  
FG output low voltage  
FG output leak current  
AL output low voltage  
AL output leak current  
OSC low voltage  
TON  
TOFF  
VFGL  
IFGL  
0.30  
3.0  
-
0.50  
5.0  
0.15  
-
0.70  
7.0  
0.3  
50  
sec  
sec  
V
Fig.37  
Fig.38  
Fig.39,40  
Fig.41  
Fig.39,40  
Fig.41  
Fig.42  
Fig.43  
Fig.44  
Fig.44  
-
IFG=5mA  
VFG=17V  
IAL=5mA  
VAL=17V  
-
μA  
V
VALL  
-
0.15  
-
0.3  
50  
IALL  
-
μA  
V
VOSCL  
VOSCH  
ICOSC  
IDOSC  
GLA  
0.8  
2.3  
-50  
26  
50  
-
1.0  
2.5  
-32  
32  
1.2  
2.7  
-26  
50  
OSC high voltage  
V
OSC charge current  
OSC discharge current  
Level amp gain  
μA  
μA  
dB  
V
-
-
Level amp output low voltage  
VLAOL  
0.2  
0.3  
-
Voltage between LAOUT and  
Vcc  
Level amp output high voltage  
VLAOH  
-
1.6  
2.0  
V
-
VTH=VREF*0.383  
OUT1=Pull up 1kΩ  
COSC=470pF  
Output ON Duty 1  
DUTY1  
85  
90  
95  
%
-
VTH=VREF*0.583  
OUT1=Pull up 1kΩ  
COSC=470pF  
VTH=VREF*0.783  
OUT1=Pull up 1kΩ  
COSC=470pF  
Output ON Duty 2  
Output ON Duty 3  
DUTY2  
DUTY3  
45  
5
50  
10  
55  
15  
%
%
-
-
VREF voltage  
VREF  
VCL  
2.8  
3.0  
3.2  
330  
0.2  
0.2  
V
IVREF=-2mA  
Fig.45  
Fig.46  
Fig.47  
Fig.48  
Current limit voltage  
VTH input bias current  
VMIN input bias current  
290  
310  
mV  
μA  
μA  
IVTH  
IVMIN  
-
-
-
-
5/40  
BD6722FS  
Limit  
Typ.  
8.0  
Parameter  
Symbol  
Unit  
Conditions  
Characteristics  
Min.  
5.0  
±5  
5
Max.  
11.0  
±15  
20  
Icc  
VHYS  
IH  
mA  
mV  
mA  
Fig.52  
Fig.53  
Fig.54  
Circuit current  
±10  
10  
Hall input hysteresis  
High side output current  
High side output leak  
current  
IHL  
-
-
10  
μA  
VH=34V  
Fig.55  
VL  
-
0.18  
3.6  
-
0.3  
0.3  
6.0  
0.15  
-
0.45  
0.42  
8.4  
0.3  
10  
V
sec  
sec  
V
Io=600mA  
Fig.56,57  
Fig.58  
Low side output voltage  
Lock detection ON time  
Lock detection OFF time  
FG output low voltage  
FG output leak current  
AL output low voltage  
AL output leak current  
OSC low voltage  
TON  
TOFF  
VFGL  
IFGL  
Fig.59  
IFG=5mA  
VFG=17V  
IAL=5mA  
VAL17V  
Fig.61,62  
Fig.60  
-
μA  
V
VALL  
-
0.15  
-
0.3  
10  
Fig. 61,62  
Fig.60  
IALL  
-
μA  
V
VOSCL  
VOSCH  
ICOSC  
IDOSC  
0.8  
2.24  
-50  
26  
1.0  
2.44  
-32  
32  
1.2  
2.64  
-26  
50  
Fig.63  
V
Fig.64  
OSC high voltage  
μA  
μA  
Fig.65  
OSC charge current  
OSC discharge current  
Fig.65  
VTH=VREF*0.429  
A1H=Pull up 1kΩ  
COSC=470pF  
VTH=VREF*0.573  
A1H=Pull up 1kΩ  
COSC=470pF  
VTH=VREF*0.717  
A1H=Pull up 1kΩ  
COSC=470pF  
DUTY1  
DUTY2  
DUTY3  
75  
45  
15  
80  
50  
20  
85  
55  
25  
%
%
%
-
-
-
Output ON Duty 1  
Output ON Duty 2  
Output ON Duty 3  
VREF  
VCL  
2.8  
3.0  
3.2  
380  
0.2  
0.2  
V
IVREF=-2mA  
Fig.66,67  
Fig.68  
VREF voltage  
320  
350  
mV  
μA  
μA  
Current limit voltage  
VTH input bias current  
VMIN input bias current  
IVTH  
IVMIN  
-
-
-
-
Fig.69  
Fig.70  
Truth table  
BD6709FS  
H+  
H
H-  
L
OUT1  
OUT2  
FG  
L
H
L
H
L
L
H
H
BD6718FV  
H+  
H
H-  
L
CR  
H
A1H  
Hi-Z  
L
A1L  
H
A2H  
L
A2L  
L
FG  
H
L
H
H
L
Hi-Z  
H
L
BD6721FS  
H+  
H
H-  
L
OUT1  
OUT2  
FG  
H
L
H
L
L
H
H
L
BD6718FV  
H+  
H
H-  
L
A1H  
Hi-Z  
L
A1L  
L
A2H  
L
A2L  
Hi-Z  
L
FG  
H
L
H
Hi-Z  
Hi-Z  
L
6/40  
Reference Data  
BD6709FS  
BD6709FS  
BD6709FS  
BD6709FS  
10  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
95℃  
8
25℃  
-40℃  
95℃  
6
-40℃  
25℃  
0
25℃  
95℃  
4
-5  
-40℃  
25℃  
2
0
-10  
-15  
-40℃  
Operating Voltage Range  
95℃  
Operating Voltage Range  
12  
0
3
6
9
15  
0
3
6
9
12  
15  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Output current, Io [A]  
Fig.1 Circuit current  
Fig.2 Hall input hysteresis  
Fig.3 Output low voltage  
(Temperature characteristics)  
BD6709FS  
BD6709FS  
BD6709FS  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
14V  
12V  
-40℃  
25℃  
95℃  
6V  
12V  
14V  
6V  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
Output current, Io [A]  
Output current, Io [A]  
Output current, Io [A]  
Fig.4 Output low voltage  
(Voltage characteristics)  
Fig.6 Output high voltage  
(Voltage characteristics)  
Fig.5 Output high voltage  
(Temperature characteristics)  
BD6709FS  
BD6709FS  
BD6709FS  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
0.20  
0.15  
0.10  
0.05  
0.00  
0.55  
0.53  
0.51  
0.49  
0.47  
0.45  
95℃  
25℃  
95℃  
95℃  
25℃  
-40℃  
25℃  
-40℃  
-40℃  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
0
2
4
6
8
10  
0
3
6
9
12  
15  
Supply voltage,Vcc [V]  
FG Current, IFG [mA]  
Supply voltage,Vcc [V]  
Fig.7 Lock detection ON time  
Fig.9 FG low voltage  
(Temperature characteristics)  
Fig.8 Lock detection OFF time  
BD6709FS  
BD6709FS  
BD6709FS  
4.0  
3.5  
3.0  
2.5  
2.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.2  
0.2  
0.1  
0.1  
0.0  
95℃  
-40℃  
25℃  
-40℃  
25℃  
95℃  
6V  
12V  
14V  
Operating Voltage Range  
Operating Voltage Range  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
0
2
4
6
8
10  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
FG Current, IFG [mA]  
Fig.11 OSC low voltage  
7/40  
Fig.12 OSC high voltage  
Fig.10 FG low voltage  
(Voltage characteristics)  
BD6709FS  
BD6709FS  
BD6709FS  
5.0  
4.5  
4.0  
3.5  
3.0  
60  
30  
0
5.0  
4.8  
4.5  
4.3  
4.0  
95℃  
25℃  
-40℃  
95℃  
25℃  
95℃  
25℃  
-40℃  
-40℃  
-30  
-60  
-40℃  
25℃  
95℃  
Operating Voltage Range  
Operating Voltage Range  
0
3
6
9
12  
15  
0
2
4
6
8
10  
0
3
6
9
12  
15  
Supply voltage, Vcc [V]  
VREF current, IVREF [mA]  
Supply voltage, Vcc [V]  
Fig.14 VREF voltage  
Fig.15 VREF current ability  
Fig.13 COSC charge discharge  
current  
BD6718FV  
BD6718FV  
BD6718FV  
BD6718FV  
15  
10  
20  
15  
10  
5
95℃  
-40℃  
12  
9
25℃  
8
6
4
2
0
-40℃  
25℃  
25℃  
-40℃  
0
95℃  
95℃  
6
-5  
95℃  
-10  
-15  
-20  
25℃  
-40℃  
3
Operating Voltage Range  
Operating Voltage Range  
0
0
3
6
9
12  
15  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
Output voltage, VOH [V]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.16 Circuit current  
Fig.17 Hall input hysteresis  
Fig.18 H side output current  
BD6718FV  
BD6718FV  
BD6718FV  
0.4  
0.3  
0.2  
0.1  
0
0.0  
0.4  
-40℃  
-0.1  
-0.2  
-0.3  
-0.4  
0.3  
0.2  
0.1  
0
95℃  
95℃  
25℃  
95℃  
25℃  
-40℃  
25℃  
-40℃  
Operating Voltage Range  
0
5
10  
15  
20  
0
3
6
9
12  
15  
0
5
10  
15  
20  
Output current, Io [mA]  
Supply voltage, Vcc [V]  
Output Current, Io [mA]  
Fig.19 L side output high  
voltage  
Fig.20 L side output low voltage  
Fig.21 Lock detection ON time1,2  
BD6718FV  
BD6718FV  
BD6718FV  
0.10  
10  
8
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
0.08  
0.06  
0.04  
0.02  
0.00  
95℃  
95℃  
6
25℃  
-40℃  
4
95℃  
25℃  
-40℃  
25℃  
-40℃  
2
Operating Voltage Range  
Operating Voltage Range  
0
0
2
4
6
8
0
3
6
9
12  
15  
0
3
6
9
12  
15  
FG/AL current, IFG/IAL [mA]  
Supply voltage,Vcc[V]  
Supply voltage,Vcc[V]  
Fig.22 Lock detection OFF time1  
Fig.23 Lock detection OFF time2  
8/40  
Fig.24 FG/AL low voltage  
BD6718FV  
BD6718FV  
BD6718FV  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
95℃  
25℃  
95℃  
25℃  
-40℃  
-40℃  
95℃  
25℃  
-40℃  
Operating Voltage Range  
Operating Voltage Range  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
0
1
2
3
4
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
VREF current, IVREF [mA]  
Fig.27 VREF current ability  
Fig.25 OSC low voltage  
Fig.26 OSC high voltage  
BD6718FV  
BD6718FV  
BD6718FV  
0.20  
25.0  
2.0  
95℃  
25℃  
95℃  
25℃  
0.16  
0.12  
0.08  
0.04  
0.00  
20.0  
15.0  
10.0  
5.0  
1.5  
1.0  
0.5  
0.0  
-40℃  
-40℃  
95℃  
25℃  
-40℃  
Operating Voltage Range  
0.0  
0
2
4
6
8
0
1
2
3
4
5
0
3
6
9
12  
15  
Hall bias current, IHB [mA]  
CR current, ICR [mA]  
Supply voltage, Vcc [V]  
Fig.28 Hall bias current ability  
Fig.29 CR output low voltage  
Fig.30 CR discharge time  
BD6721FS  
BD6721FS  
BD6721FS  
BD6721FS  
20  
15  
10  
5
20  
1.0  
100℃  
100℃  
25℃  
0.8  
0.6  
0.4  
0.2  
0.0  
15  
10  
5
-40℃  
25℃  
0
-40℃  
-40℃  
25℃  
100℃  
-5  
100℃  
25℃  
-40℃  
-10  
-15  
-20  
Operating voltage range  
Operating voltage range  
0
0
0
5
10  
15  
20  
5
10  
15  
20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Output current, Io [A]  
Fig.31 Circuit current  
Fig.33 Output low voltage  
(Temperature characteristics)  
Fig.32 Hall input hysteresis  
BD6721FS  
BD6721FS  
BD6721FS  
1
0.8  
0.6  
0.4  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
5V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
12V  
100℃  
25℃  
17V  
12V  
17V  
-40℃  
5V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Output current, Io [A]  
Output current, Io [A]  
Output current, Io [A]  
Fig.36 Output high voltage  
(Voltage characteristics)  
Fig.34 Output low voltage  
(Voltage characteristics)  
Fig.35 Output high voltage  
(Temperature characteristics)  
9/40  
BD6721FS  
BD6721FS  
BD6721FS  
0.60  
0.55  
0.50  
0.45  
0.40  
6.0  
5.5  
5.0  
4.5  
4.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
100℃  
25℃  
-40℃  
100℃  
25℃  
100℃  
25℃  
-40℃  
-40℃  
Operating voltage range  
Operating voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
0
2
4
6
8
10  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
FG/AL current, IFG/IAL [mA]  
Fig.37 Lock detection ON time  
Fig.38 Lock detection OFF time  
Fig.39 FG/AL low voltage  
(Temperature characteristics)  
BD6721FS  
BD6721FS  
BD6721FS  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
17V  
12V  
5V  
100℃  
25℃  
-40℃  
100℃  
25℃  
-40℃  
Operating Voltage Range  
0
2
4
6
8
10  
0
5
10  
15  
20  
0
5
10  
15  
20  
FG/AL current, IFG/IAL [mA]  
FG/AL voltage, VFG/VAL [V]  
Supply voltage, Vcc [V]  
Fig.40 FG/AL low voltage  
(Voltage characteristics)  
Fig.41 FG/AL leak current  
Fig.42 OSC low voltage  
BD6721FS  
BD6721FS  
BD6721FS  
2.64  
2.56  
2.48  
2.40  
2.32  
2.24  
60  
30  
0
4
-40℃  
25℃  
100℃  
3
2
1
0
100℃  
25℃  
100℃  
25℃  
-40℃  
-40℃  
100℃  
25℃  
-30  
-60  
-40℃  
Operating Voltage Range  
Operating voltage Range  
0
5
10  
15  
20  
0
2
4
6
8
0
5
10  
15  
20  
Supply voltage, Vcc [V]  
VREF current, IVREF [mA]  
Supply voltage, Vcc [V]  
Fig.44 OSC charge discharge current  
Fig.43 OSC high voltage  
Fig.45 VREF current ability  
BD6721FS  
BD6721FS  
BD6721FS  
320  
0.2  
0.2  
0.1  
315  
310  
305  
300  
0.1  
0.0  
100℃  
25℃  
100℃  
25℃  
0.0  
100℃  
25℃  
-40℃  
-40℃  
-0.1  
-0.1  
-0.2  
-40℃  
Operating voltage Range  
Operating voltage Range  
Operating Voltage Range  
-0.2  
0
5
10  
15  
20  
0.0  
5.0  
10.0  
15.0  
20.0  
0
5
10  
15  
20  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.46 Current limit voltage  
Fig.47 VTH input bias current  
Fig.48 VMIN input bias current  
10/40  
BD6721FS  
BD6721FS  
BD6721FS  
1.5  
1.0  
0.5  
0.0  
1.5  
1.0  
0.5  
0.0  
10.0  
-40℃  
25℃  
-40℃  
25℃  
100℃  
100℃  
1.0  
0.1  
0
0.2  
0.4  
0.6  
0.8  
1
0.1  
1.0  
10.0  
100.0  
0
0.2  
0.4  
0.6  
0.8  
1
OUT1 inflow current, IOUT1 [A]  
Drain current, Ids [A]  
OUT1 outflow current, IOUT1 [A]  
Fig.50 High side output Body Di  
characteristics  
Fig.49 Low side output Body Di  
characteristics  
Fig.51 Output Tr ASO  
upper and lower total)  
TON=100msec)  
BD6722FS  
BD6722FS  
BD6722FS  
BD6722FS  
15.0  
10  
20  
100℃  
25℃  
15  
10  
5
13.0  
11.0  
9.0  
8
6
4
2
-40℃  
25℃  
-40℃  
25℃  
100℃  
-40℃  
0
-40℃  
25℃  
100℃  
-5  
100℃  
Operating Voltage Range  
-10  
-15  
-20  
7.0  
Operating Voltage Range  
Operating Voltage Range  
5.0  
0
0
0
5
10  
15  
20  
5
10  
15  
20  
0
5
10  
15  
20  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.54 High side output current  
Fig.52 Circuit current  
Fig.53 Hall input hysteresis  
BD6722FS  
BD6722FS  
BD6722FS  
1.5  
10.0  
8.0  
6.0  
4.0  
2.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.2  
0.9  
0.6  
0.3  
0
5V  
17V  
12V  
100℃  
25℃  
-40℃  
100℃  
25℃  
-40℃  
0.0  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
5
10  
15  
20  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Output current, Io [A]  
Output voltage, Vo [V]  
Output Current, Io [A]  
Fig.56 Low side output voltage  
(Voltage characteristics)  
Fig.55 High side output leak current  
(Temperature characteristics)  
Fig.57 Low side output voltage  
Voltage characteristics)  
BD6722FS  
BD6722FS  
BD6722FS  
0.42  
10.0  
8.4  
7.6  
6.8  
6.0  
5.2  
4.4  
3.6  
8.0  
6.0  
4.0  
2.0  
0.0  
0.36  
100℃  
25℃  
-40℃  
100℃  
25℃  
-40℃  
0.30  
0.24  
100℃  
25℃  
-40℃  
Operating Voltage Range  
Operating Voltage Range  
0.18  
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
Supply voltage, Vcc [V]  
FG/AL voltage, VFG/VAL [V]  
Supply voltage, Vcc [V]  
Fig.58 Lock detection ON time  
Fig.59 Lock detection OFF time  
11/40  
Fig.60 FG/AL leak current  
BD6722FS  
BD6722FS  
BD6722FS  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
5V  
12V  
17V  
100℃  
25℃  
-40℃  
100℃  
25℃  
-40℃  
Operating Voltage Range  
0
2
4
6
8
10  
0
2
4
6
8
10  
0
5
10  
15  
20  
FG/AL Current, IFG/IAL [mA]  
FG/AL current, IFG/IAL [mA]  
Fig.62 FG/AL low voltage  
(Voltage characteristics)  
Supply voltage, Vcc [V]  
Fig.61 FG/AL low voltage  
(Temperature characteristics)  
Fig.63 OSC low voltage  
(Voltage characteristics)  
BD6722FS  
BD6722FS  
BD6722FS  
50  
40  
2.64  
2.56  
2.48  
2.40  
2.32  
2.24  
4.0  
3.5  
3.0  
2.5  
2.0  
25℃  
-40℃  
100℃  
30  
20  
100℃  
25℃  
-40℃  
10  
100℃  
25℃  
-40℃  
0
-10  
-20  
-30  
-40  
-50  
-40℃  
100℃  
25℃  
Operating Voltage Range  
Operating Voltage Range  
0
2
4
6
8
0
5
10  
15  
20  
0
5
10  
15  
20  
VREF current, IVREF [mA]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.64 OSC high voltage  
Fig.65 OSC charge discharge  
current  
Fig.66 VREF current ability  
(Temperature characteristics)  
BD6722FS  
BD6722FS  
BD6722FS  
4.0  
3.5  
3.0  
2.5  
2.0  
370  
360  
350  
340  
330  
0.20  
0.10  
17V  
12V  
5V  
100℃  
25℃  
100℃  
25℃  
-40℃  
0.00  
-40℃  
-0.10  
-0.20  
Operating Voltage Range  
Operating Voltage Range  
0
2
4
6
8
0
5
10  
15  
20  
0
5
10  
15  
20  
VREF current, IVREF [mA]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.67 VREF current ability  
(Voltage characteristics)  
Fig.68 Current limit voltage  
Fig.69 VTH input bias current  
BD6722FS  
BD6722FS  
BD6722FS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10.0  
0.20  
0.10  
1.5  
1.0  
0.00  
100℃  
25℃  
-40℃  
-40℃  
25℃  
-0.10  
-0.20  
100℃  
Operating Voltage Range  
0.1  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
5
10  
15  
20  
0.1  
1.0  
10.0  
100.0  
A1L outflow current, IA1L [A]  
Supply voltage, Vcc [V]  
Drain-source voltage, Vds [V]  
Fig.71 Low side output Body Di  
characteristics  
Fig.70 VMIN input bias current  
Fig.72 Low side output Tr ASO  
(TON=100msec)  
12/40  
Block diagram, application circuit, and pin assignment(Constant etc are for reference)  
BD6709FS  
1) DC input application  
The example of an application for rotation speed control by thermistor.  
Adjust the gain according to  
the characteristics of level  
amplifier gain setting resistor.  
This is an open collector  
output. Connect a pull-up  
resistor.  
GND  
1
FG  
16  
REG  
OSC  
P.22  
Lock Detect  
Auto Restart  
P.37  
330pF  
COSC  
2
VREF  
15  
1000pF  
Vcc  
-
REF  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
+
H-  
14  
LAOUT  
3
HALL  
TSD  
P.28  
Bias resistor for thermistor.  
-
5kΩ  
200kΩ  
H+  
13  
LAIN  
4
+
Control  
-
5kΩ  
Current limit setting resistor.  
Use a larger resistor in order to  
reduce power consumption  
from VREF.  
+
CL  
10  
200kΩ  
VTH  
5
5kΩ  
200kΩ  
-
+
Speed control is enabled by  
thermistor.  
P.21,22  
Pre Driver  
P.24  
100Ω  
200kΩ  
VMIN  
6
Vcc  
11  
5kΩ  
200kΩ  
OUT1  
7
CS  
10  
Set the minimum rotating  
speed and full torque time in  
restarting.  
Take a measure against Vcc  
voltage rise due to reverse  
connection of power supply.  
10μF  
100pF  
0.1μF  
RNF  
8
OUT2  
9
P.36  
P.22  
1kΩ  
200kΩ  
Output  
current  
detecting  
5Ω  
RNF  
low-pass filter.  
voltage  
smoothing  
resistor. Pay attention to  
wattage because large current  
flows.  
M
P.24  
P.24  
REGInternal reference voltage OSCOscillation circuit REFReference voltage generating circuit  
TSDThermal shutdown(heat rejection circuit)  
Terminal  
name  
Terminal  
name  
OUT2  
CS  
PIN No.  
Function  
PIN No.  
Function  
Motor output terminal 2  
1
2
GND  
GND terminal  
9
COSC  
Oscillating capacitor connecting terminal  
Level amplifier output terminal  
(for setting speed control gain)  
Level amplifier input terminal  
10  
Output current detecting terminal  
3
4
5
LAOUT  
LAIN  
11  
12  
13  
Vcc  
CL  
Power supply terminal  
Current limiting input terminal  
Hall input terminal +  
(for setting speed control gain)  
Variable speed input terminal  
VTH  
H+  
(thermistor connecting terminal)  
Minimum rotating speed setting terminal  
Motor output terminal 1  
6
7
VMIN  
OUT1  
14  
15  
H-  
Hall input terminal -  
VREF  
Reference voltage terminal  
Output current detecting resistor connecting terminal  
(motor GND terminal)  
8
RNF  
16  
FG  
Rotating speed pulse signal output terminal  
13/40  
2) Pulse input application 1  
The example of an application for converting external PWM signal into the DC voltage, and controlling the rotational  
speed. Minimum rotational speed can be set.  
GND  
1
FG  
16  
REG  
OSC  
Lock Detect  
Auto Restart  
PWM signal DC voltage  
conversion circuit.  
Adjust the value of resistance  
and the capacitor according to  
COSC  
2
VREF  
15  
Vcc  
-
REF  
the  
amplitude  
and  
the  
+
frequency of the input signal.  
H-  
14  
LAOUT  
3
HALL  
TSD  
-
H+  
13  
LAIN  
4
+
Control  
-
+
CL  
12  
VTH  
5
-
+
PWM input  
Pre Driver  
VMIN  
6
Vcc  
11  
CS  
10  
OUT1  
7
RNF  
8
OUT2  
9
M
3) Pulse input application 2  
The example of an application for controlling the rotational speed by DUTY of external PWM signal. The minimum  
rotational speed cannot be set.  
GND  
1
FG  
16  
REG  
OSC  
Lock Detect  
Auto Restart  
Set resistance in consideration  
of the input voltage of the  
VMIN and VTH terminal.  
COSC  
2
VREF  
15  
Vcc  
-
REF  
+
P.23  
H-  
14  
LAOUT  
3
HALL  
TSD  
-
H+  
13  
LAIN  
4
+
Control  
-
+
CL  
12  
VTH  
5
-
+
Pre Driver  
VMIN  
6
Vcc  
11  
PWM input  
CS  
10  
OUT1  
7
RNF  
8
OUT2  
9
M
14/40  
BD6718FV  
1) DC input application  
The example of an application for rotation speed control by thermistor.  
Take a measure against Vcc  
voltage rise due to reverse  
connection of power supply  
and back electromotive force.  
This is an open collector  
output. Connect a pull-up  
resistor.  
VM line  
Vcc line  
P.36  
P.37  
50Ω  
1kΩ  
FG  
11  
GND  
10  
TSD  
Output power Tr is equipped  
Current limit setting resistor.  
Use a larger resistor in order to  
reduce power consumption  
from VREF.  
externally.  
application is also allowed.  
High  
voltage  
AL  
12  
A2H  
9
P.27  
A1H  
8
N.C.  
13  
P.24  
A2L  
7
CS  
14  
Output  
current  
detecting  
-
5kΩ  
resistor. Pay attention to  
wattage because large current  
is present.  
+
200kΩ  
Control  
Minimum rotating speed and  
A1L  
6
CL  
15  
REG  
full  
torque  
time  
during  
100Ω  
200kΩ  
restarting can be set.  
P.24  
SEL  
16  
Vcc  
5
P.22  
330pF  
1000pF  
5Ω  
COSC  
17  
CR  
4
REG  
-
+
Lock  
Detect  
Auto  
OSC  
10kΩ  
200kΩ  
Simultaneous ON prevention  
time can be set.  
5kΩ  
200kΩ  
H-  
3
Speed control depending on  
ambient temperature is  
VMIN  
18  
Restart  
enabled by thermistor.  
P.26  
+
-
HB  
2
VTH  
19  
P.21,22  
Hall  
Bias  
0.1μF  
VREF  
20  
H+  
1
-
+
-
REF  
+
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
HALL  
RNF  
low-pass filter.  
voltage  
smoothing  
1kΩ  
200kΩ  
P.24  
P.28  
100pF  
0.1μF  
10μF  
REG Internal reference voltage OSC Oscillation circuit REF Reference voltage generating circuit  
TSD Thermal shutdown(heat rejection circuit)  
Terminal  
Terminal  
name  
FG  
PIN No.  
Function  
PIN No.  
Function  
name  
H+  
1
2
3
Hall input terminal +  
Hall bias terminal  
Hall input terminal -  
11  
12  
13  
Rotating speed pulse signal output terminal  
Lock alarm signal output terminal  
HB  
AL  
H-  
N.C.  
Charging and discharging pulse circuit capacitor and  
resistor connecting terminal  
4
CR  
14  
CS  
Output current detecting terminal  
5
6
7
8
Vcc  
A1L  
A2L  
A1H  
Power supply terminal  
15  
16  
17  
18  
CL  
Current limiting input terminal  
Low side output terminal (OUT1)  
Low side output terminal (OUT2)  
High side output terminal (OUT1)  
SEL  
Lock detection ON:OFF ratio selecting terminal  
Oscillating capacitor connecting terminal  
Minimum rotating speed setting terminal  
Variable speed input terminal  
COSC  
VMIN  
9
A2H  
High side output terminal (OUT2)  
GND terminal  
19  
20  
VTH  
(thermistor connecting terminal)  
10  
GND  
VREF  
Reference voltage terminal  
15/40  
2) Pulse input application 1  
The example of an application for converting external PWM signal into the DC voltage, and controlling the rotational  
speed. Minimum rotational speed can be set.  
PWM signal  
DC voltage  
conversion circuit.  
Adjust the value of resistance  
and the capacitor according to  
FG  
11  
GND  
10  
TSD  
the  
amplitude  
and  
the  
AL  
12  
A2H  
9
frequency of the input signal.  
A1H  
8
N.C.  
13  
A2L  
7
CS  
14  
-
+
Control  
A1L  
6
CL  
15  
REG  
SEL  
16  
Vcc  
5
COSC  
17  
CR  
4
REG  
-
Lock  
Detect  
Auto  
+
OSC  
H-  
3
VMIN  
18  
Restart  
+
-
VTH  
19  
HB  
2
Hall  
Bias  
VREF  
20  
H+  
1
+
-
-
+
REF  
PWM input  
HALL  
3) Pulse input application 2  
The example of an application for controlling the rotational speed by DUTY of external PWM signal. The minimum  
rotational speed cannot be set.  
FG  
GND  
11  
TSD  
10  
Set resistance in consideration  
of the input voltage of the  
VMIN and VTH terminal.  
AL  
12  
A2H  
9
A1H  
8
P.23  
N.C.  
13  
A2L  
7
CS  
14  
-
+
Control  
A1L  
6
CL  
15  
REG  
SEL  
16  
Vcc  
5
COSC  
17  
CR  
4
REG  
-
Lock  
Detect  
Auto  
+
OSC  
H-  
3
VMIN  
18  
Restart  
+
-
VTH  
19  
HB  
2
Hall  
Bias  
VREF  
20  
H+  
1
+
-
-
+
PWM input  
REF  
HALL  
16/40  
BD6721FS  
1) DC input application  
The example of an application for rotation speed control by thermistor.  
Adjust the gain according to  
the characteristics of level  
amplifier gain setting resistor.  
GND  
1
AL  
16  
FG  
15  
P.22  
This is an open collector  
output. Connect a pull-up  
resistor.  
COSC  
VREF  
SIGNAL  
OUTPUT  
COSC  
2
SOFT  
SWITCH  
P.37  
TSD  
+
LOCK  
PROTECTION  
LAOUT  
3
VREF  
14  
Bias resistor for thermistor.  
-
PWM  
COMP  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
LAIN  
4
H-  
13  
-
+
HALL  
P.28,29  
CONTROL  
LOGIC  
Hall  
COMP  
LEVEL  
AMP  
Speed control is enabled by  
thermistor.  
H+  
12  
VTH  
5
-
+
P.21,.22  
PRE  
DRIVER  
VMIN  
6
Current  
Limit  
Comp  
Vcc  
11  
Vcc  
+
Set the minimum rotating  
speed and full torque time in  
restarting.  
-
CS  
10  
OUT1  
7
Take a measure against Vcc  
voltage rise due to reverse  
connection of power supply.  
P.22  
OUT2  
9
RNF  
8
Output  
current  
detecting  
P.36  
resistor. Pay attention to  
wattage because large current  
flows.  
RNF  
voltage  
smoothing  
low-pass filter.  
P.24  
P.24  
M
Terminal  
PIN No.  
Terminal  
name  
OUT2  
CS  
Function  
PIN No.  
Function  
name  
1
2
GND  
GND terminal  
9
Motor output terminal 2  
COSC  
Oscillating capacitor connecting terminal  
Level amplifier output terminal  
(for setting speed control gain)  
Level amplifier input terminal  
(for setting speed control gain)  
Variable speed input terminal  
(thermistor connecting terminal)  
10  
Output current detecting terminal  
3
4
5
LAOUT  
LAIN  
11  
12  
13  
Vcc  
H+  
H-  
Power supply terminal  
Hall input terminal +  
VTH  
Hall input terminal -  
6
7
VMIN  
OUT1  
Minimum rotating speed setting terminal  
Motor output terminal 1  
VREF  
FG  
Reference voltage terminal  
14  
15  
Rotating speed pulse signal output terminal  
Lock alarm signal output terminal  
Output current detecting resistor connecting terminal  
(motor GND terminal)  
8
RNF  
16  
AL  
17/40  
2) Pulse input application 1  
The example of an application for converting external PWM signal into the DC voltage, and controlling the rotational  
speed. Minimum rotational speed can be set.  
GND  
1
AL  
16  
FG  
15  
COSC  
VREF  
PWM signal  
conversion circuit.  
Adjust the value of resistance  
and the capacitor according to  
DC voltage  
SIGNAL  
OUTPUT  
COSC  
2
SOFT  
SWITCH  
the  
amplitude  
and  
the  
TSD  
frequency of the input signal.  
+
LOCK  
PROTECTION  
LAOUT  
3
VREF  
14  
-
PWM  
COMP  
LAIN  
4
H-  
13  
-
+
HALL  
CONTROL  
LOGIC  
Hall  
COMP  
LEVEL  
AMP  
H+  
12  
VTH  
5
-
+
PRE  
DRIVER  
VMIN  
6
Current  
Limit  
Comp  
Vcc  
11  
PWM input  
Vcc  
+
-
CS  
10  
OUT1  
7
OUT2  
9
RNF  
8
M
3) Pulse input application 2  
The example of an application for controlling the rotational speed by DUTY of external PWM signal. The minimum  
rotational speed cannot be set.  
GND  
1
AL  
16  
FG  
15  
Set resistance in consideration  
of the input voltage of the  
VMIN and VTH terminal.  
COSC  
VREF  
SIGNAL  
OUTPUT  
COSC  
2
P.23  
SOFT  
SWITCH  
TSD  
+
LOCK  
PROTECTION  
LAOUT  
3
VREF  
14  
-
PWM  
COMP  
LAIN  
4
H-  
13  
-
+
HALL  
CONTROL  
LOGIC  
Hall  
COMP  
LEVEL  
AMP  
H+  
12  
VTH  
5
-
+
PRE  
DRIVER  
VMIN  
6
Current  
Limit  
Comp  
Vcc  
11  
Vcc  
+
-
CS  
10  
OUT1  
7
PWM input  
OUT2  
9
RNF  
8
M
18/40  
BD6722FS  
1) DC input application  
The example of an application for rotation speed control by thermistor.  
VREF line  
This is an open collector  
output. Connect a pull-up  
resistor.  
This terminal can set the  
minimum rotational speed and  
soft start time.  
P.37  
GND  
1
AL  
16  
SIGNAL  
OUTPUT  
COSC  
VREF  
P.30  
330pF  
1000pF  
COSC  
2
FG  
15  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
SOFT  
START  
TSD  
SOFT  
SWITCH  
LOCK  
PROTECTION  
100kΩ  
~1MΩ  
VMIN  
3
P.28,29  
VREF  
14  
+
Speed control depending on  
-
VTH  
4
H-  
13  
ambient  
temperature  
is  
PWM COMP  
enabled by thermistor.  
CONTROL  
LOGIC  
HALL  
P.21,22  
1μF  
10μF  
H+  
12  
Vcc  
5
Hall COMP  
+
-
RNF  
voltage  
smoothing  
low-pass filter.  
PRE  
DRIVER  
100pF  
0.1μF  
P.24  
A1H  
6
Current Limit  
Comp  
CS  
11  
+
-
Output  
current  
detecting  
Output power Tr is equipped  
externally. High voltage  
application is also allowed.  
resistor. Pay attention to  
wattage because large current  
is present.  
A1L  
7
A2H  
10  
1kΩ  
200kΩ  
P.27  
P.24  
RNF  
8
A2L  
9
POW  
POW  
Take a measure against Vcc  
voltage rise due to reverse  
connection of power supply  
and back electromotive force.  
0.3Ω  
0.5Ω  
Power consumption of  
H
output can be suppressed by  
inserting resistance between  
PMOS Gate-H output. Note  
Wattage of the resistance.  
P.36  
Vcc line  
VM line  
50Ω  
1kΩ  
P.31  
0Ω  
2kΩ  
Terminal  
PIN No.  
Terminal  
name  
A2L  
Function  
PIN No.  
Function  
name  
GND terminal  
Low side output terminal (OUT2)  
High side output terminal (OUT2)  
Current limiting input terminal  
1
2
3
GND  
COSC  
VMIN  
9
Oscillating capacitor connecting terminal  
Minimum rotating speed setting terminal  
10  
11  
A2H  
CS  
Variable speed input terminal  
(thermistor connecting terminal)  
Hall input terminal +  
4
VTH  
12  
H+  
Power supply terminal  
Hall input terminal -  
5
6
7
Vcc  
A1H  
A1L  
13  
14  
15  
H-  
VREF  
FG  
High side output terminal (OUT1)  
Low side output terminal (OUT1)  
Reference voltage terminal  
Rotating speed pulse signal output terminal  
Output current detecting resistor connecting terminal  
(motor GND terminal)  
Lock alarm signal output terminal  
8
RNF  
16  
AL  
19/40  
2) Pulse input application 1  
The example of an application for converting external PWM signal into the DC voltage, and controlling the rotational  
speed. Minimum rotational speed can be set.  
VREF line  
PWM signal  
DC voltage  
conversion circuit.  
Adjust the value of resistance  
and the capacitor according to  
GND  
1
AL  
16  
SIGNAL  
OUTPUT  
COSC  
VREF  
the  
amplitude  
and  
the  
frequency of the input signal.  
COSC  
2
FG  
15  
SOFT  
START  
TSD  
SOFT  
SWITCH  
LOCK  
PROTECTION  
VMIN  
3
VREF  
14  
+
-
VTH  
4
H-  
13  
PWM COMP  
CONTROL  
LOGIC  
HALL  
H+  
12  
Vcc  
5
Hall COMP  
+
-
PRE  
DRIVER  
A1H  
6
Current Limit  
Comp  
CS  
11  
+
-
A1L  
7
A2H  
10  
RNF  
8
A2L  
9
POW  
POW  
Vcc line  
VM line  
3) Pulse input application 2  
The example of an application for controlling the rotational speed by DUTY of external PWM signal. The minimum  
rotational speed cannot be set.  
GND  
1
AL  
16  
SIGNAL  
OUTPUT  
COSC  
VREF  
PWM signal can be input directly.  
COSC  
2
FG  
15  
P.23  
SOFT  
START  
TSD  
SOFT  
SWITCH  
LOCK  
PROTECTION  
VMIN  
3
VREF  
14  
PWM INPUT  
+
-
VTH  
4
H-  
13  
Become direct pulse input mode  
by pulling up VTH terminal to  
VCC.  
PWM COMP  
CONTROL  
LOGIC  
HALL  
H+  
12  
P.23  
Vcc  
5
Hall COMP  
+
-
PRE  
DRIVER  
A1H  
6
Current Limit  
Comp  
CS  
11  
+
-
A1L  
7
A2H  
10  
RNF  
8
A2L  
9
POW  
POW  
Vcc line  
VM line  
20/40  
Description of operations  
Function table  
Reference  
page  
BD6709FS  
BD6718FV  
BD6721FS  
BD6722FS  
DC input  
P.21,22  
P.23  
Variable speed control  
Current limit  
PWM input  
P.24  
Lock protection and automatic restart  
P.25,26  
Output Tr simultaneous ON preventing  
circuit  
High voltage application  
PWM soft switching  
Soft start  
P.26  
P.27  
P.29  
P.30  
1) Variable speed operation  
Rotating speed changes by PWM ON-DUTY on the upper output.  
PWM operation enables  
a) PWM operation by DC input (Method by self-oscillation connecting a capacitor to COSC terminal)  
b) PWM operation by pulse input (Method to change duty by inputting pulse directly to COSC terminal)  
a) PWM operation by DC input  
As shown in Fig.73, DC voltage input from LAOUT(BD6709FS, BD6721FS), or DC voltage input from VTH(BD6718FV,  
BD6722FS)are compared with triangle wave produced by charging and discharging current to the capacitor connected  
to COSC to change ON-DUTY.  
Output is ON when COSC terminal voltageVTH terminal voltage or LAOUT terminal voltage  
Output is OFF when COSC terminal voltageVTH terminal voltage of LAOUT terminal voltage  
VMIN terminal is for setting the minimum rotating speed. ON-DUTY is determined by either VTH terminal voltage or  
LAOUT terminal voltage, whichever is lower.  
LAOUT or VTH  
OSC H voltage  
VMIN  
Full torque operating area  
OSC L voltage  
ON-Duty set by VTH terminal  
voltage (thermistor voltage)  
determines the rotating speed.  
BD6709FS  
OUT  
BD6721FS  
ON-Duty set by VMIN terminal  
determines the rotating speed.  
A1H  
BD6718FV  
BD6722FS  
A2H  
High impedance  
Fig.73 DC input PWM operation timing chart  
COSC H and COSC L voltage is generated by dividing resistance of internal power supply, and the ratio of those voltage  
are designed to be hard to fluctuate.  
When the input voltage at LAOUT terminal is constant, effect by fluctuation of COSCH and COSCL voltage is large.  
However, by setting that voltage input via VTH terminal is generated by dividing resistance of VREF terminal voltage,  
application can be made hard to be affected by voltage fluctuation of triangle wave. For an application which requires  
strict precision, determine a value with sufficient margin after full consideration of external constant is taken.  
21/40  
rpm  
Rotating speed in full torque operation  
Determined by LAOUT terminal voltage or VTH  
Rotating speed determined by VMIN terminal  
Ta  
Fig.74 Setting of rotating speed  
Area ①  
LAOUT or VTHOSC L voltageVMINOSC H voltage  
(Same as area in Fig.73)  
Rotating speed in full torque operation (ON-DUTY = 100%)  
Area ②  
(Same as area in Fig.73)  
OSCL voltageLAOUT or VTHVMINOSC H voltage  
Rotating speed is determined by ON-DUTY set by LAOUT terminal voltage or VTH  
terminal voltage.  
Area ③  
OSCL voltageVMINLAOUT or VTHOSC H voltage  
(Same as area in Fig.73)  
Rotating speed is determined by ON-DUTY set by VMIN terminal voltage.  
The motor can be stopped by setting OSCH voltageVMIN (ON-DUTY = 0%).  
Assuming that VTH thermistor resistor is open, when VTH terminal voltage is above VREF, full torque operation is  
performed.  
Level amplifier BD6709FS, BD6721FS>  
Level amplifier amplifies the voltage of VTH by the ratio of resistor connected to LAOUT and LAIN to be output to  
LAOUT.  
In the case of Fig.75, LAOUT = (10k + 20k)/10k×VTH, and the input voltage at VTH terminal is approximately tripled.  
It enables a broad setting corresponding to the characteristics of thermistor resistor.  
Furthermore, when VTH terminal voltage need not be amplified, LAOUT and LAIN should be shorted as shown in  
Fig.76. VTH terminal voltage equals to LAOUT terminal voltage.  
LAOUT  
LAOUT  
R2=20kΩ  
LAIN  
VTH  
LAIN  
VTH  
VREF  
VREF  
+
+
R1=10kΩ  
Fig.75 Level amplifier application  
Fig.76 Level amplifier application 2  
Restart from lock protecting operationBD6709FS, BD6718FV, BD6722FS>  
When restarting from lock protection operation, VMIN becomes L so that the motor restarts in full torque.  
The time for reaching full torque is determined by resistor R1 and capacitor C1 connected to VMIN terminal as shown in  
Fig.77.  
VREF  
LAOUT  
R1  
+
VMIN  
COSC  
R2  
C1  
Fig.77 Restart from lock protection (DC input)  
22/40  
b) PWM operation by pulse input BD6709FS, BD6718FV, BD6721FS>  
Pulse signal can be input to VMIN terminal for PWM operation as shown in Fig.78.  
The ratio of ON-DUTY of the output changes by the cycle of the input pulse signal as shown in Fig.79.  
Set the voltage of the terminal VTH as VREFVTHCOSCH.  
Set the voltage input to the VMIN terminal  
H level : VREFVMINVOSCH  
L level : VOSCLVMIN  
as shown in Fig.79.  
Output is ON in H logic of external PWM signal and OFF in L logic.  
COSC  
+
-
LAOUT  
PWM COMP  
LAIN  
VTH  
-
+
LEVEL AMP  
VREF  
VMIN  
PWM input  
Fig.78  
Direct control by DUTY of external PWM  
VREF  
VTH  
COSC  
VMIN  
GND  
OUT  
GND  
OUTPUT Tr. OFF  
Fig.79 VTH, VMIN input voltage and output PWM timing chart in pulse input mode  
b-2) PWM operation by pulse inputBD6722FS>  
By pulling up VTH(4PIN) to Vcc as shown in Fig.80, the output can operate in PWM by inputting the pulse signal  
directly to VMIN(6PIN). However, adjust the value of R2 to become VTH=15V at Vcc15V so that the voltage of the  
terminal VTH should not exceed 15V.  
The ratio of ON-DUTY of the output changes by the cycle of the input pulse signal as shown in Fig.81.  
Set the voltage input to the VMIN terminal  
H level : Vcc-2.0VVMINVOSCH  
L level : VOSCLVMIN  
as shown in Fig.81.  
Output is ON in H logic of external PWM signal and OFF in L logic.  
Vcc  
R1  
VTH  
R2  
COSC  
VMIN  
GND  
VMIN  
+
OUTPUT  
A1H or A2H  
COSC  
PULSE INPUT  
OUTPUT Tr  
ON  
OUTPUT Tr  
OFF  
Fig.80  
External PWM signal input  
Fig.81 Pulse input operation timing chart  
23/40  
2) Current limit (current limiting circuit)  
The current limit circuit turns off the output, when the current that flows to the motor coil is detected exceeding a set  
value.  
The current value that current limit operates is determined by  
a) Voltage of CL terminal and voltage of RNF terminal (BD6709FS, BD6718FV)  
b) Internal setting voltage and voltage of RNF terminal (BD6721FS, BD6722FS)  
VREF  
Reference voltage  
R1  
CL  
-
-
V1  
R2  
+
+
CS  
CS  
R3  
R4  
R3  
R4  
RNF  
RNF  
C1  
C1  
Fig.82 External setting of current limit voltage  
Fig.83 Internal setting of current limit voltage  
a) Setting according to voltage of CL terminal and RNF terminal.  
For example about BD6718FV, in Fig.82  
When R1=40kΩ、R2=10kΩ、R4=0.5Ω, the amperage I that current limit operates is  
R2  
10k  
V1 =  
I =  
× VREF =  
× 2.5 = 0.5V  
R1+ R2  
40k + 10k  
V1  
R4  
0.5  
0.5  
=
= 1A  
Current limit circuit operates at 1A.  
Short CL terminal to VREF, short CS and RNF terminal to GND when the current limit function is not used.  
b) Setting according to internal voltage and RNF terminal.  
For example about BD6722FS, in Fig.83  
When R4=0.33Ω, the current limit setting voltage is 350mV(typ.)  
350mV  
I =  
=1.06A  
0.33Ω  
Current limit circuit operates at 1.06A.  
Short CS and RNF terminal to GND when the current limit function is not used.  
Both of a) and b)  
R3 and C1 are low-pass filters for RNF smooth voltage. Adjust for a current limit not to malfunction in proportion to the  
PWM frequency.  
Connect the capacitor with the COSC terminal to do the resume operation after a current limit operates at the PWM  
operation by the pulse input.  
24/40  
3) Lock protection and automatic restart  
Motor rotation is detected by hall signal, and lock detection ON time (TON) and lock detection OFF time (TOFF) are  
set by the IC internal counter. Timing chart is shown in Fig.84.  
H+  
TOFF  
TON  
TOFF  
OUT1  
OUT2  
FG  
Output Tr  
OFF  
Output Tr ON  
BD6709FS  
BD6721FS  
A1H  
A1L  
A2H  
A2L  
FG  
BD6718FV  
HIGH(open collecter)  
Recovers normal operation  
AL  
A1H  
A1L  
A2H  
A2L  
FG  
BD6722FS  
HIGH(open collector)  
AL  
Lock release  
Motor  
locking  
Lock  
detection  
TON :  
TOFF :  
:
Lock detection ON time  
Lock detection OFF time  
High-impedance  
Fig.84 Lock protection (incorporated counter system) timing chart  
For BD6718FV, lock detection time (TOFF) setting can be changed by SEL terminal.  
(See the electric characteristics item)  
25/40  
BD6721FSBD6722FS  
When torque off logic is input by the control signal during fixed time (typ.1ms), the lock protection function becomes off.  
It is not influenced at the lock protection time and it is possible to restart at once.  
PWM INPUT  
1ms(typ.)  
LOCK PROTECTION  
ENABLE (INTERNAL IC)  
enable  
disable  
enable  
ON  
MOTOR OUTPUT  
ON  
OFF  
Fig.85 PWM signal and lock protection operationBD6722FS>  
The lock protection function doesn't work in an input frequency that is slower than 1kHz(typ.) when assuming H level  
DUTY0% of the PWM input signal.  
Input signal that frequency are faster than 2kHz.  
4) Output Tr simultaneous ON prevention circuit BD6718FV>  
The capacitor is discharged according to the cycle of hall signal by connecting an external capacitor and resistor to CR  
terminal.  
When CR terminal voltage is lower than internal reference voltage (2.5V:typ), IC output has a high impedance. High  
impedance block in output switching can be changed by changing the capacitance and resistance to be connected to  
CR terminal. It allows prevention of simultaneous activation, regardless of switching speed of external Tr.  
Hysteresis  
Hall signal H-  
H+  
DELAY  
HALLHYS  
A1H  
A2H  
A1L  
A2L  
High impedance  
FG  
CR  
2.5V  
Discharging time  
CR  
(T  
)
26/40  
5) High voltage application BD6718FV>  
VM line  
Vcc line  
FG  
11  
GND  
10  
TSD  
AL  
12  
A2H  
9
A1H  
8
N.C.  
13  
A2L  
7
CS  
14  
-
+
Control  
A1L  
6
CL  
REG  
15  
SEL  
16  
Vcc  
5
COSC  
17  
CR  
4
REG  
-
Lock  
Detect  
Auto  
OSC  
+
H-  
3
VMIN  
18  
Restart  
VTH  
19  
HB  
2
+
-
Hall  
Bias  
VREF  
20  
H+  
1
+
-
-
+
REF  
Hall  
Fig.87 High voltage application (BD6718FV)  
The absolute maximum rating of Vcc is 15V, while the absolute maximum rating of A1H and A2H terminal voltage is 36V.  
Therefore it is possible to make VM line an application with another power supply higher than 15V.  
To ensure the absolute maximum rating 36V of A1H and A2H terminal voltage is not exceeded, take physical measures,  
such as placing a Zenner diode or a capacitor to create a return route of current between VM line and GND.  
BD6722FS>  
The absolute maximum rating of Vcc is 20V, while the absolute maximum rating of A1H, A2H, A1L and A2L terminal  
voltage is 34V. Therefore it is possible to make VM line an application with another power supply higher than 20V.  
To ensure the absolute maximum rating 34V of A1H, A2H, A1L and A2L terminal voltage is not exceeded, take physical  
measures, such as placing a Zenner diode or a capacitor to create a return route of current between VM line and GND.  
Maximum rating  
VM line  
voltage 20V  
Vcc line  
5
6
10  
7
9
Maximum rating  
voltage34V  
Fig.88 High voltage application (BD6722FS)  
27/40  
6) Hall input setting  
Hall input voltage range is shown in operating conditions.  
Vcc  
Hall input voltage range  
upper limit  
Hall input voltage range  
lower limit  
GND  
Fig.89 Hall input voltage range  
Adjust the value of hall element bias resistor R1 and R2 in Fig.90 so that the input voltage of a hall amplifier is input in  
"hall input voltage range" including signal amplitude.  
Reducing the noise of hall signal  
Hall element may be affected by Vcc noise or the like depending on the wiring pattern of board. In this case, place a  
capacitor like C1 in Fig.90. In addition, when wiring from the hall element output to IC hall input is long, noise may be  
loaded on wiring. In this case, place a capacitor like C2 in Fig.90.  
H-  
H-  
H+  
HB  
H+  
Vcc  
C2  
C2  
R1  
R1  
RH  
R2  
Hall bias current  
= HB / (R1 + RH)  
C1  
Hall bias current  
= Vcc / (R1 + R2 + RH)  
C1  
RH  
Hall element  
BD6718FV>  
BD6709FSBD6721FSBD6722FS>  
Setting R2=0 ohm is acceptable for  
BD6721FS and BD6722FS.  
Fig.90 Application near hall signal  
28/40  
7) PWM soft switchingBD6721FSBD6722FS>  
The soft switching section is set to the timing before and after the change of the hall signal. The length of the soft  
switching section can be changed by adjusting the amplitude of the hall signal. The soft switching section becomes  
long if the amplitude of the hall signal is reduced, and the gradient of the output current becomes smooth. However,  
when a soft switching is applied too much, torque shortage might be caused. Therefore, set to the hall signal amplitude  
about 100mVpp that the reversely electromotive voltage is suppressed appropriately.  
When Hall Amplitude =  
large  
When Hall Amplitude =  
appropriate  
When Hall Amplitude =  
small  
(H+)-(H-)  
(H+)-(H-)  
(H+)-(H-)  
A1  
A2  
A1  
A2  
A1  
A2  
SOFT SWITCHING  
Fig.91 Relation between hall signal amplitude and output wave  
The soft switching function operates in the DC input application and the pulse input application.  
Adjust the hall bias resistance so that the hall signal amplitude become large when you do not want to use the soft  
switching function.  
29/40  
8) Soft startBD6722FS>  
The soft start section is set at the rotation start or the LOCK protection release, etc.  
The soft start time is decided by the constant circuit connected with VMIN terminal.  
And VMIN terminal is used as the lowest rotational speed setting. Set VMIN to 1.75V or more (lowest rotational speed  
DUTY50%).  
VREF  
R1  
WITHOUT SOFT START  
R2  
+
SOFT START  
TIME  
Fig.92 Output current characteristic by soft start  
Fig.93Soft start setting circuit  
a) Soft start time of VTH setting DUTY50%  
It gradually rises to the DUTY set with VTH after it starts.  
Fig.94 shows the soft start operation at VTH setting DUTY=70% and VMIN setting DUTY=20%.  
VTH=70%  
50%  
VMIN=20%  
TIME  
Fig.94 Soft start time chart of DUTY50%  
b). Soft start time of VTH setting DUTY50%  
DUTY rises gradually, and rises to Duty=50% temporarily after it starts. The purpose of this is to secure the start torque  
when DUTY set with VTH and VMIN is too low.  
It gradually descends to the DUTY set with VTH and VMIN after it rotates by DUTY=50% for a fixed time.  
Fig.95 shows the soft start operation at VTH setting DUTY=10% and VMIN setting DUTY=20%.  
50%  
VMIN=20%  
VTH=10%  
TIME  
Fig.95 Soft start time chart of DUTY50%  
Because the lock protection function is turned off while soft start, soft start time can be set longer than the lock  
detection time. The soft start function can be turned off by not connecting the capacitor to VMIN terminal.  
30/40  
9) The upside output of pre-driverBD6718FVBD6722FS>  
High side output of pre-driver (half pre-driver) are constant current open-drain output. Decide the resistance of R1 so  
that the voltage generated between G-S of external Pch transistor may exceed enough the threshold voltage of the  
transistor.  
VM line  
R1  
R2  
6
IH  
M1  
10  
7
9
Fig.96 Voltage setting between G-S of external Pch transistor  
Ex. At R1=100Ω, VGSP : between G-S of the Pch transistor.  
VGSP = R1 × IH  
= 100Ω × 10mA (typ.)  
= 1V  
R2 is used to suppress the power consumption of IC.  
At VM = 12V, The power consumption of upside output transistor M1 is  
PM1 = { VM - (R1 + R2) × IH } × IH  
At R1 = 100Ω, R2 = 0Ω  
At R1 = 100Ω, R2 = 1kΩ  
P M1=110mW  
PM1=10mW  
Especially BD6722FS, useless power consumption in the upside output is suppressed by appropriately setting R2,  
and a permissible loss of the package can be used effectively in lower output.  
31/40  
Equivalent circuit  
BD6709FS  
1) Hall input terminal  
2) Motor output terminal  
Output current detecting resistor connecting terminal  
Vcc  
Vcc  
H+  
H-  
OUT1  
OUT2  
RNF  
3) Current limiting input  
4) FG output terminal  
Output current detecting terminal  
FG  
Vcc  
1kΩ  
1kΩ  
CL  
CS  
5) Reference voltage terminal  
6) Oscillating capacitor connecting terminal  
Variable amplifier input terminal  
Level amplifier input terminal  
Level amplifier output terminal  
Minimum rotating speed setting terminal  
Vcc  
1kΩ  
VREF  
48.6kΩ  
20kΩ  
29kΩ  
18kΩ  
COSC  
1kΩ  
1kΩ  
1kΩ  
Vcc  
45Ω  
1kΩ  
45Ω  
1kΩ  
VTH  
LAIN  
1kΩ  
LAOUT  
VMIN  
1kΩ  
32/40  
BD6718FV  
1) Hall input terminal  
2) Charge and discharge pulse circuit capacitor  
Resistor connecting terminal  
1kΩ  
1kΩ  
CR  
1kΩ  
1kΩ  
H-  
H+  
3) Current limiting input terminal  
Output current detecting terminal  
4) Output terminal on H side  
5) Output terminal on L side  
A1H  
A2H  
A1L  
A2L  
1kΩ  
1kΩ  
CL  
CS  
6) Hall bias terminal  
8) Oscillating capacitor connecting terminal  
Variable speed input terminal (thermistor connecting terminal)  
Minimum speed input terminal  
HB  
COSC  
20kΩ  
1kΩ  
1kΩ  
7) Reference voltage terminal  
1kΩ  
VTH  
1kΩ  
VREF  
1kΩ  
30Ω  
37.8kΩ  
VMIN  
9) Lock detection ON:OFF ratio selecting terminal  
2.5V  
10) FG output terminal or  
AL output terminal  
FG  
100kΩ  
or  
AL  
10kΩ  
SEL  
33/40  
BD6721FS  
1) Hall input terminal  
2) Motor output terminal  
Output current detecting resistor connecting terminal  
Vcc  
OUT1  
OUT2  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
H+  
H-  
RNF  
3) Output current detecting terminal  
4) FG output terminal or  
AL output terminal  
FG or AL  
20Ω  
1kΩ  
CS  
5) Reference voltage terminal  
Vcc  
VREF  
1kΩ  
30kΩ  
10.6kΩ  
13kΩ  
37kΩ  
37.3kΩ  
22kΩ  
5kΩ  
42kΩ  
GND  
6) Oscillating capacitor connecting terminal  
Variable amplifier input terminal (thermistor connecting terminal)  
Level amplifier input terminal  
Level amplifier output terminal  
Minimum rotating speed setting terminal  
Vcc  
1kΩ  
COSC  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
30Ω  
VMIN  
1kΩ  
GND  
Vcc  
VTH  
45Ω  
1kΩ  
1kΩ 1kΩ  
LAOUT  
LAIN  
45Ω  
GND  
34/40  
BD6722FS  
1) Hall input terminal  
2) Motor output terminal  
Output current detecting resistor connecting terminal  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
H+  
H-  
RNF  
3) Output current detecting terminal  
4) FG output terminal or  
AL output terminal  
FG or AL  
20Ω  
1kΩ  
CS  
5) Reference voltage terminal  
VREF  
Vcc  
1kΩ  
1kΩ  
15kΩ  
30kΩ  
10.6kΩ  
13kΩ  
1kΩ  
37.3kΩ  
22kΩ  
37kΩ  
20kΩ  
5kΩ  
42kΩ  
GND  
6) Oscillating capacitor connecting terminal  
Variable amplifier input terminal  
Level amplifier input terminal  
Level amplifier output terminal  
Minimum rotating speed setting terminal  
Vcc  
1kΩ  
COSC  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
GND  
Vcc  
VMIN  
VTH  
1kΩ  
1kΩ  
1kΩ  
30Ω  
1kΩ  
1kΩ  
GND  
35/40  
Safety measure  
1) Reverse connection protection diode  
Reverse connection of power results in IC destruction as shown in Fig.46. When reverse connection is possible, reverse  
connection protection diode must be added between power supply and Vcc.  
After reverse connection  
destruction prevention  
Vcc  
In normal energization  
Vcc  
Reverse power connection  
Vcc  
Circuit  
block  
Circuit  
block  
Circuit  
block  
Each  
pin  
Each  
pin  
Each  
pin  
GND  
GND  
GND  
Internal circuit impedance high  
Large current flows  
Æ Thermal destruction  
No destruction  
Æ amperage small  
Fig.97 Flow of current when power is connected reversely  
2) Measure against Vcc voltage rise by back electromotive force  
Back electromotive force (Back EMF) generates regenerative current to power supply. However, when reverse  
connection protection diode is connected, Vcc voltage rises because the diode prevents current flow to power supply.  
ON  
ON  
ON  
Phase  
switching  
ON  
Fig.98 Vcc voltage rise by back electromotive force  
When the absolute maximum rated voltage may be exceeded due to voltage rise by back electromotive force, place  
(A) Capacitor or (B) Zenner diode between Vcc and GND. If necessary, add both (C).  
(A) Capacitor  
(B) Zenner diode  
ON  
ON  
ON  
ON  
(C) Capacitor and zenner diode  
ON  
ON  
Fig.99 Measure against Vcc voltage rise  
36/40  
3) Problem of GND line PWM switching  
Do not perform PWM switching of GND line because GND terminal potential cannot be kept to a minimum.  
Vcc  
Motor  
Driver  
Controller  
M
GND  
PWM input  
Prohibite  
Fig.100 GND line PWM switching prohibited  
4) FG and AL output  
FG and AL output is an open collector and requires pull-up resistor.  
The IC can be protected by adding resistor R1. An excess of absolute maximum rating, when FG or AL output terminal  
is directly connected to power supply, could damage the IC.  
Vcc  
Pull-up  
resistor  
FG /AL  
Protection  
Connector  
resistor R1  
of board  
Fig.101 Protection of FG and AL terminal  
Calculation of power consumed by IC  
Vcc  
Power consumed by this IC Pc is approximately calculated as follows:  
Icc  
FG  
Pc=Pc1+Pc2+Pc3  
IFG  
Pc1Power consumption by circuit current  
Pc1=Vcc×Icc  
OUT1  
Io  
OUT2  
Pc2Power consumption at output stage  
Pc2=VOL×Io+VOH×Io  
VOL is L voltage of output terminal 1 and 2.  
VOH is H voltage of output terminal 1 and 2.  
Io is the current flowing to output terminal 1 and 2.  
Fig.102 Calculation of power consumed by  
Pc3Power consumption at FG and AL  
Pc3=VFG×IFGVAL×IAL  
VFG is L voltage of FG output.  
VAL is L voltage of AL output.  
IFG and IAL are the current of FG and AL.  
Power consumption by IC greatly changes with use condition of IC such as power supply voltage and output current.  
Consider thermal design so that the maximum power dissipation on IC package is not exceeded.  
37/40  
Thermal derating curve  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta = 25ºC (normal temperature). IC is  
heated when it consumes power, and the temperature of IC chip becomes higher than ambient temperature. The  
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, etc, and  
consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction  
temperature) and thermal resistance of package (heat dissipation capability). The maximum junction temperature is in  
general equal to the maximum value in the storage temperature range.  
Heat generated by consumed power of IC is radiated from the mold resin or lead frame of package. The parameter  
which indicates this heat dissipation capability (hardness of heat release) is called heat resistance, represented by the  
symbol θja [/W]. The temperature of IC inside the package can be estimated by this heat resistance. Fig.37 shows the  
model of heat resistance of the package.  
Heat resistance θja, ambient temperature Ta, junction temperature Tj, and power consumption P can be calculated by  
the equation below:  
θja (TjTa) / P  
[/W]  
Thermal derating curve indicates power that can be consumed by IC with reference to ambient temperature. Power that  
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal  
resistance θja.  
Thermal resistance θja depends on chip size, power consumption, package ambient temperature, packaging condition,  
wind velocity, etc., even when the same package is used. Thermal derating curve indicates a reference value measured  
at a specified condition. Fig.38 shows a thermal derating curve (Value when mounting FR4 glass epoxy board 70 [mm] x  
70 [mm] x 1.6 [mm] (copper foil area below 3 [%]))  
θja = (Tj-Ta) / P [/W]  
Ambient temperature Ta[]  
Chip surface temperature Tj[]  
Power consumption P[W]  
Fig.103 Thermal resistance  
Pd(mW)  
1000  
812.5  
800  
600  
400  
BD6718FV,BD6709FS  
BD6721FS,BD6722FS  
200  
95  
100  
0
25  
50  
75  
125  
150 Ta()  
Reduce by 6.5mW/over 25.  
(On 70.0mm×70.0mm×1.6mm glass epoxy board)  
Fig.104 Thermal derating curve  
38/40  
Cautions on use  
1) Absolute maximum ratings  
An excess in the absolute maximum rations, such as supply voltage, temperature range of operating conditions, etc., can  
break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If  
any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,  
such as fuses.  
2) Connecting the power supply connector backward  
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply  
lines. An external direction diode can be added.  
3) Power supply line  
Back electromotive force causes regenerated current to power supply line, therefore take a measure such as placing a  
capacitor between power supply and GND for routing regenerated current. And fully ensure that the capacitor  
characteristics have no problem before determine a capacitor value. (when applying electrolytic capacitors, capacitance  
characteristic values are reduced at low temperatures)  
4) GND potential  
The potential of GND pin must be minimum potential in all operating conditions. Also ensure that all terminals except GND  
terminal do not fall below GND voltage including transient characteristics. However, it is possible that the motor output  
terminal may deflect below GND because of influence by back electromotive force of motor. Malfunction may possibly  
occur depending on use condition, environment, and property of individual motor. Please make fully confirmation that no  
problem is found on operation of IC.  
5) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation(Pd) in actual operating conditions.  
6) Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
7) Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
8) ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum rations or ASO.  
9) Thermal shut down circuit  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). Operation temperature is 175(typ.) and has a  
hysteresis width of 25(typ.). When IC chip temperature rises and TSD circuit works, the output terminal becomes an  
open state. TSD circuit is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC  
or guarantee its operation. Do not continue to use the IC after operation this circuit or use the IC in an environment where  
the operation of this circuit is assumed.  
10) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC’s power supply off before connecting it to or  
removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic  
measure. Use similar precaution when transporting or storing the IC.  
11) GND wiring pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern of any external components, either.  
12) Capacitor between output and GND  
When a large capacitor is connected between output and GND, if Vcc is shorted with 0V or GND for some cause, it is  
possible that the current charged in the capacitor may flow into the output resulting in destruction. Keep the capacitor  
between output and GND below 100uF.  
13) IC terminal input  
When Vcc voltage is not applied to IC, do not apply voltage to each input terminal. When voltage above Vcc or below  
GND is applied to the input terminal, parasitic element is actuated due to the structure of IC. Operation of parasitic  
element causes mutual interference between circuits, resulting in malfunction as well as destruction in the last. Do not  
use in a manner where parasitic element is actuated.  
14) In use  
We are sure that the example of application circuit is preferable, but please check the character further more in application  
to a part which requires high precision. In using the unit with external circuit constant changed, consider the variation of  
externally equipped parts and our IC including not only static character but also transient character and allow sufficient  
margin in determining.  
39/40  
Ordering part number  
Please order by ordering part number.Please confirm the combination of each items.Please write the letter close to left when column is blank.  
0
E
2
B
D
6
9
F
S
7
Package Type  
Part Number  
Package specification  
E2  
Emboss tape reel Pin 1 opposite draw-out side  
FS SSOP-A16  
BD6709  
BD6721  
BD6718  
BD6722  
FV  
SSOP-B20  
Physical dimension  
SSOP-A16  
Tape and Reel information〉  
<Dimension >  
Embossed carrier tape  
2500pcs  
Tape  
Quant  
6.6 0.2  
E2  
16  
9
Direction  
of feed  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
8
0.15 0.1  
0.1  
0.8  
0.36 0.1  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
SSOP-B20  
<Dimension >  
Tape and Reel information〉  
Embossed carrier tape  
2500pcs  
Tape  
Quant  
E2  
6.5 0.2  
Direction  
of feed  
20  
11  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
10  
0.15 0.1  
0.1  
0.65  
0.22 0.1  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.06T403A '07.1 ROHM © 1000 NZ  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY