BD71850MWV [ROHM]

BD71850MWV是运用罗姆此前积累的处理器用电源技术,集成了i.MX 8M Nano Family处理器所需的电源和功能的PMIC。内置适用于i.MX 8M Nano Family的电源ON/OFF时序器,不仅可以实现小型化,还容易进行应用设计,有助于大幅削减开发周期。集成了控制逻辑、降压DC/DC转换器(Buck Converter)6ch、LDO6ch,只需1枚芯片,即可向处理器,以及应用所需的DDR存储器供电。而且内置SDXC卡用1.8V/3.3V开关、32.768kHz晶体振荡器的缓存、各种保护功能(各电源系统的输出短路、输出过电压、输出过电流和热关断)。配备高功率转换效率为95%的降压DC/DC转换器,可在1节Li-Ion电池到USB的大输入电压范围(2.7V~5.5V)内工作,是适合i.MX 8M Nano Famil适用领域的PMIC。;
BD71850MWV
型号: BD71850MWV
厂家: ROHM    ROHM
描述:

BD71850MWV是运用罗姆此前积累的处理器用电源技术,集成了i.MX 8M Nano Family处理器所需的电源和功能的PMIC。内置适用于i.MX 8M Nano Family的电源ON/OFF时序器,不仅可以实现小型化,还容易进行应用设计,有助于大幅削减开发周期。集成了控制逻辑、降压DC/DC转换器(Buck Converter)6ch、LDO6ch,只需1枚芯片,即可向处理器,以及应用所需的DDR存储器供电。而且内置SDXC卡用1.8V/3.3V开关、32.768kHz晶体振荡器的缓存、各种保护功能(各电源系统的输出短路、输出过电压、输出过电流和热关断)。配备高功率转换效率为95%的降压DC/DC转换器,可在1节Li-Ion电池到USB的大输入电压范围(2.7V~5.5V)内工作,是适合i.MX 8M Nano Famil适用领域的PMIC。

电池 开关 双倍数据速率 集成电源管理电路 存储 振荡器 晶体振荡器 转换器
文件: 总119页 (文件大小:1988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Management Integrated Circuit  
BD71850MWV  
General Description  
Key Specifications  
BD71850MWV is a programmable Power Management  
IC (PMIC) for powering single-core, dual-core, and  
quad-core SoCs such as NXP-i.MX 8M Nano. It is  
optimized for low BOM cost and compact solution  
footprint. It integrates 6 Buck regulators and 6 LDOs to  
provide all the power rails required by the SoC and the  
commonly used peripherals.  
Input Voltage Range (VSYS):  
SNVS State Current:  
SUSPEND State Current:  
IDLE State Current:  
RUN State Current:  
Operating Temperature Range:  
2.7 V to 5.5 V  
30 μA(Typ)  
115 μA(Typ)  
125 μA(Typ)  
125 μA(Typ)  
-40 °C to +105 °C  
QFN package and pinout support low cost Type 3  
(non-HDI) PCB. Programmable power sequencing  
and output voltages, flexible power state control for  
easier system design and supports a wide variety of  
processors and system implementations.  
Applications  
Streaming Media Boxes and Dongles  
AV Receivers and Wireless Sound Bars  
Industrial HMI, SBC, IPC and Panel Computer  
Package  
UQFN56BV7070  
W(Typ) x D(Typ) x H(Max)  
7.00 mm x 7.00 mm x 1.00 mm  
Features  
6 Buck Regulators  
2.0 MHz Switching Frequency.  
(BUCK1, BUCK2, BUCK5, BUCK7, and BUCK8).  
1.5MHz Switching Frequency. (BUCK6)  
Target Efficiency: 83% to 95%.  
Output Current & Voltage.  
BUCK1: 3.0 A, 0.7 V to 1.3 V/10 mV step, DVS  
BUCK2: 3.0 A, 0.7 V to 1.3 V/10 mV step, DVS  
BUCK5: 3.0 A, 0.70 V to 1.35 V/8steps, DVS  
BUCK6: 3.0 A, 2.6 V to 3.3 V/100 mV step  
BUCK7: 1.5 A, 1.605 V to 1.995 V/8steps  
BUCK8: 3.0 A, 0.8 V to 1.4 V/10 mV step  
6ch Linear Regulators (6 LDOs)  
LDO1: 10 mA, 3.0 V to 3.3 V, 1.6 V to 1.9 V  
LDO2: 10 mA, 0.9 V, 0.8 V  
LDO3: 300 mA, 1.8 V to 3.3 V  
LDO4: 250 mA, 0.9 V to 1.8 V  
LDO5: 300 mA, 0.8 V to 3.3 V  
LDO6: 300 mA, 0.9 V to 1.8 V  
Power Mux Switch  
1.8V Input: 500 mΩ(Max)  
3.3V Input: 500 mΩ(Max)  
32.768 kHz Crystal Oscillator Driver  
Power Button Detector  
Protection and Monitoring: Soft Start, Power Rails Fault  
Detection, UVLO, OVP and TSD  
OTP Configurable Power Sequencing  
OTP and Software Programmable Output Voltage,  
Ramp rates.  
Hardware Signaling with SoC for Transition into or out  
of Low Power States  
Interfaces:  
I2C: 100 kHz/400 kHz, 1 MHz  
Power-on Reset Output: POR_B, RTC_RESET_B,  
Watchdog Reset Input: WDOG_B:  
Power State Control:  
PMIC_STBY_REQ, PMIC_ON_REQ, PWRON_B  
Interrupt to SoC: IRQ_B  
Type3 PCB Applicable  
Product structure : Silicon integrated circuit. This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
1/116  
TSZ2211114001  
 
 
 
 
 
 
BD71850MWV  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Package  
W(Typ) x D(Typ) x H(Max) ................................................................................................................1  
1. Introduction.............................................................................................................................................................................7  
1.1.  
1.2.  
1.3.  
1.4.  
1.5.  
1.6.  
1.7.  
1.8.  
Terminology....................................................................................................................................................................7  
System Power Map & Typical Application Circuit ...........................................................................................................8  
Pin Configuration..........................................................................................................................................................10  
Pin Description.............................................................................................................................................................11  
I/O Equivalence Circuit.................................................................................................................................................12  
Power Rail....................................................................................................................................................................13  
Register Map................................................................................................................................................................14  
ESD..............................................................................................................................................................................16  
2. Operating Conditions............................................................................................................................................................17  
2.1.  
2.2.  
2.3.  
2.4.  
2.5.  
Absolute Maximum Ratings (Ta=25 ˚C)........................................................................................................................17  
Thermal Resistance .....................................................................................................................................................17  
Recommended Operating Conditions ..........................................................................................................................18  
Current Consumption...................................................................................................................................................18  
Power Reference and Detectors (UVLO).....................................................................................................................19  
3. Power State Control .............................................................................................................................................................20  
3.1.  
3.1.1.  
Power Control Signals..................................................................................................................................................20  
PWRON_B...........................................................................................................................................................21  
PMIC_ON_REQ...................................................................................................................................................21  
PMIC_STBY_REQ...............................................................................................................................................21  
WDOG_B.............................................................................................................................................................21  
RTC_RESET_B...................................................................................................................................................22  
POR_B.................................................................................................................................................................22  
Power States................................................................................................................................................................23  
Power State Diagram...........................................................................................................................................23  
Power State Register...........................................................................................................................................24  
Power State Definition .........................................................................................................................................26  
Power State Control Events.................................................................................................................................27  
3.1.2.  
3.1.3.  
3.1.4.  
3.1.5.  
3.1.6.  
3.2.  
3.2.1.  
3.2.2.  
3.2.3.  
3.2.4.  
3.2.4.1.  
3.2.4.2.  
3.2.5.  
3.2.5.1.  
Reset Event.................................................................................................................................................27  
Emergency Shutdown Event .......................................................................................................................29  
Power State Transitions.......................................................................................................................................29  
OFF to READY............................................................................................................................................29  
READY to SNVS .........................................................................................................................................30  
SNVS to RUN..............................................................................................................................................33  
RUN to IDLE................................................................................................................................................35  
IDLE to RUN................................................................................................................................................35  
RUN to SUSPEND ......................................................................................................................................35  
SUSPEND to RUN ......................................................................................................................................35  
IDLE to SUSPEND......................................................................................................................................36  
Emergency Shutdown .................................................................................................................................36  
VR Fault ......................................................................................................................................................37  
EMG to OFF................................................................................................................................................41  
EMG to READY...........................................................................................................................................42  
EMG_STAY Condition .................................................................................................................................43  
Warm Reset.................................................................................................................................................43  
PWROFF.....................................................................................................................................................44  
PWROFF to READY....................................................................................................................................46  
PWROFF to SNVS......................................................................................................................................46  
PWRON_B Functionality .............................................................................................................................46  
3.2.5.2.  
3.2.5.3.  
3.2.5.4.  
3.2.5.5.  
3.2.5.6.  
3.2.5.7.  
3.2.5.8.  
3.2.5.9.  
3.2.5.10.  
3.2.5.11.  
3.2.5.12.  
3.2.5.13.  
3.2.5.14.  
3.2.5.15.  
3.2.5.16.  
3.2.5.17.  
3.2.5.18.  
3.3.  
3.3.1.  
Power Sequence..........................................................................................................................................................48  
Power ON Sequence...........................................................................................................................................48  
Power OFF Sequence .........................................................................................................................................50  
RUN to IDLE........................................................................................................................................................54  
IDLE to RUN........................................................................................................................................................55  
RUN to SUSPEND...............................................................................................................................................56  
SUSPEND to RUN...............................................................................................................................................57  
IDLE to SUSPEND ..............................................................................................................................................58  
Emergency Shutdown..........................................................................................................................................59  
Warm Reset.........................................................................................................................................................60  
3.3.2.  
3.3.3.  
3.3.4.  
3.3.5.  
3.3.6.  
3.3.7.  
3.3.8.  
3.3.9.  
3.3.10.  
Reset Source Indicators.......................................................................................................................................61  
4. I2C and Interrupt ..................................................................................................................................................................62  
4.1.  
4.1.1.  
4.1.2.  
I2C Bus Interface .........................................................................................................................................................62  
I2C Bus Interface Overview .................................................................................................................................62  
I2C Bus Interface Electrical Characteristics.........................................................................................................63  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
2/116  
BD71850MWV  
4.1.3.  
4.1.4.  
4.2.  
4.2.1.  
Device Addressing...............................................................................................................................................65  
Write / Read Operation ........................................................................................................................................66  
Interrupt........................................................................................................................................................................67  
Interrupt Overview ...............................................................................................................................................67  
5. Power Rails ..........................................................................................................................................................................70  
5.1.  
5.2.  
Output Voltage Range..................................................................................................................................................70  
Details of Buck .............................................................................................................................................................72  
BUCK1.................................................................................................................................................................72  
5.2.1.  
5.2.1.1.  
5.2.1.2.  
5.2.1.3.  
5.2.2.  
BUCK1 Block Diagram ................................................................................................................................72  
BUCK1 Electrical Characteristics ................................................................................................................73  
BUCK1 Control............................................................................................................................................74  
BUCK2.................................................................................................................................................................76  
BUCK2 Block Diagram ................................................................................................................................76  
BUCK2 Electrical Characteristics ................................................................................................................77  
BUCK2 Control............................................................................................................................................78  
BUCK5.................................................................................................................................................................80  
BUCK5 Block Diagram ................................................................................................................................80  
BUCK5 Electrical Characteristics ................................................................................................................81  
BUCK5 Control............................................................................................................................................82  
BUCK6.................................................................................................................................................................83  
BUCK6 Block Diagram ................................................................................................................................83  
BUCK6 Electrical Characteristics ................................................................................................................84  
BUCK6 Control............................................................................................................................................85  
BUCK7.................................................................................................................................................................86  
BUCK7 Block Diagram ................................................................................................................................86  
BUCK7 Electrical Characteristics ................................................................................................................87  
BUCK7 Control............................................................................................................................................88  
BUCK8.................................................................................................................................................................89  
BUCK8 Block Diagram ................................................................................................................................89  
BUCK8 Electrical Characteristics ................................................................................................................90  
BUCK8 Control............................................................................................................................................91  
5.2.2.1.  
5.2.2.2.  
5.2.2.3.  
5.2.3.  
5.2.3.1.  
5.2.3.2.  
5.2.3.3.  
5.2.4.  
5.2.4.1.  
5.2.4.2.  
5.2.4.3.  
5.2.5.  
5.2.5.1.  
5.2.5.2.  
5.2.5.3.  
5.2.6.  
5.2.6.1.  
5.2.6.2.  
5.2.6.3.  
5.3.  
5.3.1.  
5.3.1.1.  
5.3.1.2.  
5.3.1.3.  
5.3.2.  
Details of LDO..............................................................................................................................................................92  
LDO1 ...................................................................................................................................................................92  
LDO1 Block Diagram...................................................................................................................................92  
LDO1 Electrical Characteristics...................................................................................................................93  
LDO1 Control ..............................................................................................................................................94  
LDO2 ...................................................................................................................................................................95  
LDO2 Block Diagram...................................................................................................................................95  
LDO2 Electrical Characteristics...................................................................................................................96  
LDO2 Control ..............................................................................................................................................96  
LDO3 ...................................................................................................................................................................97  
LDO3 Block Diagram...................................................................................................................................97  
LDO3 Electrical Characteristics...................................................................................................................98  
LDO3 Control ..............................................................................................................................................99  
LDO4 .................................................................................................................................................................100  
LDO4 Block Diagram.................................................................................................................................100  
LDO4 Electrical Characteristics.................................................................................................................101  
LDO4 Control ............................................................................................................................................102  
LDO5 .................................................................................................................................................................103  
LDO5 Block Diagram.................................................................................................................................103  
LDO5 Electrical Characteristics.................................................................................................................104  
LDO5 Control ............................................................................................................................................105  
LDO6 .................................................................................................................................................................106  
LDO6 Block Diagram.................................................................................................................................106  
LDO6 Electrical Characteristics.................................................................................................................107  
LDO6 Control ............................................................................................................................................108  
5.3.2.1.  
5.3.2.2.  
5.3.2.3.  
5.3.3.  
5.3.3.1.  
5.3.3.2.  
5.3.3.3.  
5.3.4.  
5.3.4.1.  
5.3.4.2.  
5.3.4.3.  
5.3.5.  
5.3.5.1.  
5.3.5.2.  
5.3.5.3.  
5.3.6.  
5.3.6.1.  
5.3.6.2.  
5.3.6.3.  
5.4.  
5.4.1.  
5.4.2.  
MUXSW .....................................................................................................................................................................109  
MUXSW Block Diagram.....................................................................................................................................109  
MUXSW Electrical Characteristics.....................................................................................................................110  
6. 32.768 kHz Crystal Oscillator Driver................................................................................................................................... 111  
6.1.  
6.2.  
32.768 kHz Crystal Oscillator Driver Block Diagram .................................................................................................. 111  
32.768 kHz Crystal Oscillator Driver Electrical Characteristics .................................................................................. 111  
7. Operational Notes ..............................................................................................................................................................112  
8. Ordering Information...........................................................................................................................................................114  
9. Marking Diagram................................................................................................................................................................114  
10.  
11.  
Physical Dimension and Packing Information ................................................................................................................115  
Revision History .............................................................................................................................................................116  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
3/116  
BD71850MWV  
Figure  
Figure 1-1. System Power Map ...............................................................................................................................................8  
Figure 1-2. Typical Applications Circuit....................................................................................................................................9  
Figure 1-3. Pin Configuration (TOP VIEW)............................................................................................................................10  
Figure 1-4. I/O Equivalence Circuit 1.....................................................................................................................................12  
Figure 2-1. Power Reference and Detectors Block Diagram .................................................................................................19  
Figure 3-1. Power Control Signals of BD71850MWV ............................................................................................................20  
Figure 3-2. Power State Transition ........................................................................................................................................23  
Figure 3-3. Power Sub State Definition..................................................................................................................................25  
Figure 3-4. VSYS Condition for moving to SNVS ..................................................................................................................30  
Figure 3-5. PMIC_ON_REQ Condition for moving to SNVS..................................................................................................30  
Figure 3-6. PWRON_B Short Push Condition for moving to SNVS .......................................................................................31  
Figure 3-7. PWRON_B Long Push Condition for moving to SNVS........................................................................................31  
Figure 3-8. Cold Reset Condition for moving to SNVS..........................................................................................................31  
Figure 3-9. VSYS Condition for moving to RUN ....................................................................................................................33  
Figure 3-10. PMIC_ON_REQ Condition for moving to RUN..................................................................................................33  
Figure 3-11. PWRON_B Short Push Condition for moving to RUN .......................................................................................34  
Figure 3-12. PWRON_B Long Push Condition for moving to RUN........................................................................................34  
Figure 3-13. Cold Reset Condition for moving to RUN ..........................................................................................................34  
Figure 3-14. Example of VR Fault and Recovery Sequence (RCVLMT[3:0] = 2) ..................................................................41  
Figure 3-15. EMG to OFF Power State Transition.................................................................................................................41  
Figure 3-16. EMG to READY Power State Transition (VSYS_UVLO) ...................................................................................42  
Figure 3-17. EMG to READY Power State Transition (Die Temperature) ..............................................................................42  
Figure 3-18. Warm Reset by WDOG_B.................................................................................................................................43  
Figure 3-19. Cold Reset Duration Time set by PONT[3:0].....................................................................................................45  
Figure 3-20. Power Button Block Diagram.............................................................................................................................46  
Figure 3-21. Power ON Sequence.........................................................................................................................................48  
Figure 3-22. Power OFF Sequence (To SNVS).....................................................................................................................50  
Figure 3-23. Power OFF Sequence (To READY) ..................................................................................................................52  
Figure 3-24. RUN to IDLE......................................................................................................................................................54  
Figure 3-25. IDLE to RUN......................................................................................................................................................55  
Figure 3-26. RUN to SUSPEND ............................................................................................................................................56  
Figure 3-27. SUSPEND to RUN ............................................................................................................................................57  
Figure 3-28. IDLE to SUSPEND............................................................................................................................................58  
Figure 3-29. Emergency Shutdown .......................................................................................................................................59  
Figure 3-30. Warm Reset (SWRESET) .................................................................................................................................60  
Figure 3-31. Warm Reset (WDOG_B) ...................................................................................................................................60  
Figure 3-32. Warm Reset (PWRON_B Long Push)...............................................................................................................60  
Figure 4-1. I2C (Slave) Block Diagram ..................................................................................................................................62  
Figure 4-2. I2C Bus Interface AC Timing ...............................................................................................................................64  
Figure 4-3. I2C Device Addressing........................................................................................................................................65  
Figure 4-4. I2C Write / Read Operation .................................................................................................................................66  
Figure 4-5. IRQ_B Architecture Block Diagram .....................................................................................................................67  
Figure 5-1. BUCK1 Block Diagram........................................................................................................................................72  
Figure 5-2. BUCK2 Block Diagram........................................................................................................................................76  
Figure 5-3. BUCK5 Block Diagram........................................................................................................................................80  
Figure 5-4. BUCK6 Block Diagram........................................................................................................................................83  
Figure 5-5. BUCK7 Block Diagram........................................................................................................................................86  
Figure 5-6. BUCK8 Block Diagram........................................................................................................................................89  
Figure 5-7. LDO1 Block Diagram...........................................................................................................................................92  
Figure 5-8. LDO2 Block Diagram...........................................................................................................................................95  
Figure 5-9. LDO3 Block Diagram...........................................................................................................................................97  
Figure 5-10. LDO3 Voltage Source Switching .......................................................................................................................99  
Figure 5-11. LDO4 Block Diagram.......................................................................................................................................100  
Figure 5-12. LDO4 Voltage Source Switching .....................................................................................................................102  
Figure 5-13. LDO5 Block Diagram.......................................................................................................................................103  
Figure 5-14. LDO6 Block Diagram.......................................................................................................................................106  
Figure 5-15. MUXSW Block Diagram ..................................................................................................................................109  
Figure 5-16. MUXSW Sequence .........................................................................................................................................110  
Figure 6-1. 32.768 kHz Crystal Oscillator Driver Block Diagram ......................................................................................... 111  
Figure 9-1. Marking Diagram...............................................................................................................................................114  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
4/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
Table  
Table 1-1. Acronyms, Conventions and Terminology ...............................................................................................................7  
Table 1-2. Pin Description......................................................................................................................................................11  
Table 1-3. Power Rails and Output Signals ...........................................................................................................................13  
Table 1-4. Register Map.........................................................................................................................................................14  
Table 1-5. REV - Revision Register .......................................................................................................................................14  
Table 1-6. REGLOCK - Lock Register ...................................................................................................................................15  
Table 1-7. OTPVER OTP Version Register.........................................................................................................................15  
Table 1-8. ESD ......................................................................................................................................................................16  
Table 2-1. Absolute Maximum Ratings...................................................................................................................................17  
Table 2-2. Thermal Resistance (Note 1).....................................................................................................................................17  
Table 2-3. Recommended Operating Conditions...................................................................................................................18  
Table 2-4. Current Consumption............................................................................................................................................18  
Table 2-5. Power Reference and Detectors Electrical Characteristics...................................................................................19  
Table 3-1. PWRON_B Electrical Characteristics....................................................................................................................21  
Table 3-2. PMIC_ON_REQ Electrical Characteristics............................................................................................................21  
Table 3-3. PMIC_STBY_REQ Electrical Characteristics........................................................................................................21  
Table 3-4. WDOG_B Electrical Characteristics......................................................................................................................21  
Table 3-5. RTC_RESET_B Electrical Characteristics ............................................................................................................22  
Table 3-6. POR_B Electrical Characteristics..........................................................................................................................22  
Table 3-7. POW_STATE Power State Register...................................................................................................................24  
Table 3-8. Voltage Rails ON/OFF for Respective Power State ..............................................................................................27  
Table 3-9. Setting of Cold or Warm Reset Selection..............................................................................................................28  
Table 3-10. SWRESET - Software Reset Register ................................................................................................................28  
Table 3-11. PWRCTRL0 - Power Control 0 Register .............................................................................................................28  
Table 3-12. Conditions from OFF to READY state.................................................................................................................29  
Table 3-13. Conditions from READY to SNVS.......................................................................................................................30  
Table 3-14. TRANS_COND0 - Transition Condition Select 0 Register ..................................................................................32  
Table 3-15. Conditions from SNVS to RUN ...........................................................................................................................33  
Table 3-16. Conditions from RUN to IDLE .............................................................................................................................35  
Table 3-17. PWRCTRL1 - Power Control 1 Register.............................................................................................................35  
Table 3-18. Conditions from IDLE to RUN .............................................................................................................................35  
Table 3-19. Conditions from RUN to SUSPEND....................................................................................................................35  
Table 3-20. Conditions from SUSPEND to RUN....................................................................................................................35  
Table 3-21. Conditions from IDLE to SUSPEND....................................................................................................................36  
Table 3-22. Conditions from SNVS, RUN, IDLE, SUSPEND, PWROFF to EMG...................................................................36  
Table 3-23. VR FAULT threshold and monitoring condition....................................................................................................37  
Table 3-24. VRFAULTEN - VR FAULT ON/OFF Register: Debugging Purpose.....................................................................38  
Table 3-25. MVRFLTMASK0 - VR FAULT Mask 0 Register...................................................................................................38  
Table 3-26. MVRFLTMASK1 - VR FAULT Mask 1 Register...................................................................................................39  
Table 3-27. MVRFLTMASK2 - VR FAULT Mask 2 Register...................................................................................................39  
Table 3-28. RCVCFG - Recovery Configuration Register......................................................................................................40  
Table 3-29. RCVNUM - Recovery Number Register..............................................................................................................40  
Table 3-30. Conditions from EMG to OFF..............................................................................................................................41  
Table 3-31. Conditions from EMG to READY ........................................................................................................................42  
Table 3-32. Conditions for Stay at EMG.................................................................................................................................43  
Table 3-33. Conditions from RUN, IDLE, SUSPEND to PWROFF ........................................................................................44  
Table 3-34. TRANS_COND1 - Transition Condition Select 1 Register ..................................................................................44  
Table 3-35. VR Summary After Power OFF Sequence..........................................................................................................45  
Table 3-36. PWRONCONFIG0 - PWRON_B Configuration 0 Register..................................................................................46  
Table 3-37. PWRONCONFIG1 - PWRON_B Configuration 1 Register..................................................................................47  
Table 3-38. Power ON Sequence Timing Specification..........................................................................................................49  
Table 3-39. Power OFF Sequence Timing Specification (To SNVS)......................................................................................51  
Table 3-40. Power OFF Sequence Timing Specification (To READY) ...................................................................................53  
Table 3-41. RUN to IDLE Timing Specification ......................................................................................................................54  
Table 3-42. IDLE to RUN Timing Specification ......................................................................................................................55  
Table 3-43. RUN to SUSPEND Timing Specification.............................................................................................................56  
Table 3-44. SUSPEND to RUN Timing Specification .............................................................................................................57  
Table 3-45. IDLE to SUSPEND Timing Specification.............................................................................................................58  
Table 3-46. Emergency Shutdown Timing Specification ........................................................................................................59  
Table 3-47. Warm Reset (SWRESET) Timing Specification ..................................................................................................60  
Table 3-48. Warm Reset (WDOG_B) Timing Specification ....................................................................................................60  
Table 3-49. Warm Reset (PWRON_B Long Push) Timing Specification................................................................................60  
Table 3-50. RESETSRC - Reset Source Indicator Register...................................................................................................61  
Table 4-1. I2C Bus Interface DC Electrical Characteristics....................................................................................................63  
Table 4-2. I2C Bus Interface AC Timing - Fast Mode.............................................................................................................64  
Table 4-3. I2C_DEV - I2C Device Address Indicator Register ...............................................................................................65  
Table 4-4. Interrupt Event ......................................................................................................................................................67  
Table 4-5. IRQ_B Electrical Characteristics...........................................................................................................................67  
Table 4-6. IRQ - Interrupt Register.........................................................................................................................................68  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
5/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
Table 4-7. MIRQ IRQ Mask Register ..................................................................................................................................68  
Table 4-8. IN_MON - Input Port Monitor Register..................................................................................................................69  
Table 5-1. Output Voltage Range1.........................................................................................................................................70  
Table 5-2. Output Voltage Range2.........................................................................................................................................71  
Table 5-3. BUCK1 Electrical Characteristics..........................................................................................................................73  
Table 5-4. BUCK1_CTRL - BUCK1 Control Register.............................................................................................................74  
Table 5-5. BUCK1_VOLT_RUN - BUCK1 Voltage (RUN) Register........................................................................................74  
Table 5-6. BUCK1_VOLT_IDLE - BUCK1 Voltage (IDLE) Register .......................................................................................75  
Table 5-7. BUCK1_VOLT_SUSP - BUCK1 Voltage (SUSPEND) Register ............................................................................75  
Table 5-8. BUCK2 Electrical Characteristics..........................................................................................................................77  
Table 5-9. BUCK2_CTRL - BUCK2 Control Register.............................................................................................................78  
Table 5-10. BUCK2_VOLT_RUN - BUCK2 Voltage (RUN) Register......................................................................................78  
Table 5-11. BUCK2_VOLT_IDLE - BUCK2 Voltage (IDLE) Register......................................................................................79  
Table 5-12. BUCK5 Electrical Characteristics........................................................................................................................81  
Table 5-13. BUCK5_CTRL - BUCK5 Control Register...........................................................................................................82  
Table 5-14. BUCK5_VOLT - BUCK5 Voltage Register...........................................................................................................82  
Table 5-15. BUCK6 Electrical Characteristics........................................................................................................................84  
Table 5-16. BUCK6_CTRL - BUCK6 Control Register...........................................................................................................85  
Table 5-17. BUCK6_VOLT - BUCK6 Voltage Register...........................................................................................................85  
Table 5-18. BUCK7 Electrical Characteristics........................................................................................................................87  
Table 5-19. BUCK7_CTRL - BUCK7 Control Register...........................................................................................................88  
Table 5-20. BUCK7_VOLT - BUCK7 Voltage Register...........................................................................................................88  
Table 5-21. BUCK8 Electrical Characteristics........................................................................................................................90  
Table 5-22. BUCK8_CTRL - BUCK8 Control Register...........................................................................................................91  
Table 5-23. BUCK8_VOLT - BUCK8 Voltage Register...........................................................................................................91  
Table 5-24. LDO1 Electrical Characteristics ..........................................................................................................................93  
Table 5-25. LDO1_VOLT - LDO1 Voltage Register................................................................................................................94  
Table 5-26. LDO2 Electrical Characteristics ..........................................................................................................................96  
Table 5-27. LDO2_VOLT - LDO2 Voltage Register................................................................................................................96  
Table 5-28. LDO3 Electrical Characteristics ..........................................................................................................................98  
Table 5-29. LDO3_VOLT - LDO3 Voltage Register................................................................................................................99  
Table 5-30. LDO4 Electrical Characteristics ........................................................................................................................101  
Table 5-31. LDO4_VOLT - LDO4 Voltage Register..............................................................................................................102  
Table 5-32. LDO5 Electrical Characteristics ........................................................................................................................104  
Table 5-33. LDO5_VOLT - LDO5 Voltage Register..............................................................................................................105  
Table 5-34. LDO6 Electrical Characteristics ........................................................................................................................107  
Table 5-35. LDO6_VOLT - LDO6 Voltage Register..............................................................................................................108  
Table 5-36. MUXSW Electrical Characteristics....................................................................................................................110  
Table 5-37. SD_VSELECT Electrical Characteristics...........................................................................................................110  
Table 5-38. MUXSW Sequence Timing................................................................................................................................110  
Table 5-39. MUXSW_EN - MUXSW Enable Register..........................................................................................................110  
Table 6-1. C32K_OUT Control Register............................................................................................................................... 111  
Table 6-2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics ........................................................................... 111  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
6/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
1. Introduction  
1.1. Terminology  
Table 1-1. Acronyms, Conventions and Terminology  
Term  
BOM Bill Of Materials  
Definition  
DAC  
DVS  
FET  
I2C  
Digital to Analog Converter  
Dynamic Voltage Scaling  
Field Effect Transistor  
Inter-Integrated Circuit  
IRQ  
LDO  
NTC  
Interrupt Request  
Low Drop-Out regulator  
Negative Temperature Coefficient. (a type of thermistor)  
OCP Over Current Protection  
OTP  
OVP  
One Time Programmable memory  
Over Voltage Protection  
PFM Pulse-FrequencyModulation  
POR Power On Reset  
PWM Pulse-Width Modulation  
SMPS Switched Mode Power Supply  
SoC  
UVLO Under Voltage-LockOut  
VR Voltage Regulator  
System-On-a-Chip  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
7/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.2. System Power Map & Typical Application Circuit  
i.MX8M Nano  
BD71850MWV  
BUCK1 DVS  
3.0 A, 0.7 V to 1.3 V  
/10 mV step  
0.8 V/0.9 V  
VDD_SOC  
VDDA_0V8  
PHY_0V8  
VSYS(5V)  
VDD_DRAM  
VDD_GPU  
BUCK2 DVS  
3.0 A, 0.7 V to 1.3 V  
/10 mV step  
0.8 V/0.9 V/ 1.0V  
VDD_ARM  
I2C I/F  
PWRON_B  
PMIC_STBY_REQ  
PMIC_ON_REQ  
HOST  
I/F  
WDOG_B  
RTC_RESET_B  
POR_B  
BUCK5 - DVS  
3.0 A, 0.70 V to 1.35 V  
/ 8steps  
OFF  
IRQ_B  
BUCK8  
3.0 A, 0.8 V to 1.4 V  
/10 mV step  
1.10 V/1.20 V/1.35 V  
SD_VSELECT  
C32K_OUT  
NVCC_DRAM  
LDO1  
1.8V  
10 mA, 3.0 V to 3.3 V  
/1.6 V to 1.9 V  
NVCC_SNVS  
VDD_SNVS  
LDO2  
10 mA,  
0.8V  
0.9 V/0.8 V  
XIN  
32kHz  
Crystal  
Driver  
XOUT  
BUCK6  
3.0 A, 2.6 V to 3.3 V  
/0.1 V step  
3.3V  
NVCC_3V3  
LDO3  
300 mA,  
1.8 V to 3.3 V  
VDDA_1V8  
VDDA_DRAM  
1.8V  
OFF  
LDO5  
300 mA,  
0.8 V to 3.3 V  
BUCK7  
1.5 A, 1.605 V to  
1.995 V/ 8steps  
1.8V  
OFF  
NVCC_1V8  
LDO4  
250 mA,  
0.9 V to 1.8 V  
LDO6  
300 mA,  
0.9 V to 1.8 V  
VDD_PHY_1V2  
(MIPI)  
1.2V  
1.8V  
3.3V  
1.8V/3.3V(SD CARD)  
150mA MUXSW  
Figure 1-1. System Power Map  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
8/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.2. System Power Map & Typical Application Circuit - continued  
BD71850MWV  
VDD_V1P5  
BUCK1  
VDD_V1P5  
VSYS  
VSYS  
(VDD_SOC  
VDDA_0V8  
PHY_0V8  
VDD_DRAM  
VDD_GPU)  
VDD_V1P5  
BUCK1_VIN  
BUCK1_LX  
VSYS  
VDD_V1P5  
VREF  
BUCK1  
VREF  
Voltage  
Reference  
INTLDO1P5  
AGND  
Buck Converter  
DVS 0.7 V to 1.3 V / 3.0 A  
Internal  
Power On Reset  
PGND  
BUCK1_FB  
UVLO  
TSD  
VDD_V1P5  
VSYS  
VSYS  
BUCK2_VIN  
BUCK2_LX  
Connect to the VSYS pin when not use the  
Power Button Function  
VREF  
VDD_V1P5  
BUCK2  
(VDD_ARM)  
VSYS  
BUCK2  
CLOCK Generator  
Buck Converter  
DVS 0.7 V to 1.3 V / 3.0 A  
PWRON_B  
OTP  
PGND  
BUCK2_FB  
Power ON Key  
VDD_V1P5  
XIN  
32.768 kHz  
Crystal Oscillator Driver  
XOUT  
VDD_V1P5  
DVDD,VSYS  
C32K_OUT  
NVCC_SNVS  
NVCC_SNVS  
DVDD  
SCL  
I2C Slave Interface  
SDA  
NVCC_SNVS  
POR_B  
IRQ_B  
SOC  
RTC_RESET_B  
Power Controll  
PMIC_ON_REQ  
PMIC_STBY_REQ  
SD_VSELECT  
VDD_V1P5  
VSYS  
WDOG_B  
Register  
VSYS  
Sequencer  
BUCK5_VIN  
BUCK5_LX  
VREF  
VSYS  
VDD_V1P5  
VREF  
VSYS  
BUCK5  
VSYS  
BUCK5  
(Note 1)  
Buck Converter  
DVS 0.7 V to 1.35 V / 3.0 A  
LDO1  
LDO1  
(NVCC_SNVS)  
3.0 V to 3.3 V, 1.6 V  
to 1.9 V / 10 mA  
LDO1_VOUT  
LDO2_VOUT  
PGND  
LDO2  
BUCK5_FB  
LDO2  
(VDD_SNVS)  
0.9 V, 0.8V / 10 mA  
VDD_V1P5  
VSYS  
VSYS  
VSYS  
VSYS  
BUCK6_VIN  
BUCK6_LX  
VREF  
BUCK6  
(NVCC_3V3)  
VSYS/VIN_1P8  
VDD_V1P5  
BUCK6  
BUCK7  
VSYS  
VIN_1P8_1  
Buck Converter  
2.6 V to 3.3 V / 3.0 A  
LDO4  
PGND  
0.9 V to1.8 V  
/ 250 mA  
BUCK6_FB  
VREF  
VSYS  
LDO6  
0.9 V to 1.8 V  
/ 300 mA  
VDD_V1P5  
VSYS  
LDO4  
BUCK7_VIN  
BUCK7_LX  
LDO4_VOUT  
(Note 1)  
VREF  
BUCK7  
(NVCC_1V8)  
LDO6  
(VDD_PHY_1V2)  
BUCK7  
LDO6_VOUT  
VIN_1P8_2  
VSYS  
VDD_V1P5  
Buck Converter  
1.605 V to 1.995 V / 1.5 A  
BUCK7  
MUXSW  
PGND  
BUCK7_FB  
1.8 V / 500 mΩ (Max)  
3.3 V / 500 mΩ (Max)  
LOADSW  
(NVCC_SD2)  
MUXSW_VOUT  
VIN_3P3  
VSYS/VIN_3P3  
VDD_V1P5  
BUCK6  
VSYS  
VDD_V1P5  
VSYS  
BUCK8_VIN  
BUCK8_LX  
VREF  
BUCK8  
(NVCC_DRAM)  
VREF  
BUCK8  
VSYS  
LDO3  
1.8 V to 3.3 V  
/ 300 mA  
Buck Converter  
0.8 V to 1.4 V / 3.0 A  
LDO3  
LDO5  
0.8 V to 3.3 V  
/ 300 mA  
(VDDA_1V8&VDDA_DRAM)  
PGND  
BUCK8_FB  
LDO3_VOUT  
LDO5_VOUT  
LDO5  
(Note 1)  
PGND  
PGND (EXP-PAD)  
(Note 1) Output components of BUCK5, LDO4 and LDO5 can be removed because their default settings of OTP are OFF. Other power rails output components  
cannot be removed. If they are removed, VR fault would be detected and PMIC would be shut down.  
Figure 1-2. Typical Applications Circuit  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
9/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
1.3. Pin Configuration  
EXP-PAD  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VIN_1P8_1 43  
LDO6_VOUT 44  
SD_VSELECT 45  
BUCK6_FB 46  
BUCK6_VIN 47  
BUCK6_VIN 48  
BUCK6_LX 49  
BUCK6_LX 50  
BUCK7_LX 51  
BUCK7_LX 52  
BUCK7_VIN 53  
BUCK7_FB 54  
MUXSW_VOUT 55  
VIN_1P8_2 56  
28 DVDD  
27 SDA  
26 SCL  
25 POR_B  
24 BUCK2_FB  
23 BUCK2_VIN  
22 BUCK2_LX  
21 BUCK2_LX  
20 BUCK1_LX  
19 BUCK1_LX  
18 BUCK1_VIN  
17 BUCK1_FB  
16 PMIC_STBY_REQ  
15 PMIC_ON_REQ  
EXP-PAD  
(PGND)  
1Pin Mark  
2
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
EXP-PAD  
Figure 1-3. Pin Configuration (TOP VIEW)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
10/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.4. Pin Description  
Table 1-2. Pin Description  
PWR  
/GND  
PWR  
Voltage  
Level  
VSYS  
Terminal  
Equivalent pull-up/down  
Internal  
Pin# Block Name  
Pin Name  
Dir  
Pin Description  
18  
19  
BUCK1_VIN  
BUCK1_LX  
BUCK1_LX  
BUCK1_FB  
BUCK2_VIN  
BUCK2_LX  
BUCK2_LX  
BUCK2_FB  
BUCK5_VIN  
BUCK5_VIN  
BUCK5_LX  
BUCK5_LX  
BUCK5_FB  
BUCK6_VIN  
BUCK6_VIN  
BUCK6_LX  
BUCK6_LX  
BUCK6_FB  
BUCK7_VIN  
BUCK7_LX  
BUCK7_LX  
BUCK7_FB  
BUCK8_VIN  
BUCK8_LX  
BUCK8_LX  
BUCK8_FB  
VSYS  
I
O
O
I
BUCK1 switcher input supply  
BUCK1 switch node connection  
BUCK1 switch node connection  
BUCK1 feedback sense  
BUCK2 switcher input supply  
BUCK2 switch node connection  
BUCK2 switch node connection  
BUCK2 feedback sense  
BUCK5 switcher input supply  
BUCK5 switcher input supply  
BUCK5 switch node connection  
BUCK5 switch node connection  
BUCK5 feedback sense  
BUCK6 switcher input supply  
BUCK6 switcher input supply  
BUCK6 switch node connection  
BUCK6 switch node connection  
BUCK6 feedback sense  
BUCK7 switcher input supply  
BUCK7 switch node connection  
BUCK7 switch node connection  
BUCK7 feedback sense  
BUCK8 switcher input supply  
BUCK8 switch node connection  
BUCK8 switch node connection  
BUCK8 feedback sense  
LDO1, LDO2 input supply  
LDO1 output  
LDO2 output  
LDO4, LDO6 input supply  
LDO4 input supply  
LDO4 output  
LDO6 output  
LDO3,MUXSW input supply  
LDO3,LDO5 input supply  
LDO3 output  
LDO5 output  
LDO3,MUXSW input supply  
MUXSW input supply  
LOADSW output  
Internal LDO for PMIC  
H1_1  
H1_1  
H1_1  
D2_1  
H1_1  
H1_1  
H1_1  
D2_1  
H1_1  
H1_1  
H1_1  
H1_1  
D2_1  
H1_1  
H1_1  
H1_1  
H1_1  
D2_1  
H1_1  
H1_1  
H1_1  
D2_1  
H1_1  
H1_1  
H1_1  
D2_1  
G1_1  
G1_1  
G1_1  
G1_2,G3_1  
G1_1,G3_1  
G3_1  
G1_2  
G3_2  
G1_1,G3_2  
G3_2  
G1_1  
F2_1  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
-
-
-
VSYS  
VSYS  
BUCK1  
VSYS  
VSYS  
VSYS  
BUCK2  
VSYS  
VSYS  
VSYS  
VSYS  
BUCK5  
VSYS  
VSYS  
VSYS  
VSYS  
BUCK6  
VSYS  
VSYS  
VSYS  
BUCK7  
VSYS  
VSYS  
VSYS  
BUCK8  
VSYS  
LDO1  
LDO2  
BUCK7  
VSYS  
LDO4  
LDO6  
BUCK6  
VSYS  
LDO3  
LDO5  
BUCK6  
BUCK7  
LOADSW  
BUCK1  
20  
17  
23  
21  
I
PWR  
-
-
-
PWR  
PWR  
-
-
O
O
I
I
I
O
O
I
I
I
BUCK2  
22  
24  
31  
32  
33  
34  
30  
47  
48  
49  
50  
46  
53  
51  
52  
54  
37  
35  
36  
38  
9
BUCK5  
BUCK6  
-
PWR  
PWR  
-
-
O
O
I
-
I
PWR  
-
-
-
PWR  
-
-
-
PWR  
-
-
PWR  
PWR  
-
O
O
I
BUCK7  
BUCK8  
I
O
O
I
I
LDO1  
LDO2  
10  
8
LDO1_VOUT  
LDO2_VOUT  
VIN_1P8_1  
VSYS  
LDO4_VOUT  
LDO6_VOUT  
VIN_3P3  
O
O
I
43  
41  
42  
44  
7
5
6
4
1
56  
55  
11  
12  
14  
13  
28  
26  
27  
29  
39  
25  
3
LDO4  
LDO6  
I
O
O
I
-
PWR  
PWR  
-
LDO3  
LDO5  
VSYS  
I
LDO3_VOUT  
LDO5_VOUT  
VIN_3P3  
VIN_1P8_2  
MUXSW_VOUT  
INTLDO1P5  
AGND  
O
O
I
-
PWR  
PWR  
-
PWR INTLDO1P5  
GND  
MUXSW  
REF  
I
F2_1  
F2_1  
G1_3  
Z1_1  
E1_1  
O
O
I
I
O
I
AGND  
0V  
INTLDO1P5  
INTLDO1P5  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
Crystal  
Oscillator  
XIN  
XOUT  
DVDD  
SCL  
32.768kHz crystal input  
32.768kHz crystal output  
Interface input supply  
-
-
E1_1  
Z1_1  
A1_1  
A3_1  
C1_1  
C1_1  
C1_1  
C1_1  
C1_1  
A6_1  
C1_1  
C1_1  
A6_1  
PWR  
I2C CLOCK  
No(Note 1)  
No(Note 1)  
No  
I
-
-
-
-
-
-
-
-
-
-
-
I2C DATA  
SDA  
C32K_OUT  
IRQ_B  
POR_B  
RTC_RESET_B  
WDOG_B  
PMIC_ON_REQ  
PMIC_STBY_REQ  
SD_VSELECT  
PWRON_B  
I /O  
O
O
O
O
I
I
I
I
I
32.768kHz clock output  
No(Note 1)  
No(Note 1)  
No(Note 1)  
No  
No  
No  
Interrupt signal to processor(Open Drain)  
Power on reset output(Open Drain)  
Power OK signal for LDO1,2(Open Drain)  
Watchdog input from processor  
Power on/off control Input  
Interface  
2
DVDD  
VSYS  
DVDD  
DVDD  
15  
16  
45  
40  
Standby input signal  
Voltage select for SD  
No  
No  
Power Button  
VSYS  
Power Ground. Connect the center EXP-PAD in the Figure 1-3  
to the GND plane of PCB. The EXP-PADs on the 4-corner have  
the same potential as the center EXP-PAD. The EXP-PADs on GND  
the 4-coner are recommended to be soldered to PCB (GND or  
open).  
EXP-PAD  
(PGND)  
-
-
-
0V  
Z1_1  
No  
(Note 1) Need to pull-up external resistance to DVDD  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
11/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.5. I/O Equivalence Circuit  
VDD  
VDD  
VDD  
A1_1)  
A3_1)  
A6_1)  
VDD=DVDD  
GND=AGND  
VDD=DVDD  
GND=AGND  
VDD=VSYS  
GND  
GND GND  
GND GND  
GND  
GND  
(A1_1)  
(A3_1)  
(A6_1)  
E1_1)  
VDD=INTLDO1P5  
GND=AGND  
VDD  
C1_1)  
VDD=DVDD  
GND=AGND  
D2_1)  
GND=AGND  
VDD  
VDD  
XOUT  
XIN  
GND GND  
GND  
AGND  
GND  
VDD  
GND  
GND  
GND  
(C1_1)  
(D2_1)  
(E1_1)  
VDD1  
F2_1)  
G3_1)  
G1_1)  
IN1  
IN1=VIN_3P3  
IN2=VIN_1P8_2  
OUT  
VDD1=VSYS  
VDD2=VIN_1P8_1  
GND=AGND  
OUT=LDO4  
G3_2)  
VDD=VSYS  
GND=AGND  
OUT=LDO1,LDO2,  
LDO5  
GND  
=MUXSW_VOUT  
VDD2  
G1_2)  
VDD1=VSYS  
VDD2=VIN_3P3  
GND=AGND  
OUT=LDO3  
VDD=VIN_1P8_1  
GND=AGND  
OUT=LDO6  
G1_3)  
VDD=VSYS  
GND=AGND  
OUT=INTLDO1P5  
GND  
GND  
IN2  
OUT  
OUT  
GND  
OUT  
GND  
GND  
GND  
GND  
GND  
AGND  
GND  
AGND  
(F2_1)  
(G1_1,2,3)  
(G3_1,2)  
H1_1)  
BUCK1_VIN, BUCK2_VIN,  
BUCK5_VIN to BUCK8_VIN  
VDD  
LX  
VDD=BUCK1_VIN,  
BUCK2_VIN,  
BUCK5_VIN  
to BUCK8_VIN  
LX =BUCK1_LX,  
BUCK2_LX,  
DVDD  
INTLDO1P5  
VSYS  
PGND  
AGND  
BUCK5_LX  
to BUCK8_LX  
GND=PGND  
GND  
(H1_1)  
(Z1_1)  
Figure 1-4. I/O Equivalence Circuit 1  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
12/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.6. Power Rail  
Table 1-3. Power Rails and Output Signals  
Output Voltage  
Output Voltage  
Adjustable  
Range [V]  
Sequence  
Order  
Rail/Signal  
Name  
Input  
Rail  
Function  
Type  
Initial  
Value [V]  
DVS  
IOMAX [A]  
3.0 to 3.3,1.6 to 1.9  
(100 mVstep)  
1
2
3
4
NVCC_SNVS  
VDD_SNVS  
LDO1  
LDO2  
Source LDO VSYS  
Source LDO VSYS  
1.8  
0.8  
-
-
-
-
-
0.01  
0.9, 0.8  
0.01  
RTC_RESET_B  
32K_OUT  
RTC_RESET_B  
C32K_OUT  
Open drain  
CMOS  
-
-
-
-
-
DVDD  
-
VDD_SOC,  
VDDA_0V8,  
PHY_0V8,  
VDD_DRAM,  
VDD_GPU  
0.7 to 1.3  
(10 mVstep)  
5
BUCK1  
SMPS  
VSYS  
VSYS  
0.8  
DVS  
3.0  
0.7 to 1.3  
(10 mVstep)  
1.8 to 3.3  
6
6
VDD_ARM  
BUCK2  
LDO3  
SMPS  
0.9  
1.8  
DVS  
-
3.0  
0.3  
VDDA_1V8,  
VDDA_DRAM  
VSYS/  
BUCK6  
Source LDO  
(100 mVstep)  
1.605,1.695,1.755,  
1.800,1.845,1.905,  
1.950,1.995  
7
NVCC_1V8  
BUCK7  
SMPS  
VSYS  
1.8  
-
1.5  
0.8 to 1.4  
(10 mVstep)  
2.6 to 3.3  
8
9
NVCC_DRAM  
BUCK8  
BUCK6  
MUXSW  
LDO6  
SMPS  
SMPS  
VSYS  
VSYS  
1.1  
3.3  
-
3.0  
3.0  
0.15  
0.3  
-
NVCC_3V3  
-
(100mVstep)  
BUCK6/  
BUCK7  
9
NVCC_SD2  
MUXSwitch  
3.3/1.8  
1.2  
-
-
0.9 to 1.8  
(100 mVstep)  
10  
11  
-
VDD_PHY_1V2  
Source LDO BUCK7  
-
POR_B  
POR_B  
BUCK5  
LDO4  
Open drain  
SMPS  
-
-
-
-
0.70,0.80,0.90,1.00  
1.05,1.10,1.20,1.35  
0.9 to 1.8  
(100 mVstep)  
0.8 to 3.3  
-
-
-
VSYS  
0.9  
DVS  
3.0  
0.25  
0.3  
VSYS/  
BUCK7  
-
Source LDO  
0.9  
-
-
-
LDO5  
Source LDO VSYS  
3.3  
(100 mVstep)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
13/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.7. Register Map  
Table 1-4. Register Map  
Write  
Access  
Lock  
Reset  
Condition  
(Note 1)  
Initial  
Value  
(Hex)  
Address  
(Hex)  
Access  
(R, W, R/W)  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP  
(Note 2)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
NA  
UVLO  
UVLO  
UVLO  
UVLO  
READY  
READY  
-
REV  
SWRESET  
I2C_DEV  
PWRCTRL0  
PWRCTRL1  
BUCK1_CTRL  
BUCK2_CTRL  
-
MAJREV[3:0]  
MINREV[3:0]  
SWRESET_SEL[1:0]  
A1  
04  
03  
A2  
00  
40  
40  
-
R
R/W  
R
No  
No  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SWRESET  
-
-
-
-
-
-
-
-
-
I2C_DEV_ADRS[1:0]  
WDOGB_SEL[1:0]  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
DEBUG_STATE[1:0]  
RELOAD_REG  
-
R/W  
R/W  
R/W  
R/W  
-
PWRSEQ  
-
-
-
-
-
-
-
-
-
IDLE_MODE  
-
BUCK1_RAMPRATE[1:0]  
BUCK2_RAMPRATE[1:0]  
BUCK1_PWM_FIX  
BUCK1_SEL  
BUCK1_EN  
VREG  
VREG  
-
BUCK2_PWM_FIX  
BUCK2_SEL  
BUCK2_EN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
READY  
READY  
READY  
READY  
READY  
READY  
READY  
READY  
BUCK5_CTRL  
BUCK6_CTRL  
-
-
-
-
-
-
-
-
BUCK5_PWM_FIX  
-
-
-
-
BUCK5_SEL  
BUCK6_SEL  
BUCK7_SEL  
BUCK8_SEL  
BUCK5_EN  
BUCK6_EN  
BUCK7_EN  
BUCK8_EN  
02  
00  
00  
00  
0A  
0A  
0A  
14  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
BUCK6_PWM_FIX  
BUCK7_CTRL  
BUCK7_PWM_FIX  
BUCK8_CTRL  
BUCK8_PWM_FIX  
BUCK1_VOLT_RUN  
BUCK1_VOLT_IDLE  
BUCK1_VOLT_SUSP  
BUCK2_VOLT_RUN  
BUCK1_VOLT_RUN[6:0]  
BUCK1_VOLT_IDLE[6:0]  
BUCK1_VOLT_SUSP[6:0]  
BUCK2_VOLT_RUN[6:0]  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
READY  
-
BUCK2_VOLT_IDLE  
-
-
-
-
BUCK2_VOLT_IDLE[6:0]  
0A  
-
R/W  
-
Yes  
-
VREG  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
READY  
READY  
READY  
READY  
READY  
READY  
READY  
READY  
READY  
READY  
-
BUCK5_VOLT  
BUCK6_VOLT  
BUCK7_VOLT  
BUCK8_VOLT  
LDO1_VOLT  
LDO2_VOLT  
LDO3_VOLT  
LDO4_VOLT  
LDO5_VOLT  
LDO6_VOLT  
-
BUCK5_VOLT_SEL[1:0]  
-
BUCK5_VOLT[2:0]  
02  
03  
03  
1E  
22  
20  
00  
80  
8F  
03  
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
-
-
-
-
BUCK6_VOLT_SEL  
-
-
BUCK6_VOLT[1:0]  
-
-
BUCK7_VOLT[2:0]  
BUCK8_VOLT[6:0]  
LDO1_SEL  
LDO2_SEL  
LDO3_SEL  
LDO4_SEL  
LDO5_SEL  
LDO6_SEL  
-
LDO1_EN  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
LDO6_EN  
-
LDO1_VOLT_SEL  
-
-
-
-
-
LDO1_VOLT[1:0]  
LDO2_VOLT_SEL  
-
-
-
-
-
LDO3_VOLT[3:0]  
-
-
LDO4_VOLT[3:0]  
LDO5_VOLT[3:0]  
LDO6_VOLT[3:0]  
-
LDO5_VOLT_SEL  
-
-
-
-
-
-
-
-
C1_  
C1_  
C1_  
C1_  
C0_  
C0_  
C0_  
C0_  
1F  
20  
UVLO  
UVLO  
TRANS_COND0  
TRANS_COND1  
VSYS_3P0_  
ONLY_EN  
PMIC_ON_  
REQ_EN  
SHORT_  
PUSH_EN  
LONG_  
PUSH_EN  
VSYS_3P0_  
ONLY_EN  
PWRON_  
POFF_TO_  
READY  
PMIC_ON_  
REQ_EN  
WDOG_  
POFF_TO_  
READY  
SHORT_  
LONG_  
48  
C0  
R/W  
R/W  
Yes  
Yes  
PWRSEQ  
PWRSEQ  
PUSH_EN  
SWRST_  
POFF_TO_  
READY  
PUSH_EN  
ON_REQ_  
POFF_TO_  
READY  
PONT[3:0]  
21  
22  
UVLO  
UVLO  
VRFAULTEN  
-
-
-
-
-
-
-
VRFLTEN  
MBUCK5_  
VOUTOKL  
MBUCK1_  
VOUTOKL  
MLDO1_  
01  
00  
R/W  
R/W  
Yes  
Yes  
-
-
MBUCK8_  
VOUTOKH  
MBUCK8_  
VOUTOKL  
MBUCK7_  
VOUTOKH  
MBUCK7_  
VOUTOKL  
MBUCK6_  
VOUTOKH  
MBUCK2_  
VOUTOKH  
MLDO4_  
VOUTOKL  
MBUCK6_  
VOUTOKL  
MBUCK2_  
VOUTOKL  
MLDO3_  
VOUTOKL  
MBUCK5_  
VOUTOKH  
MBUCK1_  
VOUTOKH  
MLDO2_  
VOUTOKL  
MVRFLTMASK0  
23  
24  
UVLO  
UVLO  
MVRFLTMASK1  
MVRFLTMASK2  
-
-
-
-
-
-
00  
00  
R/W  
R/W  
Yes  
Yes  
-
-
MLDO6_  
VOUTOKL  
MLDO5_  
VOUTOKL  
VOUTOKL  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
FF  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
READY  
READY  
READY  
NA  
RCVCFG  
RCVNUM  
RCVLMT[3:0]  
RCVDT[3:0]  
4C  
00  
16  
00  
00  
7F  
00  
00  
00  
01  
11  
01  
C3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Yes  
No  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RCVNUM[3:0]  
SHORTT[3:0]  
LONGT[3:0]  
PWRONCONFIG0  
PWRONCONFIG1  
RESETSRC  
MIRQ  
-
-
PBDBNCT[1:0]  
Yes  
Yes  
No  
-
-
-
-
RPWRON  
RWDOG  
MSWRST  
SWRST  
-
RSWRST  
MPWRON_S  
PWRON_S  
-
RPMIC_ON_REQ  
MPWRON_L  
PWRON_L  
-
RVSYS_2P7  
RTEMP  
ROCP  
RVR_FAULT  
MSTBY_REQ  
-
-
-
MPWRON  
MWDOG  
MON_REQ  
ON_REQ  
No  
IRQ  
PWRON  
WDOG  
STBY_REQ  
No  
IN_MON  
STAT_PWRON  
STAT_WDOG  
STAT_ON_REQ  
STAT_STBY_REQ  
No  
POW_STATE  
OUT32K  
POW_ST[3:0]  
-
-
-
-
-
-
-
-
POW_SUB[1:0]  
R
No  
-
-
-
-
-
-
-
-
-
-
VREG  
-
-
-
-
OUT32K_EN  
PWRSEQ  
R/W  
R/W  
R/W  
R
Yes  
No  
REGLOCK  
MUXSW_EN  
OTPVER  
MUXSW_EN  
Yes  
Yes  
OTPVER[7:0]  
(Note 1) Reset Condition of each register is classified as follow s.  
UVLO: When INTLDO1P5_UVLO=0, register values are reset to the default value.  
READY: When Pow er State enters READY, register values are reset to the default value.  
(Note 2) Regarding registes labeled in this column, its w rite access is disabled as follow s.  
PWRSEQ: When PWRSEQ in REGLOCK register is set to 1, w rite access is disabled.  
VREG: When VREG in REGLOCK register is set to 1, w rite access is disabled.  
Table 1-5. REV - Revision Register  
Register Name  
REV  
R/W  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0xA1  
Address  
0x00  
MAJREV[3:0]  
MINREV[3:0]  
Bit  
Name  
Function  
Initial  
D[7:4]  
MAJREV[3:0]  
MINREV[3:0]  
Major Revision  
Minor Revision  
1010  
0001  
D[3:0]  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
14/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
1.7. Register Map continued  
Table 1-6. REGLOCK - Lock Register  
Register Name  
REGLOCK  
R/W  
R/W  
D7  
-
D6  
-
D5  
D4  
D3  
D2  
D1  
-
D0  
Initial  
0x11  
Address  
0x2F  
-
VREG  
-
-
PWRSEQ  
Bit  
Name  
Function  
Initial  
Write access to following 21 registers is controlled bythis bit.  
0 = Enable the write access  
1 = Disable the write access  
BUCK1_CTRL, BUCK2_CTRL,  
BUCK5_CTRL, BUCK6_CTRL, BUCK7_CTRL, BUCK8_CTRL  
BUCK1_VOLT_RUN, BUCK1_VOLT_IDLE  
VREG  
1
D[4]  
BUCK1_VOLT_SUSP, BUCK2_VOLT_RUN  
BUCK2_VOLT_IDLE, BUCK5_VOLT, BUCK6_VOLT, BUCK7_VOLT  
BUCK8_VOLT, LDO1_VOLT, LDO2_VOLT, LDO3_VOLT  
LDO4_VOLT, LDO5_VOLT, LDO6_VOLT  
Write access to following 3 registers is controlled bythis bit.  
0 = Enable the write access  
PWRSEQ  
1 = Disable the write access  
1
D[0]  
PWRCTRL0, TRANS_COND0, TRANS_COND1  
Table 1-7. OTPVER OTP Version Register  
Register Name  
OTPVER  
R/W  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0xC3  
Address  
0xFF  
OTPVER[7:0]  
Bit  
Name  
Function  
Initial  
0xC3  
D[7:0]  
OTP_VER[7:0]  
OTP Version  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
15/116  
TSZ22111 • 15 • 001  
BD71850MWV  
1.8. ESD  
Table 1-8. ESD  
Minimum  
Parameter  
Unit  
Limit  
±2000  
±1000  
Human BodyModel(HBM)  
V
V
Charged Device Model(CDM)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
16/116  
TSZ22111 • 15 • 001  
BD71850MWV  
2. Operating Conditions  
2.1. Absolute Maximum Ratings (Ta=25 ˚C)  
Table 2-1. Absolute Maximum Ratings  
Limit  
Parameter  
Symbol  
Unit  
V
Min  
Max  
+6.0  
Voltage Range in PINs:  
VSYS, BUCK1_VIN, BUCK2_VIN, BUCK5_VIN to BUCK8_VIN,  
VIN_1P8_1, VIN_1P8_2, VIN_3P3, PWRON_B, PMIC_ON_REQ  
Voltage Range in PIN:  
VAMR_1  
-0.3  
VAMR_2  
VAMR_3  
VAMR_4  
-0.3  
-0.3  
+4.5  
+2.1  
+7.0  
V
V
V
DVDD  
Voltage Range in PIN:  
INTLDO1P5  
Voltage Range in PINs:  
-1.0(DC)  
-2.0(10 ns)  
BUCK1_LX, BUCK2_LX, BUCK5_LXto BUCK8_LX  
Voltage Range in PINs:  
SCL,SDA,IRQ_B,POR_B,WODG_B, RTC_RESET_B  
PMIC_STBY_REQ,SD_VSELECT,C32K_OUT  
Voltage Range in PINs:  
VAMR_5  
-0.3  
+4.5  
V
BUCK1_FB, BUCK2_FB, BUCK5_FB to BUCK8_FB,  
LDO1_VOUT to LDO6_VOUT, MUXSW_VOUT  
Voltage Range in PINs:  
VAMR_6  
-0.3  
-0.3  
+4.5  
+2.1  
V
V
VAMR_7  
XIN, XOUT  
Maximum Junction Temperature  
Tjmax  
Tstg  
-
150  
°C  
°C  
Storage Temperature Range  
-55  
+150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
2.2. Thermal Resistance  
Table 2-2. Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
2s2p(Note 4)  
1s(Note 3)  
UQFN56BV7070  
Junction to Ambient  
28.1  
6
θJA  
ΨJT  
76.8  
6
°C/W  
°C/W  
Junction to Top Characterization Parameter(Note 2)  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
ꢀꢀꢀꢀꢀꢀꢀsurface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x76.2mm x1.57mmt  
Single  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Thermal Via(Note 6)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x76.2mm x1.6mmt  
2 Internal Layers  
Pitch  
Diameter  
Φ0.30mm  
4 Layers  
1.20mm  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
70μm  
74.2mm x74.2mm  
Footprints and Traces  
70μm  
74.2mm x74.2mm  
35μm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
17/116  
BD71850MWV  
2.3. Recommended Operating Conditions  
Table 2-3. Recommended Operating Conditions  
Limit  
Typ  
Parameter  
Voltage Range in PINs:  
VSYS, BUCK1_VIN, BUCK2_VIN,  
BUCK5_VIN to BUCK8_VIN(Note 1)  
Voltage Range in PIN:  
VIN_3P3(Note 2)  
Voltage Range in PIN:  
VIN_1P8_1(Note 3)  
Voltage Range in PIN:  
Symbol  
Unit  
V
Min  
Max  
5.50  
VOPR_1  
2.70  
5.00  
VOPR_2  
VOPR_3  
VOPR_4  
VOPR_5  
Topr  
2.70  
1.71  
1.71  
1.71  
-40  
3.30  
1.80  
1.80  
1.80  
+25  
3.60  
5.50  
1.89  
3.60  
+105  
V
V
V
VIN_1P8_2(Note 3)  
Voltage Range in PIN:  
DVDD  
V
Operating Temperature  
°C  
(Note 1) It is necessary to supply the same voltage to the VSYS pin and the BUCK1_VIN, BUCK2_VIN, and BUCK5_VIN to BUCK8_VIN pins.  
(Note 2) The VIN_3P3 pin is recommended to connect with BUCK6 outputs.  
(Note 3) The VIN_1P8_1 pin and the VIN_1P8_2 pin are recommended to connect with BUCK7 outputs.  
2.4. Current Consumption  
Table 2-4. Current Consumption  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
VSYS Circuit Current 1  
Symbol  
Unit  
Condition  
Min  
Typ  
14  
Max  
23  
READYState(Note 1)  
SNVS State(Note 1)  
IQ_VSYS1  
IQ_VSYS2  
IQ_VSYS3  
IQ_VSYS4  
IQ_VSYS5  
IQ_DVDD1  
-
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
μA  
VSYS Circuit Current 2  
VSYS Circuit Current 3  
VSYS Circuit Current 4  
VSYS Circuit Current 5  
DVDD Circuit Current 1  
30  
50  
SUSPEND State(Note 1)  
IDLE State(Note 1)  
115  
125  
125  
-
180  
185  
185  
2
Run State(Note 1)  
DVDD static current (OUT32K_EN=0)  
DVDD oparation current (OUT32K_EN=1)  
(Note 2)  
DVDD Circuit Current 2  
IQ_DVDD2  
-
4
-
μA  
(Note 1) When DVDD is connected with LDO1, total circuit current is the value that added VSYS and DVDD circuit current of this table.  
(Note 2) This circuit current is affected by parasitic capacitance of the board.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
18/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
2.5. Power Reference and Detectors (UVLO)  
VSYS  
VDD_V1P5  
Sequencer  
VDD_V1P5  
INTLDO1P5  
Ref  
+
-
VSYS  
+
-
VSYS  
INTLDO1P5_UVLO  
+
-
VSYS_UVLO  
VDD_V1P5  
Thermal  
Sensor  
+
Debounce  
Alert Temp Detect  
-
Figure 2-1. Power Reference and Detectors Block Diagram  
Table 2-5. Power Reference and Detectors Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Voltage Detector - VSYS under voltage(VSYS_UVLO)  
Release Voltage  
Detect Voltage  
VUVLORL  
VUVLODT  
VUVLOHYS  
2.65  
2.65  
-
3.00  
2.70  
0.3  
3.35  
2.75  
-
V
V
V
VSYS=Sweep up  
VSYS =Sweep down  
Hysteresis Voltage  
Voltage Detector - INTLDO1P5 under voltage(INTLDO1P5_UVLO)  
Release Voltage  
Detect Voltage  
V
-
-
1.39  
1.35  
-
-
V
V
VSYS=Sweep up  
INTUVLORL  
V
VSYS =Sweep down  
INTUVLODT  
PMIC Die Critical Temperature Detector (Thermal Shutdown factor)  
Detect Temperature  
Power Reference  
TCTD  
-
150  
-
°C  
Die Temperature=Sweep up  
This output voltage is for internal  
use only.  
INTLDO1P5 Output Voltage  
VLDO15  
-
1.5  
1.0  
-
V
COUTCapacitor  
CO_LDO15  
0.5  
5.0  
μF  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
19/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
3. Power State Control  
3.1. Power Control Signals  
VSYS  
[Internal Logic Circuit]  
Enable signal for  
PWRON_B  
VSYS  
PWRON_B  
VR  
(BUCK1,BUCK2,  
BUCK5 to BUCK8)  
(LDO1 to LDO6)  
VSYS  
PMIC_ON_REQ  
POR_B  
DVDD  
PMIC_STBY_REQ  
GND  
GND  
RTC_RESET_B  
WDOG_B  
Figure 3-1. Power Control Signals of BD71850MWV  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
20/116  
BD71850MWV  
3.1.1. PWRON_B  
PWRON_B is an active-low input for triggering the system to power on or off. Normally, PWRON_B is connected to a  
power button.  
Table 3-1. PWRON_B Electrical Characteristics  
(Unless otherwise specified, Ta= +25°C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Condition  
Condition  
Condition  
Min  
1.44  
-
Typ  
Max  
-
Input "H" Level  
V
-
-
V
V
IH_PWRON  
Input "L" Level  
V
0.40  
IL_PWRON  
3.1.2. PMIC_ON_REQ  
PMIC_ON_REQ is an active-high input for going to RUN state.  
Table 3-2. PMIC_ON_REQ Electrical Characteristics  
(Unless otherwise specified, Ta= +25°C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Min  
1.44  
-
Typ  
Max  
-
Input "H" Level  
V
-
-
V
V
IH_ONREQ  
Input "L" Level  
V
0.40  
IL_ONREQ  
3.1.3. PMIC_STBY_REQ  
PMIC_STBY_REQ is an active-high input for going to SUSPEND state.  
Table 3-3. PMIC_STBY_REQ Electrical Characteristics  
(Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Min  
Typ  
Max  
Input "H" Level  
V
DVDD x0.75  
-
-
-
-
V
V
IH_STBYREQ  
Input "L" Level  
V
DVDD x0.25  
IL_STBYREQ  
3.1.4. WDOG_B  
WDOG_B is an active-low input for triggering Cold Reset or Warm Reset.  
Table 3-4. WDOG_B Electrical Characteristics  
(Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Min  
Typ  
Max  
Input "H" Level  
V
DVDD x0.75  
-
-
-
-
V
V
IH_WDOG  
Input "L" Level  
V
DVDD x0.25  
IL_WDOG  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
21/116  
BD71850MWV  
3.1.5. RTC_RESET_B  
RTC_RESET_B is an active-low output for RTC.  
Table 3-5. RTC_RESET_B Electrical Characteristics  
(Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Typ  
Max  
DVDD x0.2  
+1  
Output "L" Level Voltage  
Output Off Leak Current  
VOL_RTCRESET  
IOLK_RTCRESET  
-
-
V
IOL=3 mASink  
-1  
μA  
3.1.6. POR_B  
POR_B is an active-low output for the reset of SoC.  
Table 3-6. POR_B Electrical Characteristics  
(Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Typ  
Max  
DVDD x0.2  
+1  
Output "L" Level Voltage  
Output Off Leak Current  
VOL_POR  
IOLK_POR  
-
-
V
IOL=3 mASink  
-1  
μA  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
22/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2. Power States  
3.2.1. Power State Diagram  
BD71850MWV has eight power states or modes: OFF, READY, SNVS, RUN, IDLE, SUSPEND, PWROFF and EMG.  
Figure 3-2 shows the state transition diagram along with the conditions to enter and exit each state.  
READY_TO_SNVS Condition is described in 3.2.5.2. This condition is configurable by TRANS_COND0 registers.  
SNVS_TO_RUN Condition is described in 3.2.5.3. This condition is configurable by TRANS_COND0 registers.  
BD71850MWV has Thermal Shutdown, OCP, VR Fault, and VSYS_UVLO=0 as Emergency Shutdown events.  
Emergency Shutdown Condition is described in 3.2.5.9. EMG_TO_READY Condition is described in 3.2.5.12.  
EMG_STAY Condition is described in 3.2.5.13.  
BD71850MWV has WDOG_B, SWRESET, and PWRON_B long detection as Cold Reset events. COLD_RESET  
Condition is described in 3.2.4.1. After cold reset events or PMIC_ON_REQ=0, BD71850MWV is configurable that it  
returns to READY or SNVS state. POFF_TO_READY Condition is described in 3.2.5.16. POFF_TO_SNVS Condition  
is described in 3.2.5.17. Concerning VSYS_UVLO and INTLDO1P5_UVLO, please refer to 2.5.  
Any  
state  
OFF  
INTLDO1P5_UVLO = 0  
INTLDO1P5_UVLO = 0  
VSYS_UVLO = 1  
VSYS_UVLO = 0  
READY  
EMG_TO_READY  
Condition  
POFF_TO_READY Condition  
(Defaultsetting:Not available)  
(All Emergencyshutdown  
events are not met,  
or VR fault recovery attempt.)  
EMG_STAY  
Condition  
READY_TO_SNVS  
Condition  
(Defaultsetting:VSYS_UVLO =1)  
(VSYS_UVLO=0, Thermal  
shutdown(T>130˚C),  
or VR fault recovery failed.)  
POFF_TO_SNVS Condition  
(Defaultsetting:PMIC_ON_REQ=0,  
SWRESET=1, WDOG_B=0, or  
PWRON_B long push)  
PWROFF  
EMG  
SNVS  
EmergencyShutdown  
Condition  
COLD_RESETCondition  
or PMIC_ON_REQ = 0  
EmergencyShutdown  
SNVS_TO_RUN  
Condition  
Condition  
(Defaultsetting:PMIC_ON_REQ=1)  
PMIC_STBY_REQ = 1  
PMIC_ON_REQ = 1  
IDLE  
SUSPEND  
(reg) IDLE_MODE = 1  
PMIC_STBY_REQ = 1  
PMIC_ON_REQ = 1  
PMIC_STBY_REQ = 0  
(reg) IDLE_MODE = 0  
PMIC_ON_REQ = 1  
RUN  
EmergencyShutdown Condition  
COLD_RESETCondition:  
WDOG_B = 0  
SWRESET = 1  
PWRON_B long push  
COLD_RESETCondition  
or PMIC_ON_REQ = 0  
EmergencyShutdown Condition:  
Thermal Shutdown(T>150˚C)  
OCP, VR Fault, VSYS_UVLO=0  
Figure 3-2. Power State Transition  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
23/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
3.2.2. Power State Register  
The POW_STATE register shows current power state and power sub state in Table 3-7. The power sub state definition  
is illustrated in Figure 3-3.  
Table 3-7. POW_STATE Power State Register  
Register Name  
POW_STATE  
R/W  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x2D  
POW_ST[3:0]  
POW_SUB[1:0]  
-
-
Bit  
Name  
Function  
This bit field shows current power state.  
Initial  
0000  
0x0 = OFF  
0x2 = SNVS  
0x9 = IDLE  
0x1 = READY  
0x8 = RUN  
0xA= SUSPEND  
POW_ST[3:0]  
D[7:4]  
0xB = PWROFF 0xC = EMG  
This bit field shows current power sub state.  
00 = Stable  
01 = Up  
POW_SUB[1:0]  
00  
D[1:0]  
10 = Down  
11 = Counting Cold Reset duration time (set byPONT[3:0])  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
24/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.2. Power State Register continued  
Stable  
OFF  
(0x0)  
Any  
state  
Down  
Down  
Up  
Down  
Stable  
READY  
(0x1)  
Down  
Down  
Up  
Stable  
Stable  
Stable  
PWROFF  
(0xB)  
EMG  
(0xC)  
Up  
SNVS  
(0x2)  
Down  
Down  
Down  
Up  
Stable  
Stable  
Down  
IDLE  
(0x9)  
SUSPEND  
(0xA)  
Down  
Up  
Down  
Stable  
Up  
RUN  
(0x8)  
Down  
Down  
Figure 3-3. Power Sub State Definition  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
25/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.3. Power State Definition  
(a) OFF state  
BD71850MWV is in OFF state when INTLDO1P5_UVLO is detected. If INTLDO1P5_UVLO is 0, the data in all  
registers are reset to their default values.  
To exit this state, VSYS voltage must exceed 3.0 V (VSYS_UVLO = 1)  
(b) READY state  
In this state, VSYS voltage is over 3.0V. When power state transitions from OFF state to READY state, OTP data will  
only be loaded to registers with "Yes" in "OTP" column of Register Map (Table 1-4). When power state transitions  
from PWROFF or EMG state to READY state, OTP data will only be loaded to registers with reset condition during  
READY state and "Yes" condition in "OTP" column. This OTP loading can be skipped depending on the value of  
RELOAD_REG in PWRCTRL0 register.  
(c) SNVS state  
If READY_TO_SNVS condition is satisfied, the power state changes to SNVS state. In this state, LDO1(NVCC_SNVS)  
and LDO2(VDD_SNVS) are turned on as shown in Table 3-8.  
(d) RUN state  
If SNVS_TO_RUN condition is satisfied, the power state changes to RUN state. In this state, the VRs shown in Table  
3-8 are turned ON.  
The voltage of BUCK1(VDD_SOC, VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_RUN register.  
The voltage of BUCK2(VDD_ARM) depends on BUCK2_VOLT_RUN register.  
(e) IDLE state  
If IDLE_MODE in PWRCTRL1 register is set to 1, the power state changes to IDLE state. The voltage of  
BUCK1(VDD_SOC, VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_IDLE register. The voltage of  
BUCK2(VDD_ARM) depends on BUCK2_VOLT_IDLE register.  
(f) SUSPEND state  
If PMIC_STBY_REQ is set to 1, the power state changes to SUSPEND state. The voltage of BUCK1(VDD_SOC,  
VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_SUSP register.  
(g) EMG state  
If Emergency Shutdown Condition is satisfied, the power state changes to EMG state. In this state, all VRs are OFF.  
(h) PWROFF state  
If COLD_RESET Condition is satisfied or PMIC_ON_REQ is reset to 0, the power state changes to PWROFF state. In  
this state, all VRs except LDO1(NVCC_SNVS) and LDO2(VDD_SNVS) are OFF. The next state of PWROFF is either  
READY or SNVS. TRANS_COND1[3:0] values decide which power state to go.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
26/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.3. Power State Definition continued  
Table 3-8. Voltage Rails ON/OFF for Respective Power State  
Power State  
SNVS(Note) SUSPEND(Note) IDLE(Note)  
VR No.  
Function  
Rail Name  
RUN(Note)  
ON  
OFF  
OFF  
OFF  
READY  
OFF  
PWROFF  
ON/OFF  
ON/OFF  
EMG  
OFF  
OFF  
VR1  
VR2  
NVCC_SNVS  
VDD_SNVS  
LDO1  
LDO2  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
VDD_SOC,  
VDDA_0V8,  
PHY_0V8,  
VR3  
BUCK1  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
VDD_DRAM,  
VDD_GPU  
VR4  
VR5  
VR6  
VDD_ARM  
BUCK2  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VR7  
-
BUCK5  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
VDDA_1V8,  
VDDA_DRAM  
VR8  
LDO3  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
VR9  
VR10  
VR11  
VR12  
VR13  
VR14  
VR15  
VR16  
-
LDO4  
BUCK6  
BUCK7  
BUCK8  
LDO5  
LDO6  
-
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
OFF  
ON  
ON  
ON  
OFF  
ON  
-
OFF  
ON  
ON  
ON  
OFF  
ON  
-
OFF  
ON  
ON  
ON  
OFF  
ON  
-
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
NVCC_3V3  
NVCC_1V8  
NVCC_DRAM  
-
VDD_PHY_1V2  
-
NVCC_SD2  
MUXSW  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
(Note) ON/OFF setting of each VR at SNVS/SUSPEND/IDLE/RUN state can be configured by OTP.  
3.2.4. Power State Control Events  
3.2.4.1.  
Reset Event  
BD71850MWV has Cold and Warm resets.  
Cold reset initiates POR_B asserted to L and power rails are turned off. Then, the power state changes to  
either READY state or SNVS state. Next, the power state returns to RUN state automatically.  
Warm reset initiates POR_B asserted to L for 1 ms. It does not affect the on/off status of all power rails.  
Warm reset does not initiate the power state transition.  
BD71850MWV has three reset sources as follows.  
• PWRON_B terminal is set H to L. (PWRON_B Long Push reset)  
• WDOG_B terminal is set H to L. (WDOG_B reset)  
• SWRESET in SWRESET register is set 0 to 1 (Software reset)  
The cold or warm reset selection setting is shown in Table 3-9.  
The details of the two registers related to the setting are shown in Table 3-10 and Table 3-11.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
27/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.4.1. Reset Event continued  
Table 3-9. Setting of Cold or Warm Reset Selection  
Reset Source  
Register Name  
Register Bit Name  
Value  
10 (default)  
11  
Cold/Warm Reset or No Reset  
Cold reset  
PWRON_B  
Long Push  
PWRCTRL0  
DEBUG_STATE[1:0]  
Warm reset  
00 or 01  
10 (default)  
11  
No reset action  
Cold reset  
WDOG_B  
Software  
PWRCTRL0  
SWRESET  
WDOGB_SEL[1:0]  
Warm reset  
00 or 01  
10 (default)  
11  
No reset action  
Cold reset  
SWRESET_SEL[1:0]  
Warm reset  
00 or 01  
No reset action  
Table 3-10. SWRESET - Software Reset Register  
Register Name  
SWRESET  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x04  
Address  
0x01  
SWRESET_SEL[1:0]  
-
-
-
-
SWRESET  
Bit  
Name  
Function  
Initial  
10  
Select Cold reset, Warm reset or No reset action when SWRESET bit ( D[0]) is set  
to 1.  
00 = No reset action  
01 = No reset action  
10 = Cold reset  
11 = Warm reset  
D[2:1]  
SWRESET_SEL[1:0]  
0 – No action  
1 – Initiates Cold Reset or Warm Reset in accordance with SWRESET_SEL bit.  
Writing 1 to SWRESET bit, then SWRESET bit is automatically cleared to 0 when  
Cold Reset or Warm Reset operation is completed.  
Writing 1 to SWRESET bit can be done when Power State = RUN, IDLE and  
SUSPEND.  
SWRESET  
0
D[0]  
Table 3-11. PWRCTRL0 - Power Control 0 Register  
Register Name  
PWRCTRL0  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0xA2  
Address  
0x03  
RELOAD_  
REG  
DEBUG_STATE[1:0]  
Name  
WDOGB_SEL[1:0]  
-
-
-
Bit  
Function  
Initial  
10  
Select Cold reset, Warm reset or No reset action when PWRON_B long push is  
detected.  
00 = No reset action  
01 = No reset action  
10 = Cold reset  
11 = Warm reset  
D[7:6]  
DEBUG_STATE[1:0]  
Select OTP configurable registers initialization when the power state goes through  
READYstate.  
0 = No initialization  
D[5]  
RELOAD_REG  
1
1= Reload OTP registers and set to initial value  
Select Cold reset, Warm reset or No reset action when WDOG_B is asserted to 0.  
00 = No reset action  
01 = No reset action  
10 = Cold reset  
WDOGB_SEL[1:0]  
10  
D[1:0]  
11 = Warm reset  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
28/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
3.2.4.2.  
Emergency Shutdown Event  
There are four Emergency Shutdown Events as follows:  
• Thermal Shutdown (Thermal Protection)  
If the die temperature surpasses 150ºC, the thermal protection circuit will shut down all VRs to avoid  
damage. This detection is not valid at OFF, READY and SNVS state.  
• OCP  
If the OCP is triggered in any VRs, all VRs are turned off.  
• VR Fault  
If the voltage of VR is not within the regular range, all VRs are turned off.  
• VSYS_UVLO = 0  
If the VSYS_UVLO = 0, Emergency Shutdown sequence is initiated.  
3.2.5. Power State Transitions  
3.2.5.1.  
OFF to READY  
Table 3-12 shows the conditions for exiting OFF state. “VSYS_UVLO = 1” is necessary.  
Table 3-12. Conditions from OFF to READY state  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
Notes  
1) VSYS Voltage Up  
from 0 Vor 2.7 V  
VSYS_UVLO = 1  
(VSYS > 3.0 V)  
VSYS Insertion or  
VSYS recoveryfrom 2.7 V  
READY  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
29/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.2.  
READY to SNVS  
There are six event triggers for shifting from READY to SNVS as shown in Table 3-13. The event trigger of  
VSYS_UVLO, PMIC_ON_REQ, PWRON_B Short Push, and PWRON_B Long Push are configurable to be  
valid or invalid by TRANS_COND0 registers. VSYS_UVLO condition is valid with default setting.  
Table 3-13. Conditions from READY to SNVS  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
1) VSYS_UVLO  
Next State  
SNVS  
Notes  
No other event is necessary.  
Valid with default setting  
VSYS_UVLO = 1  
VSYS_UVLO = 1 and  
PMIC_ON_REQ = 1  
2) PMIC_ON_REQ  
SNVS  
Invalid with default setting  
Invalid with default setting  
Invalid with default setting  
3) PWRON_B Short  
Push  
VSYS_UVLO = 1 and  
PWRON_B = 0 ==> Short Push Detection  
SNVS  
4) PWRON_B Long  
Push  
VSYS_UVLO = 1 and  
PWRON_B = 0 ==> Long Push Detection  
SNVS  
5) Cold Reset  
Sequence  
VSYS_UVLO = 1 and  
Cold_Reset_flag = 1  
On the wayback to RUN state  
in Cold Reset sequence  
SNVS  
6) VR Fault Recovery  
Attempt  
VSYS_UVLO = 1 and  
VR Fault Recovery  
SNVS  
1) VSYS_UVLO  
The power state shifts to SNVS if VSYS_UVLO = 1 as shown in Figure 3-4. No other conditions are  
necessary.  
3.0 V  
VSYS  
0 V  
VSYS_UVLO  
Power State  
OFF  
READY  
SNVS  
Figure 3-4. VSYS Condition for moving to SNVS  
2) PMIC_ON_REQ  
The power state shifts to SNVS if PMIC_ON_REQ = 1 as shown in Figure 3-5.  
3.0 V  
VSYS  
0V  
VSYS_UVLO  
PMIC_ON_REQ  
Power State  
OFF  
READY  
SNVS  
Figure 3-5. PMIC_ON_REQ Condition for moving to SNVS  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
30/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.2.  
READY to SNVS continued  
3) PWRON_B Short Push  
The power state shifts to SNVS if PWRON_B Short Push is detected as shown in Figure 3-6.  
3.0 V  
VSYS  
0 V  
VSYS_UVLO  
PWRON_B  
Short Push is detected.  
Power State  
OFF  
READY  
SNVS  
Figure 3-6. PWRON_B Short Push Condition for moving to SNVS  
4) PWRON_B Long Push  
The power state shifts to SNVS if PWRON_B Long Push is detected as shown in Figure 3-7.  
3.0 V  
VSYS  
0 V  
VSYS_UVLO  
PWRON_B  
Long Push is detected.  
Power State  
OFF  
READY  
SNVS  
Figure 3-7. PWRON_B Long Push Condition for moving to SNVS  
5) Cold Reset  
The power state shifts to SNVS if Cold_Reset_flag = 1 as shown in Figure 3-8.  
High  
VSYS_UVLO  
Cold Reset  
Event occurs  
Cold_Reset_flag  
(PMIC Internal Signal)  
Power State  
RUN  
PWROFF  
READY  
SNVS  
Figure 3-8. Cold Reset Condition for moving to SNVS  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
31/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.2.  
READY to SNVS continued  
6) VR Fault Recovery Attempt  
Please see 3.2.5.10.  
It is possible to use each four event triggers such as:  
VSYS_UVLO,  
PMIC_ON_REQ,  
PWRON_B Short Push and  
PWRON_B Long Push  
These triggers are configurable to use them respectively by D[3:0] in TRANS_COND0 register as shown  
in Table 3-14.  
Table 3-14. TRANS_COND0 - Transition Condition Select 0 Register  
Register Name  
TRANS_COND0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x48  
Address  
0x1F  
C1_  
C1_  
C1_  
SHORT_  
PUSH_EN  
C1_  
LONG_  
PUSH_EN  
C0_  
C0_  
C0_  
SHORT_  
PUSH_EN  
C0_  
LONG_  
PUSH_EN  
R/W VSYS_3P0_ PMIC_ON_  
VSYS_3P0_ PMIC_ON_  
ONLY_EN REQ_EN  
ONLY_EN  
REQ_EN  
Bit  
Name  
Function  
Initial  
0
Select onlyVSYS_UVLO = 1 as SNVS ==> RUN transition condition or not  
0 = VSYS_UVLO = 1 is not used as the condition  
C1_VSYS_3P0_ONLY_EN  
C1_PMIC_ON_REQ_EN  
C1_SHORT_PUSH_EN  
C1_LONG_PUSH_EN  
C0_VSYS_3P0_ONLY_EN  
C0_PMIC_ON_REQ_EN  
C0_SHORT_PUSH_EN  
C0_LONG_PUSH_EN  
D[7]  
1 = VSYS_UVLO = 1 is used as the condition  
Select PMIC_ON_REQ as SNVS ==> RUN transition condition or not  
0 = PMIC_ON_REQ is not used as the condition  
1 = PMIC_ON_REQ is used as the condition  
1
0
0
1
0
0
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Select PWRON_B Short Push as SNVS ==> RUN transition condition or not  
0 = PWRON_B Short Push is not used as the condition  
1 = PWRON_B Short Push is used as the condition  
Select PWRON_B Long Push as SNVS ==> RUN transition condition or not  
0 = PWRON_B Long Push is not used as the condition  
1 = PWRON_B Long Push is used as the condition  
Select onlyVSYS_UVLO = 1 as READY==> SNVS transition condition or not  
0 = VSYS_UVLO = 1 is not used as the condition  
1 = VSYS_UVLO = 1 is used as the condition  
Select PMIC_ON_REQ as READY==> SNVS transition condition or not  
0 = PMIC_ON_REQ is not used as the condition  
1 = PMIC_ON_REQ is used as the condition  
Select PWRON_B Short Push as READY==> SNVS transition condition or not  
0 = PWRON_B Short Push is not used as the condition  
1 = PWRON_B Short Push is used as the condition  
Select PWRON_B Long Push as READY==> SNVS transition condition or not  
0 = PWRON_B Long Push is not used as the condition  
1 = PWRON_B Long Push is used as the condition  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
32/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
3.2.5.3.  
SNVS to RUN  
There are six event triggers for shifting from SNVS to RUN as shown in Table 3-15. The event trigger of  
VSYS_UVLO=1 PMIC_ON_REQ, PWRON_B Short Push, and PWRON_B Long Push are configurable to  
be valid or invalid by TRANS_COND0 registers. PMIC_ON_REQ condition is valid with default setting.  
Table 3-15. Conditions from SNVS to RUN  
Conditions(Note)  
(All must be satisfied per Event Trigger)  
Event Trigger  
1) VSYS_UVLO  
Next State  
RUN  
Notes  
No other event is necessary.  
Invalid with default setting  
VSYS_UVLO = 1  
VSYS_UVLO = 1 and  
PMIC_ON_REQ = 1  
2) PMIC_ON_REQ  
RUN  
Valid with default setting  
Invalid with default setting  
Invalid with default setting  
3) PWRON_B Short  
Push  
VSYS_UVLO = 1 and  
PWRON_B = 0 ==> Short Push Detection  
RUN  
4) PWRON_B Long  
Push  
VSYS_UVLO = 1 and  
PWRON_B = 0 ==> Long Push Detection  
RUN  
5) Cold Reset  
Sequence  
VSYS_UVLO = 1 and  
Cold_Reset_flag = 1  
On the wayback to RUN state  
in Cold Reset sequence  
RUN  
6) VR Fault Recovery  
Attempt  
VSYS_UVLO = 1 and  
VR Fault Recovery  
RUN  
(Note) Die Temperature must be less than 150 ºC.  
1) VSYS_UVLO  
The power state shifts to RUN if VSYS_UVLO = 1 as shown in Figure 3-9. No other condition is required.  
VSYS_UVLO  
Power State  
OFF  
READY  
SNVS  
RUN  
Figure 3-9. VSYS Condition for moving to RUN  
2) PMIC_ON_REQ  
The power state shifts to RUN if PMIC_ON_REQ = 1 as shown in Figure 3-10.  
VSYS_UVLO  
PMIC_ON_REQ  
Power State  
OFF  
READY  
SNVS  
RUN  
Figure 3-10. PMIC_ON_REQ Condition for moving to RUN  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
33/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.3.  
SNVS to RUN continued  
3) PWRON_B Short Push  
VSYS_UVLO  
PWRON_B  
Short Push is detected.  
Power State  
OFF  
READY  
SNVS  
RUN  
Figure 3-11. PWRON_B Short Push Condition for moving to RUN  
4) PWRON_B Long Push  
The power state shifts to RUN if PWRON_B Long Push is detected as shown in Figure 3-12.  
VSYS_UVLO  
PWRON_B  
Long Push is detected.  
Power State  
OFF  
READY  
SNVS  
RUN  
Figure 3-12. PWRON_B Long Push Condition for moving to RUN  
5) Cold Reset  
The power state shifts to RUN if Cold_Reset_flag = 1 as shown in Figure 3-13.  
High  
VSYS_UVLO  
Cold Reset  
Event occurs  
Cold_Reset_flag  
(PMIC Internal Signal)  
Power State  
RUN  
PWROFF  
READY  
SNVS  
RUN  
Figure 3-13. Cold Reset Condition for moving to RUN  
6) VR Fault Recovery Attempt  
Please see 3.2.5.10.  
It is possible to use each four event triggers such as:  
VSYS_UVLO,  
PMIC_ON_REQ,  
PWRON_B Short Push and  
PWRON_B Long Push  
These triggers are configurable to use them respectively by D[7:4] in TRANS_COND0 register as shown in  
Table 3-14.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
34/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.4.  
RUN to IDLE  
Table 3-16 shows the conditions for shifting from RUN to IDLE. The details of PWRCTRL1 register were  
described in Table 3-17.  
Table 3-16. Conditions from RUN to IDLE  
Conditions(Note)  
Event Trigger  
Next State  
IDLE  
Notes  
(All must be satisfied)  
PMIC_STBY_REQ = 0  
PMIC_ON_REQ = 1  
Set IDLE_MODE  
(PWRCTRL1  
register) = 1  
Register Write Operation  
Set (reg) IDLE_MODE = 1  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
Table 3-17. PWRCTRL1 - Power Control 1 Register  
Register Name  
PWRCTRL1  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
-
D0  
Initial  
0x00  
Address  
0x04  
IDLE_  
MODE  
-
-
-
-
-
Bit  
Name  
Function  
Control power state transition between RUN and IDLE  
0 = Exit IDLE and back to RUN, or indicates power state = except IDLE  
1 = Enter IDLE from RUN, or indicates power state = IDLE  
Initial  
0
IDLE_MODE  
D[0]  
Note : this bit automaticallyreturns to 0 when power state enters PWROFF,  
EMG and SUSPEND.  
3.2.5.5.  
IDLE to RUN  
Table 3-18 shows the conditions for shifting from IDLE to RUN.  
Table 3-18. Conditions from IDLE to RUN  
Conditions(Note)  
(All must be satisfied)  
PMIC_STBY_REQ = 0  
Event Trigger  
Next State  
Notes  
Set IDLE_MODE  
(PWRCTRL1  
register) = 0  
RUN  
PMIC_ON_REQ = 1  
Set (reg) IDLE_MODE = 0  
Register Write Operation  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
3.2.5.6.  
RUN to SUSPEND  
Table 3-19 shows the conditions for shifting from RUN to SUSPEND.  
Table 3-19. Conditions from RUN to SUSPEND  
Conditions(Note)  
(All must be satisfied)  
Event Trigger  
Next State  
Notes  
PMIC_STBY_REQ = 1  
SUSPEND  
PMIC_STBY_REQ  
PMIC_ON_REQ = 1  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
3.2.5.7.  
SUSPEND to RUN  
Table 3-20 shows the conditions for shifting from SUSPEND to RUN.  
Table 3-20. Conditions from SUSPEND to RUN  
Conditions(Note)  
(All must be satisfied)  
Event Trigger  
Next State  
Notes  
PMIC_STBY_REQ = 0  
RUN  
PMIC_STBY_REQ  
PMIC_ON_REQ = 1  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
35/116  
BD71850MWV  
3.2.5.8.  
IDLE to SUSPEND  
Table 3-21 shows the conditions for shifting from IDLE to SUSPEND. IDLE_MODE in PWRCTRL1 register  
automatically returns to 0.  
Table 3-21. Conditions from IDLE to SUSPEND  
Conditions(Note)  
(All must be satisfied)  
PMIC_STBY_REQ = 1  
PMIC_ON_REQ = 1  
Event Trigger  
Next State  
SUSPEND  
Notes  
PMIC_STBY_REQ  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
3.2.5.9.  
Emergency Shutdown  
There are four Emergency Shutdown events which are:  
Thermal Shutdown (Thermal Protection)  
OCP  
VR Fault  
VSYS_UVLO = 0 as shown in Table 3-22.  
Table 3-22. Conditions from SNVS, RUN, IDLE, SUSPEND, PWROFF to EMG  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
Notes  
Thermal Protection  
This protection is invalid at OFF,  
READY, and SNVS state  
1) Thermal Shutdown  
Die Temperature > 150 ºC  
EMG  
2) OCP  
AnyVR's OCP  
AnyVR's out of the target voltage  
VSYS_UVLO = 0  
EMG  
EMG  
EMG  
3) VR Fault  
4) VSYS_UVLO = 0  
The detail of VR Fault is described in 3.2.5.10.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
36/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.10. VR Fault  
BD71850MWV has VR fault detection function which monitors all relevant VRs of the system. The system  
is shut down when a monitored voltage rail goes out of the target voltage. Once the system has shut down,  
the system tries to boot up several times which is determined by RCVLMT[3:0] in RCVCFG register.  
Table 3-23 shows the VR fault threshold and monitoring conditions. Even if one of output rails which are  
described “Y” in Table 3-23 are not used, output inductors and capacitors are needed. If they are not  
connected, PMIC would be shut down because of VR fault detection.  
Table 3-23. VR FAULT threshold and monitoring condition  
SNVS  
SUSPEND  
Voltage  
IDLE  
RUN  
Voltage  
Target  
Range  
Voltage  
Target  
Range  
Voltage  
Target  
Range  
VR No.  
Function  
Rail Name  
Monitor  
Y/N  
Monitor  
Y/N  
Monitor  
Y/N  
Monitor  
Y/N  
Target  
Range  
80% <  
LDO1  
80% <  
LDO1  
80% <  
LDO1  
80% <  
LDO1  
VR1  
VR2  
NVCC_SNVS  
VDD_SNVS  
LDO1  
LDO2  
BUCK1  
BUCK2  
-
Y
Y
N
N
-
Y
Y
Y
N
-
Y
Y
Y
Y
-
Y
Y
Y
Y
-
80% <  
LDO2  
80% <  
LDO2  
80% <  
LDO2  
80% <  
LDO2  
VDD_SOC,  
VDDA_0V8,  
PHY_0V8  
80% <  
BUCK1  
< 130%  
80% <  
BUCK1  
< 130%  
80% <  
BUCK1  
< 130%  
VR3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80% <  
BUCK2  
< 130%  
80% <  
BUCK2  
< 130%  
VR4  
VDD_ARM  
-
-
-
-
VR5  
-
-
-
-
-
-
-
-
-
VR6  
-
-
-
-
-
VR7  
BUCK5  
LDO3  
LDO4  
BUCK6  
BUCK7  
BUCK8  
LDO5  
LDO6  
-
N
N
N
N
N
N
N
N
-
N
Y
N
Y
Y
Y
N
Y
-
N
Y
N
Y
Y
Y
N
Y
-
N
Y
N
Y
Y
Y
N
Y
-
VDDA_1V8,  
VDDA_DRAM  
80% <  
LDO3  
80% <  
LDO3  
80% <  
LDO3  
VR8  
VR9  
-
-
-
-
80% <  
BUCK6  
< 130%  
80% <  
BUCK6  
< 130%  
80% <  
BUCK6  
< 130%  
VR10  
VR11  
VR12  
VR13  
VR14  
VR15  
VR16  
NVCC_3V3  
NVCC_1V8  
NVCC_DRAM  
-
80% <  
BUCK7  
< 130%  
80% <  
BUCK7  
< 130%  
80% <  
BUCK7  
< 130%  
80% <  
BUCK8  
< 130%  
80% <  
BUCK8  
< 130%  
80% <  
BUCK8  
< 130%  
-
-
-
80% <  
LDO6  
80% <  
LDO6  
80% <  
LDO6  
VDD_PHY_1V2  
-
-
-
-
-
-
-
Not  
available  
Not  
available  
Not  
available  
Not  
available  
NVCC_SD  
MUXSW  
Y: VR output is monitored to trigger VR Fault Emergency Shutdown sequence.  
N: Not monitored at default (If the VR is turned ON by changing the register setting, its output is monitored for the VR Fault event trigger)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
37/116  
BD71850MWV  
3.2.5.10. VR Fault continued  
BD71850MWV monitors each rail. If a monitored VR goes out of the target voltage in a certain time, the  
system will shut down. When the system cannot shift to RUN state after Power ON sequence several times  
which is defined by RCVLMT[3:0] in RCVCFG register, the system stays at EMG state until  
INTLDO1P5_UVLO = 0.  
If a VR is turned OFF by VR control registers (BUCK1, BUCK2, BUCK5 to BUCK8 and LDO1 to LDO6), VR  
fault of that VR is masked.  
BD71850MWV has VR individual masking registers as shown in Table 3-25, Table 3-26 and Table 3-27.  
This masking function is used for mainly debugging in development phase.  
Table 3-24. VRFAULTEN - VR FAULT ON/OFF Register: Debugging Purpose  
Register Name  
VRFAULTEN  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x01  
Address  
0x21  
R/W  
-
-
-
-
-
-
-
VRFLTEN  
Bit  
Name  
Function  
Initial  
1
VR Fault enable bit  
0 = VR Fault is disabled.  
1 = VR Fault is enabled.  
VRFLTEN  
D[0]  
This bit is used for debugging purpose.Please do not set 0x00 in normal  
operation.  
Table 3-25. MVRFLTMASK0 - VR FAULT Mask 0 Register  
Register Name  
MVRFLTMASK0  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x22  
MBUCK8_  
VOUTOKH  
MBUCK8_  
VOUTOKL  
MBUCK7_  
VOUTOKH  
MBUCK7_  
VOUTOKL  
MBUCK6_  
VOUTOKH  
MBUCK6_  
VOUTOKL  
MBUCK5_  
VOUTOKH  
MBUCK5_  
VOUTOKL  
Bit  
Name  
Function  
Initial  
0
Masking bit of BUCK8 130% threshold for target voltage  
0 = monitoring 130% threshold  
MBUCK8_VOUTOKH  
MBUCK8_VOUTOKL  
MBUCK7_VOUTOKH  
MBUCK7_VOUTOKL  
MBUCK6_VOUTOKH  
MBUCK6_VOUTOKL  
MBUCK5_VOUTOKH  
MBUCK5_VOUTOKL  
D[7]  
1 = masked 130% threshold  
Masking bit of BUCK8 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
0
0
0
0
0
0
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Masking bit of BUCK7 130% threshold for target voltage  
0 = monitoring 130% threshold  
1 = masked 130% threshold  
Masking bit of BUCK7 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Masking bit of BUCK6 130% threshold for target voltage  
0 = monitoring 130% threshold  
1 = masked 130% threshold  
Masking bit of BUCK6 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Masking bit of BUCK5 130% threshold for target voltage  
0 = monitoring 130% threshold  
1 = masked 130% threshold  
Masking bit of BUCK5 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
38/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.10. VR Fault continued  
Table 3-26. MVRFLTMASK1 - VR FAULT Mask 1 Register  
Register Name  
MVRFLTMASK1  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x23  
MBUCK2_  
VOUTOKH  
MBUCK2_  
VOUTOKL  
MBUCK1_  
VOUTOKH  
MBUCK1_  
VOUTOKL  
-
-
-
Bit  
Name  
Function  
Initial  
0
Masking bit of BUCK2 130% threshold for target voltage  
0 = monitoring 130% threshold  
MBUCK2_VOUTOKH  
MBUCK2_VOUTOKL  
MBUCK1_VOUTOKH  
MBUCK1_VOUTOKL  
D[3]  
1 = masked 130% threshold  
Masking bit of BUCK2 80% threshold for target voltage  
0 = monitoring 80% threshold  
0
0
0
D[2]  
D[1]  
D[0]  
1 = masked 80% threshold  
Masking bit of BUCK1 130% threshold for target voltage  
0 = monitoring 130% threshold  
1 = masked 130% threshold  
Masking bit of BUCK1 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Table 3-27. MVRFLTMASK2 - VR FAULT Mask 2 Register  
Register Name  
MVRFLTMASK2  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x24  
MLDO6_  
MLDO5_  
MLDO4_  
MLDO3_  
MLDO2_  
MLDO1_  
VOUTOKL  
-
VOUTOKL  
VOUTOKL  
VOUTOKL  
VOUTOKL  
VOUTOKL  
Bit  
Name  
Function  
Initial  
0
Masking bit of LDO6 80% threshold for target voltage  
0 = monitoring 80% threshold  
MLDO6_VOUTOKL  
MLDO5_VOUTOKL  
MLDO4_VOUTOKL  
MLDO3_VOUTOKL  
MLDO2_VOUTOKL  
MLDO1_VOUTOKL  
D[5]  
1 = masked 80% threshold  
Masking bit of LDO5 80% threshold for target voltage  
0 = monitoring 80% threshold  
0
0
0
0
0
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
1 = masked 80% threshold  
Masking bit of LDO4 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Masking bit of LDO3 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Masking bit of LDO2 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Masking bit of LDO1 80% threshold for target voltage  
0 = monitoring 80% threshold  
1 = masked 80% threshold  
Following a VR Fault and an Emergency Shutdown sequence, BD71850MWV stays in READY state for a  
programmed time which is specified by RCVDT[3:0] of RCVCFG register. Power ON sequence is then  
initiated once RCVDT[3:0] time has elapsed.  
To prevent an infinite loop of VR Fault induced power cycles, BD71850MWV limits the number of attempts  
to recover the system by RCVLMT[3:0] of RCVCFG register when these failures occur. Once  
BD71850MWV has attempted to recover from a VR Fault for a number of times which is specified by  
RCVLMT[3:0], the next VR Fault results in BD71850MWV staying in EMG state until INTLDO1P5_UVLO =  
0.  
The ability to reset RCVNUM register which tracks the number of VR Fault recovery attempts via I2C is  
supported. This will allow the SoC to reset this count value when needed.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
39/116  
16.Mar.2020 Rev.002  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.10. VR Fault continued  
Table 3-28. RCVCFG - Recovery Configuration Register  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x4C  
Address  
0x25  
RCVLMT[3:0]  
RCVDT[3:0]  
RCVCFG  
R/W  
Bit  
Name  
Function  
Initial  
The limit number of attempts to recover the system after a VR Fault occurred.  
0000 = No recovery. BD71850MWV stays in EMG state until VSYS is triggered  
again.  
0001 = 1 time  
RCVLMT[3:0]  
0010 = 2 times  
0011 = 3 times  
0100 = 4 times  
:
0100  
D[7:4]  
1110 = 14 times  
1111 = No limit of attempts to recover  
The duration time during which BD71850MWV stays in READY state after a VR  
Fault event.  
BD71850MWV remains in READY state for the duration programmed here then  
BD71850MWV performs a Power ON sequence, if RCVLMT[3:0] is not 0x0 or 0xF  
and RCVLMT[3:0] is not equal to RCVNUM[3:0] of RCVNUMregister.  
0000 = 5 ms  
0001 = 10 ms  
0010 = 15 ms  
0011 = 20 ms  
0100 = 25 ms  
0101 = 30 ms  
0110 = 35 ms  
0111 = 40 ms  
1000 = 45 ms  
1001 = 50 ms  
1010 = 75 ms  
1011 = 100 ms  
1100 = 250 ms  
1101 = 500 ms  
1110 = 750 ms  
1111 = 1500 ms  
D[3:0]  
RCVDT[3:0]  
1100  
Table 3-29. RCVNUM - Recovery Number Register  
Register Name  
RCVNUM  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x26  
RCVNUM[3:0]  
-
-
-
Bit  
Name  
Function  
The number of attempts to recover the system after a VR Fault occurred.  
Once BD71850MWV has attempted to recover from a power failure times which is  
indicated in RCVLMT[3:0] in RCVCFG register, the next failure shall result in  
BD71850MWVstaying in EMG state until VSYS is triggered again.  
When SoC writes RCVNUM register via I2C, then RCVNUM[3:0] is cleared to 0000.  
As a result, the tracking number of power failure recoveryattempts is reset.  
Note : When RCVLMT[3:0] = 0xF (no limit of attempts to recover) and the number of  
attempt is over 0xF, RCVNUM[3:0] value is fixed to 0xF.  
Initial  
0000  
D[3:0]  
RCVNUM[3:0]  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
40/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.10. VR Fault continued  
Due to {RCVLMT == RCVNUM},  
Power ON does not occur and  
VR Fault occurred  
and shutdown.  
VR Fault occurred  
and shutdown.  
VR Fault occurred  
and shutdown.  
Power ON  
Power ON  
PMIC keeps EMG state  
VRs  
RCVLMT[3:0]  
RCVNUM[3:0]  
2
0
1
2
RCVDT[3:0] Increment by PMIC  
RCVDT[3:0] Increment by PMIC  
RCVDT[3:0]  
RVR_FAULT  
in RESETSRC  
Register  
0
1
0
1
0
1
Set by PMIC  
Cleared by SoCSet by PMIC  
Cleared by SoCSet by PMIC  
RUN  
READY  
SNVS, RUN  
READY  
SNVS, RUN  
EMG  
Power State  
EMG  
EMG  
Figure 3-14. Example of VR Fault and Recovery Sequence (RCVLMT[3:0] = 2)  
3.2.5.11. EMG to OFF  
Table 3-30 shows the conditions for shifting from EMG to OFF. If INTLDO1P5_UVLO = 0 after entry to EMG,  
the power state immediately goes to OFF as shown in Figure 3-15.  
Table 3-30. Conditions from EMG to OFF  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
Notes  
VSYS Voltage Low  
INTLDO1P5_UVLO = 0  
OFF  
2.7V  
VSYS  
0V  
1.35V  
INTLDO1P5  
0V  
VSYS_UVLO  
INTLDO1P5_UVLO  
Power State  
RUN  
EMG  
OFF  
0V  
0V  
All VRs  
Emergency  
Shutdown  
0V  
Figure 3-15. EMG to OFF Power State Transition  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
41/116  
 
BD71850MWV  
3.2.5.12. EMG to READY  
Table 3-31 shows the conditions for shifting from EMG to READY. Basically, the power state can exit EMG  
when no emergency events are found as shown in Figure 3-14, Figure 3-16, and Figure 3-17.  
Table 3-31. Conditions from EMG to READY  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
READY  
Notes  
VSYS_UVLO = 1  
Die Temperature < 150 ºC  
No OCP  
1) No Emergency  
Event  
No VR Fault  
VSYS_UVLO = 1  
2) VR Fault Recovery  
Attempt  
Die Temperature < 150 ºC  
During VR Fault RecoveryAttempt  
READY  
VSYS_UVLO  
Power State  
All VRs  
IDLE  
EMG  
0 V  
READY  
0 V  
Emergency  
Shutdown  
0 V  
Figure 3-16. EMG to READY Power State Transition (VSYS_UVLO)  
more than 3.0 V  
VSYS  
150 ºC  
Die Temperature  
Power State  
All VRs  
IDLE  
EMG  
READY  
0 V  
0 V  
Emergency  
Shutdown  
0 V  
Figure 3-17. EMG to READY Power State Transition (Die Temperature)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
42/116  
 
 
BD71850MWV  
3.2.5.13. EMG_STAY Condition  
Table 3-32 shows the conditions for staying at EMG. Basically, the power state stays at EMG when  
emergency events are found as shown in Figure 3-14, Figure 3-16, and Figure 3-17.  
Note: In case of 3) VR Fault Recovery Failure in Table 3-32; in order to exit EMG, VSYS voltage must be  
less than 2.7V and then the power state goes to OFF.  
Table 3-32. Conditions for Stay at EMG  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
Notes  
VSYS_UVLO = 0  
1) VSYS < 2.7 V  
EMG  
INTLDO1P5_UVLO = 1  
Die Temperature > 150 ºC  
INTLDO1P5_UVLO = 1  
2) Thermal Shutdown  
EMG  
EMG  
Thermal Protection  
VR Fault RecoveryAttempt Failed  
INTLDO1P5_UVLO = 1  
3) VR Fault Recovery  
Failure  
3.2.5.14. Warm Reset  
Warm Reset is executed when the power state = RUN, IDLE and SUSPEND.  
Warm Reset set POR_B = L for 1 ms as shown in Figure 3-18.  
Please refer to the Table 3-9 for necessary register setting.  
Power State  
WDOG_B  
RUN, IDLE or SUSPEND  
POR_B  
1 ms  
Figure 3-18. Warm Reset by WDOG_B  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
43/116  
BD71850MWV  
3.2.5.15. PWROFF  
Table 3-33 shows the conditions for shifting from RUN, IDLE, SUSPEND to PWROFF.  
When the power state is PWROFF, BD71850MWV runs Power OFF sequence and VRs are turned OFF in  
a defined sequential order.  
In the end of the sequence, the on-off state of C32K_OUT, RTC_RESET_B, LDO2 and LDO1 depends on  
the setting of TRANS_COND1 register as shown in Table 3-34. The summary is shown in Table 3-35.  
Table 3-33. Conditions from RUN, IDLE, SUSPEND to PWROFF  
Conditions  
(All must be satisfied per Event Trigger)  
Event Trigger  
Next State  
Notes  
1) PWRON_B Long  
Push  
PWRON_B = 0 ==> Long Push Detection  
PWROFF  
COLD_RESET event  
2) WDOG_B  
WDOG_B = 0  
Write 1 to SWRESET in SWRESET register  
PMIC_ON_REQ = 0  
PWROFF  
PWROFF  
PWROFF  
COLD_RESET event  
COLD_RESET event  
3) Software Reset  
4) PMIC_ON_REQ  
(Note) Die Temperature must be less than 150 ºC. VSYS_UVLO = 1.  
Table 3-34. TRANS_COND1 - Transition Condition Select 1 Register  
Register Name  
TRANS_COND1  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0xC0  
Address  
0x20  
PWRON_  
WDOG_  
SWRST_  
ON_REQ_  
PONT[3:0]  
POFF_TO_ POFF_TO_ POFF_TO_ POFF_TO_  
READY READY READY READY  
Bit  
Name  
Function  
Initial  
COLD RESET duration during which the BD71850MWV stays in READY or SNVS in  
a COLD RESET event.  
The BD71850MWV remains in READY or SNVS for the duration programmed here  
then BD71850MWVperforms a Power ON sequence.  
0000 = 5 ms  
0001 = 10 ms  
0010 = 15 ms  
0011 = 20 ms  
0100 = 25 ms  
0101 = 30 ms  
PONT[3:0]  
0110 = 35 ms  
1100  
D[7:4]  
0111 = 40 ms  
1000 = 45 ms  
1001 = 50 ms  
1010 = 75 ms  
1011 = 100 ms  
1100 = 250 ms  
1101 = 500 ms  
1110 = 750 ms  
1111 = 1500 ms  
Set which power state to go after PWROFF triggered byPWRON_B Long Push  
0 = to SNVS  
1 = to READY  
PWRON_  
POFF_TO_READY  
0
D[3]  
Set which power state to go after PWROFF triggered byWDOG_B = 0  
0 = to SNVS  
1 = to READY  
WDOG_  
POFF_TO_READY  
D[2]  
D[1]  
D[0]  
0
0
0
Set which power state to go after PWROFF triggered bySoftware Reset  
0 = to SNVS  
1 = to READY  
SWRST_  
POFF_TO_READY  
Set which power state to go after PWROFF triggered byPMIC_ON_REQ = 0  
0 = to SNVS  
1 = to READY  
ON_REQ_  
POFF_TO_READY  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
44/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.15. PWROFF continued  
more than 3.0 V  
VSYS  
VRs  
RUN/SNVS  
(Power On Sequence)  
PWROFF  
(Power Off Sequence)  
SNVS/  
READY  
SNVS/READY  
(POW_SUB[1:0]=11)  
Power State  
PONT[3:0] in  
TRANS_COND1 register  
Figure 3-19. Cold Reset Duration Time set by PONT[3:0]  
Table 3-35. VR Summary After Power OFF Sequence  
PWRON_  
WDOG_  
SWRST_  
ON_REQ_  
C32K_  
OUT  
RTC_  
RESET_B  
PWROFF trigger  
POFF_TO_ POFF_TO_ POFF_TO_ POFF_TO_  
READY  
LDO2  
LDO1  
READY  
READY  
READY  
0
1
-
-
-
-
-
-
-
On  
Off  
On  
Off  
On  
Off  
On  
Off  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
PWRON_B Long Push  
WDOG_B = 0  
0
1
-
-
-
-
-
-
-
0
1
-
-
Software Reset  
-
-
-
-
-
0
1
PMIC_ON_REQ = 0  
-
-
-
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
45/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.16. PWROFF to READY  
After the completion of Power OFF sequence, the power state goes READY if the POFF_TO_READY = 1.  
This is in accordance with PWROFF trigger event in the TRANS_COND1 register.  
3.2.5.17. PWROFF to SNVS  
After the completion of Power OFF sequence, the power state goes SNVS if the POFF_TO_READY = 0.  
This is in accordance with PWROFF trigger event in the TRANS_COND1 register.  
3.2.5.18. PWRON_B Functionality  
The system has a button that can be used for triggering the system to power on or off. PWRON_B is an  
active-low input to BD71850MWV. Timer circuitry measures the length of time the button is pressed. Then  
the timer detects short push and long push events.  
VSYS  
BD71850MWV  
IRQ_B  
IRQ  
Control  
Short Push  
Long Push  
PWRON_B  
Debouncer  
Edge  
Detector  
Timer  
Power  
State  
Machine  
Power Button  
STAT_PWRON  
IN_MON  
PWRONCONFIG0  
PBDBNCT  
SHORTT  
PWRONCONFIG1  
LONGT  
Figure 3-20. Power Button Block Diagram  
Table 3-36. PWRONCONFIG0 - PWRON_B Configuration 0 Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x16  
Address  
0x27  
PBDBNCT[1:0]  
SHORTT[3:0]  
PWRONCONFIG0  
-
-
Bit  
Name  
PBDBNCT[1:0]  
Function  
PWRON_B Input Pin Debounce Time  
Initial  
01  
D[5:4]  
00 = 10 ms 01 = 30 ms(default) 10 = 60 ms 11 = 100 ms  
Short Push Timer :  
0000 = 10 ms  
0001 = 0.5 s  
0010 = 1.0 s  
0011 = 1.5 s  
0100 = 2.0 s  
0101 = 2.5 s  
0110 = 3.0 s (default)  
0111 = 3.5 s  
1000 = 4.0 s  
1001 = 4.5 s  
1010 = 5.0 s  
1011 = 5.5 s  
1100 = 6.0 s  
1101 = 6.5 s  
1110 = 7.0 s  
1111 = 7.5 s  
SHORTT[3:0]  
0110  
D[3:0]  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
46/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.2.5.18. PWRON_B Functionality continued  
Table 3-37. PWRONCONFIG1 - PWRON_B Configuration 1 Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x28  
LONGT[3:0]  
PWRONCONFIG1  
-
-
-
-
Bit  
Name  
Function  
Initial  
Long Push Timer :  
0000 = 10 ms (default)  
0001 = 1 s  
0010 = 2 s  
0011 = 3 s  
0100 = 4 s  
0101 = 5 s  
0110 = 6 s  
LONGT[3:0]  
0111 = 7 s  
0000  
D[3:0]  
1000 = 8 s  
1001 = 9 s  
1010 = 10 s  
1011 = 11 s  
1100 = 12 s  
1101 = 13 s  
1110 = 14 s  
1111 = 15 s  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
47/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3. Power Sequence  
3.3.1. Power ON Sequence  
Figure 3-21 shows an example when TRANS_COND0 = 0x48, which are:  
READY to SNVS condition: VSYS_UVLO = 1  
SNVS to RUN condition: PMIC_ON_REQ  
Power State  
VSYS  
OFF  
READY  
SNVS  
RUN  
3.0 V  
0
V
INTLDO1P5  
0
V
VSYS_UVLO  
(PMIC Internal)  
LDO1 (1.8 V)  
(NVCC_SNVS)  
t0  
LDO2 (0.8 V)  
(VDD_SNVS)  
t1  
RTC clock  
(PMIC Internal)  
Stop  
RTC_RESET_B  
(PMIC -> SOC)  
t2  
C32K_OUT  
(PMIC -> SOC)  
t3  
Stop  
PMIC_ON_REQ  
(SOC -> PMIC)  
PMIC internal ON  
signal  
Masked to L  
Masked to L  
t15  
PMIC_STBY_REQ  
(SOC -> PMIC)  
L
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
t4  
BUCK5 (0.9 V)  
LDO4 (0.9 V)  
OFF  
OFF  
t7  
BUCK2 (0.9 V)  
(VDD_ARM)  
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t9  
BUCK7 (1.8 V)  
(NVCC_1V8)  
t10  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
t11  
BUCK6 (3.3 V)  
(NVCC_3V3)  
t12  
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
t13  
POR_B  
(PMIC -> SOC)  
t14  
WDOG_B  
(SOC -> PMIC)  
Masked to H  
LDO5 is turned on by Software  
LDO5 (3.3 V)  
OFF  
Figure 3-21. Power ON Sequence  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
48/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.1. Power ON Sequence continued  
Table 3-38. Power ON Sequence Timing Specification  
Symbol  
Description  
Min  
0
Typ  
20  
Max  
22  
Unit  
ms  
ms  
ms  
μs  
t0  
t1  
t2  
t3  
t4  
VSYS = 3.0 Vto LDO1 Assert Delay  
LDO1 Assert to LDO2 Assert Delay  
0
2.0  
10  
2.4  
LDO2 Assert to RTC_RESET_B De-assert Delay  
RTC_RESET_B De-assert to C32K_OUT Output Delay  
PMIC_ON_REQ Assert to BUCK1 Assert Delay  
BUCK1 Assert to BUCK2 Assert Delay  
BUCK1 Assert to LDO3 Assert Delay  
0
12  
0
40  
90  
0
0.20  
12.49  
ms  
t7  
0
4.0  
4.8  
ms  
t9  
LDO3 Assert to BUCK7 Assert Delay  
0
0
0
0
0
0
2.0  
2.0  
2.0  
2.0  
20  
2.4  
2.4  
2.4  
2.4  
22  
ms  
ms  
ms  
ms  
ms  
ms  
t10  
t11  
t12  
t13  
t14  
BUCK7 Assert to BUCK8 Assert Delay  
BUCK8 Assert to BUCK6 Assert Delay  
BUCK6 Assert to LDO6 Assert Delay  
LDO6 Assert to POR_B De-assert Delay  
POR_B De-assert to WDOG_B Internal Mask Disabled  
10  
12  
POR_B De-assert to PMIC_STBY_REQ Internal Mask  
Disabled  
t15  
0
10  
12  
ms  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
49/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.2. Power OFF Sequence  
Figure 3-22 shows an example when triggered by PMIC_ON_REQ when ON_REQ_POFF_TO_READY = 0 in  
TRANS_COND1 register.  
Power State  
VSYS  
RUN  
PWROFF  
SNVS  
H
H
INTLDO1P5  
VSYS_UVLO  
(PMIC Internal)  
RTC clock  
(PMIC Internal)  
PMIC_ON_REQ  
(SOC -> PMIC)  
PMIC_STBY_REQ  
(SOC -> PMIC)  
L
WDOG_B  
(SOC -> PMIC)  
Masked to H  
POR_B  
(PMIC -> SOC)  
t0  
LDO5 (3.3 V)  
OFF  
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
t2  
BUCK6 (3.3 V)  
(NVCC_3V3)  
t3  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
t4  
BUCK7 (1.8 V)  
(NVCC_1V8)  
t5  
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t6  
BUCK2 (0.9 V)  
(VDD_ARM)  
t7  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
t10  
C32K_OUT  
(PMIC -> SOC)  
RTC_RESET_B  
H
(PMIC -> SOC)  
0.8 V  
LDO2 (0.8 V)  
(VDD_SNVS)  
LDO1 (1.8 V)  
1.8 V  
(NVCC_SNVS)  
Figure 3-22. Power OFF Sequence (To SNVS)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
50/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.2. Power OFF Sequence continued  
Table 3-39. Power OFF Sequence Timing Specification (To SNVS)  
Symbol  
Description  
Min  
0
Typ  
120  
40  
Max  
200  
48  
Unit  
μs  
t0  
t2  
PMIC_ON_REQ De-assert to POR_B Assert Delay  
POR_B De-assert to LDO6 De-assert Delay  
LDO6 De-assert to BUCK6 De-assert Delay  
BUCK6 De-assert to BUCK8 De-assert Delay  
BUCK8 De-assert to BUCK7 De-assert Delay  
BUCK7 De-assert to LDO3 De-assert Delay  
LDO3 De-assert to BUCK2 De-assert Delay  
BUCK2 De-assert to BUCK1 De-assert Delay  
0
ms  
ms  
ms  
ms  
ms  
ms  
ms  
t3  
0
10  
12  
t4  
0
10  
12  
t5  
0
10  
12  
t6  
0
10  
12  
t7  
0
10  
12  
t10  
0
30  
36  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
51/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.2. Power OFF Sequence continued  
Figure 3-23 shows an example when triggered by PMIC_ON_REQ when ON_REQ_POFF_TO_READY = 1 in  
TRANS_COND1 register.  
Power State  
VSYS  
RUN  
PWROFF  
READY  
H
H
INTLDO1P5  
VSYS_UVLO  
(PMIC Internal)  
RTC clock  
(PMIC Internal)  
PMIC_ON_REQ  
(SOC -> PMIC)  
PMIC_STBY_REQ  
(SOC -> PMIC)  
L
WDOG_B  
(SOC -> PMIC)  
Masked to H  
POR_B  
(PMIC -> SOC)  
t0  
LDO5 (3.3 V)  
OFF  
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
t2  
BUCK6 (3.3 V)  
(NVCC_3V3)  
t3  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
t4  
BUCK7 (1.8 V)  
(NVCC_1V8)  
t5  
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t6  
BUCK2 (0.9 V)  
(VDD_ARM)  
t7  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
t11  
t10  
C32K_OUT  
(PMIC -> SOC)  
t12  
RTC_RESET_B  
(PMIC -> SOC)  
H
t13  
LDO2 (0.8 V)  
(VDD_SNVS)  
0.8 V  
1.8 V  
LDO1 (1.8 V)  
(NVCC_SNVS)  
t14  
Figure 3-23. Power OFF Sequence (To READY)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
52/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.2. Power OFF Sequence continued  
Table 3-40. Power OFF Sequence Timing Specification (To READY)  
Symbol  
Description  
Min  
0
Typ  
120  
40  
10  
10  
10  
10  
10  
30  
10  
10  
10  
10  
Max  
200  
48  
12  
12  
12  
12  
12  
36  
12  
12  
12  
12  
Unit  
μs  
t0  
t2  
PMIC_ON_REQ De-assert to POR_B Assert Delay  
POR_B De-assert to LDO6 De-assert Delay  
LDO6 De-assert to BUCK6 De-assert Delay  
BUCK6 De-assert to BUCK8 De-assert Delay  
BUCK8 De-assert to BUCK7 De-assert Delay  
BUCK7 De-assert to LDO3 De-assert Delay  
LDO3 De-assert to BUCK2 De-assert Delay  
BUCK2 De-assert to BUCK1 De-assert Delay  
BUCK1 De-assert to C32K_OUT Output Stop Delay  
C32K_OUT Output Stop to RTC_RESET_B Assert Delay  
RTC_RESET_B Assert to LDO2 De-assert Delay  
LDO2 De-assert to LDO1 De-assert Delay  
0
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
t3  
0
t4  
0
t5  
0
t6  
0
t7  
0
t10  
t11  
t12  
t13  
t14  
0
0
0
0
0
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
53/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.3. RUN to IDLE  
Power State  
RUN  
IDLE  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
PMIC_ON_REQ  
(SOC -> PMIC)  
H
PMIC_STBY_REQ  
(SOC -> PMIC)  
L
WDOG_B  
H
(SOC -> PMIC)  
POR_B  
H
(PMIC -> SOC)  
I2C Interface  
(SOC -> PMIC)  
Write 1 to IDLE_MODE in  
PWRCTRL1 register  
LDO5 (3.3 V)  
OFF  
LDO6 (1.2 V)  
1.2  
V
(VDD_PHY_1V2)  
3.3 V  
BUCK6 (3.3 V)  
(NVCC_3V3)  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
1.1  
V
BUCK7 (1.8 V)  
(NVCC_1V8)  
1.8  
1.8  
V
V
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t0  
Voltage specified by BUCK2_VOLT_RUN[6:0]  
Voltage specified by BUCK2_VOLT_IDLE[6:0]  
0.9  
V
BUCK2 (0.9 V)  
(VDD_ARM)  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
t1  
Voltage specified by BUCK1_VOLT_IDLE[6:0]  
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
0.8  
0.8  
1.8  
V
V
V
LDO2 (0.8 V)  
(VDD_SNVS)  
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-24. RUN to IDLE  
Table 3-41. RUN to IDLE Timing Specification  
Symbol  
Description  
Min  
0
Typ  
120  
120  
Max  
200  
200  
Unit  
μs  
t0  
t1  
End of I2C Access to BUCK2 Voltage Change Start  
BUCK2 to BUCK1 Voltage Change Delay  
0
μs  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
54/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.4. IDLE to RUN  
Power State  
IDLE  
RUN  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
PMIC_ON_REQ  
(SOC -> PMIC)  
H
H
H
H
PMIC_STBY_REQ  
(SOC -> PMIC)  
WDOG_B  
(SOC -> PMIC)  
POR_B  
(PMIC -> SOC)  
I2C Interface  
(SOC -> PMIC)  
Write 0 to IDLE_MODE in  
PWRCTRL1 register  
LDO5 (3.3 V)  
OFF  
1.2  
V
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
BUCK6 (3.3 V)  
(NVCC_3V3)  
3.3 V  
1.1  
V
BUCK8 (1.1 V)  
(NVCC_DRAM)  
BUCK7 (1.8 V)  
(NVCC_1V8)  
1.8  
1.8  
V
V
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t1  
0.9V = Voltage specified by BUCK2_VOLT_RUN[6:0]  
BUCK2 (0.9 V)  
(VDD_ARM)  
Voltage specified by BUCK2_VOLT_IDLE[6:0]  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
t0  
BUCK1 (0.8 V)  
Voltage specified by BUCK1_VOLT_IDLE[6:0]  
0.8V = Voltage specified by BUCK1_VOLT_RUN[6:0]  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
LDO2 (0.8 V)  
(VDD_SNVS)  
0.8  
1.8  
V
V
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-25. IDLE to RUN  
Table 3-42. IDLE to RUN Timing Specification  
Symbol  
Description  
Min  
0
Typ  
120  
120  
Max  
200  
200  
Unit  
μs  
t0  
t1  
End of I2C Access to BUCK1 Voltage Change Start  
BUCK1 to BUCK2 Voltage Change Delay  
0
μs  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
55/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.5. RUN to SUSPEND  
Power State  
RUN  
SUSPEND  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
PMIC_ON_REQ  
(SOC -> PMIC)  
H
PMIC_STBY_REQ  
(SOC -> PMIC)  
H
WDOG_B  
(SOC -> PMIC)  
H
H
POR_B  
(PMIC -> SOC)  
LDO5 (3.3 V)  
OFF  
1.2  
V
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
3.3 V  
1.1 V  
1.8 V  
BUCK6 (3.3 V)  
(NVCC_3V3)  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
BUCK7 (1.8 V)  
(NVCC_1V8)  
1.8  
0.9  
V
V
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
BUCK2 (0.9 V)  
(VDD_ARM)  
0 V (OFF)  
t0  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
0.8  
0.8  
1.8  
V
V
V
Voltage specified by BUCK1_VOLT_SUSP[6:0]  
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
t2  
LDO2 (0.8 V)  
(VDD_SNVS)  
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-26. RUN to SUSPEND  
Table 3-43. RUN to SUSPEND Timing Specification  
Symbol  
Description  
Min  
0
Typ  
120  
20  
Max  
200  
24  
Unit  
μs  
t0  
t2  
PMIC_STBY_REQ High to BUCK2 De-assert Delay  
BUCK2 to BUCK1 Voltage Change Delay  
0
ms  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
56/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.6. SUSPEND to RUN  
Power State  
SUSPEND  
RUN  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
PMIC_ON_REQ  
(SOC -> PMIC)  
H
H
H
H
PMIC_STBY_REQ  
(SOC -> PMIC)  
WDOG_B  
(SOC -> PMIC)  
POR_B  
(PMIC -> SOC)  
LDO5 (3.3 V)  
OFF  
1.2  
V
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
3.3 V  
1.1 V  
1.8 V  
BUCK6 (3.3 V)  
(NVCC_3V3)  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
BUCK7 (1.8 V)  
(NVCC_1V8)  
1.8  
V
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
BUCK2 (0.9 V)  
0.9  
V
t2  
(VDD_ARM)  
0 V (OFF)  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
t0  
BUCK1 (0.8 V)  
Voltage specified by BUCK1_VOLT_RUN[6:0]  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
Voltage specified by BUCK1_VOLT_SUSP[6:0]  
0.8  
V
LDO2 (0.8 V)  
(VDD_SNVS)  
1.8  
V
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-27. SUSPEND to RUN  
Table 3-44. SUSPEND to RUN Timing Specification  
Symbol  
Description  
Min  
0
Typ  
120  
2.0  
Max  
200  
2.4  
Unit  
μs  
t0  
t2  
PMIC_STBY_REQ Low to BUCK1 Voltage Change Start  
BUCK1 to BUCK2 Voltage Change Delay  
0
ms  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
57/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.7. IDLE to SUSPEND  
Power State  
IDLE  
SUSPEND  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
PMIC_ON_REQ  
(SOC -> PMIC)  
H
L
PMIC_STBY_REQ  
(SOC -> PMIC)  
IDLE_MODE in  
PWRCTRL1  
Automatically return to 0 when exiting IDLE  
(PMIC Internal)  
WDOG_B  
(SOC -> PMIC)  
H
H
POR_B  
(PMIC -> SOC)  
LDO5 (3.3 V)  
OFF  
1.2  
V
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
3.3  
V
V
V
V
BUCK6 (3.3 V)  
(NVCC_3V3)  
1.1  
1.8  
1.8  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
BUCK7 (1.8 V)  
(NVCC_1V8)  
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
t0  
BUCK2 (0.9 V)  
(VDD_ARM)  
Voltage specified by BUCK2_VOLT_IDLE[6:0]  
0
V (OFF)  
LDO4 (0.9 V)  
OFF  
BUCK5 (0.9 V)  
OFF  
BUCK1 (0.8 V)  
Voltage specified by BUCK1_VOLT_IDLE[6:0]  
Voltage specified by BUCK1_VOLT_SUSP[6:0]  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
t2  
0.8 V  
LDO2 (0.8 V)  
(VDD_SNVS)  
1.8  
V
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-28. IDLE to SUSPEND  
Table 3-45. IDLE to SUSPEND Timing Specification  
Symbol  
Description  
Min  
0
Typ  
120  
20  
Max  
200  
24  
Unit  
μs  
t0  
t2  
PMIC_STBY_REQ High to BUCK2 De-assert Delay  
BUCK2 to BUCK1 Voltage Change Delay  
0
ms  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
58/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.8. Emergency Shutdown  
Power State  
VSYS  
Any State except OFF and READY  
EMG  
H
H
INTLDO1P5  
VSYS_UVLO  
(PMIC Internal)  
RTC clock  
(PMIC Internal)  
RTC_RESET_B  
H
(PMIC -> SOC)  
C32K_OUT  
(PMIC -> SOC)  
Thermal Shutdown Event occurs.  
Emergency  
Event  
When Power State = RUN, IDLE and SUSPEND  
When Power State = SNVS  
POR_B  
(PMIC -> SOC)  
t0  
LDO5 (3.3 V)  
LDO6 (1.2 V)  
(VDD_PHY_1V2)  
BUCK6 (3.3 V)  
(NVCC_3V3)  
BUCK8 (1.1 V)  
(NVCC_DRAM)  
BUCK7 (1.8 V)  
(NVCC_1V8)  
t1  
LDO3 (1.8 V)  
(VDDA_1V8,VDDA_DRAM)  
BUCK2 (0.9 V)  
(VDD_ARM)  
LDO4 (0.9 V)  
OFF  
OFF  
BUCK5 (0.9 V)  
BUCK1 (0.8 V)  
(VDD_SOC,VDDA_0V8,PHY_0V8)  
LDO2 (0.8 V)  
(VDD_SNVS)  
LDO1 (1.8 V)  
(NVCC_SNVS)  
Figure 3-29. Emergency Shutdown  
Table 3-46. Emergency Shutdown Timing Specification  
Symbol  
Description  
Min  
Typ  
120  
30  
Max  
200  
35  
Unit  
μs  
EmergencyEvent to POR_B Assert and  
All VRs Except BUCK7 De-assert Delay  
t0  
t1  
0
POR_B Assert to BUCK7 De-assert Delay  
0
ms  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
59/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.9. Warm Reset  
I2C Write Access for SWRESET = 1  
SDA D0 ACK  
STOP  
SCL  
t1  
POR_B  
t0  
Figure 3-30. Warm Reset (SWRESET)  
Table 3-47. Warm Reset (SWRESET) Timing Specification  
Symbol  
Description  
Min  
-
Typ  
-
Max  
1.0  
Unit  
μs  
t0  
t1  
SCL rising to POR_B assert delay  
POR_B assert duration time  
0.95  
1.00  
1.05  
ms  
t0  
Including debouncetime = 100μs  
WDOG_B  
POR_B  
t1  
Figure 3-31. Warm Reset (WDOG_B)  
Table 3-48. Warm Reset (WDOG_B) Timing Specification  
Symbol  
Description  
Min  
100  
0.95  
Typ  
110  
1.00  
Max  
120  
1.05  
Unit  
μs  
t0  
t1  
WDOG_B falling to POR_B assert delay  
POR_B assert duration time  
ms  
t0  
PWRON_B  
t1  
Figure 3-32. Warm Reset (PWRON_B Long Push)  
Table 3-49. Warm Reset (PWRON_B Long Push) Timing Specification  
POR_B  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
PBDBNCT[1:0] in  
PWRONCONFIG0  
+ LONGT[3:0] in  
PWRONCONFIG1  
-50  
PBDBNCT[1:0] in  
PWRONCONFIG0  
+ LONGT[3:0] in  
PWRONCONFIG1  
+50  
PBDBNCT[1:0] in  
PWRONCONFIG0  
+ LONGT[3:0] in  
PWRONCONFIG1  
t0  
PWRON_B falling to POR_B assert delay  
POR_B assert duration time  
ms  
ms  
t1  
0.95  
1.00  
1.05  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
60/116  
TSZ22111 • 15 • 001  
BD71850MWV  
3.3.10.Reset Source Indicators  
The BD71850MWV has RESETSRC register which is intended to store the cause of a shutdown or reset, the firmware  
reads this data on the next startup. Depending on the cause of a shutdown or reset, the only bit of RESETSRC register  
is 1.  
Table 3-50. RESETSRC - Reset Source Indicator Register  
Register Name  
RESETSRC  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x29  
RPMIC_ON_  
REQ  
RPWRON  
RWDOG  
RSWRST  
RVSYS_2P7  
RTEMP  
ROCP  
RVR_FAULT  
Bit  
Name  
Function  
Initial  
0
0 = Default  
D[7]  
RPWRON  
1 = Previous shutdown was due to the PWRON_B Long Push Cold Reset  
(Write-1-clear bit)  
0 = Default  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
RWDOG  
1 = Previous shutdown was due to the WDOG_B Cold Reset  
(Write-1-clear bit)  
0
0
0
0
0
0
0
0 = Default  
RSWRST  
1 = Previous shutdown was due to the Software Cold Reset  
(Write-1-clear bit)  
0 = Default  
RPMIC_ON_REQ  
RVSYS_2P7  
RTEMP  
1 = Previous shutdown was due to the PMIC_ON_REQ = 0  
(Write-1-clear bit)  
0 = Default  
1 = Previous shutdown was due to the EmergencyVSYS < 2.7V  
(Write-1-clear bit)  
0 = Default  
1 = Previous shutdown was due to the EmergencyThermal Shutdown  
(Write-1-clear bit)  
0 = Default  
ROCP  
1 = Previous shutdown was due to the EmergencyOCP  
(Write-1-clear bit)  
0 = Default  
RVR_FAULT  
1 = Previous shutdown was due to the EmergencyVR Fault  
(Write-1-clear bit)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
61/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4. I2C and Interrupt  
4.1. I2C Bus Interface  
4.1.1. I2C Bus Interface Overview  
I2C access is not permitted when the power state = READY.  
DVDD  
DVDD  
[Internal Logic Circuit]  
I2C slave controller  
DVDD  
DVDD  
SCL  
SDA  
Spike Filter  
Spike Filter  
GND  
Figure 4-1. I2C (Slave) Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
62/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4.1.2. I2C Bus Interface Electrical Characteristics  
Table 4-1. I2C Bus Interface DC Electrical Characteristics  
(Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Typ  
Parameter  
Symbol  
Unit  
Condition  
Min  
Max  
Digital pin characteristics – Input (SCL)  
SCL  
Input "H" Level  
SCL  
Input "L" Level  
SCL  
Input Hysteresis  
SCL  
Input Leak Current(Input=0 V)  
SCL  
Input Leak Current(Input=5.5 V)  
DVDD  
x0.7  
DVDD  
+ 0.3  
DVDD  
x0.3  
V
-
-
-
-
-
V
V
IH_SCL  
V
-0.3  
0.1  
-1  
IL_SCL  
V
-
V
IHYS_SCL  
IOFF1_SCL  
+1  
+1  
μA  
μA  
IOFF2_SCL  
-1  
Digital pin characteristics – Input (SDA)  
SDA  
Input "H" Level  
SDA  
Input "L" Level  
SDA  
Input Hysteresis  
SDA  
Input Leak Current(Input=0 V)  
SDA  
Input Leak Current(Input=5.5 V)  
DVDD  
x0.7  
DVDD  
+ 0.3  
DVDD  
x0.3  
V
-
-
-
-
-
V
V
IH_SDA  
V
-0.3  
0.1  
-1  
IL_SDA  
V
-
V
IHYS_SDA  
IOFF1_SDA  
+1  
+1  
μA  
μA  
IOFF2_SDA  
-1  
Digital pin characteristics - Output (SDA)  
SDA  
VOL_SDA  
-
-
-
-
0.4  
+1  
+1  
V
IOL=6mA  
Output "L" Level Voltage  
Output Off Leak Current(Input=0  
V)  
Output Off Leak  
Current(Input=5.5 V)  
IOFF3_SDA  
-1  
-1  
μA  
μA  
IOFF4_SDA  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
63/116  
BD71850MWV  
4.1.2. I2C Bus Interface Electrical Characteristics continued  
Table 4-2. I2C Bus Interface AC Timing - Fast Mode  
(Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V)  
Fast mode  
Fast mode plus  
Parameter  
Symbol  
Unit  
Min  
0
Typ  
Max  
Min  
0
Typ  
Max  
I2C_CLK Clock Frequency  
Hold Time START Condition  
LOW Period of I2C_CLK Clock  
fSCL  
tHD_STA  
tLOW  
-
-
-
-
400  
-
-
-
-
1000  
kHz  
μs  
0.60  
1.3  
0.60  
-
-
-
0.26  
0.5  
0.26  
-
-
-
μs  
HIGH Period of I2C_CLK Clock  
Set-up Time for a Repeated START  
Condition  
tHIGH  
μs  
tSU_STA  
0.60  
-
-
0.26  
-
-
μs  
Data Hold Time  
tHD_DAT  
tSU_DAT  
tSU_STO  
tF  
0
100  
0.60  
20  
-
-
-
-
-
0
50  
0.26  
-
-
-
-
-
-
-
-
ns  
ns  
μs  
ns  
pF  
Data Set-up Time  
Set-up Time for STOP Condition  
Fall Time of I2C_DATASignal  
-
-
300  
400  
120  
550  
Capacitive Load for Each Bus Line  
Pulse Width of Spikes that are  
Suppressed bythe Input Filter  
Bus Free Time  
CB  
-
-
-
-
tSP  
0
50  
0
-
50  
ns  
tBUF  
1.3  
-
-
-
-
0.5  
-
-
-
-
μs  
μs  
μs  
Data Valid Time  
tVD_DAT  
tVD_ACK  
-
-
0.90  
0.90  
-
-
0.45  
0.45  
Data Valid Acknowledge Time  
tF  
tR  
tSU_DAT  
70%  
30%  
SDA  
SCL  
tF  
tVD_DAT  
70%  
30%  
tHD_DAT  
tHD_STA  
1 / fSCL  
tLOW  
tR  
tHIGH  
S
tBUF  
70%  
30%  
SDA  
SCL  
tSU_STA  
tHD_STA  
tSU_STO  
tSP  
tVD_ACK  
70%  
30%  
Sr  
P
S
Figure 4-2. I2C Bus Interface AC Timing  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
64/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4.1.3. Device Addressing  
Table 4-3. I2C_DEV - I2C Device Address Indicator Register  
Register Name  
I2C_DEV  
R/W  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x03  
Address  
0x02  
I2C_DEV_ADRS[1:0]  
-
-
-
-
-
-
Bit  
Name  
Function  
Initial  
00 = I2C 7 bit Device Address = 0x48  
01 = I2C 7 bit Device Address = 0x49  
10 = I2C 7 bit Device Address = 0x4A  
11 = I2C 7 bit Device Address = 0x4B  
I2C_DEV_ADRS[1:0]  
11  
D[1:0]  
I2C Device Address  
Read / Write instruction bit  
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
R / W  
LSB  
MSB  
1
R / W  
LSB  
MSB  
1
R / W  
LSB  
MSB  
1
R / W  
LSB  
a
MSB  
I2C Device Address is decided byOTP setting.  
Figure 4-3. I2C Device Addressing  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
65/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4.1.4. Write / Read Operation  
Write single register  
7-bit Device  
8-bit Data  
(Reg. Address)  
8-bit Data  
(Write Data)  
S
W
Ack  
Ack  
Ack  
P
Address  
Write multiple registers (Address Auto-Increment)  
7-bit Device  
Address  
8-bit Data  
(Reg. Address)  
8-bit Data  
(Write Data #1)  
8-bit Data  
(Write Data #1)  
S
W
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
8-bit Data  
(Write Data #2)  
8-bit Data  
(Write Data #3)  
8-bit Data  
(Write Data #N)  
Ack  
P
Read single register  
7-bit Device  
Address  
8-bit Data  
(Reg. Address)  
7-bit Device  
Address  
8-bit Data  
(Read Data)  
S
W
Ack  
Ack  
Sr  
R
Ack  
NAck  
P
Read multiple registers (Address Auto-Increment)  
7-bit Device  
Address  
8-bit Data  
(Reg. Address)  
7-bit Device  
Address  
8-bit Data  
(Read Data #1)  
S
W
Ack  
Ack  
Ack  
Sr  
R
Ack  
Ack  
Ack  
8-bit Data  
(Read Data #2)  
8-bit Data  
(Read Data #3)  
8-bit Data  
(Read Data #N)  
Ack  
NAck  
P
S
Start Condition  
Sr Repeat Start Condition  
P
Stop Condition  
W
Write (= Low)  
R
Read (= High)  
Ack Acknowledge (= Low, driven by I2C Slave)  
Ack Acknowledge (= Low, driven by I2C Master)  
NAck Not Acknowledge (= High, driven by I2C Master)  
Figure 4-4. I2C Write / Read Operation  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
66/116  
BD71850MWV  
4.2. Interrupt  
4.2.1. Interrupt Overview  
Table 4-4. Interrupt Event  
Definition  
PWRON_B Pin Level Changed  
IRQ Event  
PWRON  
PWRON_S  
PWRON_L  
WDOG  
PWRON_B Short Push Detection  
PWRON_B Long Push Detection  
WDOG_B Pin Level Changed  
SWRST  
ON_REQ  
STBY_REQ  
Written 1 to SWRESET in SWRESET Register  
PMIC_ON_REQ Pin Level Changed  
PMIC_STBY_REQ Pin Level Changed  
Write 1 Clear  
Mask bit from  
MIRQ register  
IRQ_B  
RN  
D
Q
IRQ Event  
CP  
to IRQ register  
Figure 4-5. IRQ_B Architecture Block Diagram  
Table 4-5. IRQ_B Electrical Characteristics  
(Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Typ  
Max  
DVDD x0.2  
+1  
Output "L" Level Voltage  
Output Off Leak Current  
VOL_IRQB  
IOLK_IRQB  
-
-
V
IOL=3 mASink  
-1  
μA  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
67/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4.2.1. Interrupt Overview continued  
Table 4-6. IRQ - Interrupt Register  
Register Name  
IRQ  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x2B  
SWRST  
PWRON_S PWRON_L  
PWRON  
WDOG  
ON_REQ STBY_REQ  
Bit  
Name  
Function  
Initial  
0 = SWRESET in SWRESET register is not written 1  
1 = SWRESET in SWRESET register is written 1  
This bit is a write-1-to-clear bit.  
SWRST  
PWRON_S  
PWRON_L  
PWRON  
0
0
0
0
0
0
0
D[6]  
0 = PWRON_B Short Push not detected  
1 = PWRON_B Short Push detected  
This bit is a write-1-to-clear bit.  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0 = PWRON_B Long Push not detected  
1 = PWRON_B Long Push detected  
This bit is a write-1-to-clear bit.  
0 = PWRON_B level change not generated  
1 = PWRON_B level change generated  
This bit is a write-1-to-clear bit.  
0 = WDOG_B level change not generated  
1 = WDOG_B level change generated  
This bit is a write-1-to-clear bit.  
WDOG  
0 = PMIC_ON_REQ level change not generated  
1 = PMIC_ON_REQ level change generated  
This bit is a write-1-to-clear bit.  
ON_REQ  
STBY_REQ  
0 = PMIC_STBY_REQ level change not generated  
1 = PMIC_STBY_REQ level change generated  
This bit is a write-1-to-clear bit.  
Table 4-7. MIRQ IRQ Mask Register  
Register Name  
MIRQ  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x7F  
Address  
0x2A  
MPWRON_ MPWRON_  
MSTBY_  
REQ  
MSWRST  
MPWRON  
MWDOG MON_REQ  
S
L
Bit  
Name  
Function  
Initial  
1
0 = No Mask  
1 = Mask Interrupt  
D[6]  
MSWRST  
0 = No Mask  
1 = Mask Interrupt  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
MPWRON_S  
MPWRON_L  
MPWRON  
1
1
1
1
1
1
0 = No Mask  
1 = Mask Interrupt  
0 = No Mask  
1 = Mask Interrupt  
0 = No Mask  
1 = Mask Interrupt  
MWDOG  
0 = No Mask  
1 = Mask Interrupt  
MON_REQ  
MSTBY_REQ  
0 = No Mask  
1 = Mask Interrupt  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
68/116  
TSZ22111 • 15 • 001  
BD71850MWV  
4.2.1. Interrupt Overview continued  
Table 4-8. IN_MON - Input Port Monitor Register  
Register Name  
IN_MON  
R/W  
R
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x2C  
STAT_  
STAT_  
WDOG  
STAT_  
ON_REQ STBY_REQ  
STAT_  
-
-
-
PWRON  
Bit  
Name  
Function  
Initial  
0 = PWRON_B level is 0  
1 = PWRON_B level is 1  
D[3]  
STAT_PWRON  
STAT_WDOG  
0
0
0
0
0 = WDOG_B level is 0  
1 = WDOG_B level is 1  
D[2]  
D[1]  
D[0]  
0 = PMIC_ON_REQ level is 0  
1 = PMIC_ON_REQ level is 1  
STAT_ON_REQ  
STAT_STBY_REQ  
0 = PMIC_STBY_REQ level is 0  
1 = PMIC_STBY_REQ level is 1  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
69/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5. Power Rails  
5.1. Output Voltage Range  
Table 5-1. Output Voltage Range1  
Data  
[Hex]  
BUCK1 BUCK2  
-
-
BUCK5 BUCK6 BUCK7 BUCK8 LDO1 LDO2 LDO3 LDO4 LDO5 LDO6  
-
1.80  
0.90  
00  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.70  
0.80  
3.00  
3.10  
3.20  
1.605  
1.695  
1.755  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
3.00  
3.10  
3.20  
3.30  
0.90  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
0.90  
1.00  
1.10  
(Note 1)  
(Note 1)  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
1.70  
1.80  
0.90  
(Note 1)  
3.30  
(Note 1)  
1.800  
(Note 1)  
1.20  
(Note 1)  
1.00  
1.05  
1.10  
1.20  
1.35  
1.845  
1.905  
1.950  
1.995  
1.30  
1.40  
1.50  
1.60  
1.70  
1.80  
0.80  
(Note 1)  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
3.30  
(Note 1)  
0.90  
(Note 1)  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.10  
(Note 1)  
1.11  
(Note 1) initial voltage(run mode)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
70/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.1. Output Voltage Range continued  
Table 5-2. Output Voltage Range2  
Data  
[Hex]  
BUCK1 BUCK2  
-
-
BUCK5 BUCK6 BUCK7 BUCK8 LDO1 LDO2 LDO3 LDO4 LDO5 LDO6  
-
0.80  
(Note 1)  
20  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.60  
1.70  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.80  
(Note 1)  
1.90  
(Note 1) initial voltage(run mode)  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
71/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2. Details of Buck  
5.2.1. BUCK1  
5.2.1.1.  
BUCK1 Block Diagram  
VSYS  
INT LDO1P5  
BUCK1_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK1_LX  
Switch  
Control  
LBK 1  
-
-
Soft Start  
COBK1  
+
PGND  
(EXP-PAD)  
EN  
BUCK1_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-1. BUCK1 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
72/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.1.2.  
BUCK1 Electrical Characteristics  
Table 5-3. BUCK1 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK1  
Unit  
V
Condition  
Min  
Max  
Vo = 0.8 V  
0.791  
0.800  
0.809  
Io = 200 mA, PWM fix Mode  
Programmable  
Output Voltage Range  
VORG_BK1  
IQ_BK1  
0.7  
-
15  
-
1.3  
V
µA  
mA  
mA  
%
10 mVstep  
Vo = 0.8 V  
Io = 0 mA, Auto mode  
Quiescent Current  
-
-
Maximum Output Current  
Over Current Protection  
IOMAX_BK1  
IOCP_BK1  
ΔVLDR_BK1  
ηBK1_1mA  
ηBK1_500mA  
ηBK1_max  
fSW_BK1  
3000  
-
Peak current of inductor(Note 1)  
Io = 1 mAto Iomax, PWM fix Mode  
Io = 1 mA, Vo = 0.8 V  
4500  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
80  
84  
70  
2
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo = 0.8 V  
Io = Iomax, Vo = 0.8 V  
-
-
%
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWM fix mode, Io = 0 mA  
During EN to 90 % of nominal Voltage,  
BUCK1_RAMPRATE_RUN[1:0] = 01  
tST_BK1  
-
144  
100  
80  
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK1  
-
-
-
Vo = 0.8 V(FB = Sweep down)  
VR fault detect level / Vo x 100  
DVRFBK1_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK1_LHYS  
DVRBK1_H  
DVRFBK1_HHYS  
LBK1  
-
-
10  
-
-
%
%
Vo = 0.8 V(FB = Sweep up)  
Power good detect level / Vo x 100  
130  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
Output Inductance  
-
-
20  
-
-
%
0.47  
μH  
(Note 2)  
(Note 2)  
Effective capacitance with BUCK's DC bias  
Max value is limited by ramp rate.  
<Output Max Capacitance>  
ramp rate 1.25 mV, 2.5 mV, 5 mV: 100 µF  
ramp rate 10 mV: 50 µF  
Output Capacitance  
COBK1  
22  
44  
100  
μF  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
73/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.1.3.  
BUCK1 Control  
Table 5-4. BUCK1_CTRL - BUCK1 Control Register  
Register Name  
BUCK1_CTRL  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x40  
Address  
0x05  
BUCK1_RAMPRATE  
[1:0]  
BUCK1_  
PWM_FIX  
-
-
-
BUCK1_SEL BUCK1_EN  
Bit  
Name  
Function  
Initial  
BUCK1 DVS ramp rate  
00 = 10 mV/μs  
01 = 5 mV/μs  
10 = 2.5 mV/μs  
11 = 1.25 mV/μs  
BUCK1_RAMPRATE[1:0]  
01  
D[7:6]  
Note : When BUCK1 voltage starts up from 0V,  
the ramp rate is fixed 5mVs, regardless of the value of  
BUCK1_RAMPRATE[1:0].  
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
1 – Forced PWMMode  
BUCK1_PWM_FIX  
BUCK1_SEL  
0
0
D[3]  
D[1]  
VR operates in PWMmode only.  
BUCK1 control select bit  
0 = BUCK1 ON/OFF is controlled bystate machine.  
1 = BUCK1 ON/OFF is controlled byD[0] on this register.  
BUCK1 control bit with condition of D[1]  
0 = BUCK1 OFF  
1 = BUCK1 ON  
BUCK1_EN  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
0
D[0]  
When system is in SNVS, BUCK1_SEL = 1 and BUCK1_EN = 1, BUCK1  
voltage is specified byBUCK1_VOLT_SUSP register.  
Table 5-5. BUCK1_VOLT_RUN - BUCK1 Voltage (RUN) Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x0A  
Address  
0x0D  
BUCK1_VOLT_RUN  
-
BUCK1_VOLT_RUN[6:0]  
Function  
Bit  
Name  
Initial  
BUCK1 voltage when Power State = RUN  
0x00 = 0.70 V  
0x04 = 0.74 V  
0x08 = 0.78 V  
0x01 = 0.71 V  
0x05 = 0.75 V  
0x09 = 0.79 V  
0x02 = 0.72 V  
0x06 = 0.76 V  
0x03 = 0.73 V  
0x07 = 0.77 V  
0x0A= 0.80V(initial)  
0x0B = 0.81 V  
0x0F = 0.85 V  
0x13 = 0.89 V  
0x15 = 0.91 V  
0x19 = 0.95 V  
0x1D = 0.99 V  
0x21 = 1.03 V  
0x25 = 1.07 V  
0x29 = 1.11 V  
0x2D = 1.15 V  
0x31 = 1.19 V  
0x35 = 1.23 V  
0x39 = 1.27 V  
0x0C = 0.82 V  
0x0D = 0.83 V  
0x11 = 0.87 V  
0x0E = 0.84 V  
0x12 = 0.88 V  
0x10 = 0.86 V  
0x14 = 0.90 V  
0x16 = 0.92 V  
0x1A= 0.96 V  
0x1E = 1.00 V  
0x22 = 1.04 V  
0x26 = 1.08 V  
0x2A= 1.12 V  
0x2E = 1.16 V  
0x32 = 1.20 V  
0x36 = 1.24 V  
0x3A= 1.28 V  
0x17 = 0.93 V  
0x1B = 0.97 V  
0x1F = 1.01 V  
0x23 = 1.05 V  
0x27 = 1.09 V  
0x2B = 1.13 V  
0x2F = 1.17 V  
0x33 = 1.21 V  
0x37 = 1.25 V  
0x3B = 1.29 V  
0x18 = 0.94 V  
0x1C = 0.98 V  
0x20 = 1.02 V  
0x24 = 1.06 V  
0x28 = 1.10 V  
0x2C = 1.14 V  
0x30 = 1.18 V  
0x34 = 1.22 V  
0x38 = 1.26 V  
0x3C = 1.30 V  
D[6:0]  
BUCK1_VOLT_RUN[6:0]  
0001010  
0x3D-0x7F = reserved  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
74/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.1.3.  
BUCK1 Control continued  
Table 5-6. BUCK1_VOLT_IDLE - BUCK1 Voltage (IDLE) Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x0A  
Address  
0x0E  
BUCK1_VOLT_IDLE  
-
BUCK1_VOLT_IDLE[6:0]  
Function  
Bit  
Name  
Initial  
BUCK1 voltage when Power State = IDLE  
0x00 = 0.70 V  
0x04 = 0.74 V  
0x08 = 0.78 V  
0x01 = 0.71 V  
0x05 = 0.75 V  
0x09 = 0.79 V  
0x02 = 0.72 V  
0x06 = 0.76 V  
0x03 = 0.73 V  
0x07 = 0.77 V  
0x0A= 0.80 V(initial)  
0x0B = 0.81 V  
0x0F = 0.85 V  
0x13 = 0.89 V  
0x15 = 0.91 V  
0x19 = 0.95 V  
0x1D = 0.99 V  
0x21 = 1.03 V  
0x25 = 1.07 V  
0x29 = 1.11 V  
0x2D = 1.15 V  
0x31 = 1.19 V  
0x35 = 1.23 V  
0x39 = 1.27 V  
0x0C = 0.82 V  
0x0D = 0.83 V  
0x11 = 0.87 V  
0x0E = 0.84 V  
0x12 = 0.88 V  
0x10 = 0.86 V  
0x14 = 0.90 V  
0x16 = 0.92 V  
0x1A= 0.96 V  
0x1E = 1.00 V  
0x22 = 1.04 V  
0x26 = 1.08 V  
0x2A= 1.12 V  
0x2E = 1.16 V  
0x32 = 1.20 V  
0x36 = 1.24 V  
0x3A= 1.28 V  
0x17 = 0.93 V  
0x1B = 0.97 V  
0x1F = 1.01 V  
0x23 = 1.05 V  
0x27 = 1.09 V  
0x2B = 1.13 V  
0x2F = 1.17 V  
0x33 = 1.21 V  
0x37 = 1.25 V  
0x3B = 1.29 V  
0x18 = 0.94 V  
0x1C = 0.98 V  
0x20 = 1.02 V  
0x24 = 1.06 V  
0x28 = 1.10 V  
0x2C = 1.14 V  
0x30 = 1.18 V  
0x34 = 1.22 V  
0x38 = 1.26 V  
0x3C = 1.30 V  
BUCK1_VOLT_IDLE[6:0]  
0001010  
D[6:0]  
0x3D-0x7F = reserved  
Table 5-7. BUCK1_VOLT_SUSP - BUCK1 Voltage (SUSPEND) Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x0A  
Address  
0x0F  
BUCK1_VOLT_SUSP  
-
BUCK1_VOLT_SUSP[6:0]  
Function  
Bit  
Name  
Initial  
BUCK1 voltage when Power State = SUSPEND  
0x00 = 0.70 V  
0x04 = 0.74 V  
0x08 = 0.78 V  
0x01 = 0.71 V  
0x05 = 0.75 V  
0x09 = 0.79 V  
0x02 = 0.72 V  
0x06 = 0.76 V  
0x03 = 0.73 V  
0x07 = 0.77 V  
0x0A= 0.80V(initial)  
0x0B = 0.81 V  
0x0F = 0.85 V  
0x13 = 0.89 V  
0x15 = 0.91 V  
0x19 = 0.95 V  
0x1D = 0.99 V  
0x21 = 1.03 V  
0x25 = 1.07 V  
0x29 = 1.11 V  
0x2D = 1.15 V  
0x31 = 1.19 V  
0x35 = 1.23 V  
0x39 = 1.27 V  
0x0C = 0.82 V  
0x0D = 0.83 V  
0x11 = 0.87 V  
0x0E = 0.84 V  
0x12 = 0.88 V  
0x10 = 0.86 V  
0x14 = 0.90 V  
0x16 = 0.92 V  
0x1A= 0.96 V  
0x1E = 1.00 V  
0x22 = 1.04 V  
0x26 = 1.08 V  
0x2A= 1.12 V  
0x2E = 1.16 V  
0x32 = 1.20 V  
0x36 = 1.24 V  
0x3A= 1.28 V  
0x17 = 0.93 V  
0x1B = 0.97 V  
0x1F = 1.01 V  
0x23 = 1.05 V  
0x27 = 1.09 V  
0x2B = 1.13 V  
0x2F = 1.17 V  
0x33 = 1.21 V  
0x37 = 1.25 V  
0x3B = 1.29 V  
0x18 = 0.94 V  
0x1C = 0.98 V  
0x20 = 1.02 V  
0x24 = 1.06 V  
0x28 = 1.10 V  
0x2C = 1.14 V  
0x30 = 1.18 V  
0x34 = 1.22 V  
0x38 = 1.26 V  
0x3C = 1.30 V  
BUCK1_VOLT_SUSP[6:0]  
0001010  
D[6:0]  
0x3D-0x7F = reserved  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
75/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.2. BUCK2  
5.2.2.1.  
BUCK2 Block Diagram  
VSYS  
INT LDO1P5  
BUCK2_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK2_LX  
Switch  
Control  
LBK 2  
-
-
Soft Start  
COBK2  
+
PGND  
(EXP-PAD)  
EN  
BUCK2_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-2. BUCK2 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
76/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.2.2.  
BUCK2 Electrical Characteristics  
Table 5-8. BUCK2 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK2  
Unit  
V
Condition  
Min  
Max  
0.91  
Vo = 0.9 V  
0.89  
0.90  
Io = 200 mA, PWM fix Mode  
Programmable  
Output Voltage Range  
VORG_BK2  
IQ_BK2  
0.7  
-
15  
-
1.3  
V
µA  
mA  
mA  
%
10 mVstep  
Vo = 0.9 V  
Io = 0 mA, Auto mode  
Quiescent Current  
-
-
Maximum Output Current  
Over Current Protection  
IOMAX_BK2  
IOCP_BK2  
ΔVLDR_BK2  
ηBK2_1mA  
ηBK2_500mA  
ηBK2_max  
fSW_BK2  
3000  
-
Peak current of inductor(Note 1)  
Io = 1 mAto Iomax, PWM fix Mode  
Io = 1 mA, Vo = 0.9 V  
4500  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
79  
84  
71  
2
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo = 0.9 V  
Io = Iomax, Vo = 0.9 V  
-
-
%
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWM fix mode, Io = 0 mA  
During EN to 90 % of nominal Voltage,  
BUCK2_RAMPRATE_RUN[1:0] = 01  
tST_BK2  
-
162  
100  
80  
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK2  
-
-
-
Vo = 0.9 V(FB = Sweep down)  
VR fault detect level / Vo x 100  
DVRFBK2_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK2_LHYS  
DVRBK2_H  
DVRFBK2_HHYS  
LBK2  
-
-
10  
-
-
%
%
Vo = 0.9 V(FB = Sweep up)  
Power good detect level / Vo x 100  
130  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
Output Inductance  
-
-
20  
-
-
%
0.47  
μH  
(Note 2)  
(Note 2)  
Effective capacitance with BUCK's DC bias  
Max value is limited by ramp rate.  
<Output Max Capacitance>  
ramp rate 1.25 mV, 2.5 mV, 5 mV: 100 µF  
ramp rate 10 mV: 50 µF  
Output Capacitance  
COBK2  
22  
44  
100  
μF  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
77/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.2.3.  
BUCK2 Control  
Table 5-9. BUCK2_CTRL - BUCK2 Control Register  
Register Name  
BUCK2_CTRL  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x40  
Address  
0x06  
BUCK2_  
R/W BUCK2_RAMPRATE[1:0]  
Name  
-
-
-
BUCK2_SEL BUCK2_EN  
PWM_FIX  
Bit  
Function  
Initial  
BUCK2 DVS ramp rate  
00 = 10 mV/μs  
01 = 5 mV/μs  
10 = 2.5 mV/μs  
11 = 1.25 mV/μs  
D[7:6]  
BUCK2_RAMPRATE[1:0]  
01  
Note : When BUCK2 voltage starts up from 0V,  
the ramp rate is fixed 5mVs, regardless of the value of  
BUCK2_RAMPRATE[1:0].  
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
1 – Forced PWMMode  
BUCK2_PWM_FIX  
BUCK2_SEL  
0
0
D[3]  
D[1]  
VR operates in PWMmode only.  
BUCK2 control select bit  
0 = BUCK2 ON/OFF is controlled bystate machine.  
1 = BUCK2 ON/OFF is controlled byD[0] on this register.  
BUCK2 control bit with condition of D[1]  
0 = BUCK2 OFF  
1 = BUCK2 ON  
BUCK2_EN  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
0
D[0]  
When system is in SNVS or SUSPEND, BUCK2_SEL = 1 and BUCK2_EN = 1,  
BUCK2 voltage is specified byBUCK2_VOLT_IDLE register.  
Table 5-10. BUCK2_VOLT_RUN - BUCK2 Voltage (RUN) Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x14  
Address  
0x10  
BUCK2_VOLT_RUN[6:0]  
Function  
BUCK2_VOLT_RUN  
-
Bit  
Name  
Initial  
BUCK2 voltage when Power State = RUN  
0x00 = 0.70 V  
0x04 = 0.74 V  
0x08 = 0.78 V  
0x0C = 0.82 V  
0x10 = 0.86 V  
0x01 = 0.71 V  
0x05 = 0.75 V  
0x09 = 0.79 V  
0x0D = 0.83 V  
0x11 = 0.87 V  
0x02 = 0.72 V  
0x06 = 0.76 V  
0x0A= 0.80 V  
0x0E = 0.84 V  
0x12 = 0.88 V  
0x03 = 0.73 V  
0x07 = 0.77 V  
0x0B = 0.81 V  
0x0F = 0.85 V  
0x13 = 0.89 V  
0x14 = 0.90 V(initial)  
0x15 = 0.91 V  
0x19 = 0.95 V  
0x1D = 0.99 V  
0x21 = 1.03 V  
0x25 = 1.07 V  
0x29 = 1.11 V  
0x2D = 1.15 V  
0x31 = 1.19 V  
0x35 = 1.23 V  
0x39 = 1.27 V  
0x16 = 0.92 V  
0x17 = 0.93 V  
0x1B = 0.97 V  
0x1F = 1.01 V  
0x23 = 1.05 V  
0x27 = 1.09 V  
0x2B = 1.13 V  
0x2F = 1.17 V  
0x33 = 1.21 V  
0x37 = 1.25 V  
0x3B = 1.29 V  
0x18 = 0.94 V  
0x1C = 0.98 V  
0x20 = 1.02 V  
0x24 = 1.06 V  
0x28 = 1.10 V  
0x2C = 1.14 V  
0x30 = 1.18 V  
0x34 = 1.22 V  
0x38 = 1.26 V  
0x3C = 1.30 V  
0x1A= 0.96 V  
0x1E = 1.00 V  
0x22 = 1.04 V  
0x26 = 1.08 V  
0x2A= 1.12 V  
0x2E = 1.16 V  
0x32 = 1.20 V  
0x36 = 1.24 V  
0x3A= 1.28 V  
BUCK2_VOLT_RUN[6:0]  
0010100  
D[6:0]  
0x3D-0x7F = reserved  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
78/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.2.3.  
BUCK2 Control continued  
Table 5-11. BUCK2_VOLT_IDLE - BUCK2 Voltage (IDLE) Register  
Register Name  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x0A  
Address  
0x11  
BUCK2_VOLT_IDLE[6:0]  
Function  
BUCK2_VOLT_IDLE  
-
Bit  
Name  
Initial  
BUCK2 voltage when Power State = IDLE  
0x00 = 0.70 V  
0x04 = 0.74 V  
0x08 = 0.78 V  
0x01 = 0.71 V  
0x05 = 0.75 V  
0x09 = 0.79 V  
0x02 = 0.72 V  
0x06 = 0.76 V  
0x03 = 0.73 V  
0x07 = 0.77 V  
0x0A= 0.80V(initial)  
0x0B = 0.81 V  
0x0F = 0.85 V  
0x13 = 0.89 V  
0x15 = 0.91 V  
0x19 = 0.95 V  
0x1D = 0.99 V  
0x21 = 1.03 V  
0x25 = 1.07 V  
0x29 = 1.11 V  
0x2D = 1.15 V  
0x31 = 1.19 V  
0x35 = 1.23 V  
0x39 = 1.27 V  
0x0C = 0.82 V  
0x0D = 0.83 V  
0x11 = 0.87 V  
0x0E = 0.84 V  
0x12 = 0.88 V  
0x10 = 0.86 V  
0x14 = 0.90 V  
0x16 = 0.92 V  
0x1A= 0.96 V  
0x1E = 1.00 V  
0x22 = 1.04 V  
0x26 = 1.08 V  
0x2A= 1.12 V  
0x2E = 1.16 V  
0x32 = 1.20 V  
0x36 = 1.24 V  
0x3A= 1.28 V  
0x17 = 0.93 V  
0x1B = 0.97 V  
0x1F = 1.01 V  
0x23 = 1.05 V  
0x27 = 1.09 V  
0x2B = 1.13 V  
0x2F = 1.17 V  
0x33 = 1.21 V  
0x37 = 1.25 V  
0x3B = 1.29 V  
0x18 = 0.94 V  
0x1C = 0.98 V  
0x20 = 1.02 V  
0x24 = 1.06 V  
0x28 = 1.10 V  
0x2C = 1.14 V  
0x30 = 1.18 V  
0x34 = 1.22 V  
0x38 = 1.26 V  
0x3C = 1.30 V  
BUCK2_VOLT_IDLE[6:0]  
0001010  
D[6:0]  
0x3D-0x7F = reserved  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
79/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.3. BUCK5  
5.2.3.1.  
BUCK5 Block Diagram  
VSYS  
INT LDO1P5  
BUCK5_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK5_LX  
Switch  
Control  
LBK 5  
-
-
Soft Start  
COBK5  
+
PGND  
(EXP-PAD)  
EN  
BUCK5_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-3. BUCK5 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
80/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.3.2.  
BUCK5 Electrical Characteristics  
Table 5-12. BUCK5 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK5  
Unit  
V
Condition  
Min  
Max  
0.91  
Vo = 0.9 V  
0.89  
0.90  
Io = 200 mA, PWMfixMode  
Programmable  
Output Voltage Range  
0.70 V, 0.80 V, 0.90 V, 1.00 V,  
1.05 V, 1.10 V, 1.20 V, 1.35 V  
Vo = 0.9 V  
VORG_BK5  
IQ_BK5  
0.70  
-
15  
-
1.35  
V
µA  
mA  
mA  
%
Quiescent Current  
-
-
Io = 0 mA, Auto mode  
Maximum Output Current  
Over Current Protection  
IOMAX_BK5  
IOCP_BK5  
ΔVLDR_BK5  
ηBK5_1mA  
ηBK5_500mA  
ηBK5_max  
fSW_BK5  
3000  
-
Peak current of inductor(Note 1)  
Io = 1 mAto Iomax, PWMfixMode  
Io = 1 mA, Vo = 0.9 V  
4500  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
79  
84  
71  
2
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo = 0.9 V  
-
-
%
Io = Iomax, Vo = 0.9 V  
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWMfixmode, Io = 0 mA  
During EN to 90 % of nominal Voltage  
tST_BK5  
-
162  
100  
80  
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK5  
-
-
-
Vo = 0.9 V(FB = Sweep down)  
VR fault detect level / Vo x100  
DVRFBK5_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK5_LHYS  
DVRBK5_H  
-
-
-
10  
130  
20  
-
-
-
%
%
%
Vo = 0.9 V(FB = Sweep up)  
Power good detect level / Vo x100  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
DVRFBK5_HHYS  
Output Inductance  
Output Capacitance  
LBK5  
-
0.47  
44  
-
μH  
μF  
(Note 2)  
(Note 2)  
COBK5  
22  
100  
Effective capacitance with BUCK's DC bias  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
81/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.3.3.  
BUCK5 Control  
Table 5-13. BUCK5_CTRL - BUCK5 Control Register  
Register Name  
BUCK5_CTRL  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x02  
Address  
0x09  
BUCK5_PW  
M_FIX  
-
-
-
-
BUCK5_SEL BUCK5_EN  
Bit  
Name  
Function  
Initial  
0
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
D[3]  
BUCK5_PWM_FIX  
1 – Forced PWMMode  
VR operates in PWMmode only.  
BUCK5 control select bit  
BUCK5_SEL  
BUCK5_EN  
0 = BUCK5 ON/OFF is controlled bystate machine.  
1 = BUCK5 ON/OFF is controlled byD[0] on this register.  
1
0
D[1]  
D[0]  
BUCK5 control bit with condition of D[1]  
0 = BUCK5 OFF  
1 = BUCK5 ON  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Table 5-14. BUCK5_VOLT - BUCK5 Voltage Register  
Register Name  
BUCK5_VOLT  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x02  
Address  
0x14  
BUCK5_  
-
-
-
BUCK5_VOLT[2:0]  
VOLT_SEL[1:0]  
Name  
Bit  
Function  
Initial  
Select the BUCK5 voltage range set byD[2:0].  
00 = 0.70 Vto 1.35 V 01 = 0.55 Vto 0.90 V  
BUCK5_VOLT_SEL[1:0]  
00  
D[7:6]  
10 = 0.675 Vto 1.325 V 11 = reserved  
BUCK5 voltage  
If D[7:6]=00  
000 = 0.70 V 001 = 0.80 V 010 = 0.90 V(Initial) 011 = 1.00 V  
100 = 1.05 V 101 = 1.10 V 110 = 1.20 V  
If D[7:6]=01  
000 = 0.55 V 001 = 0.60 V 010 = 0.65 V 011 = 0.70 V  
100 = 0.75 V 101 = 0.80 V 110 = 0.85 V 111 = 0.90 V  
If D[7:6]=10  
111 = 1.35 V  
D[2:0]  
BUCK5_VOLT[2:0]  
010  
000 = 0.675 V 001 = 0.775 V 010 = 0.875 V 011 = 0.975 V  
100 = 1.025 V 101 = 1.075 V 110 = 1.175 V 111 = 1.325 V  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
82/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.4. BUCK6  
5.2.4.1.  
BUCK6 Block Diagram  
VSYS  
INT LDO1P5  
BUCK6_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK6_LX  
Switch  
Control  
LBK 6  
-
-
Soft Start  
COBK6  
+
PGND  
(EXP-PAD)  
EN  
BUCK6_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-4. BUCK6 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
83/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.4.2.  
BUCK6 Electrical Characteristics  
Table 5-15. BUCK6 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK6  
Unit  
V
Condition  
Min  
Max  
Vo=3.3 V  
3.267  
3.300  
3.333  
Io = 200 mA, PWMfixMode  
Programmable  
Output Voltage Range  
VORG_BK6  
IQ_BK6  
2.6  
-
9
3.3  
V
µA  
mA  
mA  
%
100 mVstep  
Vo=3.3 V  
Io=0 mA, Auto mode  
Quiescent Current  
-
-
Maximum Output Current  
Over Current Protection  
IOMAX_BK6  
IOCP_BK6  
ΔVLDR_BK6  
ηBK6_1mA  
ηBK6_500mA  
ηBK6_max  
fSW_BK6  
3000  
-
-
Peak current of inductor(Note 1)  
Io=1 mAto Iomax, PWMfixMode  
Io = 1 mA, Vo=3.3 V  
4500  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
93  
95  
88  
1.5  
240  
100  
80  
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo=3.3 V  
-
-
%
Io = Iomax, Vo=3.3 V  
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWMfixmode, Io = 0 mA  
During EN to 90% of nominal Voltage  
tST_BK6  
-
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK6  
-
-
-
Vo = 3.3 V(FB = Sweep down)  
VR fault detect level / Vo x100  
DVRFBK6_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK6_LHYS  
DVRBK6_H  
-
-
-
10  
130  
20  
-
-
-
%
%
%
Vo = 3.3 V(FB = Sweep up)  
Power good detect level / Vo x100  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
DVRFBK6_HHYS  
Output Inductance  
Output Capacitance  
LBK6  
-
1
-
μH  
μF  
(Note 2)  
(Note 2)  
COBK6  
15.4  
44  
100  
Effective capacitance with BUCK's DC bias  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
Headroom for BUCK6  
BUCK6 can’t maintain output voltage when the input voltage close to output voltage. The headroom voltage is  
determined by output current and the impedance from VSYS to BUCK6 output including the inductor parasitic  
impedance (DCR). The PMIC internal impedance from BUCK6_VIN to BUCK6_LX is 121 mΩ at the worst case.  
Please calculate total impedance using this value, and secure enough headroom for VSYS according to the output  
current and voltage.  
(Example ROHM Evaluation Board case)  
Vo = 3.3V setting: VO  
VSYS to BUCK6_VIN impedance of the EVB = 3 mΩ: RVIN  
BUCK6_LX to inductor impedance of the EVB = 6 mΩ: RLX  
Inductor parasitic impedance (DCR) = 45 mΩ: RIND  
PMIC internal impedance from BUCK6_VIN to BUCK6_LX = 121 mΩ: RPMIC  
Total impedance = 175 mΩ: RTOTAL=RVIN+RLX+RIND+RPMIC  
Headroom = RTOTAL x Output Current  
Output current  
1.0 A  
Required minimum VSYS voltage  
3.475 V  
3.650 V  
3.825 V  
2.0 A  
3.0 A  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
84/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.4.3.  
BUCK6 Control  
Table 5-16. BUCK6_CTRL - BUCK6 Control Register  
Register Name  
BUCK6_CTRL  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x0A  
BUCK6_PW  
M_FIX  
-
-
-
-
BUCK6_SEL BUCK6_EN  
Bit  
Name  
Function  
Initial  
0
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
D[3]  
BUCK6_PWM_FIX  
1 – Forced PWMMode  
VR operates in PWMmode only.  
BUCK6 control select bit  
BUCK6_SEL  
BUCK6_EN  
0 = BUCK6 ON/OFF is controlled bystate machine.  
1 = BUCK6 ON/OFF is controlled byD[0] on this register.  
0
0
D[1]  
D[0]  
BUCK6 control bit with condition of D[1]  
0 = BUCK6 OFF  
1 = BUCK6 ON  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Table 5-17. BUCK6_VOLT - BUCK6 Voltage Register  
Register Name  
BUCK6_VOLT  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x03  
Address  
0x15  
BUCK6_  
VOLT_SEL  
-
-
-
-
BUCK6_VOLT[1:0]  
Bit  
Name  
Function  
Initial  
0
Select the BUCK6 voltage range set byD[6].  
0 =3.0 Vto 3.3 V 1 = 2.6 Vto 2.9 V  
D[6]  
BUCK6_VOLT_SEL  
BUCK6_VOLT[1:0]  
Note: Changing BUCK6 voltage value is not allowed when BUCK6 is still ON.  
In the case where this register value is changed, BUCK6 should be turned  
OFF.  
BUCK6 voltage  
If D[6]=0  
00 = 3.0 V 01 = 3.1 V 10 = 3.2 V 11 = 3.3 V(Initial)  
If D[6]=1  
00 = 2.6 V 01 = 2.7 V 10 = 2.8 V 11 = 2.9 V  
11  
D[1:0]  
Note: Changing BUCK6 voltage value is not allowed when BUCK6 is still ON.  
In the case where this register value is changed, BUCK6 should be turned  
OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
85/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.5. BUCK7  
5.2.5.1.  
BUCK7 Block Diagram  
VSYS  
INT LDO1P5  
BUCK7_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK7_LX  
Switch  
Control  
LBK 7  
-
-
Soft Start  
COBK7  
+
PGND  
(EXP-PAD)  
EN  
BUCK7_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-5. BUCK7 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
86/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.5.2.  
BUCK7 Electrical Characteristics  
Table 5-18. BUCK7 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK7  
Unit  
V
Condition  
Min  
Max  
Vo = 1.8 V  
1.782  
1.800  
1.818  
Io = 200 mA, PWMfixMode  
Programmable  
Output Voltage Range  
1.605 V, 1.695 V, 1.755 V, 1.800 V,  
1.845 V, 1.905 V, 1.950 V, 1.995 V  
Vo = 1.8 V  
VORG_BK7  
IQ_BK7  
1.605  
-
15  
-
1.995  
V
µA  
mA  
mA  
%
Quiescent Current  
-
-
Io = 0 mA, Auto mode  
Maximum Output Current  
Over Current Protection  
IOMAX_BK7  
IOCP_BK7  
ΔVLDR_BK7  
ηBK7_1mA  
ηBK7_500mA  
ηBK7_max  
fSW_BK7  
1500  
-
Peak current of inductor(Note 1)  
Io = 1 mAto Iomax, PWMfixMode  
Io = 1 mA, Vo=1.8 V  
3000  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
85  
89  
85  
2
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo=1.8 V  
-
-
%
Io = Iomax, Vo=1.8 V  
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWMfixmode, Io = 0 mA  
During EN to 90 % of nominal Voltage  
tST_BK7  
-
220  
100  
80  
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK7  
-
-
-
Vo = 1.8 V(FB = Sweep down)  
VR fault detect level / Vo x100  
DVRFBK7_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK7_LHYS  
DVRBK7_H  
-
-
-
10  
130  
20  
-
-
-
%
%
%
Vo = 1.8 V(FB = Sweep up)  
Power good detect level / Vo x100  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
DVRFBK7_HHYS  
Output Inductance  
Output Capacitance  
LBK7  
-
0.47  
22  
-
μH  
μF  
(Note 2)  
(Note 2)  
COBK7  
11  
100  
Effective capacitance with BUCK's DC bias  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
87/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.5.3.  
BUCK7 Control  
Table 5-19. BUCK7_CTRL - BUCK7 Control Register  
Register Name  
BUCK7_CTRL  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x0B  
BUCK7_PW  
M_FIX  
-
-
-
-
BUCK7_SEL BUCK7_EN  
Bit  
Name  
Function  
Initial  
0
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
D[3]  
BUCK7_PWM_FIX  
1 – Forced PWMMode  
VR operates in PWMmode only.  
BUCK7 control select bit  
BUCK7_SEL  
BUCK7_EN  
0 = BUCK7 ON/OFF is controlled bystate machine.  
1 = BUCK7 ON/OFF is controlled byD[0] on this register.  
0
0
D[1]  
D[0]  
BUCK7 control bit with condition of D[1]  
0 = BUCK7 OFF  
1 = BUCK7 ON  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Table 5-20. BUCK7_VOLT - BUCK7 Voltage Register  
Register Name  
BUCK7_VOLT  
R/W  
R/W  
D7  
-
D6  
-
D5  
-
D4  
-
D3  
-
D2  
D1  
D0  
Initial  
0x03  
Address  
0x16  
BUCK7_VOLT[2:0]  
Bit  
Name  
Function  
Initial  
BUCK7 voltage  
000 = 1.605 V  
001 = 1.695 V  
010 = 1.755 V  
011 = 1.800 V(Initial)  
100 = 1.845 V  
BUCK7_VOLT[2:0]  
101 = 1.905 V  
011  
D[2:0]  
110 = 1.950 V  
111 = 1.995 V  
Note: Changing BUCK7 voltage value is not allowed when BUCK7 is still ON.  
In the case where this register value is changed, BUCK7 should be turned  
OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
88/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.6. BUCK8  
5.2.6.1.  
BUCK8 Block Diagram  
VSYS  
INT LDO1P5  
BUCK8_VIN  
OCP  
OSC  
VREF  
DAC  
Voltage setting  
BUCK8_LX  
Switch  
Control  
LBK 8  
-
-
Soft Start  
COBK8  
+
PGND  
(EXP-PAD)  
EN  
BUCK8_FB  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-6. BUCK8 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
89/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.2.6.2.  
BUCK8 Electrical Characteristics  
Table 5-21. BUCK8 Electrical Characteristics  
(Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V)  
Limit  
Typ  
Parameter  
Output Voltage  
Symbol  
VO_BK8  
Unit  
V
Condition  
Min  
Max  
Vo = 1.1 V  
1.089  
1.100  
1.111  
Io = 200 mA, PWMfixMode  
Programmable  
Output Voltage Range  
VORG_BK8  
IQ_BK8  
0.8  
-
15  
-
1.4  
V
µA  
mA  
mA  
%
10 mVstep  
Vo = 1.1 V  
Io = 0 mA, Auto mode  
Quiescent Current  
-
-
Maximum Output Current  
Over Current Protection  
IOMAX_BK8  
IOCP_BK8  
ΔVLDR_BK8  
ηBK8_1mA  
ηBK8_500mA  
ηBK8_max  
fSW_BK8  
3000  
-
Peak current of inductor (note 1)  
Io = 1 mAto Iomax, PWMfixMode  
Io = 1 mA, Vo=1.1 V  
4500  
-
-
DC Output Voltage Load Regulation  
-1  
-
0
+1  
82  
86  
75  
2
-
%
Efficiency  
-
-
%
Io = 500 mA, Vo=1.1 V  
-
-
%
Io = Iomax, Vo=1.1 V  
Oscillating Frequency  
Start up Time  
-
-
MHz  
µs  
Ω
PWMfixmode, Io = 0 mA  
During EN to 90 % of nominal Voltage  
tST_BK8  
-
200  
100  
80  
500  
Discharge Resistance  
Low Side VR Fault Detect Level  
RD_BK8  
-
-
-
Vo = 1.1 V(FB = Sweep down)  
VR fault detect level / Vo x100  
DVRFBK8_L  
-
%
(VR fault release level - detect level) / Vo x  
100  
Low Side VR Fault Detect Hysteresis  
High Side VR Fault Detect Level  
DVRFBK8_LHYS  
DVRBK8_H  
-
-
-
10  
130  
20  
-
-
-
%
%
%
Vo = 1.1 V(FB = Sweep up)  
Power good detect level / Vo x100  
(VR fault detect level - release level) / Vo x  
100  
High Side VR Fault Detect Hysteresis  
DVRFBK8_HHYS  
Output Inductance  
Output Capacitance  
LBK8  
-
0.47  
44  
-
μH  
μF  
(Note 2)  
(Note 2)  
COBK8  
22  
100  
Effective capacitance with BUCK's DC bias  
(Note 1) For Buck- DCDC converters, (minimumOver Current Protection Current – ½ inductor ripple current) is the maximumoutput current.  
(Note 2) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
90/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.2.6.3.  
BUCK8 Control  
Table 5-22. BUCK8_CTRL - BUCK8 Control Register  
Register Name  
BUCK8_CTRL  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x0C  
BUCK8_PW  
M_FIX  
-
-
-
-
BUCK8_SEL BUCK8_EN  
Bit  
Name  
Function  
Initial  
0
0 – AUTO PWM/PFMmode  
VR adjusts the operating mode (PFM/PWM) automaticallybased on the load  
current to maximize power efficiency.  
D[3]  
BUCK8_PWM_FIX  
1 – Forced PWMMode  
VR operates in PWMmode only.  
BUCK8 control select bit  
BUCK8_SEL  
BUCK8_EN  
0 = BUCK8 ON/OFF is controlled bystate machine.  
1 = BUCK8 ON/OFF is controlled byD[0] on this register.  
0
0
D[1]  
D[0]  
BUCK8 control bit with condition of D[1]  
0 = BUCK8 OFF  
1 = BUCK8 ON  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Table 5-23. BUCK8_VOLT - BUCK8 Voltage Register  
Register Name  
BUCK8_VOLT  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x1E  
Address  
0x17  
BUCK8_VOLT[6:0]  
Bit  
Name  
Function  
Initial  
BUCK8 voltage  
0x00 = 0.80 V  
0x04 = 0.84 V  
0x08 = 0.88 V  
0x0C = 0.92 V  
0x10 = 0.96 V  
0x14 = 1.00 V  
0x18 = 1.04 V  
0x1C = 1.08 V  
0x01 = 0.81 V  
0x05 = 0.85 V  
0x09 = 0.89 V  
0x0D = 0.93 V  
0x11 = 0.97 V  
0x15 = 1.01 V  
0x19 = 1.05 V  
0x1D = 1.09 V  
0x02 = 0.82 V  
0x06 = 0.86 V  
0x0A= 0.90 V  
0x0E = 0.94 V  
0x12 = 0.98 V  
0x16 = 1.02 V  
0x1A= 1.06 V  
0x03 = 0.83 V  
0x07 = 0.87 V  
0x0B = 0.91 V  
0x0F = 0.95 V  
0x13 = 0.99 V  
0x17 = 1.03 V  
0x1B = 1.07 V  
0x1E = 1.10 V(initial)  
D[6:0]  
BUCK8_VOLT[6:0]  
0011110  
0x1F = 1.11 V  
0x23 = 1.15 V  
0x27 = 1.19 V  
0x2B = 1.23 V  
0x2F = 1.27 V  
0x33 = 1.31 V  
0x37 = 1.35 V  
0x3B = 1.39 V  
0x20 = 1.12 V  
0x21 = 1.13 V  
0x25 = 1.17 V  
0x29 = 1.21 V  
0x2D = 1.25 V  
0x31 = 1.29 V  
0x35 = 1.33 V  
0x39 = 1.37 V  
0x22 = 1.14 V  
0x26 = 1.18 V  
0x2A= 1.22 V  
0x2E = 1.26 V  
0x32 = 1.30 V  
0x36 = 1.34 V  
0x3A= 1.38 V  
0x24 = 1.16 V  
0x28 = 1.20 V  
0x2C = 1.24 V  
0x30 = 1.28 V  
0x34 = 1.32 V  
0x38 = 1.36 V  
0x3C = 1.40 V  
0x3D-0x7F = reserved  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
91/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3. Details of LDO  
5.3.1. LDO1  
5.3.1.1.  
LDO1 Block Diagram  
OCP  
VSYS  
VSYS  
VREF  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO1_VOUT  
COLDO1  
EN  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-7. LDO1 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
92/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.1.2.  
LDO1 Electrical Characteristics  
Table 5-24. LDO1 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.8 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
VO=1.8 Vsetting  
Io=1 mA  
VO_LDO1  
VORG_LDO1_1  
VORG_LDO1_2  
IOMAX_LDO1  
IOCP_LDO1  
IQ_LDO1  
1.782  
1.800  
1.818  
V
Output Voltage Range 1  
Output Voltage Range 2  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
1.600  
-
-
1.900  
V
100 mVstep  
100 mVstep  
3.000  
3.300  
V
10  
-
-
mA  
mA  
µA  
mV  
µs  
20  
-
-
-
6
-
-
Io=0 mA  
Io = Iomax  
Dropout Voltage  
ΔVODP_LDO1  
tST_LDO1  
-
40  
440  
10  
2
VSYS=3.2 V, VO=3.3 Vsetting  
Io=0 mA,  
During EN to 90 % of nominal Voltage  
Start up Time  
-
1000  
20  
5
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO1  
ΔVLNR_LDO1  
RDIS_LDO1  
DVRFLDO1  
-
mV  
mV  
Ω
Io=1 mAto Iomax  
-
VSYS = 4.5 Vto 5.5 V, Io=Iomax  
-
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
-
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO1_HYS  
-
-
10  
60  
1.0  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO1  
dB  
μF  
(Note 1)  
COLDO1  
0.5  
5.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
93/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.1.3.  
LDO1 Control  
Table 5-25. LDO1_VOLT - LDO1 Voltage Register  
Register Name  
LDO1_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x22  
Address  
0x18  
LDO1_VOL  
T_SEL  
R/W LDO1_SEL LDO1_EN  
Name  
-
-
-
LDO1_VOLT[1:0]  
Bit  
Function  
Initial  
0
LDO1 control select bit  
LDO1_SEL  
LDO1_EN  
0 = LDO1 ON/OFF is controlled bystate machine.  
1 = LDO1 ON/OFF is controlled byD[6] on this register.  
D[7]  
LDO1 control bit with condition of D[7]  
0 = LDO1 OFF  
1 = LDO1 ON  
0
1
D[6]  
D[5]  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Select the LDO1 voltage range set byD[1:0].  
0 = 3.0 Vto 3.3 V  
1 = 1.6 Vto 1.9 V  
LDO1_VOLT_SEL  
Note: Changing LDO1 voltage value is not allowed when LDO1 is still ON.  
In the case where this register value is changed, LDO1 should be turned OFF.  
LDO1 voltage  
If D[5]=0,  
00 = 3.0 V  
01 = 3.1 V  
10 = 3.2 V  
11 = 3.3 V  
If D[5]=1,  
00 = 1.6 V  
01 = 1.7 V  
10 = 1.8 V(Initial)  
11 = 1.9 V  
D[1:0]  
LDO1_VOLT[1:0]  
10  
Note: Changing LDO1 voltage value is not allowed when LDO1 is still ON.  
In the case where this register value is changed, LDO1 should be turned OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
94/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.2. LDO2  
5.3.2.1.  
LDO2 Block Diagram  
OCP  
VSYS  
VSYS  
VREF  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO2_VOUT  
COLDO2  
EN  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-8. LDO2 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
95/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.2.2.  
LDO2 Electrical Characteristics  
Table 5-26. LDO2 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 0.8 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
VO_LDO2  
Unit  
V
Condition  
Min  
Typ  
Max  
VO=0.8 Vsetting  
Io=1 mA  
0.785  
0.800  
0.815  
Output Voltage Range  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
VORG_LDO2  
IOMAX_LDO2  
IOCP_LDO2  
IQ_LDO2  
0.800  
-
-
0.900  
V
100 mVstep  
10  
-
mA  
mA  
µA  
µs  
20  
-
-
-
-
6
Io = 0 mA  
Io = 0 mA,  
Start up Time  
tST_LDO2  
-
370  
10  
2
1000  
20  
5
During EN to 90 % of nominal Voltage  
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO2  
ΔVLNR_LDO2  
RDIS_LDO2  
DVRFLDO2  
-
mV  
mV  
Ω
Io = 1 mAto Iomax  
-
VSYS = 4.5 Vto 5.5 V, Io = Iomax  
-
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
-
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO2_HYS  
-
-
10  
60  
1.0  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO2  
dB  
μF  
(Note 1)  
COLDO2  
0.5  
5.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
5.3.2.3.  
LDO2 Control  
Table 5-27. LDO2_VOLT - LDO2 Voltage Register  
Register Name  
LDO2_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
-
D0  
-
Initial  
0x20  
Address  
0x19  
LDO2_VOL  
T_SEL  
R/W LDO2_SEL LDO2_EN  
-
-
-
Bit  
Name  
Function  
Initial  
0
LDO2 control select bit  
LDO2_SEL  
LDO2_EN  
0 = LDO2 ON/OFF is controlled bystate machine.  
1 = LDO2 ON/OFF is controlled byD[6] on this register.  
D[7]  
LDO2 control bit with condition of D[7]  
0 = LDO2 OFF  
1 = LDO2 ON  
0
1
D[6]  
D[5]  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Select the LDO2 voltage.  
0 = 0.9V  
1 = 0.8V(initial)  
LDO2_VOLT_SEL  
Note: Changing LDO2 voltage value is not allowed when LDO2 is still ON.  
In the case where this register value is changed, LDO2 should be turned OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
96/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.3. LDO3  
5.3.3.1.  
LDO3 Block Diagram  
Note : Thesourceof LDO3 is VSYS whenBUCK6 is OFF.  
Thesourceof LDO3 is VIN_3P3 when BUCK6 is ON.  
Thechangingof the source is automatic.  
VSYS  
OCP  
VSYS  
BUCK6  
VREF  
VIN_3P3  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO3_VOUT  
COLDO3  
EN  
Discharge  
Resistor  
EN  
VR Controller  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-9. LDO3 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
97/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.3.2.  
LDO3 Electrical Characteristics  
Table 5-28. LDO3 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.8 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
VO_LDO3  
Unit  
V
Condition  
Min  
Typ  
Max  
VO=1.8 Vsetting  
Io=1 mA  
1.782  
1.800  
1.818  
Output Voltage Range  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
VORG_LDO3  
IOMAX_LDO3  
IOCP_LDO3  
IQ_LDO3  
1.800  
-
-
3.300  
V
100 mVstep  
300  
-
mA  
mA  
µA  
mV  
µs  
390  
-
-
-
-
-
-
-
-
-
9
-
-
Io = 0 mA  
Io = Iomax  
Dropout Voltage  
ΔVODP_LDO3  
tST_LDO3  
450  
310  
10  
2
VIN_3P3 = 1.7 V, VO = 1.8Vsetting  
Io = 0 mA,  
During EN to 90 % of nominal Voltage  
Start up Time  
1000  
20  
5
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO3  
ΔVLNR_LDO3  
RDIS_LDO3  
DVRFLDO3  
mV  
mV  
Ω
Io = 1 mAto Iomax  
VSYS = 4.5 Vto 5.5 V, Io = 50 mA  
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO3_HYS  
-
-
10  
60  
2.2  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO3  
dB  
μF  
(Note 1)  
COLDO3  
1.1  
22.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
98/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.3.3.  
LDO3 Control  
Table 5-29. LDO3_VOLT - LDO3 Voltage Register  
Register Name  
LDO3_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x00  
Address  
0x1A  
R/W LDO3_SEL LDO3_EN  
Name  
-
-
LDO3_VOLT[3:0]  
Bit  
Function  
Initial  
0
LDO3 control select bit  
LDO3_SEL  
LDO3_EN  
0 = LDO3 ON/OFF is controlled bystate machine.  
1 = LDO3 ON/OFF is controlled byD[6] on this register.  
D[7]  
LDO3 control bit with condition of D[7]  
0 = LDO3 OFF  
1 = LDO3 ON  
0
D[6]  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
LDO3 voltage  
0x0 = 1.8 V(Initial)  
0x1 = 1.9 V  
0x2 = 2.0 V  
0x3 = 2.1 V  
0x4 = 2.2 V  
0x5 = 2.3 V  
0x6 = 2.4 V  
0x7 = 2.5 V  
0x8 = 2.6 V  
0x9 = 2.7 V  
0xA= 2.8 V  
0xB = 2.9 V  
0xC = 3.0 V  
0xD = 3.1 V  
0xE = 3.2 V  
0xF = 3.3 V  
LDO3_VOLT[3:0]  
0000  
D[3:0]  
Note: Changing LDO3 voltage value is not allowed when LDO3 is still ON.  
In the case where this register value is changed, LDO3 should be turned OFF.  
It is recommended that the VIN_3P3 pin is connected to BUCK6. LDO3 power source is switched from the  
VSYS pin to the VIN_3P3 pin after BUCK6 is turned on. On the other hand, LDO3 power source is switched  
from the VIN_3P3 pin to the VSYS pin when BUCK6 is turned off. It takes 3 ms to complete this switching  
operation. Therefore, actual BUCK6 turn-off is delayed as shown in Figure 5-10.  
BUCK6_SEL  
3 ms  
BUCK6_EN  
Low  
BUCK6  
0V  
LDO3 Source  
BUCK6  
VSYS  
Figure 5-10. LDO3 Voltage Source Switching  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
99/116  
BD71850MWV  
5.3.4. LDO4  
5.3.4.1.  
LDO4 Block Diagram  
Note : Thesourceof LDO4 is VSYS whenBUCK7 is OFF.  
Thesourceof LDO4 is VIN_1P8_1 when BUCK7 is ON.  
Thechangingof the source is automatic.  
VSYS  
OCP  
VSYS  
BUCK7  
VREF  
VIN_1P8_1  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO4_VOUT  
COLDO4  
EN  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-11. LDO4 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
100/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.4.2.  
LDO4 Electrical Characteristics  
Table 5-30. LDO4 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 0.9 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
VO_LDO4  
Unit  
V
Condition  
Min  
Typ  
Max  
VO=0.9 Vsetting  
Io=1 mA  
0.885  
0.900  
0.915  
Output Voltage Range  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
VORG_LDO4  
IOMAX_LDO4  
IOCP_LDO4  
IQ_LDO4  
0.900  
-
-
1.800  
V
100 mVstep  
250  
-
mA  
mA  
µA  
mV  
µs  
325  
-
-
-
-
-
-
-
-
-
9
-
-
Io = 0 mA  
Io = Iomax  
Dropout Voltage  
ΔVODP_LDO4  
tST_LDO4  
450  
400  
10  
2
VIN_V1P8_1 = 1.7 V, VO = 1.8 Vsetting  
Io = 0 mA,  
During EN to 90 % of nominal Voltage  
Start up Time  
1000  
20  
5
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO4  
ΔVLNR_LDO4  
RDIS_LDO4  
DVRFLDO4  
mV  
mV  
Ω
Io = 1 mAto Iomax  
VSYS = 4.5 Vto 5.5 V, Io = 50 mA  
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO4_HYS  
-
-
10  
60  
2.2  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO4  
dB  
μF  
(Note 1)  
COLDO4  
1.1  
22.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
101/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.4.3.  
LDO4 Control  
Table 5-31. LDO4_VOLT - LDO4 Voltage Register  
Register Name  
LDO4_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x80  
Address  
0x1B  
R/W LDO4_SEL LDO4_EN  
-
-
LDO4_VOLT[3:0]  
Bit  
Name  
Function  
Initial  
1
LDO4 control select bit  
LDO4_SEL  
0 = LDO4 ON/OFF is controlled bystate machine.  
D[7]  
1 = LDO4 ON/OFF is controlled byD[6] on this register.  
LDO4 control bit with condition of D[7]  
0 = LDO4 OFF  
LDO4_EN  
1 = LDO4 ON  
0
D[6]  
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
LDO4 voltage  
0x0 = 0.9 V(Initial)  
0x1 = 1.0 V  
0x2 = 1.1 V  
0x3 = 1.2 V  
0x4 = 1.3 V  
0x5 = 1.4 V  
0x6 = 1.5 V  
0x7 = 1.6 V  
0x8 = 1.7 V  
0x9 = 1.8 V  
0xA= 1.8 V  
0xB = 1.8 V  
0xC = 1.8 V  
0xD= 1.8 V  
0xE = 1.8 V  
0xF = 1.8 V  
LDO4_VOLT[3:0]  
0000  
D[3:0]  
Note: Changing LDO4 voltage value is not allowed when LDO4 is still ON.  
In the case where this register value is changed, LDO4 should be turned OFF.  
It is recommended that the VIN_1P8_1 pin is connected to BUCK7. LDO4 power source is switched from  
the VSYS pin to the VIN_1P8_1 pin after BUCK7 is turned on. On the other hand, LDO4 power source is  
switched from the VIN_1P8_1 pin to the VSYS pin when BUCK7 is turned off. It takes 3 ms to complete this  
switching operation. Therefore, actual BUCK7 turn-off is delayed as shown in Figure 5-12.  
BUCK7_SEL  
3 ms  
BUCK7_EN  
Low  
BUCK7  
0V  
LDO4 Source  
BUCK7  
VSYS  
Figure 5-12. LDO4 Voltage Source Switching  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
102/116  
BD71850MWV  
5.3.5. LDO5  
5.3.5.1.  
LDO5 Block Diagram  
OCP  
VSYS  
VSYS  
VREF  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO5_VOUT  
COLDO5  
EN  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-13. LDO5 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
103/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.5.2.  
LDO5 Electrical Characteristics  
Table 5-32. LDO5 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 3.3 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
VO_LDO5  
Unit  
V
Condition  
Min  
Typ  
Max  
VO=3.3 Vsetting  
Io=1 mA  
3.267  
3.300  
3.333  
Output Voltage Range  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
VORG_LDO5  
IOMAX_LDO5  
IOCP_LDO5  
IQ_LDO5  
0.800  
-
-
3.300  
V
100 mVstep  
300  
-
mA  
mA  
µA  
mV  
µs  
340  
-
-
-
-
-
-
-
-
-
9
-
-
Io = 0 mA  
Io = Iomax  
Dropout Voltage  
ΔVODP_LDO5  
tST_LDO5  
250  
530  
10  
2
VSYS = 3.2 V, VO = 3.3 Vsetting  
Io = 0 mA,  
During EN to 90 % of nominal Voltage  
Start up Time  
1000  
20  
5
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO5  
ΔVLNR_LDO5  
RDIS_LDO5  
DVRFLDO5  
mV  
mV  
Ω
Io = 1 mAto Iomax  
VSYS = 4.5 Vto 5.5 V, Io = 50 mA  
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO5_HYS  
-
-
10  
60  
2.2  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO5  
dB  
μF  
(Note 1)  
COLDO5  
1.1  
22.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
104/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.5.3.  
LDO5 Control  
Table 5-33. LDO5_VOLT - LDO5 Voltage Register  
Register Name  
LDO5_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x8F  
Address  
0x1C  
LDO5_VOL  
T_SEL  
R/W LDO5_SEL LDO5_EN  
Name  
-
LDO5_VOLT[3:0]  
Bit  
Function  
Initial  
1
LDO5 control select bit  
D[7]  
LDO5_SEL  
0 = LDO5 ON/OFF is controlled bystate machine.  
1 = LDO5 ON/OFF is controlled byD[6] on this register.  
LDO5 control bit with condition of D[7]  
0 = LDO5 OFF  
D[6]  
D[5]  
LDO5_EN  
1 = LDO5 ON  
0
0
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
Select the LDO5 voltage range set byD[1:0].  
0 = 1.8 Vto 3.3 V  
1 = 0.8 Vto 2.3 V  
LDO5_VOLT_SEL  
Note: Changing LDO5 voltage value is not allowed when LDO5 is still ON.  
In the case where this register value is changed, LDO5 should be turned OFF.  
LDO5 voltage  
if D[5]=0,  
0x0 = 1.8 V 0x1 = 1.9 V 0x2 = 2.0 V 0x3 = 2.1 V  
0x4 = 2.2 V 0x5 = 2.3 V 0x6 = 2.4 V 0x7 = 2.5 V  
0x8 = 2.6 V 0x9 = 2.7 V 0xA= 2.8 V 0xB = 2.9 V  
0xC = 3.0 V 0xD= 3.1 V 0xE = 3.2 V 0xF = 3.3 V(initial)  
D[3:0]  
LDO5_VOLT[3:0]  
if D[5]=1,  
1111  
0x0 = 0.8 V 0x1 = 0.9 V 0x2 = 1.0 V 0x3 = 1.1 V  
0x4 = 1.2 V 0x5 = 1.3 V 0x6 = 1.4 V 0x7 = 1.5 V  
0x8 = 1.6 V 0x9 = 1.7 V 0xA= 1.8 V 0xB = 1.9 V  
0xC = 2.0 V 0xD= 2.1 V 0xE = 2.2 V 0xF = 2.3 V  
Note: Changing LDO5 voltage value is not allowed when LDO5 is still ON.  
In the case where this register value is changed, LDO5 should be turned OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
105/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.6. LDO6  
5.3.6.1.  
LDO6 Block Diagram  
OCP  
BUCK7(1.8V)  
VIN_1P8_1  
VREF  
DAC  
Voltage setting  
-
-
Soft Start  
+
LDO6_VOUT  
COLDO6  
EN  
Discharge  
Resistor  
VR Controller  
EN  
GND  
PGND  
(EXP-PAD)  
VR Fault  
Detector  
VR Fault Signal  
Figure 5-14. LDO6 Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
106/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.3.6.2.  
LDO6 Electrical Characteristics  
Table 5-34. LDO6 Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.2 Vsetting)  
Limit  
Parameter  
Output Voltage  
Symbol  
VO_LDO6  
Unit  
V
Condition  
Min  
Typ  
Max  
VO=1.2 Vsetting  
Io=1 mA  
1.185  
1.200  
1.215  
Output Voltage Range  
Maximum Output Current  
Over Current Protection  
Quiescent Current  
VORG_LDO6  
IOMAX_LDO6  
IOCP_LDO6  
IQ_LDO6  
0.900  
-
-
1.800  
V
100 mVstep  
300  
-
mA  
mA  
µA  
mV  
µs  
340  
-
-
-
-
-
-
-
-
-
9
-
-
Io = 0 mA  
Io = Iomax  
Dropout Voltage  
ΔVODP_LDO6  
tST_LDO6  
450  
400  
10  
2
VIN_V1P8_1 = 1.7 V, VO = 1.8 Vsetting  
Io = 0 mA,  
During EN to 90 % of nominal Voltage  
Start up Time  
1000  
20  
5
DC Output Voltage Load Regulation  
DC Output Voltage Line Regulation  
Discharge Resistance  
VR Fault Detect Level  
ΔVLDR_LDO6  
ΔVLNR_LDO6  
RDIS_LDO6  
DVRFLDO6  
mV  
mV  
Ω
Io = 1 mAto Iomax  
VSYS = 4.5 Vto 5.5 V, Io = 50 mA  
100  
80  
200  
-
Output = Sweep down  
Power good detect level / Vo x100  
%
(VR fault release level - detect level) / Vo x  
100  
VR Fault Detect Hysteresis  
Ripple Rejection Ratio  
Output Capacitance  
DVRFLDO6_HYS  
-
-
10  
60  
2.2  
-
-
%
VSYS = 5.0 V, IO=Iomax/2  
VR = -20 dBV, fR=100 Hz  
BW=20 Hzto 20 kHz  
RRLDO6  
dB  
μF  
(Note 1)  
COLDO6  
1.1  
22.0  
Effective capacitance with LDO's DC bias  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
107/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
5.3.6.3.  
LDO6 Control  
Table 5-35. LDO6_VOLT - LDO6 Voltage Register  
Register Name  
LDO6_VOLT  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x03  
Address  
0x1D  
R/W LDO6_SEL LDO6_EN  
Name  
-
-
LDO6_VOLT[3:0]  
Bit  
Function  
Initial  
0
LDO6 control select bit  
D[7]  
LDO6_SEL  
0 = LDO6 ON/OFF is controlled bystate machine.  
1 = LDO6 ON/OFF is controlled byD[6] on this register.  
LDO6 control bit with condition of D[7]  
0 = LDO6 OFF  
D[6]  
LDO6_EN  
1 = LDO6 ON  
0
This bit returns to 0 at the beginning of PWROFF sequence or emergency  
shutdown.  
LDO6 voltage  
0x0 = 0.9 V  
0x1 = 1.0 V  
0x2 = 1.1 V  
0x3 = 1.2 V(initial)  
0x4 = 1.3 V  
0x5 = 1.4 V  
0x6 = 1.5 V  
0x7 = 1.6 V  
0x8 = 1.7 V  
0x9 = 1.8 V  
0xA= 1.8 V  
0xB = 1.8 V  
0xC = 1.8 V  
0xD= 1.8 V  
0xE = 1.8 V  
0xF = 1.8 V  
LDO6_VOLT[3:0]  
0011  
D[3:0]  
Note: Changing LDO6 voltage value is not allowed when LDO6 is still ON.  
In the case where this register value is changed, LDO6 should be turned OFF.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
108/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.4. MUXSW  
MUX Switch is for SD card power.  
5.4.1. MUXSW Block Diagram  
BUCK7  
VIN_1P8_2  
BUCK6  
DVDD  
VIN_3P3  
SD_VSELECT  
MUXSW_VOUT  
MUX  
Switch  
Controller  
COMUXSW  
MUXSW_EN  
DISCHARGE  
RESISTOR  
PGND  
(EXP-PAD)  
Figure 5-15. MUXSW Block Diagram  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
109/116  
TSZ22111 • 15 • 001  
BD71850MWV  
5.4.2. MUXSW Electrical Characteristics  
Table 5-36. MUXSW Electrical Characteristics  
(Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_2 = 1.8 V, Vo = 3.3 Vsetting)  
Limit  
Parameter  
Symbol  
Unit  
V
Condition  
Min  
-
Typ  
Max  
-
VIN_3P3 Input Voltage  
V
IN_3P3  
3.300  
Switch ON Resistance(3.3 Vmode)  
VIN_1P8_2 Input Voltage  
RON_3P3  
-
-
500  
-
mΩ  
V
SD_VSELECT=0 V, VIN_3P3>3.2 V  
V
IN_1P8  
-
1.800  
Switch ON Resistance(1.8 Vmode)  
Maximum Output Current  
RON_1P8  
IOMAX_MUX  
RDIS_MUX  
-
150  
-
-
-
500  
-
mΩ  
mA  
Ω
SD_VSELECT=DVDD, VIN_1P8_2>1.7 V  
VIN_1P8_2=0 V, VIN_3P3=0 V, IO=-10 mA  
Discharge Resistance  
30  
50  
(Note 1)  
Output Capacitance  
CO_MUX  
11  
22  
33  
μF  
Effective capacitance with Output voltage  
(Note 1) This part value range need to be guaranteed over the operating surrounding temperature.  
Table 5-37. SD_VSELECT Electrical Characteristics  
(Unless otherwise specified, Ta=25°C, DVDD=1.8 V)  
Limit  
Typ  
Parameter  
Input "H" Level  
Input "L" Level  
Symbol  
Unit  
Condition  
Min  
Max  
-
DVDD  
x0.75  
V
IHSDV  
-
-
V
V
DVDD  
x0.25  
V
ILSDV  
-
t1  
t2  
SD_VSELECT  
tf  
tr  
3.30 V  
3.15 V  
3.30 V  
MUXSW_VOUT  
1.89 V  
1.80 V  
Figure 5-16. MUXSW Sequence  
Table 5-38. MUXSW Sequence Timing  
Symbol  
Description  
SD_VSELCT High Time(Note 1)  
SD_VSELCT Low Time(Note 1)  
Min  
2
Typ  
Max  
Unit  
ms  
ms  
ms  
ms  
t1  
t2  
tf  
-
-
-
-
2
Transition Time 3.3 Vto 1.8 V  
1
1
-
-
-
-
tr  
Transition Time 1.8 Vto 3.3 V  
(Note 1) t1 and t2 need over 2ms.  
Table 5-39. MUXSW_EN - MUXSW Enable Register  
Register Name  
MUXSW_EN  
R/W  
R/W  
D7  
-
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MUXSW_EN  
Initial  
0x01  
Address  
0x30  
-
-
-
-
-
-
Bit  
Name  
Function  
Initial  
1
MUXSW control bit  
0 = MUXSW OFF  
1 = MUXSW ON  
D[0]  
MUXSW_EN  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
110/116  
TSZ22111 • 15 • 001  
 
BD71850MWV  
6. 32.768 kHz Crystal Oscillator Driver  
6.1. 32.768 kHz Crystal Oscillator Driver Block Diagram  
INTLDO1P5  
VDD_V1P5  
VDD_V1P5  
XOUT  
32.768kHz  
Crystal  
CONTROLLER  
Counter  
XIN  
Oscillator Driver  
VDD_V1P5  
DVDD  
M
U
C32K_OUT  
1/375  
X
OUT32K_EN  
divider  
12MHz  
Figure 6-1. 32.768 kHz Crystal Oscillator Driver Block Diagram  
Table 6-1. C32K_OUT Control Register  
Register Name  
OUT32K  
R/W  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initial  
0x01  
Address  
0x2E  
-
-
-
-
-
-
-
OUT32K_EN  
Bit  
Name  
OUT32K_EN  
Function  
Initial  
1
0 = Disable (C32K_OUT is Low level)  
1 = Enable  
D[0]  
At the beginning of power-on, the C32K_OUT pin output clock is generated from the 12 MHz internal oscillator; the clock  
frequency is equal to 12 MHz / 375.  
If an external 32.768 kHz crystal is present, the C32K_OUT pin output clock’s clock source is switched from the internal  
oscillator to the crystal clock after 3000 crystal clock cycles, i.e., it is assumed that the crystal clock is stable by then.  
6.2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics  
Table 6-2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics  
(Unless otherwise specified, Ta = +25°C, VSYS = 5.0 V, DVDD = 1.8 V)  
Limit  
Parameter  
Output Frequency  
Symbol  
fRTCLK  
Unit  
kHz  
Condition  
With external crystal  
Min  
-
Typ  
Max  
-
32.768  
Output DutyCycle  
DRTCLK  
VOH32K  
VOL32K  
40  
50  
-
60  
-
%
V
DVDD  
x0.8  
Output H Level Voltage  
IOH = -1 mA  
IOL = 1 mA  
Output L Level Voltage  
-
-
0.4  
V
(Note) The following 32.768 kHz crystal is recommended.  
ST3215SB32768H5HPWAA (KYOCERA: CL=12.5pF)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
111/116  
BD71850MWV  
7. Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
112/116  
BD71850MWV  
7.  
Operational Notes continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 7-1. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
113/116  
BD71850MWV  
8. Ordering Information  
B D 7 1 8 5 0 M W V -  
E2  
Part Number  
Package  
Packaging and forming specification  
MWV: UQFN56BV7070 E2: Embossed tape and reel  
9. Marking Diagram  
UQFN56BV7070 (TOP VIEW)  
Part Number Marking  
ROHM  
LOT Number  
BD71 850  
Pin 1 Mark  
Figure 9-1. Marking Diagram  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
114/116  
BD71850MWV  
10. Physical Dimension and Packing Information  
Package Name  
UQFN56BV7070  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
115/116  
BD71850MWV  
11. Revision History  
Revision  
Number  
Date  
Description  
27.Sep.2019  
16.Mar.2020  
001  
002  
First Release  
p.1,18 Changed maximum operating temperature to 105 °C.  
p.73,77,81,84,87,90,93,96,98,101,104,107,110  
Deleted temperature condition of parts. Added note about parts  
temperature.  
www.rohm.com  
TSZ02201-0Q2Q0A500680-1-2  
16.Mar.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
116/116  
TSZ22111 • 15 • 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY