BD725L05G-C (新产品) [ROHM]

BD725L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,电流消耗为6µA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。;
BD725L05G-C (新产品)
型号: BD725L05G-C (新产品)
厂家: ROHM    ROHM
描述:

BD725L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,电流消耗为6µA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。

电池 过电流保护 电容器 陶瓷电容器 稳压器
文件: 总42页 (文件大小:3123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
For Automotive 45 V Input  
50 mA Fixed Output LDO Regulators  
BD7xxL05G-C Series  
General Description  
Applications  
Power Train  
Body  
The BD7xxL05G-C linear regulators are designed  
as low current consumption products for power  
supplies in various automotive applications.  
Car Infotainment etc.  
These products are designed for up to 45  
V
absolute maximum supply voltage and operate until  
50 mA output current with low current consumption  
of 6 μA (Typ). It can regulate the output at a very  
high accuracy of ±2 %.  
This device features an integrated Over Current  
Protection to keep the device from a damage that is  
caused by short-circuit or overload. This product  
also integrates a Thermal Shutdown protection to  
avoid the damage from overheating.  
Key Specifications  
Wide Temperature Range (Tj):  
-40 °C to +150 °C  
Wide Operating Input Voltage Range: 3 V to 45 V  
Low Current Consumption:  
Output Current:  
Output Voltage:  
High Output Voltage Accuracy:  
6 μA (Typ)  
50 mA (Max)  
2.5 V / 3 V / 3.3 V / 5.0 V (Typ)  
±2 %  
Package  
Furthermore, low ESR ceramic capacitors are  
sufficiently applicable for the output phase  
compensation.  
W (Typ) x D (Typ) x H (Max)  
SSOP5:  
2.9 mm x 2.8 mm x 1.25 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Functional Safety Supportive Automotive Products  
Qualification Planned for Automotive Application  
Over Current Protection (OCP)  
Thermal Shutdown Protection (TSD)  
(Note 1) Grade 1  
Typical Application Circuit  
Components Externally Connected  
Capacitor(Note 2): 0.1 µF ≤ CIN (Min), 0.5 µF ≤ COUT (Min)  
(Note 2) Electrolytic, tantalum, and ceramic capacitors can be used.  
Input  
Output  
VIN  
VOUT  
BD7xxL05G-C  
CIN  
COUT  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0BJB0A600090-1-2  
1/39  
18.Nov.2022 Rev.002  
 
 
 
 
 
 
BD7xxL05G-C Series  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................4  
Pin Descriptions..............................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of Blocks ......................................................................................................................................................................5  
Absolute Maximum Ratings ............................................................................................................................................................6  
Thermal Resistance(Note 6) ...............................................................................................................................................................6  
Operating Conditions......................................................................................................................................................................7  
Electrical Characteristics.................................................................................................................................................................8  
Typical Performance Curves (BD725L05G-C)................................................................................................................................9  
Figure 1. Output Voltage vs Input Voltage...................................................................................................................................9  
Figure 2. Output Voltage vs Input Voltage - Enlarged view .........................................................................................................9  
Figure 3. Line Regulation vs Input Voltage..................................................................................................................................9  
Figure 4. Output Voltage vs Junction Temperature .....................................................................................................................9  
Figure 5. Circuit Current vs Input Voltage..................................................................................................................................10  
Figure 6. Circuit Current vs Input Voltage - Enlarged view........................................................................................................10  
Figure 7. Circuit Current vs Input Voltage..................................................................................................................................10  
Figure 8. Circuit Current vs Input Voltage - Enlarged view........................................................................................................10  
Figure 9. Circuit Current vs Junction Temperature ....................................................................................................................11  
Figure 10. Circuit Current vs Output Current.............................................................................................................................11  
Figure 11. Output Voltage vs Output Current ............................................................................................................................11  
Figure 12. Load Regulation vs Output Current..........................................................................................................................11  
Figure 13. Output Voltage vs Junction Temperature..................................................................................................................12  
Figure 14. Ripple Rejection vs Frequency.................................................................................................................................12  
Typical Performance Curves (BD730L05G-C)..............................................................................................................................13  
Figure 15. Output Voltage vs Input Voltage...............................................................................................................................13  
Figure 16. Output Voltage vs Input Voltage - Enlarged view .....................................................................................................13  
Figure 17. Line Regulation vs Input Voltage..............................................................................................................................13  
Figure 18. Output Voltage vs Junction Temperature..................................................................................................................13  
Figure 19. Circuit Current vs Input Voltage................................................................................................................................14  
Figure 20. Circuit Current vs Input Voltage - Enlarged view......................................................................................................14  
Figure 21. Circuit Current vs Input Voltage................................................................................................................................14  
Figure 22. Circuit Current vs Input Voltage - Enlarged view......................................................................................................14  
Figure 23. Circuit Current vs Junction Temperature ..................................................................................................................15  
Figure 24. Circuit Current vs Output Current.............................................................................................................................15  
Figure 25. Output Voltage vs Output Current ............................................................................................................................15  
Figure 26. Load Regulation vs Output Current..........................................................................................................................15  
Figure 27. Dropout Voltage vs Output Current ..........................................................................................................................16  
Figure 28. Output Voltage vs Junction Temperature..................................................................................................................16  
Figure 29. Ripple Rejection vs Frequency.................................................................................................................................16  
Typical Performance Curves (BD733L05G-C)..............................................................................................................................17  
Figure 30. Output Voltage vs Input Voltage...............................................................................................................................17  
Figure 31. Output Voltage vs Input Voltage - Enlarged view .....................................................................................................17  
Figure 32. Line Regulation vs Input Voltage..............................................................................................................................17  
Figure 33. Output Voltage vs Junction Temperature..................................................................................................................17  
Figure 34. Circuit Current vs Input Voltage................................................................................................................................18  
Figure 35. Circuit Current vs Input Voltage - Enlarged view......................................................................................................18  
Figure 36. Circuit Current vs Input Voltage................................................................................................................................18  
Figure 37. Circuit Current vs Input Voltage - Enlarged view......................................................................................................18  
Figure 38. Circuit Current vs Junction Temperature ..................................................................................................................19  
Figure 39. Circuit Current vs Output Current.............................................................................................................................19  
Figure 40. Output Voltage vs Output Current ............................................................................................................................19  
Figure 41. Load Regulation vs Output Current..........................................................................................................................19  
Figure 42. Dropout Voltage vs Output Current ..........................................................................................................................20  
Figure 43. Output Voltage vs Junction Temperature..................................................................................................................20  
Figure 44. Ripple Rejection vs Frequency.................................................................................................................................20  
Typical Performance Curves (BD750L05G-C)..............................................................................................................................21  
Figure 45. Output Voltage vs Input Voltage...............................................................................................................................21  
Figure 46. Output Voltage vs Input Voltage - Enlarged view .....................................................................................................21  
Figure 47. Line Regulation vs Input Voltage..............................................................................................................................21  
Figure 48. Output Voltage vs Junction Temperature..................................................................................................................21  
Figure 49. Circuit Current vs Input Voltage................................................................................................................................22  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
2/39  
18.Nov.2022 Rev.002  
 
BD7xxL05G-C Series  
Figure 50. Circuit Current vs Input Voltage - Enlarged view......................................................................................................22  
Figure 51. Circuit Current vs Input Voltage................................................................................................................................22  
Figure 52. Circuit Current vs Input Voltage - Enlarged view......................................................................................................22  
Figure 53. Circuit Current vs Junction Temperature ..................................................................................................................23  
Figure 54. Circuit Current vs Output Current.............................................................................................................................23  
Figure 55. Output Voltage vs Output Current ............................................................................................................................23  
Figure 56. Load Regulation vs Output Current..........................................................................................................................23  
Figure 57. Dropout Voltage vs Output Current ..........................................................................................................................24  
Figure 58. Output Voltage vs Junction Temperature..................................................................................................................24  
Figure 59. Ripple Rejection vs Frequency.................................................................................................................................24  
Measurement Circuit for Typical Performance Curves..................................................................................................................25  
Application and Implementation....................................................................................................................................................26  
Selection of External Components............................................................................................................................................26  
Input Pin Capacitor................................................................................................................................................................26  
Output Pin Capacitor .............................................................................................................................................................26  
Typical Application and Layout Example ...................................................................................................................................28  
Surge Voltage Protection for Linear Regulators ........................................................................................................................29  
Positive surge to the input .....................................................................................................................................................29  
Negative surge to the input....................................................................................................................................................29  
Reverse Voltage Protection for Linear Regulators ....................................................................................................................29  
Protection against Reverse Input/Output Voltage..................................................................................................................29  
Protection against Input Reverse Voltage..............................................................................................................................30  
Protection against Reverse Output Voltage when the Output is connected to an Inductor....................................................31  
Power Dissipation.........................................................................................................................................................................32  
Thermal Design ............................................................................................................................................................................33  
I/O Equivalence Circuit(Note 1).........................................................................................................................................................34  
Operational Notes.........................................................................................................................................................................35  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................35  
Power Supply Lines........................................................................................................................................................35  
Ground Voltage...............................................................................................................................................................35  
Ground Wiring Pattern....................................................................................................................................................35  
Operating Conditions......................................................................................................................................................35  
Inrush Current.................................................................................................................................................................35  
Testing on Application Boards ........................................................................................................................................35  
Inter-pin Short and Mounting Errors ...............................................................................................................................35  
Regarding the Input Pin of the IC ...................................................................................................................................36  
Ceramic Capacitor..........................................................................................................................................................36  
Thermal Shutdown Circuit (TSD)....................................................................................................................................36  
Over Current Protection Circuit (OCP) ...........................................................................................................................36  
Thermal Consideration ...................................................................................................................................................36  
Functional Safety............................................................................................................................................................36  
9.  
10.  
11.  
12.  
13.  
14.  
Ordering Information.....................................................................................................................................................................37  
Marking Diagram ..........................................................................................................................................................................37  
Lineup...........................................................................................................................................................................................37  
Physical Dimension and Packing Information...............................................................................................................................38  
Revision History............................................................................................................................................................................39  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
3/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Pin Configuration  
SSOP5  
(Top View)  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
Descriptions  
This pin is not connected to the chip.  
It can kept open or it’s also possible to connect to GND.  
1
N.C.  
Not Connected  
This is the Ground pin.  
It should be connected to the lowest potential.  
2
3
GND  
N.C.  
Ground Pin  
This pin is not connected to the chip.  
It can kept open or it’s also possible to connect to GND.  
Not Connected  
This pin supplies the input voltage.  
It is necessary to connect a capacitor which is 0.1 μF (Min) or higher  
4
5
VIN  
Supply Voltage Input Pin between VIN pin and GND.  
The detailed selecting guide is described in Selection of External  
Components.  
This pin outputs the voltage setting.  
It is necessary to connect a capacitor which is 0.5 μF (Min) or higher  
between the VOUT pin and GND.  
VOUT  
Output Pin  
The detailed selecting guide is described in Selection of External  
Components.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
4/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Block Diagram  
N.C. ( 3Pin )  
GND ( 2Pin )  
N.C. ( 1Pin )  
OCP  
PREREG  
VREF  
AMP  
DRIVER  
TSD  
VIN ( 4Pin )  
VOUT ( 5Pin )  
Description of Blocks  
Block Name  
Function  
Description of Blocks  
Provides Power Supply for the Internal Circuit.  
PREREG  
Internal Power Supply  
In case maximum power dissipation is exceeded or the ambient  
temperature is higher than the Maximum Junction Temperature,  
overheating causes the chip temperature (Tj) to rise.  
The TSD protection circuit detects this and forces the output to turn off in  
order to protect the device from overheating.  
TSD  
Thermal Shutdown  
When the junction temperature decreases, the output turns on  
automatically.  
Output pin is discharged when the TSD protection circuit is operating.  
VREF  
AMP  
Reference Voltage  
Error Amplifier  
Generates the Reference Voltage.  
The Error Amplifier amplifies the difference between the divided feedback  
voltage and the reference voltage, and then it regulates Output Power Tr.  
via the DRIVER.  
DRIVER  
Output MOSFET Driver  
Drives the Output MOSFET (Power Tr.).  
If the output current increases higher than the maximum Output Current,  
it will be limited by the Over Current Protection in order to protect the  
device from damage that will be caused by over current.  
At this operating condition, the output voltage may decrease because the  
output current is limited.  
OCP  
Over Current Protection  
If an abnormal state is removed, and the output current value returns  
normally, the output voltage will also return to normal state.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
5/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Absolute Maximum Ratings  
Parameter  
Symbol  
Ratings  
Unit  
Input Supply Voltage(Note 1)  
Output Voltage(Note 2)  
VIN  
VOUT  
-0.3 to +45  
-0.3 to +18  
-40 to +150  
-55 to +150  
150  
V
V
Junction Temperature Range  
Storage Temperature Range  
Tj  
°C  
°C  
°C  
V
Tstg  
Maximum Junction Temperature  
ESD Withstand Voltage (HBM) (Note 3)  
ESD Withstand Voltage (CDM) (Note 4)  
Tjmax  
VESD_HBM  
VESD_CDM  
± 2000  
± 750  
V
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance and power dissipation taken into  
consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Do not exceed Tjmax.  
(Note 2) Do not exceed VIN + 0.3 V.  
(Note 3) ESD susceptibility Human Body Model “HBM”; base on ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF).  
(Note 4) ESD susceptibility Charged Device Model “CDM”; base on JEDEC JESD22-C101.  
Thermal Resistance(Note 6)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 8)  
2s2p(Note 9)  
SSOP5  
Junction to Ambient  
θJA  
247.3  
43  
155.5  
33  
°C/W  
°C/W  
Junction to Top Characterization Parameter(Note 7)  
ΨJT  
(Note 6) Based on JESD51-2A (Still-Air). Using BD750L05G-C Chips.  
(Note 7) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 8) Using a PCB board based on JESD51-3.  
(Note 9) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
Board Size  
4 Layers  
FR-4  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Top  
Bottom  
Copper Pattern  
Copper Pattern  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
6/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Operating Conditions  
Parameter  
BD725L05G-C /  
Symbol  
VIN  
Min  
3.5  
Max  
42.0  
Unit  
V
BD730L05G-C  
BD733L05G-C  
BD750L05G-C  
Input Supply Voltage(Note 1)  
( IOUT ≤ 50 mA )  
VIN  
VIN  
3.8  
5.6  
3
42.0  
42.0  
-
V
V
Start-up Voltage(Note 2)  
Output Current  
VIN Start-up  
IOUT  
V
0
50  
mA  
µF  
µF  
Input Capacitor(Note 3)  
Output Capacitor(Note 4)  
CIN  
0.1  
0.5  
-
-
COUT  
1000  
100  
+125  
Output Capacitor Equivalent Series Resistance(Note 5)  
ESR (COUT  
Ta  
)
Operating Temperature  
-40  
°C  
(Note 1) Minimum Input Supply Voltage must be VIN Start-up = 3 V or more.  
Consider that the output voltage would be reduced (Dropout Voltage) by the output current.  
(Note 2) When IOUT = 0 mA  
(Note 3) If the inductance of power supply line is high, adjust input capacitor value.  
(Note 4) Set the value of the capacitor so that it does not fall below the minimum value. Take into consideration the temperature characteristics and DC device  
characteristics.  
(Note 5) Refer to Selection of External Components and select the parts.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
7/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Electrical Characteristics  
Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 13.5 V, IOUT = 0 mA  
Typical values are defined at Tj = 25 °C, VIN = 13.5 V, IOUT = 0 mA.  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
9
IOUT = 0 mA  
Tj ≤ +25 °C  
IOUT = 0 mA  
Tj ≤ +105 °C  
IOUT = 0 mA  
Tj ≤ +125 °C  
IOUT ≤ 50 mA  
Tj ≤ +150 °C  
-
6
μA  
μA  
μA  
μA  
%
-
-
6
6
6
-
12  
13  
15  
+2  
Circuit Current  
ICC  
-
VOUT + 1 V ≤ VIN ≤ 42 V  
100 μA ≤ IOUT ≤ 50 mA  
VOUT + 1 V ≤ VIN ≤ 42 V  
IOUT ≤ 100 μA  
-2  
Output Voltage Accuracy  
ΔVOUT  
-2  
-
+2  
%
Tj ≤ +125 °C  
VIN = VOUT × 0.95 (= 2.85 V / 3.135 V)  
IOUT = 0.1 mA  
-
-
-
-
-
-
100  
180  
300  
200  
260  
350  
200  
280  
400  
350  
410  
500  
mV  
mV  
mV  
mV  
mV  
mV  
Dropout Voltage(Note 1)  
(BD730L05G-C / BD733L05G-C)  
VIN = VOUT × 0.95 (= 2.85 V / 3.135 V)  
IOUT = 20 mA  
ΔVd  
VIN = VOUT × 0.95 (= 2.85 V / 3.135 V)  
IOUT = 50 mA  
VIN = VOUT × 0.95 (= 4.75 V)  
IOUT = 0.1 mA  
VIN = VOUT × 0.95 (= 4.75 V)  
IOUT = 20 mA  
Dropout Voltage  
(BD750L05G-C)  
ΔVd  
R.R.  
VIN = VOUT × 0.95 (= 4.75 V)  
IOUT = 50 mA  
f = 120 Hz  
Ripple Rejection  
55  
60  
-
dB  
Vripple = 1 Vrms  
IOUT = 50 mA  
Line Regulation  
Reg.I  
Reg.L  
TSD  
-
-
0.1  
0.1  
0.6  
0.6  
-
% × VOUT VOUT + 1 V ≤ VIN ≤ 42 V  
% × VOUT 100 μA ≤ IOUT ≤ 50 mA  
Load Regulation  
Thermal Shutdown  
Over Current Protection  
151  
51  
175  
120  
°C  
Tj at TSD ON  
IOCP  
-
mA  
(Note 1) Minimum Input Supply Voltage of BD725L05G-C must be VIN Start-up = 3 V or more.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
18.Nov.2022 Rev.002  
8/39  
BD7xxL05G-C Series  
Typical Performance Curves (BD725L05G-C)  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 1. Output Voltage vs Input Voltage  
Figure 2. Output Voltage vs Input Voltage - Enlarged view  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.56  
2.53  
2.50  
2.47  
2.44  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
-40  
0
40  
80  
120  
160  
Input Voltage: VIN [V]  
Junction Temperature: Tj [°C]  
Figure 3. Line Regulation vs Input Voltage  
(VIN = 3.5 V to 45 V)  
Figure 4. Output Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
9/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD725L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
30  
25  
20  
15  
10  
5
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
6
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
3
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 5. Circuit Current vs Input Voltage  
(IOUT = 0 mA)  
Figure 6. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 0 mA)  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
6
Tj = -40 °C  
3
Tj = +25 °C  
Tj = +150 °C  
40 50  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 7. Circuit Current vs Input Voltage  
(IOUT = 50 mA)  
Figure 8. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
18.Nov.2022 Rev.002  
10/39  
 
BD7xxL05G-C Series  
Typical Performance Curves (BD725L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
15  
12  
9
15  
12  
9
6
6
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
3
3
0
0
0
10  
20  
30  
40  
50  
-40  
0
40  
80  
120  
160  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 9. Circuit Current vs Junction Temperature  
(IOUT = 0 mA)  
Figure 10. Circuit Current vs Output Current  
6
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
5
Tj = -40 °C  
Tj = -40 ℃  
Tj = +25 ℃  
Tj = +150 ℃  
4
3
2
1
0
Tj = +25 °C  
Tj = +150 °C  
0
50  
100  
150  
200  
0
10  
20  
30  
40  
50  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
Figure 11. Output Voltage vs Output Current  
(Over Current Protection)  
Figure 12. Load Regulation vs Output Current  
(IOUT = 100 μA to 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
11/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD725L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.01  
0.1  
1
10  
100  
1000  
100  
120  
140  
160  
180  
200  
Frequency: f [kHz]  
Junction Temperature: Tj [°C]  
Figure 13. Output Voltage vs Junction Temperature  
(Thermal Shutdown Protection)  
Figure 14. Ripple Rejection vs Frequency  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
12/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD730L05G-C)  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 15. Output Voltage vs Input Voltage  
Figure 16. Output Voltage vs Input Voltage - Enlarged view  
3.06  
3.03  
3.00  
2.97  
2.94  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
-40  
0
40  
80  
120  
160  
Input Voltage: VIN [V]  
Junction Temperature: Tj [°C]  
Figure 17. Line Regulation vs Input Voltage  
(VIN = 4 V to 45 V)  
Figure 18. Output Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
13/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD730L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
30  
25  
20  
15  
10  
5
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
6
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
3
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 19. Circuit Current vs Input Voltage  
(IOUT = 0 mA)  
Figure 20. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 0 mA)  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
6
Tj = -40 °C  
3
Tj = +25 °C  
Tj = +150 °C  
40 50  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 21. Circuit Current vs Input Voltage  
(IOUT = 50 mA)  
Figure 22. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
14/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD730L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
15  
12  
9
15  
12  
9
6
6
Tj = -40 °C  
Tj = +25 °C  
Tj= +150 °C  
3
3
0
0
-40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
Junction Temperature: Tj [°C]  
Output Current: IOUT [mA]  
Figure 23. Circuit Current vs Junction Temperature  
(IOUT = 0 mA)  
Figure 24. Circuit Current vs Output Current  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
50  
100  
150  
200  
0
10  
20  
30  
40  
50  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
Figure 25. Output Voltage vs Output Current  
(Over Current Protection)  
Figure 26. Load Regulation vs Output Current  
(IOUT = 100 μA to 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
15/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD730L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
100  
120  
140  
160  
180  
200  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 27. Dropout Voltage vs Output Current  
(VIN = VOUT × 0.95 = 2.85 V)  
Figure 28. Output Voltage vs Junction Temperature  
(Thermal Shutdown Protection)  
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.01  
0.1  
1
10  
100  
1000  
Frequency: f [kHz]  
Figure 29. Ripple Rejection vs Frequency  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
16/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD733L05G-C)  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 30. Output Voltage vs Input Voltage  
Figure 31. Output Voltage vs Input Voltage - Enlarged view  
3.36  
3.33  
3.30  
3.27  
3.24  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
-40  
0
40  
80  
120  
160  
Input Voltage: VIN [V]  
Junction Temperature: Tj [°C]  
Figure 32. Line Regulation vs Input Voltage  
(VIN = 4.3 V to 45 V)  
Figure 33. Output Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
17/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD733L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
15  
12  
9
30  
25  
20  
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
6
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
3
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 34. Circuit Current vs Input Voltage  
(IOUT = 0 mA)  
Figure 35. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 0 mA)  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
6
Tj = -40 °C  
3
Tj = +25 °C  
Tj = +150 °C  
40 50  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 36. Circuit Current vs Input Voltage  
(IOUT = 50 mA)  
Figure 37. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
18/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD733L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
15  
12  
9
15  
12  
9
6
6
Tj = -40 °C  
Tj = +25 °C  
Tj= +150 °C  
3
3
0
0
-40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
Junction Temperature: Tj [°C]  
Output Current: IOUT [mA]  
Figure 38. Circuit Current vs Junction Temperature  
(IOUT = 0 mA)  
Figure 39. Circuit Current vs Output Current  
(IOUT = 0 mA)  
6
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
Tj = -40 °C  
5
Tj = +25 °C  
Tj = -40 ℃  
Tj = +25 ℃  
Tj = +150 ℃  
Tj = +150 °C  
4
3
2
1
0
0
50  
100  
150  
200  
0
10  
20  
30  
40  
50  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
Figure 40. Output Voltage vs Output Current  
(Over Current Protection)  
Figure 41. Load Regulation vs Output Current  
(IOUT = 100 μA to 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
19/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD733L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
6
5
4
3
2
1
0
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
100  
120  
140  
160  
180  
200  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 42. Dropout Voltage vs Output Current  
(VIN = VOUT × 0.95 V = 3.135 V)  
Figure 43. Output Voltage vs Junction Temperature  
(Thermal Shutdown Protection)  
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.01  
0.1  
1
10  
100  
1000  
Frequency: f [kHz]  
Figure 44. Ripple Rejection vs Frequency  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
20/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD750L05G-C)  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 45. Output Voltage vs Input Voltage  
Figure 46. Output Voltage vs Input Voltage - Enlarged view  
5.10  
5.05  
5.00  
4.95  
4.90  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
-40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
Junction Temperature: Tj [°C]  
Input Voltage: VIN [V]  
Figure 47. Line Regulation vs Input Voltage  
(VIN = 6 V to 45 V)  
Figure 48. Output Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
21/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD750L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
30  
25  
20  
15  
10  
5
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
6
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
Tj = +150 °C  
3
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 49. Circuit Current vs Input Voltage  
(IOUT = 0 mA)  
Figure 50. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 0 mA)  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
6
Tj = -40 °C  
3
Tj = +25 °C  
Tj = +150 °C  
40 50  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 51. Circuit Current vs Input Voltage  
(IOUT = 50 mA)  
Figure 52. Circuit Current vs Input Voltage - Enlarged view  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
22/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD750L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
15  
12  
9
15  
12  
9
6
6
Tj = -40 °C  
Tj = +25 °C  
Tj= +150 °C  
3
3
0
0
-40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
Junction Temperature: Tj [°C]  
Output Current: IOUT [mA]  
Figure 53. Circuit Current vs Junction Temperature  
(IOUT = 0 mA)  
Figure 54. Circuit Current vs Output Current  
6
5
4
3
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
Tj = -40 ℃  
Tj = +25 ℃  
Tj = +150 ℃  
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
50  
100  
150  
200  
0
10  
20  
30  
40  
50  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
Figure 55. Output Voltage vs Output Current  
(Over Current Protection)  
Figure 56. Load Regulation vs Output Current  
(IOUT = 100 μA to 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
23/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Performance Curves (BD750L05G-C) – continued  
Unless otherwise specified, VIN = 13.5 V, IOUT = 0 mA, CIN = 0.1 μF, COUT = 1.0 μF  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
10  
20  
30  
40  
50  
100  
120  
140  
160  
180  
200  
Output Current: IOUT [mA]  
Junction Temperature: Tj [°C]  
Figure 57. Dropout Voltage vs Output Current  
(VIN = VOUT × 0.95 V = 4.75 V)  
Figure 58. Output Voltage vs Junction Temperature  
(Thermal Shutdown Protection)  
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.01  
0.1  
1
10  
100  
1000  
Frequency: f [kHz]  
Figure 59. Ripple Rejection vs Frequency  
(IOUT = 50 mA)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
24/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Measurement Circuit for Typical Performance Curves  
VIN  
VOUT  
VIN  
VOUT  
IOUT  
IOUT  
VIN  
CIN  
VIN  
CIN  
COUT  
COUT  
GND  
GND  
A
V
Measurement Setup for  
Figure 1, 2, 3, 4, 13,  
Figure 15, 16, 17, 18, 28,  
Figure 30, 31, 32, 33, 43,  
Figure 45, 46, 47, 48, 58  
Measurement Setup for  
Figure 5, 6, 7, 8, 9,  
Figure 19, 20, 21, 22, 23,  
Figure 34, 35, 36, 37, 38,  
Figure 49, 50, 51, 52, 53  
VIN  
VOUT  
VIN  
VOUT  
IOUT  
VIN  
CIN  
COUT  
GND  
A
IOUT  
CIN  
VIN  
COUT  
GND  
V
Measurement Setup for  
Figure 10, 24, 39, 54  
Measurement Setup for  
Figure 11, 12, 25, 26,  
Figure 40, 41, 55, 56  
V
VIN  
VOUT  
VIN  
VOUT  
IOUT  
1 Vrms  
VIN  
CIN  
COUT  
GND  
IOUT  
CIN  
COUT  
GND  
M
VIN  
Measurement Setup for  
Figure 27, 42, 57  
Measurement Setup for  
Figure 14, 29, 44, 59  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
25/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Application and Implementation  
Notice: The following information is given as a reference or hint for the application and the implementation. Therefore, it does  
not guarantee its operation on the specific function, accuracy or external components in the application. In the  
application, it shall be designed with sufficient margin by enough understanding about characteristics of the external  
components, e.g. capacitor, and also by appropriate verification in the actual operating conditions.  
Selection of External Components  
Input Pin Capacitor  
If the battery is placed far from the regulator or the impedance of the input-side is high, higher capacitance is required for  
the input capacitor in order to prevent the voltage-drop at the input line. The input capacitor and its capacitance should be  
selected depending on the line impedance which is between the input pin and the smoothing filter circuit of the power  
supply. At this time, the capacitance value setting is different each application. Generally, the capacitor with capacitance  
value of 0.1 µF (Min) or more with good high frequency characteristic is recommended for this regulator.  
In addition, to prevent an influence to the regulators characteristic from the deviation or the variation of the external  
capacitors characteristic. All input capacitors mentioned above are recommended to have a good DC bias characteristic  
and a temperature characteristic (approximately ±15 %, e.g. X7R, X8R) with being satisfied high absolute maximum  
voltage rating based on EIA standard. These capacitors should be placed close to the input pin and mounted on the same  
board side of the regulator not to be influenced by implementation impedance.  
Output Pin Capacitor  
The output capacitor is mandatory that stop oscillation for the regulator in order to realize stable operation. The output  
capacitor with effective capacitance value ≥ 0.5 µF (Min) and ESR up to 100 Ω (Max) must be required between the output  
pin and the GND pin. By using a ceramic capacitor, enables to expect smaller set and long-life.  
A proper selection of appropriate both the capacitance value and ESR for the output capacitor can improve the transient  
response of the regulator and can also keep the stability with better regulation loop. The correlation of the output  
capacitance value and ESR is shown in the graph (Figure 60 Output Capacitance COUT, ESR Stable Available Area) on the  
next page as the output capacitor’s capacitance value and the stability region for ESR. As described in this graph, this  
regulator is designed to be stable with ceramic capacitors as of MLCC, with the capacitance value from 0.5 µF to 1000 µF  
and with ESR value within almost 0 Ω to 100 Ω. The frequency range of ESR can be generally considered as within about  
10 kHz to 100 kHz.  
Note that the provided the stable area of the capacitance value and ESR in the graph is obtained under a specific set of  
conditions which is based on the measurement result in single IC on our board with a resistive load. In the actual  
environment, the stability is affected by wire impedance on the board, input power supply impedance and also loads  
impedance. Therefore, note that a careful evaluation of the actual application, the actual usage environment and the  
actual conditions should be done to confirm the actual stability of the system.  
Generally, in the transient event which is caused by the input voltage fluctuation or the load fluctuation beyond the gain  
bandwidth of the regulation loop, the transient response ability of the regulator depends on the capacitance value of the  
output capacitor. Basically the capacitance value of ≥ 1.0 µF (Typ) for the output capacitor is recommended. Using bigger  
capacitance value can be expected to improve better the output voltage fluctuation in a high frequency. Various types of  
capacitors can be used for the output capacitor with high capacity which includes electrolytic capacitor, electro-conductive  
polymer capacitor and tantalum capacitor. Noted that, depending on the type of capacitors, its characteristics such as ESR  
(100 ) absolute value range, a temperature dependency of capacitance value and increased ESR at cold temperature  
needs to be taken into consideration. Especially when the ESR is large, the voltage generated by charge current and  
discharge current to capacitor and ESR are large. When transient response such that charge current and discharge  
current flow, noted that output voltage fluctuation.  
In addition, the same consideration should be taken as the input pin capacitor, to prevent an influence to the regulators  
characteristic from the deviation or the variation of the external capacitors characteristic. All output capacitors mentioned  
above are recommended to have a good DC bias characteristic and a temperature characteristic (approximately ±15 %,  
e.g. X7R, X8R) with being satisfied high absolute maximum voltage rating based on EIA standard. These capacitors  
should be placed close to the output pin and mounted on the same board side of the regulator not to be influenced by  
implementation impedance.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
26/39  
18.Nov.2022 Rev.002  
 
BD7xxL05G-C Series  
Output Pin Capacitor - continued  
120  
100  
80  
60  
40  
20  
0
Unstable Available Area  
Stable Available Area  
0.5 μF ≤ COUT  
ESR (COUT) ≤ 100 Ω  
0.1  
1
10  
100  
1000  
Output Capacitance COUT [μF]  
Figure 60. Output Capacitance COUT, ESR Stable Available Area  
Parameter  
Symbol  
VIN  
Conditions  
BD725L05G-C /  
BD730L05G-C  
3.5 V ≤ VIN ≤ 42.0 V  
Input Supply Voltage  
BD733L05G-C  
BD750L05G-C  
VIN  
VIN  
IOUT  
Tj  
3.8 V ≤ VIN ≤ 42.0 V  
5.6 V ≤ VIN ≤ 42.0 V  
0 mA ≤ IOUT ≤ 50 mA  
-40 °C ≤ Tj ≤ +150 °C  
Output Current  
Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
27/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Typical Application and Layout Example  
Output Voltage  
VOUT  
Input Voltage  
VIN  
Ground  
COUT  
CIN  
5:VOUT  
4:VIN  
BD7xxL05G-C  
1:N.C. 2:GND  
3:N.C.  
Ground  
Parameter  
Symbol  
Recommended Value  
Output Current Range  
Output Capacitor  
IOUT  
COUT  
IOUT ≤ 50 mA  
1 μF ≤ COUT ≤ 1000 μF  
ESR ≤ 100 Ω  
Output Capacitor ESR for stability(Note 1)  
ESR (COUT  
)
BD725L05G-C /  
VIN  
3.5 V ≤ VIN ≤ 42.0 V  
BD730L05G-C  
BD733L05G-C  
BD750L05G-C  
Input Voltage Range(Note 2)  
VIN  
VIN  
CIN  
3.8 V ≤ VIN ≤ 42.0 V  
5.6 V ≤ VIN ≤ 42.0 V  
0.1 µF ≤ CIN  
Input Capacitor(Note 3)  
(Note 1) Refer to Selection of External Components and select the parts.  
(Note 2) Minimum Input Supply Voltage must be VIN Start-up = 3 V or more.  
Consider that the output voltage would be reduced (Dropout Voltage) by the output current.  
(Note 3) If the inductance of power supply line is high, adjust input capacitor value.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
28/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Application and Implementation - continued  
Surge Voltage Protection for Linear Regulators  
The following shows some helpful tips to protect ICs from possible inputting surge voltage which exceeds absolute maximum  
ratings.  
Positive surge to the input  
If there is any potential risk that positive surges higher than absolute maximum ratings 45 V, it is applied to the input, a  
Zener Diode should be inserted between the VIN pin and the GND to protect the device as shown in Figure 61.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 61. Surges Higher than 45 V is Applied to the Input  
Negative surge to the input  
If there is any potential risk that negative surges below the absolute maximum ratings, (e.g.) -0.3 V, is applied to the input,  
a Schottky barrier diode should be inserted between the VIN pin and the GND to protect the device as shown in Figure  
62.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 62. Surges Lower than -0.3 V is Applied to the Input  
Reverse Voltage Protection for Linear Regulators  
A linear regulator integrated circuit (IC) requires the input voltage to be always higher than the regulated voltage. Output  
voltage, however, may become higher than the input voltage under specific situations or circuit configurations. In such  
circumstances reverse voltage and current may cause damage to the IC. A reverse polarity connection of power supply or  
certain inductor components can also cause a polarity reversal between the input and output pins. The following provides  
instructions on reversed voltage polarity protection for ICs.  
Protection against Reverse Input/Output Voltage  
In the MOS linear regulator, a parasitic body diode between the drain-source of MOSFET generally exists. If the output  
voltage becomes higher than the input voltage and if its voltage difference exceeds VF of the body diode, a reverse current  
flows from the output to the input through the body diode as shown in Figure 63. The current flows in the parasitic body  
diode is not limited in the protection circuit because it is the parasitic element, therefore too much reverse current may  
cause damage to degrade or destroy the semiconductor elements of the regulator.  
Reverse Current  
VOUT  
VIN  
Error  
AMP.  
VREF  
Figure 63. Reverse Current Path in a MOS Linear Regulator  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
18.Nov.2022 Rev.002  
29/39  
BD7xxL05G-C Series  
Protection against Reverse Input/Output Voltage – continued  
An effective solution for this problem is to implement an external bypass diode in order to prevent the reverse current flow  
inside the IC as shown in Figure 64. Note that the bypass diode must be turned on prior to the internal body diode of the IC.  
This external bypass diode should be chosen as being lower forward voltage VF than the internal body diode. If the reverse  
current of this bypass diode is large, even if the output is OFF, a lot of diode leakage current flows from the input to the  
output, so it is necessary to select one with a small value. It should to be selected a diode which has a rated reverse  
voltage greater than the IC’s input maximum voltage and also which has a rated forward current greater than the  
anticipated reverse current in the actual application.  
D1  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
CIN  
Figure 64. Bypass Diode for Reverse Current Diversion  
A Schottky barrier diode which has a characteristic of low forward voltage (VF) can meet to the requirement for the external  
diode to protect the IC from the reverse current. However, it also has a characteristic that the leakage (IR) caused by the  
reverse voltage is bigger than other diodes. Therefore, it should be taken into the consideration to choose it because if IR is  
large, it may cause increase of the current consumption, or raise of the output voltage in the light-load current condition. IR  
characteristic of Schottky diode has positive temperature characteristic, which the details shall be checked with the  
datasheet of the products, and the careful confirmation of behavior in the actual application is mandatory.  
Even in the condition when the input/output voltage is inverted, if the VIN pin is open as shown in Figure 65, or if the VIN  
pin becomes high-impedance condition as designed in the system, it cannot damage or degrade the parasitic element. It's  
because a reverse current via the pass transistor becomes extremely low. In this case, therefore, the protection external  
diode is not necessary.  
ONOFF  
IBIAS  
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
CIN  
Figure 65. Open VIN  
Protection against Input Reverse Voltage  
When the input of the IC is connected to the power supply, accidentally if plus and minus are routed in reverse, or if there  
is a possibility that the input may become lower than the GND pin, it may cause to destroy the IC because a large current  
passes via the internal electrostatic breakdown prevention diode between the input pin and the GND pin inside the IC as  
shown in Figure 66.  
The simplest solution to avoid this problem is to connect a Schottky barrier diode or a rectifier diode in series to the power  
supply line as shown in Figure 67. However, it causes the voltage drop by a forward voltage VF at the supply voltage while  
normal operation.  
Generally, since the Schottky barrier diode has lower VF, so it contributes to rather smaller power loss than rectifier diodes.  
If IC has load currents, this external diode generates heat more, therefore select a diode with enough margin in power  
dissipation. On the other hand, a reverse current passes this diode in the reverse connection condition, however, it is  
negligible because its small amount.  
VIN  
VOUT  
COUT  
GND  
VIN  
VOUT  
D1  
-
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
GND  
CIN  
CIN  
+
GND  
Figure 66. Current Path in Reverse Input Connection  
Figure 67. Protection against Reverse Polarity 1  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
30/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Protection against Input Reverse Voltage - continued  
Figure 68 shows a circuit in which a P-channel MOSFET is connected in series to the power. The body diode (parasitic  
element) is located in the drain-source junction area of the MOSFET. Since the Pch MOSFET is turned on in the correct  
connection, the drop voltage in a forward connection is calculated from the on state resistance of the MOSFET and the  
output current IOUT. It is smaller than the drop voltage by the diode as shown in Figure 67 and results in less of a power  
loss. No current flows in a reverse connection where the MOSFET remains off in Figure 68.  
If the gate-source voltage exceeds maximum rating of MOSFET gate-source junction with derating curve in consideration,  
reduce the gate-source junction voltage by connecting resistor voltage divider as shown in Figure 69.  
Q1  
VIN  
Q1  
VOUT  
VIN  
VOUT  
GND  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
R1  
R2  
CIN  
COUT  
CIN  
Figure 68. Protection against Reverse Polarity 2  
Figure 69. Protection against Reverse Polarity 3  
Protection against Reverse Output Voltage when the Output is connected to an Inductor  
If the output load is inductive, electrical energy accumulated in the inductive load is released to the ground at the moment  
that the output voltage is turned off. IC integrates ESD protection diodes between the IC output and ground pins. A large  
current may flow in such condition finally resulting on destruction of the IC. To prevent this situation, connect a Schottky  
barrier diode in parallel to the integrated diodes as shown in Figure 70.  
Further, if a long wire is in use for the connection between the output pin of the IC and the load, confirm that the negative  
voltage is not generated at the VOUT pin when the output voltage is turned off by observation of the waveform on an  
oscilloscope, since it is possible that the load becomes inductive. An additional diode is required for a motor load that is  
affected by its counter electromotive force, as it produces an electrical current in a similar way.  
VOUT  
VIN  
VIN  
VOUT  
GND  
D1  
CIN  
XLL  
COUT  
GND  
GND  
Figure 70. Current Path in Inductive Load (Output: Off)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
31/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Power Dissipation  
SSOP5  
0.9  
(2) 0.80 W  
(1): 1-layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Top copper foil: Footprints and Traces, 70 μm copper.  
0.8  
0.7  
0.6  
(1) 0.51 W  
0.5  
(2): 4-layer PCB  
(Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR-4  
0.4  
0.3  
0.2  
0.1  
0.0  
Board size: 114.3 mm × 76.2 mm × 1.6 mmt  
Top copper foil: Footprints and Traces, 70 μm copper.  
2 inner layers copper foil area of PCB:  
74.2 mm × 74.2 mm, 35 μm copper.  
Bottom copper foil area of PCB:  
74.2 mm × 74.2 mm, 70 μm copper.  
0
25  
50  
75  
100  
125  
150  
Condition (1): θJA = 247.3 °C/W, ΨJT (top center) = 43 °C/W  
Condition (2): θJA = 155.5 °C/W, ΨJT (top center) = 33 °C/W  
Ambient Temperature: Ta [°C]  
Figure 71. Power Dissipation Graph (SSOP5)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
32/39  
18.Nov.2022 Rev.002  
 
BD7xxL05G-C Series  
Thermal Design  
The power consumption of the IC is decided by the dropout voltage condition, the load current and the current consumption.  
Refer to power dissipation curves illustrated in Figure 71 when using the IC in an environment of Ta ≥ +25 °C. Even if the  
ambient temperature Ta is at +25 °C, chip junction temperature (Tj) can be very high depending on the input voltage and the  
load current. Consider the design to be Tj Tjmax = +150 °C in whole operating temperature range.  
Should by any condition the maximum junction temperature Tjmax = +150 °C rating be exceeded by the temperature  
increase of the chip, it may result in deterioration of the properties of the chip. The thermal resistance in this specification is  
based on recommended PCB and measurement condition by JEDEC standard. Therefore, need to be careful because it  
might be different from the actual use condition. Verify the application and allow sufficient margins in the thermal design by  
the following method to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods.  
1. The following method is used to calculate the junction temperature Tj with ambient temperature Ta.  
푇푗 = 푇푎 + × 퐽퐴 [°C]  
Where:  
푇푗  
is the Junction Temperature  
푇푎 is the Ambient Temperature  
is the Power Consumption  
퐶  
퐽퐴 is the Thermal Resistance (Junction to Ambient)  
2. The following method is also used to calculate the junction temperature Tj with top center of case’s (mold) temperature TT.  
푇푗 = 푇+ × 훹 [°C]  
퐽ꢀ  
Where:  
푇푗  
ꢀ  
퐶  
is the Junction Temperature  
is the Top Center of Case’s (mold) Temperature  
is the Power consumption  
is the Thermal Resistance (Junction to Top Center of Case)  
퐽ꢀ  
3. The following method is used to calculate the power consumption PC (W).  
푃푐 = (푉 푂푈) × ꢁ푂푈ꢀ + 푉 × ꢁ퐶퐶 [W]  
퐼푁  
퐼푁  
Where:  
푃푐 is the Power Consumption  
is the Input Voltage  
퐼푁  
푂푈ꢀ is the Output Voltage  
푂푈ꢀ is the Load Current  
퐶퐶 is the Current Consumption  
Calculation Example  
If VIN = 13.5 V, VOUT = 3.0 V, IOUT = 10 mA, ICC = 6 μA, the power consumption PC can be calculated as follows:  
= (푉 푂푈ꢀ) × ꢁ푂푈ꢀ + 푉 × ꢁ퐶퐶  
퐼푁  
퐼푁  
(
)
= 13.5 푉 – 3.0 푉 × 10 푚ꢂ + 13.5 푉 × 6 휇ꢂ  
≂ 0.11 푊  
At the maximum ambient temperature Tamax = 85 °C,  
the thermal resistance (Junction to Ambient) θJA = 155.5 °C/W (4-layer PCB)  
푇푗 = 푇푎푚푎푥 + × 퐽퐴  
= 85 °ꢃ + 0.11 푊 × 155.5 °ꢃ/푊  
≂ 102.1 °ꢃ  
When operating the IC, the top center of case’s (mold) temperature TT = 100 °C, ΨJT = 43 °C/W (1-layer PCB)  
푇푗 = 푇+ × 훹  
퐽ꢀ  
= 100 °ꢃ + 0.11 푊 × 43 °ꢃ/푊  
= 104.7 °ꢃ  
If it is difficult to ensure the margin by the calculations above, it is recommended to expand the copper foil area of the board,  
increasing the layer and thermal via between thermal land pad for optimum thermal performance.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
33/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
I/O Equivalence Circuit(Note 1)  
VIN Pin  
VOUT Pin  
VIN  
VIN  
VOUT  
2.5 V: 10.3 MΩ  
3.0 V: 13.0 MΩ  
3.3 V: 14.8 MΩ  
5.0 V: 24.1 MΩ  
VOUT  
3.6 MΩ  
(Note 1) Resistance value is Typical.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
34/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
35/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Operational Notes – continued  
9. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 72. Example of Monolithic IC Structure  
10. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
11. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
12. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
13. Thermal Consideration  
The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin  
should be allowed in the thermal design. On the reverse side of the package this product has an exposed heat pad for  
improving the heat dissipation. The amount of heat generation depends on the voltage difference between the input  
and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated heat  
does not exceed the Pd rating. If Junction temperature is over Tjmax (= 150 °C), IC characteristics may be worse due  
to rising chip temperature. Heat resistance in specification is measurement under PCB condition and environment  
recommended in JEDEC. Ensure that heat resistance in specification is different from actual environment.  
14. Functional Safety  
ISO 26262 process compliant to support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
Safety mechanism is implemented to support functional safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
Functional safety supportive automotive products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
36/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Ordering Information  
B D 7  
x
x
L
0
5 G - C T R  
Part Number  
Output Voltage  
25: 2.5 V  
Package  
G: SSOP5  
Product Rank  
C: for Automotive  
Packaging and forming specification  
TR: Embossed tape and reel  
30: 3.0 V  
33: 3.3 V  
50: 5.0 V  
Marking Diagram  
SSOP5 (TOP VIEW)  
Part Number Marking  
LOT Number  
Lineup  
Part Number Marking  
Output Voltage  
2.5 V  
Orderable Part Number  
BD725L05G-CTR  
BD730L05G-CTR  
BD733L05G-CTR  
BD750L05G-CTR  
dq  
du  
dr  
3.0 V  
3.3 V  
dy  
5.0 V  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
37/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Physical Dimension and Packing Information  
Package Name  
SSOP5  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
38/39  
18.Nov.2022 Rev.002  
BD7xxL05G-C Series  
Revision History  
Date  
Revision  
001  
Changes  
29.Mar.2022  
New Release  
18.Nov.2022  
002  
Added about functional safety  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BJB0A600090-1-2  
39/39  
18.Nov.2022 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD726

isc Silicon PNP Power Transistor
ISC

BD7280YG-C (新产品)

BD7280YG-C is an Input/Output Rail-to-Rail single CMOS operational amplifier. It features high slew rate, low noise and low input bias current. It is suitable for automotive requirements such as engine control unit, electric power steering, anti-lock braking system, sensor amplifier, and so on. Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD7281YG-C (新产品)

BD7281YG-C是一款输入输出轨到轨单电路CMOS运算放大器。具有高压摆率、低噪声和低输入偏置电流等特点,因此可用于引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。另外,电路采用了即使输出电容为1nF也不会振荡的电路形式,因此在设计应用产品时无需担心输出电容引起的振荡。什么是Nano Cap™?Nano Cap™是ROHM自有的一种电源技术,利用该技术,即使输出电容低至nF级也能进行稳定控制。
ROHM

BD7282FVM-LB (开发中)

This is the product guarantees long time support in Industrial market. This product are Rail-to-Rail Input/Output monolithic ICs integrated dual or quad independent CMOS Op-Amps on a single chip. These features high slew rate, low noise and low input bias current. It is suitable for equipment operating from battery power and using sensors that an amplifier.Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD7284F-LB (开发中)

This is the product guarantees long time support in Industrial market. This product are Rail-to-Rail Input/Output monolithic ICs integrated dual or quad independent CMOS Op-Amps on a single chip. These features high slew rate, low noise and low input bias current. It is suitable for equipment operating from battery power and using sensors that an amplifier.Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD730L05G-C (新产品)

BD730L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,静态电流为28μA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。
ROHM

BD733

Silicon NPN Power Transistor
ISC

BD733L05G-C (新产品)

BD733L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,静态电流为28μA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。
ROHM

BD733L2EFJ-C

BD7xxL2EFJ/FP-C系列是50V耐压、输出电压精度±2%、输出电流200mA、消耗电流6µA (Typ.) 的低待机电流稳压器,适合用来降低蓄电池直连系统的消耗电流。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。We recommend BD733U2EFJ-C for your new development. It uses different production lines for the purpose of improving production efficiency. Electric characteristics noted in Datasheet does not differ between Production Line.
ROHM

BD733L2EFJ-CE2

Ultra Low Quiescent Current LDO Regulator
ROHM

BD733L2FP-C

BD7xxL2EFJ/FP-C系列是50V耐压、输出电压精度±2%、输出电流200mA、消耗电流6µA (Typ.) 的低待机电流稳压器,适合用来降低蓄电池直连系统的消耗电流。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。
ROHM

BD733L2FP-CE2

Ultra Low Quiescent Current LDO Regulator
ROHM