BD71631QWZ [ROHM]

BD71631QWZ是一款支持2V以内低电压单节电池的充电控制IC。由于可以通过外置电阻设置充电电压、充电电流和终止电流等参数,因此可以使充电工作更大程度地发挥出电池的性能。另外,还内置有安全定时器功能和通过外置NTC热敏电阻实现的充电停止/重启功能等安全功能。产品采用的是非常适合物联网和可穿戴式设备的超小型封装(1.8mm×2.4mm×0.4mm)。日本碍子株式会社的芯片型陶瓷二次电池“EnerCera®”与ROHM电源IC的超低静态电流技术“Nano Energy™”强强联合,助力实现免维护的物联网设备。 Data Sheet 购买 * * 本产品是标准级的产品。本产品不建议使用于车载设备。;
BD71631QWZ
型号: BD71631QWZ
厂家: ROHM    ROHM
描述:

BD71631QWZ是一款支持2V以内低电压单节电池的充电控制IC。由于可以通过外置电阻设置充电电压、充电电流和终止电流等参数,因此可以使充电工作更大程度地发挥出电池的性能。另外,还内置有安全定时器功能和通过外置NTC热敏电阻实现的充电停止/重启功能等安全功能。产品采用的是非常适合物联网和可穿戴式设备的超小型封装(1.8mm×2.4mm×0.4mm)。日本碍子株式会社的芯片型陶瓷二次电池“EnerCera®”与ROHM电源IC的超低静态电流技术“Nano Energy™”强强联合,助力实现免维护的物联网设备。 Data Sheet 购买 * * 本产品是标准级的产品。本产品不建议使用于车载设备。

电池
文件: 总21页 (文件大小:958K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Linear Charger for Low Voltage Battery  
BD71631QWZ  
General Description  
Key Specifications  
BD71631QWZ is a linear charger for low charge voltage  
battery. The battery charge voltage, charge current,  
termination current are set using external resisters.  
Input Voltage Range:  
Adjustable Battery Voltage:  
Adjustable Recharge Voltage Threshold:  
Disenable or 1.8 V to 4.7 V  
Adjustable Charge Current:  
Up to 300 mA (VIN ≥ 4 V, VIN-VOUT ≥ 1 V)  
2.9 V to 5.5 V  
2.0 V to 4.7 V  
Features  
Adjustable Termination Current: 50 μA to 10 mA  
Low Quiescent Battery Current: IBATT = 0 μA (typ)  
NTC Thermistor Input for Temperature Qualified  
Charging  
Open-Drain Charge indicator LED Output  
Fixed 10 hour Safety Timer  
Up to 100 mA (VIN ≥ 4 V)  
Up to 30 mA (2.9 V ≤ VIN ≤ 5.5 V)  
Adjustable Termination Current:  
Low Quiescent Battery Current: IBATT = 0 μA (typ)  
Operating Temperature:  
50 μA to 10 mA  
-30 °C to +105 °C  
Thermal Shutdown  
Under Voltage Lockout Protection  
Battery Over Voltage Protection  
Package  
UMMP10LZ1824  
W (Typ) x D (Typ) x H (Max)  
1.8 mm x 2.4 mm x 0.4 mm  
Applications  
Low Voltage Battery Products  
Li-ion 1Cell Battery Products  
Typical Application Circuit  
Low Voltage Battery Application  
VIN  
Battery out  
VIN  
VOUT  
VFB  
BD71631  
LEDCNT  
VFBG  
VFBRE  
ICHG  
VIN  
ITERM  
NTC  
T
Battery  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
1/18  
 
 
 
 
 
 
BD71631QWZ  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................3  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................4  
Recommended Operating Conditions.............................................................................................................................................4  
Electrical Characteristics.................................................................................................................................................................5  
Typical Performance Curves...........................................................................................................................................................6  
Figure 1. VIN Input Current vs Input Voltage...............................................................................................................................6  
Figure 2. VOUT Input Current vs VOUT Voltage.........................................................................................................................6  
Figure 3. Charge Current vs VOUT Voltage................................................................................................................................6  
Figure 4. Charge Current vs VOUT Voltage................................................................................................................................6  
Figure 5. Charging Voltage vs Input Voltage ...............................................................................................................................7  
Figure 6. Charging Voltage vs Input Voltage ...............................................................................................................................7  
Figure 7. VFBG ON Resistance vs Input Voltage........................................................................................................................7  
Figure 8. VFB Leak Current vs VFB Voltage...............................................................................................................................8  
Figure 9. VFBRE Leak Current vs VFBRE Voltage.....................................................................................................................8  
Figure 10. VFBG Leak Current vs VFBG Voltage .......................................................................................................................8  
Battery Output Control....................................................................................................................................................................9  
Charge Current vs Battery Temperature .........................................................................................................................................9  
Peripheral Components Setting....................................................................................................................................................10  
Charging State Control .................................................................................................................................................................11  
Charging Timing Chart..................................................................................................................................................................12  
I/O Equivalence Circuit .................................................................................................................................................................13  
Operational Notes.........................................................................................................................................................................14  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................14  
Power Supply Lines........................................................................................................................................................14  
Ground Voltage...............................................................................................................................................................14  
Ground Wiring Pattern....................................................................................................................................................14  
Recommended Operating Conditions.............................................................................................................................14  
Inrush Current.................................................................................................................................................................14  
Testing on Application Boards ........................................................................................................................................14  
Inter-pin Short and Mounting Errors ...............................................................................................................................14  
Unused Input Pins ..........................................................................................................................................................14  
Regarding the Input Pin of the IC ...................................................................................................................................15  
Ceramic Capacitor..........................................................................................................................................................15  
Thermal Shutdown Circuit (TSD)....................................................................................................................................15  
9.  
10.  
11.  
12.  
Ordering Information.....................................................................................................................................................................16  
Marking Diagram ..........................................................................................................................................................................16  
Physical Dimension and Packing Information...............................................................................................................................17  
Revision History............................................................................................................................................................................18  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
2/18  
 
BD71631QWZ  
Pin Configuration  
5
4
3
EXP-PAD  
8
2
1
6
7
9
10  
(TOP VIEW)  
CCCV output  
Pin Descriptions  
Pin No.  
Pin Name  
VOUT  
VFB  
Function  
1
2
Feedback for full charge voltage  
Ground by internal switch in charging  
Unused on the VFBG pin open  
3
VFBG  
Feedback for recharge voltage.  
4
5
6
VFBRE  
GND  
This pin should not be left floating  
Tie the VFBRE pin to GND to disable recharge function  
Ground  
Thermistor sense input.  
This pin should not be left floating  
NTC  
Tie the NTC pin to GND to disable thermistor sense function  
7
8
ITERM  
ICHG  
Termination current setting pin  
Charge current setting pin  
This pin should not be connected a capacitor  
Charging indicator output  
Unused on the LEDCNT pin open  
9
LEDCNT  
10  
-
VIN  
Power supply input  
EXP-PAD  
The EXP-PAD is connected to the GND Pin.  
Block Diagram  
IVOUT  
VOUT  
VIN 10  
1
IVOUT/1000  
ICHG  
ICHG REF  
VFB  
8
7
CC/CV  
Reguration  
2
3
ITERM  
ITERM REF  
VFBG  
UVLO,OVP  
TSD  
VFBRE  
NTC  
-
+
4
6
Control  
LEDCNT  
Recharge  
Ref  
9
OSC  
5
GND  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
3/18  
BD71631QWZ  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
V
VIN, VOUT  
VICHG, VITERM  
VLEDCNT, VFB,  
VFBG, VFBRE  
VNTC  
,
,
Voltage Range  
(with respect to GND)  
-0.3 to +7.0  
Maximum Junction Temperature  
Storage Temperature Range  
Tjmax  
+150  
°C  
°C  
Tstg  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
UMMP10LZ1824  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θ JA  
ΨJT  
172.24  
14.87  
54.00  
6.97  
°C/W  
°C/W  
(Note 1) Based on JESD51-2A (Still-Air), using a BD71631QWZ Chip.  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VIN Voltage  
VIN  
VDIF  
2.9  
0.3  
0
5.0  
5.5  
-
V
V
Minimum I/O Voltage Difference  
Battery Voltage  
-
-
-
-
-
-
-
-
-
-
VBAT  
ILED  
4.7  
20  
V
LEDCNT Current  
-
mA  
mA  
μF  
μF  
μF  
kΩ  
kΩ  
°C  
VFBG Current  
IFB  
-
5
VIN Capacitor (Note 6)  
VOUT Capacitor without Battery  
VOUT Capacitor with Battery  
VFB Total Resistance  
VFBRE Total Resistance  
CVIN  
1.0  
10  
0.1  
100  
100  
-30  
4.7  
-
VOUTNB  
VOUTB  
VFBR  
VFBRER  
Topr  
-
1000  
5000  
+105  
Operating Temperature  
(Note 6) The Max value is for using USB output as the power supply.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
4/18  
BD71631QWZ  
Electrical Characteristics (Unless otherwise specified VIN = 5 V, Ta = 25 °C, VOUT =2.5 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
<VIN Voltage>  
VIN UVLO Detect Voltage  
VIN UVLO Detect Hysteresis  
<Charge Voltage>  
VINUV  
2.3  
50  
2.4  
2.5  
V
VIN fall detect  
VINUVHYS  
100  
150  
mV  
-
VFB Threshold Voltage  
VFBTH  
VCHG_R  
VFBRCHTH  
VPRETH  
0.588  
2.0  
0.588  
0.6  
50  
0.600  
-
0.612  
4.7  
V
V
-
Battery Charging Voltage Range  
VFBRE Threshold Voltage  
Pre-charge Voltage Threshold  
Pre-charge Voltage Hysteresis  
Battery Recharging Voltage Range  
Recharge Disenable Threshold  
-
0.600  
0.7  
100  
-
0.612  
0.8  
V
-
V
Battery rise detect  
VPREHYS  
VRCHG_R  
VRECHG_DIS  
150  
4.7  
mV  
V
-
1.8  
-
-
0.20  
0.35  
V
VFBRE input  
VCHG  
×1.01  
VCHG  
×1.05  
VCHG  
×1.10  
Battery OVP Threshold  
VBOVP  
V
VFB monitor  
<Charge Current>  
Charge Current Setting Range 1  
Charge Current Setting Range 2  
Charge Current Setting Range 3  
Charge Current Accuracy 1  
Charge Current Accuracy 2  
Charge Current Accuracy 3  
Pre-charge Current Accuracy  
Termination Current Setting Range  
Termination Current Accuracy1  
ICHG_R1  
1
1
-
-
-
-
-
-
-
-
-
300  
100  
30  
mA  
mA  
mA  
%
VIN ≥ 4 V, VIN-VOUT ≥ 1 V  
VIN ≥ 4 V  
ICHG_R2  
ICHG_R3  
1
2.9 V ≤ VIN ≤ 5.5 V  
ICHG ≥ 100 mA  
10 mA ≤ ICHG < 100 mA  
ICHG < 10 mA  
-
-
-10  
-25  
-50  
-50  
0.05  
-10  
+10  
+25  
+50  
+50  
10.00  
+10  
-
%
-
%
-
%
ITERM_R  
-
mA  
%
-
300 μA ≤ ITERM ≤ 800 μA  
800 μA < ITERM ≤ 3 mA  
ITERM < 300 μA  
Termination Current Accuracy2  
-
-25  
-
+25  
%
%
Termination Current Accuracy3  
Termination Current Accuracy4  
<Thermal Control>  
-
-
-50  
-25  
-
-
+50  
+25  
3 mA < ITERM ≤ 10 mA  
μA ITERM < 100 μA  
VIN×  
0.328  
VIN×  
0.293  
VIN×  
0.702  
VIN×  
0.655  
VIN×  
0.344  
VIN×  
0.307  
VIN×  
0.721  
VIN×  
0.675  
VIN×  
0.035  
VIN×  
0.360  
VIN×  
0.322  
VIN×  
0.739  
VIN×  
0.694  
VIN×  
0.050  
NTC Threshold Voltage HOT1  
NTC Threshold Voltage HOT2  
NTC Threshold Voltage COLD1  
NTC Threshold Voltage COLD2  
NTC Disenable Threshold Voltage  
VNTCHOT1  
VNTCHOT2  
VNTCCOLD1  
VNTCCOLD2  
VNTCDIS  
V
V
V
V
V
-
-
-
-
-
-
<Timer>  
10 hour Safety Timer  
Charging Termination Delay Time  
<LEDCNT>  
tCHGTM  
tTERM  
9.5  
13  
10.0  
15  
10.5  
17  
hour  
s
-
From ITERM detect  
LEDCNT Output Low Voltage  
<VFBG>  
VLED_L  
-
-
-
-
0.4  
V
ILEDCNT = 5 mA  
VFBG ON Resistance  
<Power Consumption>  
Battery Standby Current  
LEDCNT Leak Current  
VFBG Leak Current  
VFB Leak Current  
RVFBG  
100  
Ω
-
IBATT  
ILEDCNT_LEAK  
IVFBG  
-
-
-
-
-
-
0
0
0
0
0
0
1
1
1
1
1
1
μA  
μA  
μA  
μA  
μA  
μA  
VIN = 0 V  
LEDCNT = 5 V  
VFBG = 5 V, VIN = 0 V  
VFB = 5 V  
IVFB  
VFBRE Leak Current  
NTC Leak Current  
IVFBRE  
INTC  
VFBRE = 5 V  
NTC = 5 V  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
5/18  
BD71631QWZ  
Typical Performance Curves  
700  
600  
500  
400  
300  
200  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN = 5 V  
-30 °C  
+25 °C  
+105 °C  
-30 °C  
+25 °C  
+105 °C  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Input Voltage: VIN [V]  
VOUT Voltage: VOUT [V]  
Figure 1. VIN Input Current vs Input Voltage  
Figure 2. VOUT Input Current vs VOUT Voltage  
(CHG = Disenable )  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
100  
75  
50  
25  
0
-30 °C  
-30 °C  
+25 °C  
+105 °C  
+25 °C  
+105 °C  
VIN = 5 V  
ICHG = 100 mA Setting  
VCHG = 4.5 V Setting  
VIN = 5 V  
ICHG = 1 mA Setting  
VCHG = 4.5 V Setting  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOUT Voltage: VOUT [V]  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOUT Voltage: VOUT [V]  
Figure 3. Charge Current vs VOUT Voltage  
Figure 4. Charge Current vs VOUT Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
6/18  
BD71631QWZ  
Typical Performance Curves - continued  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
2.5  
2.4  
2.3  
VCHG = 4.7 V Setting  
VCHG = 2.0 V Setting  
2.2  
2.1  
2.0  
1.9  
1.8  
-30 °C  
-30 °C  
1.7  
1.6  
1.5  
+25 °C  
+105 °C  
+25 °C  
+105 °C  
4.8  
5.0  
5.2  
5.4  
5.6  
2.5  
3.5  
4.5  
5.5  
6.5  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 5. Charging Voltage vs Input Voltage  
Figure 6. Charging Voltage vs Input Voltage  
25  
20  
15  
10  
5
-30 °C  
+25 °C  
+105 °C  
0
2.5  
3.5  
4.5  
5.5  
Input Voltage: VIN [V]  
Figure 7. VFBG ON Resistance vs Input Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
7/18  
BD71631QWZ  
Typical Performance Curves - continued  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-30 °C  
-30 °C  
0.2  
0.1  
0.0  
+25 °C  
+25 °C  
+105 °C  
+105 °C  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VFB Voltage: VFB [V]  
VFBRE Voltage: VFBRE [V]  
Figure 8. VFB Leak Current vs VFB Voltage  
Figure 9. VFBRE Leak Current vs VFBRE Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-30 ˚C  
+25 ˚C  
+105 ˚C  
0
1
2
3
4
5
6
7
VFBG Voltage: VFBG [V]  
Figure 10. VFBG Leak Current vs VFBG Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
8/18  
BD71631QWZ  
Battery Output Control  
LED_ON  
LEDCNT LED_OFF  
LED_OFF  
VBAT  
IBAT  
VCHG  
Battery Voltage  
ICHG  
Charge Current  
VPRE  
IPRE  
= ICHG / 2  
ITERM  
Time  
(CC)  
(CV)  
Charge  
Stop  
Charge  
Charge Stop  
15 s  
10 hour Safety Timer Counting  
Charge Current vs Battery Temperature  
Charge current  
[mA]  
ICHG  
Hys  
Hys  
NTC Temp [ ]  
2   7   
48   
43   
VIN = 5 V  
NTC pin voltage  
10 kΩ  
NTC  
2 °C: 3.605 V  
7 °C: 3.375 V  
43 °C: 1.720 V  
48 °C: 1.535 V  
T
Battery  
NCP03XH103F05RL  
(25/50 = 3380 k 10 kΩ)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
9/18  
BD71631QWZ  
Peripheral Components Setting  
1. Charging voltage (VCHG), Recharge voltage (VRECHG) setting  
VCHG  
VOUT  
CSPU  
Battery  
R1  
R2  
R3  
R4  
VFB  
VFBG  
VFBRE  
The battery charge voltage is determined as follows :  
(
)⁄  
퐶퐻퐺 = 푅1 + 푅2 2 × 0.6 [푉]  
The battery re-charge voltage is determined as follows :  
(
)⁄  
ꢀ퐸퐶퐻퐺 = 푅3 + 푅4 4 × 0.6 [푉]  
About total feedback resistance, follow the Recommended Operating Conditions.  
Resister reference value  
VCHG = 2.2 V  
VCHG = 4.2 V  
VRECHG = Disenable  
VRECHG = 3.9 V  
Resistor  
Resistor value [Ω]  
R1  
R2  
R3  
R4  
200 k  
75 k  
-*  
600 k  
100 k  
1.1 M  
200 k  
-*  
*VFBRE pin connect to GND  
Connect CSPU for feedback stability when Battery is no connected or the battery capacity is too small.  
The capacitance of CSPU is determined as follows :  
⁄(  
)
푆푃푈 = ꢂ ꢃ휋 × ꢄ00 × 푅1 [퐹]  
2. Charge current, Termination current setting  
ICHG  
R5  
ITERM  
R6  
ICHG = (500000 / R5 [Ω]) [mA]  
ITERM = (50000 / R6 [Ω]) [mA]  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
10/18  
BD71631QWZ  
Charging State Control  
ALL State  
SUSPEND  
CHARGE  
TEMP_ERROR_1  
BATTERY_ERROR  
DONE  
TOP_OFF  
TEMP_ERROR_2  
No.  
State transition  
SUSPEND -> CHARGE  
Condition  
UVLO, TSD not detect  
and VIN > BATT+0.3 V  
and BATT OVP not detect  
and Temp Error not detect  
Continue to satisfy the condition for 25 ms  
CHARGE -> TOP_OFF  
TOP_OFF -> CHARGE  
Charge current < ITERM  
Continue to satisfy the condition for 25 ms  
Charge current > ITERM  
Continue to satisfy the condition for 25 ms  
Continue to satisfy the condition for 15 s  
BATT OVP detect  
TOP_OFF -> DONE  
CHARGE or TOP_OFF or  
TEMP_ERROR_1 or  
TEMP_ERROR_2  
or 10 hours safety timer expired  
-> BATTERY ERROR  
DONE -> CHARGE  
BATT < Re-charge voltage  
Continue to satisfy the condition for 25 ms  
Temp Error detect  
Continue to satisfy the condition for 25 ms  
Temp Error not detect  
CHARGE -> TEMP_ERROR_1 or  
TOP_OFF -> TEMP_ERROR_2  
TEMP_ERROR_1 -> CHARGE or  
TEMP_ERROR_2 -> TOP_OFF  
ALL State -> SUSPEND  
Continue to satisfy the condition for 25 ms  
UVLO, TSD detect  
or VIN < BATT+0.3 V  
State  
Battery charge  
10 hours safety timer  
LEDCNT  
SUSPEND  
CHARGE  
TOP_OFF  
DONE  
Stop  
Charge  
Charge  
Stop  
Stop and reset  
Count  
OFF  
ON  
Count  
ON  
Stop and reset  
Stop and reset  
Count  
OFF  
OFF  
OFF  
OFF  
BATTERY_ERROR  
TEMP_ERROR_1  
TEMP_ERROR_2  
Stop  
Stop  
Stop  
Count  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
11/18  
BD71631QWZ  
Charging Timing Chart  
Normal operation  
UVLO Release  
VIN  
Meet the transition  
condition  
0 V  
UVLO  
Detect  
BATT < Re-charge  
Threshold  
Detect  
BATT < Pre-charge  
Threshold  
BATT  
ICHG  
Detect  
Charge current <  
ITERM Threshold  
Detect  
Charge current <  
ITERM Threshold  
15 s  
15 s  
25 ms  
25 ms  
25 ms  
SUSPEND  
25 ms  
CHARGE  
TOP_OFF  
DONE  
CHARGE  
TOP_OFF  
DONE  
CHG_STATE RESET  
Error operation  
UVLO  
UVLO Detect  
UVLO Release  
Release  
Temperature Error  
Detect  
Temperature Error  
Temperature flag  
Release  
Battery Error  
Detect  
Battery Error  
Battery Error flag  
BATT  
ICHG  
25 ms  
25 ms  
CHARGE  
TEMP_ERROR_1  
CHARGE  
BATTERY_ERROR  
RESET  
SUSPEND  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
12/18  
BD71631QWZ  
I/O Equivalence Circuit  
VIN, VOUT  
ICHG, ITERM  
VIN  
100 Ω  
30 kΩ  
ICHG  
VOUT  
ITERM  
30 kΩ  
VFB, VFBRE, NTC  
LEDCNT, VFBG  
LEDCNT  
VFBG  
30 kΩ  
VFB  
VFBRE  
NTC  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
13/18  
BD71631QWZ  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting  
the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power  
supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground  
caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground  
voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The  
characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the  
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage  
from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging  
the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could  
be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely  
low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this  
way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the  
IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
14/18  
BD71631QWZ  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-  
N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference  
among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as  
applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 11. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and  
the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within  
the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj falls below the  
TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
15/18  
BD71631QWZ  
Ordering Information  
B D 7  
1
6
3
1 Q W Z  
-
T R  
Package  
Packaging and forming specification  
QWZ: UMMP10LZ1824 TR: Embossed tape and reel  
Marking Diagram  
UMMP10LZ1824 (TOP VIEW)  
Part Number Marking  
D 7 1  
6 3 1  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
16/18  
BD71631QWZ  
Physical Dimension and Packing Information  
Package Name  
UMMP10LZ1824  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
17/18  
BD71631QWZ  
Revision History  
Date  
Revision  
001  
Changes  
24.Mar.2021  
New Release  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0A700020-1-2  
24.Mar.2021 Rev.001  
18/18  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY