BD80C0AHFP-C [ROHM]

BD80C0AHFP-C是可提供最大1A电流的低饱和型稳压器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。;
BD80C0AHFP-C
型号: BD80C0AHFP-C
厂家: ROHM    ROHM
描述:

BD80C0AHFP-C是可提供最大1A电流的低饱和型稳压器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。

过电流保护 稳压器
文件: 总46页 (文件大小:3067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Single-Output LDO Regulators  
35V Voltage Resistance  
1A LDO Regulators  
BDxxC0A-C series BDxxC0AW-C series  
General Description  
Packages  
W(Typ) x D(Typ) x H(Max)  
The BDxxC0A-C series and the BDxxC0AW-C series are  
low-saturation regulators. This series feature variable and  
fixed voltage output with selectable Shutdown switch  
(referred to as SW); Vout-3.3V, 5.0V, 8.0V and 9.0V.Five  
conventional PKGs; TO252-3/5, HRP5 and TO263-3(F)/5  
are available. This series has a built-in over-current  
protection circuit that prevents the destruction of the IC due  
to output short circuits and a thermal Shutdown circuit that  
protects the IC from thermal damage due to overloading.  
TO252-5  
TO252-3  
HRP5  
6.50mm x 9.50mm x 2.50mm  
6.50mm x 9.50mm x 2.50mm  
9.395mm x 10.540mm x 2.005mm  
10.16mm x 15.10mm x 4.70mm  
Features  
1) Output current capability: 1A  
2) Output voltage: Variable, 3.3V, 5.0V, 8.0V and 9.0V  
3) High output voltage accuracy  
(Ta=25°C, TO252-3/5, HRP5): ±1%  
4) Low saturation with PDMOS output  
5) Built-in over-current protection circuit that prevents the  
destruction of the IC due to output short circuits  
6) Built-in thermal Shutdown circuit for protecting the IC  
from thermal damage due to overloading  
7) Low ESR Capacitor  
TO263-5  
8) TO252-3/5, HRP5, TO263-3(F)/5 package  
9) AEC-Q100 Qualified (Note 1)  
(Note 1: Grade 1)  
Key Specifications  
TO263-3(F)  
10.16mm x 15.10mm x 4.70mm  
Supply Voltage(Vo 3.0V):  
Supply Voltage(Vo < 3.0V):  
Output Voltage(BD00C0AW):  
Output Current:  
Vo+1.0V to 26.5V  
4.0V to 26.5V  
1.0V to 15.0V  
1A  
Output Voltage Precision  
(Ta=25°C): ±1% (TO252-3/5, HRP5)  
(-40°C Ta +125°C): ±3%  
Operating Temperature Range: -40°C Ta +125°C  
Applications  
Automotive  
(body, audio system, navigation system, etc.)  
Ordering part number  
B
D
x
x
C
0
A W  
x
x
x
- C  
x
x
Output voltage  
00: Variable  
33: 3.3V  
50: 5.0V  
80: 8.0V  
Current  
capacity  
C0A: 1A  
SW  
W: With SW  
None: Without SW  
Package  
FP: TO252-3/5  
HFP: HRP5  
Packaging and forming specification  
E2: Embossed tape and reel  
(TO252-3/5, TO263-3(F)/5)  
TR: Embossed tape and reel  
(HRP5)  
FP2: TO263-3(F)/5  
90: 9.0V  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
1/43  
BDxxC0A-C series BDxxC0AW-C series  
Lineup  
Articles  
Variable  
3.3  
5.0  
8.0  
9.0  
Package  
TO252-5  
BDxxC0AWFP-CE2  
BDxxC0AFP-CE2  
BDxxC0AWHFP-CTR  
BDxxC0AHFP-CTR  
BDxxC0AWFP2-CE2  
BDxxC0AFP2-CE2  
-
Reel of 2000  
Reel of 2000  
Reel of 2000  
Reel of 2000  
Reel of 500  
Reel of 500  
TO252-3  
HRP5  
-
HRP5  
-
TO263-5  
TO263-3(F)  
Typical Application Circuits  
Output Voltage Variable Type (With SW)〉  
Vcc  
CTL  
Vo  
R2  
Vcc  
Cin  
Cout  
ADJ  
GND  
R1  
Figure 1. Typical Application Circuit  
Output Voltage Variable Type (With SW)  
Output Voltage Fixation Type (With SW)〉  
Vcc  
CTL  
Vo  
Vcc  
Cin  
Cout  
N.C.  
GND  
Figure 2. Typical Application Circuit  
Output Voltage Fixation Type (With SW)  
Output Voltage Fixation Type (Without SW)〉  
Vcc  
Vo  
Vcc  
Cin  
Cout  
GND  
Figure 3. Typical Application Circuit  
Output Voltage Fixation Type (Without SW)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
2/43  
BDxxC0A-C series BDxxC0AW-C series  
Pin Configurations/Pin Descriptions  
With SW (TO252-5/HRP5/TO263-5)〉  
TO252-5  
(TOP VIEW)  
TO263-5  
(TOP VIEW)  
HRP5  
(TOP VIEW)  
FIN  
FIN  
1
2
3
4 5  
1 2 3 4  
5
1 2 3 4 5  
HRP5  
TO263-5  
TO252-5  
Figure 4. Pin Configurations (With SW)  
Pin No.  
Pin Name  
CTL  
Function  
1
2
Output Control Pin  
Power Supply Pin  
Vcc  
N.C. (Note 1)  
GND  
N.C. Pin (TO252-5)  
GND (HRP5/TO263-5)  
3
4
Vo  
Output Pin  
ADJ  
Variable Pin (BD00C0AW)  
N.C. Pin (BD33/50/80/90C0AW)  
5
N.C. (Note 1)  
FIN  
GND  
GND  
(Note 1) N.C.Pin can be open. Because it isn't connect it inside of IC.  
Without SW (TO252-3/TO263-3(F))〉  
TO263-3(F)  
(TOP VIEW)  
TO252-3  
(TOP VIEW)  
FIN  
1
2
3
1
2
3
TO263-3(F)  
TO252-3  
Figure 5. Pin Descriptions (Without SW)  
Pin No.  
1
Pin Name  
Vcc  
Function  
Power Supply Pin  
N.C. (Note 1)  
GND  
N.C. Pin (TO252-3)  
GND (TO263-3(F))  
2
3
Vo  
Output Pin  
FIN  
GND  
GND  
(Note 1) N.C.Pin can be open. Because it isn't connect it inside of IC.  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Without SW (HRP5)〉  
HRP5  
(TOP VIEW)  
FIN  
1
2
3
4 5  
HRP5  
Figure 6. Pin Descriptions (Without SW) (HRP5)  
Pin No.  
Pin Name  
Vcc  
Function  
Power Supply Pin  
N.C. Pin  
1
2
N.C. (Note 1)  
GND  
3
GND  
4
N.C.  
N.C. Pin  
5
Vo  
Output Pin  
GND  
FIN  
GND  
(Note 1) N.C.Pin can be open. Because it isn't connect it inside of IC.  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
4/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Block Diagrams  
BD00C0AWFP/WHFP/WFP2-C (Output Voltage Variable Type, With SW) 〉  
TO252-5/HRP5/TO263-5  
GND  
FIN  
VREF :Bandgap Reference  
OCP :Over Current Protection Circuit  
TSD :Thermal Shut Down Circuit  
Driver :Power Transistor Driver  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
CTL  
Vcc  
N.C.(TO252-5  
GND(HRP5/TO263-5)  
Vo  
ADJ  
Figure 7. Block diagram  
BD00C0AWFP/WHFP/WFP2-C (Output Voltage Variable Type, With SW)  
BDxxC0AWFP/WHFP/WFP2-C (Output Voltage Fixation Type, With SW) 〉  
TO252-5/HRP5/TO263-5  
GND  
FIN  
VREF :Bandgap Reference  
OCP :Over Current Protection Circuit  
TSD :Thermal Shut Down Circuit  
Driver :Power Transistor Driver  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
CTL  
Vcc  
N.C.(TO252-5  
GND(HRP5/TO263-5)  
Vo  
N.C.  
Figure 8. Block diagram  
BDxxC0AWFP/WHFP/WFP2-C (Output Voltage Fixation Type, With SW)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
5/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
BDxxC0AFP/HFP/FP2-C (Output Voltage Fixation Type, Without SW) 〉  
TO252-3/TO263-3(F)  
GND  
FIN  
VREF :Bandgap Reference  
OCP :Over Current Protection Circuit  
TSD :Thermal Shut Down Circuit  
Driver :Power Transistor Driver  
VREF  
Driver  
OCP  
TSD  
1
2
3
Vcc  
N.C.(TO252-3  
GND(TO263-3(F))  
Vo  
Figure 9. Block diagram  
BDxxC0AFP/FP2-C (Output Voltage Fixation Type, Without SW)  
HRP5  
GND  
FIN  
VREF :Bandgap Reference  
OCP :Over Current Protection Circuit  
TSD :Thermal Shut Down Circuit  
Driver :Power Transistor Driver  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
Vcc  
N.C.  
GND  
N.C.  
Vo  
Figure 10. Block diagram  
BDxxC0AHFP-C (Output Voltage Fixation Type, Without SW)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
6/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Absolute Maximum Ratings (Ta= 25°C)  
Parameter  
Supply Voltage (Note 1)  
Symbol  
Vcc  
Ratings  
-0.3 to +35.0  
-0.3 to +35.0  
-40 to +125  
-55 to +150  
150  
Unit  
V
V
°C  
°C  
°C  
Output Control Voltage (With SW) (Note 2) VCTL  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
Tjmax  
(Note 1) Do not exceed Pd (Please refer to Power Dissipation in P.27-29).  
(Note 2) The order of starting up power supply (Vcc) and CTL pin doesn't have either in the problem within  
the range of the operation power-supply voltage ahead.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage  
can either be a short circuit between pins or an open circuit between pins and the internal circuitry.  
Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
Recommended Operating Conditions (-40°C Ta +125°C)  
Parameter  
Supply Voltage (Vo 3.0V)  
Supply Voltage (Vo < 3.0V)  
Startup Voltage (Io=0mA)  
Output Control Voltage (With SW)  
Output Current  
Symbol  
Vcc  
Vcc  
Vcc  
VCTL  
Io  
Min  
Vo+1  
4.0  
-
0
0
Max.  
26.5  
26.5  
3.8  
26.5  
1.0  
Unit  
V
V
V
V
A
V
Output Voltage (BD00C0AW)(Note 1)  
Vo  
1.0  
15.0  
(Note 1) Please refer to Notes15 for use when you use BD00C0AW by output voltage 1.0V Vo < 3.0V.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
TO252-3, TO252-5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
136  
17  
23  
3
°C/W  
°C/W  
ΨJT  
HRP5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
120  
8
22  
3
°C/W  
°C/W  
ΨJT  
TO263-3(F), TO263-5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
81  
8
21  
2
°C/W  
°C/W  
ΨJT  
(Note 1)Based on JESD51-2A (Still-Air)  
(Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note 4)Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Material  
Thermal Via(Note 5)  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20mm  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
(Note 5) This thermal via connects with the copper pattern of all layers. The placement and dimensions obey a land pattern.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
7/43  
BDxxC0A-C series BDxxC0AW-C series  
Electrical Characteristics  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, Io=0mA, VCTL=5.0V (With SW)  
The resistor of between ADJ and Vo =56.7kΩ, ADJ and GND =10kΩ (BD00C0AW)  
Guaranteed Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
0
Max.  
5
Shutdown Current (With SW)  
Circuit Current  
Isd  
Ib  
-
-
µA  
VCTL=0V  
0.5  
2.5  
mA  
ADJ Terminal Voltage  
(BD00C0AWFP/WHFP)  
VADJ  
VADJ  
Vo  
0.742  
0.727  
0.750  
0.750  
Vo  
0.758  
0.773  
V
V
V
V
V
V
V
Io=50mA, Ta=25°C  
Io=50mA  
ADJ Terminal Voltage (BD00C0AW)  
Output Voltage  
(BD33/50C0A(W9FP/(W)HFP)  
Vo×0.99  
Vo×0.97  
Vo×0.99  
Vo×0.97  
-
Vo×1.01  
Vo×1.03  
Vo×1.01  
Vo×1.03  
0.5  
Io=200mA, Ta=25°C  
Io=200mA  
Output Voltage (BD33/50C0A(W))  
Vo  
Vo  
Output Voltage  
(BD80/90C0A(W)FP/(W)HFP)  
Vo  
Vo  
Io=500mA, Ta=25°C  
Io=500mA  
Output Voltage (BD80/90C0A(W))  
Vo  
Vo  
Dropout Voltage  
(BD00/50/80/90C0A(W))  
ΔVd  
0.3  
Vcc=Vo×0.95,Io=500mA  
f=120Hz,  
Ripple Rejection (BD00/33/50C0A(W)) R.R.  
45  
40  
55  
50  
-
-
dB Input Voltage Ripple =1Vms,  
Io=100mA  
f=120Hz,  
dB Input Voltage Ripple =1Vms,  
Io=100mA  
Ripple Rejection (BD80/90C0A(W))  
R.R.  
Line Regulation  
Load Regulation  
Reg.I  
-
-
20  
Vo  
80  
Vo  
mV Vo+1.0V ≤ VCC ≤ 26.5V  
Reg.L  
V
5mA Io 1A  
×0.010 ×0.020  
CTL ON Mode Voltage (With SW)  
CTL OFF Mode Voltage (With SW)  
CTL Bias Current (With SW)  
VthH  
VthL  
ICTL  
2.0  
25  
0.8  
50  
V
V
ACTIVE MODE  
OFF MODE  
μA  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
8/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data  
BD00C0AW-C series(Vo=5.0V)  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, VCTL=5.0V, Io=0mA, Vo=5.0V  
(The resistor of between ADJ and Vo =56.7kΩ, ADJ and GND =10kΩ)  
18  
15  
12  
9
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40  
Ta=25℃  
Ta=125℃  
6
Ta=-40  
Ta=25℃  
Ta=125℃  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 12. Shutdown Current  
(VCTL=0V)  
Figure 11. Circuit Current  
(Note 1)  
(IFEEDBACK_R  
75µA)  
(Note 1) IFEEDBACK_R is the current flowing into  
external feedback resistance.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta=-40  
Ta=25℃  
Ta=125℃  
Ta=-40  
Ta=25℃  
Ta=125℃  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 14. Line Regulation  
(Io=500mA)  
Figure 13. Line Regulation  
(Io=0mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
9/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
Ta=-40  
Ta=25℃  
Ta=125℃  
2
Ta=-40  
1
Ta=25  
Ta=125℃  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Output Current:Io [mA]  
Figure 15. Load Regulation  
Figure 16. Dropout Voltage  
(Vcc=Vo×0.95=4.75V)  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=-40  
Ta=25℃  
Ta=125℃  
10  
100  
1000  
10000 100000 1000000  
-40 -20  
0
20  
40  
60  
80 100 120  
Frequency: f [Hz]  
Ambient Temperature: []  
Figure 18. Output Voltage  
Temperature Characteristic  
Figure 17. Ripple Rejection  
(lo=100mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
10/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
60  
Ta=-40  
Ta=-40  
Ta=25℃  
Ta=125℃  
0.2  
40  
Ta=25  
Ta=125℃  
20  
0.0  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Output Current:Io [mA]  
Control Voltage: VCTL[V]  
Figure 20. CTL Current vs CTL Voltage  
Figure 19. Circuit Current  
(0mA ≤ Io ≤ 1000mA, IFEEDBACK_R 75µA)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta=-40  
Ta=25℃  
Ta=125℃  
130  
140  
150  
160  
170  
180  
190  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Ambient Temperature:Ta []  
Control Voltage: VCTL[V]  
Figure 21. Output Voltage vs CTL Voltage  
Figure 22. Thermal Shutdown  
Circuit Characteristic  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
11/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Measurement setup for reference data  
BD00C0AW-C series (Vo=5.0V)  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
56.7kΩ  
10kΩ  
1µF  
1µF  
56.7kΩ  
10kΩ  
1µF  
56.7kΩ  
10kΩ  
CTL  
ADJ  
CTL  
ADJ  
CTL  
ADJ  
1µF  
1µF  
1µF  
GND  
GND  
GND  
5V  
5V  
FEEDBACK _R  
Measurement setup for Figure 11  
Measurement setup for Figure 12  
Measurement setup for Figure 13  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
1µF  
1µF  
1µF  
CTL  
ADJ  
CTL  
ADJ  
CTL  
ADJ  
13.5V  
1µF  
1µF  
1µF  
4.75V  
GND  
500mA  
GND  
GND  
5V  
5V  
5V  
Measurement setup for Figure 14  
Measurement setup for Figure 15  
Measurement setup for Figure 16  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
1Vrms  
13.5V  
1µF  
1µF  
1µF  
CTL  
ADJ  
13.5V  
1µF  
V
CTL  
ADJ  
CTL  
ADJ  
13.5V  
1µF  
GND  
1µF  
GND  
100mA  
GND  
5V  
FEEDBACK _R  
5V  
5V  
Measurement setup for Figure 17  
Measurement setup for Figure 18  
Measurement setup for Figure 19  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
56.7kΩ  
10kΩ  
1µF  
1µF  
1µF  
CTL  
ADJ  
CTL  
ADJ  
CTL  
ADJ  
13.5V  
1µF  
13.5V  
1µF  
13.5V  
1µF  
GND  
GND  
GND  
5V  
Measurement setup for Figure 20  
Measurement setup for Figure 21  
Measurement setup for Figure 22  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
12/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data  
BD33C0A-C/ BD33C0AW-C series  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, VCTL=5.0V (With SW), Io=0mA  
1.0  
18  
Ta=-40℃  
15  
12  
9
Ta=25℃  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=125℃  
6
Ta=-40  
Ta=25℃  
Ta=125℃  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 23. Circuit Current  
Figure 24. Shutdown Current  
(VCTL=0V)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta=-40  
Ta=-40  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 26. Line Regulation  
(Io=500mA)  
Figure 25. Line Regulation  
(Io=0mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
13/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
6
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=-40  
Ta=25℃  
Ta=125℃  
Ta=-40  
5
4
3
2
1
0
Ta=25  
Ta=125℃  
0
400  
800 1200 1600 2000 2400  
Output Current:Io [mA]  
10  
100  
1000  
10000 100000 1000000  
Frequency: f [Hz]  
Figure 27. Load Regulation  
Figure 28. Ripple Rejection  
(lo=100mA)  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40  
Ta=25  
Ta=125℃  
-40 -20  
0
20  
40  
60  
80 100 120  
0
200  
400  
600  
800  
1000  
Ambient Temperature: []  
Output Current:Io [mA]  
Figure 29. Output Voltage Temperature Characteristic  
Figure 30. Circuit Current  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
14/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
180  
160  
140  
120  
100  
80  
6
5
4
3
2
1
0
60  
Ta=-40  
Ta=-40  
Ta=25℃  
Ta=125℃  
40  
Ta=25  
20  
Ta=125℃  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Control Voltage: VCTL[V]  
Control Voltage: VCTL[V]  
Figure 31. CTL Current vs CTL Voltage  
Figure 32. Output Voltage vs CTL Voltage  
6
5
4
3
2
1
0
130  
140  
Ambient Temperature:Ta []  
Figure 33. Thermal Shutdown Circuit Characteristic  
150  
160  
170  
180  
190  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
15/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data  
BD50C0A-C/ BD50C0AW-C series  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, VCTL=5.0V (With SW), Io=0mA  
1.0  
18  
Ta=-40℃  
15  
12  
9
Ta=25℃  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=125℃  
6
Ta=-40℃  
Ta=25℃  
Ta=125℃  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 34. Circuit Current  
Figure 35. Shutdown Current  
(VCTL=0V)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 36. Line Regulation  
(Io=0mA)  
Figure 37. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
16/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
6
5
4
3
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
2
Ta=-40℃  
1
Ta=25℃  
Ta=125℃  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Output Current:Io [mA]  
Figure 38. Load Regulation  
Figure 39. Dropout Voltage  
(Vcc=Vo×0.95V=4.75V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
Ta=-40  
Ta=25℃  
Ta=125℃  
-40 -20  
0
20  
40  
60  
80 100 120  
10  
100  
1000  
10000 100000 1000000  
Ambient Temperature: []  
Frequency: f [Hz]  
Figure 41. Output Voltage  
Temperature Characteristic  
Figure 40. Ripple Rejection  
(lo=100mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
1.0  
0.8  
0.6  
180  
160  
140  
120  
100  
80  
0.4  
60  
Ta=-40  
Ta=-40  
Ta=25  
Ta=125℃  
40  
0.2  
Ta=25  
20  
Ta=125℃  
0.0  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Output Current:Io [mA]  
Control Voltage: VCTL[V]  
Figure 43. CTL Current vs CTL Voltage  
Figure 42. Circuit Current  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
130  
140  
150  
160  
170  
180  
190  
Control Voltage: VCTL[V]  
Ambient Temperature:Ta []  
Figure 45. Thermal Shutdown Circuit Characteristic  
Figure 44. Output Voltage vs CTL Voltage  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
18/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data  
BD80C0A-C/ BD80C0AW-C series  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, VCTL=5.0V (With SW), Io=0mA  
18  
15  
12  
9
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
6
Ta=-40℃  
Ta=25℃  
Ta=125℃  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 46. Circuit Current  
Figure 47. Shutdown Current  
(VCTL=0V)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 48. Line Regulation  
(Io=0mA)  
Figure 49. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
10  
9
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
8
7
6
5
4
3
Ta=-40℃  
2
Ta=25℃  
1
Ta=125  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Output Current:Io [mA]  
Figure 51. Dropout Voltage  
(Vcc=Vo×0.95V=7.6V)  
Figure 50. Load Regulation  
8.20  
8.15  
8.10  
8.05  
8.00  
7.95  
7.90  
7.85  
7.80  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=-40  
Ta=25℃  
Ta=125℃  
-40 -20  
0
20  
40  
60  
80 100 120  
10  
100  
1000  
10000  
100000 1000000  
Ambient Temperature: []  
Frequency: f [Hz]  
Figure 52. Ripple Rejection  
(lo=100mA)  
Figure 53. Output Voltage Temperature Characteristic  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
20/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
60  
Ta=-40  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
40  
0.2  
Ta=25℃  
20  
Ta=125℃  
0
0.0  
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Output Current:Io [mA]  
Control Voltage: VCTL[V]  
Figure 54. Circuit Current  
Figure 55. CTL Current vs CTL Voltage  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
130  
140  
150  
160  
170  
180  
190  
Control Voltage: VCTL[V]  
Ambient Temperature:Ta []  
Figure 57. Thermal Shutdown Circuit Characteristic  
Figure 56. Output Voltage vs CTL Voltage  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
21/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data  
BD90C0A-C/ BD90C0AW-C series  
Unless otherwise specified, -40°C Ta +125°C, Vcc=13.5V, VCTL=5.0V (With SW), Io=0mA  
18  
15  
12  
9
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
6
Ta=-40  
Ta=25℃  
Ta=125℃  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 58. Circuit Current  
Figure 59. Shutdown Current  
(VCTL=0V)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 60. Line Regulation  
(Io=0mA)  
Figure 61. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
22/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
10  
9
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Ta=-40  
Ta=25℃  
Ta=125℃  
8
7
6
5
4
3
Ta=-40℃  
2
Ta=25℃  
1
Ta=125℃  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Output Current:Io [mA]  
Figure 62. Load Regulation  
Figure 63. Dropout Voltage  
(Vcc=Vo×0.95V=8.55V)  
9.20  
9.15  
9.10  
9.05  
9.00  
8.95  
8.90  
8.85  
8.80  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=-40  
Ta=25℃  
Ta=125  
10  
100  
1000  
10000 100000 1000000  
-40 -20  
0
20  
40  
60  
80 100 120  
Ambient Temperature: []  
Frequency: f [Hz]  
Figure 64. Ripple Rejection  
(Io =100mA)  
Figure 65. Output Voltage  
Temperature Characteristic  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
23/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Reference Data - continued  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
60  
Ta=-40  
Ta=25  
Ta=125℃  
Ta=-40℃  
40  
0.2  
Ta=25℃  
20  
Ta=125℃  
0
0.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Control Voltage: VCTL[V]  
Figure 66. Circuit Current  
Figure 67. CTL Current vs CTL Voltage  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
130  
140  
150  
160  
170  
180  
190  
Control Voltage: VCTL[V]  
Ambient Temperature:Ta []  
Figure 69. Thermal Shutdown  
Circuit Characteristic  
Figure 68. Output Voltage vs CTL Voltage  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
24/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Measurement setup for reference data  
BDxxC0AW-C series(Output Voltage Fixation Type)  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
1µF  
1µF  
1µF  
CTL  
N.C.  
CTL  
N.C.  
CTL  
N.C.  
GND  
GND  
GND  
5V  
5V  
Measurement setup for  
Figure 23, 34, 46 and 58  
Measurement setup for  
Figure 24, 35, 47 and 59  
Measurement setup for  
Figure 25, 36, 48 and 60  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
(1.0µF)  
2.2µF  
1µF  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
1µF  
1µF  
CTL  
N.C.  
CTL  
N.C.  
CTL  
N.C.  
13.5V  
Vo×  
ꢀꢀ0.95V  
GND  
500mA  
GND  
GND  
5V  
5V  
5V  
Measurement setup for  
Figure 26, 37, 49 and 61  
Measurement setup for  
Figure 39, 51 and 63  
Measurement setup for  
Figure 27, 38, 50 and 62  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
1µF  
1µF  
1µF  
V
CTL  
N.C.  
CTL  
N.C.  
CTL  
N.C.  
13.5V  
13.5V  
GND  
GND  
100mA  
GND  
13.5V  
5V  
5V  
5V  
Measurement setup for  
Figure 28, 40, 52 and 64  
Measurement setup for  
Figure 29, 41, 53 and 65  
Measurement setup for  
Figure 30, 42, 54 and 66  
Vcc  
Vo  
Vcc  
Vo  
Vcc  
Vo  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
(1.0µF)  
2.2µF  
1µF  
1µF  
1µF  
CTL  
N.C.  
CTL  
N.C.  
CTL  
N.C.  
13.5V  
13.5V  
13.5V  
GND  
GND  
GND  
5V  
Measurement setup for  
Figure 31, 43, 55 and 67  
Measurement setup for  
Figure 32, 44, 56 and 68  
Measurement setup for  
Figure 33, 45, 57 and 69  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
25/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Application Examples  
Applying positive surge to the Vcc pin  
If the possibility exists that surges higher than 35.0V will be applied to the Vcc pin, a zenar diode should be placed  
between the Vcc pin and GND pin as shown in the Figure below.  
Vcc  
GND  
Figure 70  
Applying negative surge to the Vcc pin  
If the possibility exists that negative surges lower than the GND are applied to the Vcc pin, a schottky diode should be  
place between the Vcc pin and GND pin as shown in the Figure below.  
Vcc  
GND  
Figure 71  
Implementing a protection diode  
If the possibility exists that a large inductive load is connected to the output pin resulting in back-EMF at time of startup  
and Shutdown, a protection diode should be placed as shown in the Figure below.  
Vo  
Figure 72  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
26/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Thermal Design  
TO252-3  
10.0  
IC mounted on ROHM standard board based on JEDEC.  
: 1 - layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
Board material: FR4  
8.0  
Board size: 114.3 mm x 76.2 mm x 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
5.43 W  
6.0  
: 4 - layer PCB  
4.0  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm)  
Board material: FR4  
2.0  
Board size: 114.3 mm x 76.2 mm x 1.60 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm x 74.2 mm, 1 oz. copper.  
Copper foil area on the reverse side of PCB  
: 74.2 mm x 74.2 mm, 2 oz. copper.  
0.92 W  
0.0  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [C]  
Figure 73. TO252-3 Package Data  
Condition: θJA = 81 ꢀC / W, ΨJT (top center) = 8 °C / W  
Condition: θJA = 21 ꢀC / W, ΨJT (top center) = 2 °C / W  
TO252-5  
10.0  
IC mounted on ROHM standard board based on JEDEC.  
: 1 - layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
Board material: FR4  
8.0  
Board size: 114.3 mm x 76.2 mm x 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
5.43 W  
6.0  
4.0  
2.0  
0.0  
footprint + wiring to measure, 2 oz. copper.  
: 4 - layer PCB  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm)  
Board material: FR4  
Board size: 114.3 mm x 76.2 mm x 1.60 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm x 74.2 mm, 1 oz. copper.  
Copper foil area on the reverse side of PCB  
: 74.2 mm x 74.2 mm, 2 oz. copper.  
0.92 W  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [C]  
Figure 74. TO252-5 Package Data  
Condition: θJA = 136 ꢀC / W, ΨJT (top center) = 17 °C / W  
Condition: θJA = 23 °C / W, ΨJT (top center) = 3 °C / W  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
27/43  
TSZ2211115001  
27.Jan.2017 Rev.005  
BDxxC0A-C series BDxxC0AW-C series  
Thermal Design continued  
HRP5  
10.0  
IC mounted on ROHM standard board based on JEDEC.  
: 1 - layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
Board material: FR4  
8.0  
Board size: 114.3 mm x 76.2 mm x 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
5.68 W  
6.0  
: 4 - layer PCB  
4.0  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm)  
Board material: FR4  
2.0  
Board size: 114.3 mm x 76.2 mm x 1.60 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm x 74.2 mm, 1 oz. copper.  
Copper foil area on the reverse side of PCB  
: 74.2 mm x 74.2 mm, 2 oz. copper.  
1.04 W  
0.0  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [C]  
Figure 75. HRP5 Package Data  
Condition: θJA = 120 ꢀC / W, ΨJT (top center) = 8 °C / W  
Condition: θJA = 22 ꢀC / W, ΨJT (top center) = 3 °C / W  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
28/43  
TSZ2211115001  
27.Jan.2017 Rev.005  
BDxxC0A-C series BDxxC0AW-C series  
Thermal Design continued  
TO263-3(F)  
10.0  
IC mounted on ROHM standard board based on JEDEC.  
: 1 - layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
Board material: FR4  
8.0  
Board size: 114.3 mm x 76.2 mm x 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
5.95 W  
6.0  
: 4 - layer PCB  
4.0  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm)  
Board material: FR4  
1.54 W  
2.0  
Board size: 114.3 mm x 76.2 mm x 1.60 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm x 74.2 mm, 1 oz. copper.  
Copper foil area on the reverse side of PCB  
: 74.2 mm x 74.2 mm, 2 oz. copper.  
0.0  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [C]  
Figure 76. TO263-3 Package Data  
Condition: θJA = 81 ꢀC / W, ΨJT (top center) = 8 °C / W  
Condition: θJA = 21 ꢀC / W, ΨJT (top center) = 2 °C / W  
TO263-5  
10.0  
IC mounted on ROHM standard board based on JEDEC.  
: 1 - layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
Board material: FR4  
8.0  
Board size: 114.3 mm x 76.2 mm x 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
5.95 W  
6.0  
4.0  
2.0  
0.0  
: 4 - layer PCB  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm)  
Board material: FR4  
1.54 W  
Board size: 114.3 mm x 76.2 mm x 1.60 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm x 74.2 mm, 1 oz. copper.  
Copper foil area on the reverse side of PCB  
: 74.2 mm x 74.2 mm, 2 oz. copper.  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [C]  
Figure 77. TO263-5 Package Data  
Condition: θJA = 81 ꢀC / W, ΨJT (top center) = 8 °C / W  
Condition: θJA = 21 ꢀC / W, ΨJT (top center) = 2 °C / W  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
29/43  
TSZ2211115001  
27.Jan.2017 Rev.005  
BDxxC0A-C series BDxxC0AW-C series  
When operating at temperature more than Ta=25°C, please refer to the power dissipation characteristic curve shown in Figure 73  
to 77.  
The IC characteristics are closely related to the temperature at which the IC is used, so it is necessary to operate the IC at  
temperatures less than the maximum junction temperature Tjmax.  
Figure. 73 to 77 shows the acceptable power dissipation characteristic curves of the TO252-3/5, HRP5 and TO263-3(F)/5  
packages. Even when the ambient temperature (Ta) is at normal temperature (25°C), the chip junction temperature (Tj) may be  
quite high so please operate the IC at temperatures less than the acceptable power dissipation.  
The calculation method for power consumption Pc(W) is as follows  
Pc=(VccVo)×Io+Vcc×Ib  
Acceptable loss Pd Pc  
Vcc : Input voltage  
Solving this for load current Io in order to operate within the acceptable loss  
Vo  
Io  
: Output voltage  
: Load current  
: Circuit current  
PdVcc×Ib  
VccVo  
Ib  
Io ≤  
(Please refer to 19, 30, 42, 54 and 66 about Ib.)  
It is then possible to find the maximum load current Iomax with respect to the applied voltage Vcc at the time of thermal design.  
Calculation Example) When TO252-3 / TO252-5, 4-layer PCB, Ta=85°C, Vcc=13.5V, Vo=5.0V  
2.82413.5×Ib  
Io ≤  
Figure 73, 74 θja=23°C /W -43.5mW/°C  
25°C = 5.43W 85°C =2.824W  
8.5  
Io 331.3mA (Ib0.6mA)  
Calculation Example) When HRP5, 4-layer PCB, Ta=85°C, Vcc=13.5V, Vo=5.0V  
2.95413.5×Ib  
Io ≤  
Figure 75 θja=22°C /W -45.5mW/°C  
25°C =5.68W 85°C =2.954W  
8.5  
Io 346.6mA (Ib: 0.6mA)  
Calculation Example) When TO263-3(F) / TO263-5, 4-layer PCB, Ta=85°C, Vcc=13.5V, Vo=5.0V  
3.09413.5×Ib  
Io ≤  
Figure 76, 77 θja=21°C /W -47.6mW/°C  
25°C =5.95W 85°C =3.094W  
8.5  
Io 363mA (Ib: 0.6mA)  
Please refer to the above information and keep thermal designs within the scope of acceptable loss for all operating temperature  
ranges.  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
30/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
I/O equivalence circuit  
Vcc Terminal  
CTL Terminal (With SW)  
200kΩ  
(Typ)  
1kΩ  
(Typ)  
Vcc  
CTL  
200kΩ  
(Typ)  
IC  
Vo Terminal BD33/50/80/90C0A(W)  
Vcc  
R1 (kΩ)  
(Typ)  
R2 (kΩ)  
(Typ)  
34  
56.6  
48.3  
55  
R3 (kΩ)  
(Typ)  
R3  
BD33C0A(W)  
BD50C0A(W)  
BD80C0A(W)  
10  
15  
20  
Vo  
5
R2  
R1  
BD90C0A(W)  
BD00C0AW  
Vo Terminal  
ADJ Terminal  
Vcc  
Vo  
1kΩ  
(Typ)  
15kΩ  
(Typ)  
ADJ  
Vo  
1kΩ  
(Typ)  
20kΩ  
(Typ)  
Figure 78  
Output Voltage Configuration Method (BD00C0AW)  
Please connect resistors R1 and R2 (which determines the output voltage) as shown in Figure 79.  
Please be aware that the offset due to the current that flows from the ADJ terminal becomes large when resistor values are  
large. Due to this, resistance ranging from 5kΩ to 10kΩ is highly recommended for R1.  
Vo  
Vo ADJ × (R1+R2) / R1  
R2  
R1  
IC  
ADJ  
pin  
ADJ 0.75V  
(Typ)  
The circuit current dependents on the resistance value of R1 and R2.  
Please determine the constant considering the actual application.  
Figure 79  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
31/43  
TSZ2211115001  
27.Jan.2017 Rev.005  
BDxxC0A-C series BDxxC0AW-C series  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. Power dissipation in the Thermal Design is the value when the IC is mounted  
on a 114.3mm x 76.2mm x 1.57mm/1.6mm glass epoxy board. And in case this exceeds, take the measures like  
enlarge the size of board; make copper foil area for heat dissipation big; and do not exceed the power dissipation.  
6.  
7.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
32/43  
BDxxC0A-C series BDxxC0AW-C series  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
avoided.  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be  
within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the  
TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14.Vcc Pin  
Insert a capacitor (Vo 5.0V:capacitor F, 1.0 Vo < 5.0V:capacitor 2.2µF) between the Vcc and GND pins.  
Choose the capacitance according to the line between the power smoothing circuit and the Vcc pin. Selection of the  
capacitance also depends on the application. Verify the application and allow for sufficient margins in the design. We  
recommend using a capacitor with excellent voltage and temperature characteristics.  
Electric capacitor  
IC  
Ceramic capacitor, Low ESR capacitor  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
33/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Operational Notes continued  
15.Output Pin  
In order to prevent oscillation, a capacitor needs to be placed between the output pin and GND pin. We recommend a  
capacitor with a capacitance of more than 1μF(3.0V Vo 15.0V). Electrolytic, tantalum and ceramic capacitors can  
be used. We recommend a capacitor with a capacitance of more than 4.7μF(1.0V Vo < 3.0V). Ceramic capacitors  
can be used. If electrolytic and tantalum capacitors of more than 4.7uF with a high ESR characteristic are used(1.0V ≤  
Vo < 3.0V), 10 µF ceramic capacitor needs to be connected in parallel. When selecting the capacitor ensure that the  
capacitance of more than 1μF(3.0V Vo 15.0V) or more than 4.7μF(1.0V Vo < 3.0V) is maintained at the intended  
applied voltage and temperature range. Due to changes in temperature, the capacitance can fluctuate possibly  
resulting in oscillation. For selection of the capacitor refer to the Cout_ESR vs Io data. The stable operation range  
given in the reference data is based on the standalone IC and resistive load. For actual applications the stable  
operating range is influenced by the PCB impedance, input supply impedance and load impedance. Therefore  
verification of the final operating environment is needed.  
When selecting a ceramic type capacitor, we recommend using X5R, X7R or better with excellent temperature and  
DC-biasing characteristics and high voltage tolerance.  
Also, in case of rapidly changing input voltage and load current, select the capacitance in accordance with verifying  
that the actual application meets with the required specification.  
6.0V ≤ Vcc ≤ 26.5V  
5.0V ≤ Vo ≤ 15.0V  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
3.0V Vo 15.0V  
3.0V ≤ Vo ≤ 15.0V  
-40ꢀC ≤ Ta ≤ +125°C  
0A ≤ Io ≤ 1A  
-40ꢀC ≤ Ta ≤ +125ꢀC  
5kΩ ≤ R1 ≤ 10kΩ (BD00C0AW)  
Cin=2.2µF ≤ Cin ≤ 100µF  
1µF ≤ Cout ≤ 100µF  
-40ꢀC ≤ Ta +125°C  
0A ≤ Io ≤ 1A  
5kΩ≤ R1 ≤ 10kΩ (BD00C0AW)  
5kΩ≤ R1 ≤ 10kΩ (BD00C0AW)  
100  
100  
100  
Unstable operating region  
Stable operating region  
10  
1
Stable operating region  
10  
10  
Stable operating region  
0.1  
0.01  
2.2  
1
Unstable  
operating region  
1
0.001  
1
10  
100  
1
10  
100  
0
200  
400  
600  
Io(mA)  
800  
1000  
CoutμF)  
Cout(µF)  
Cout_ESR vs Io  
3.0V ≤ Vo ≤ 15.0V  
(Reference data)  
Cin vs Cout  
3.0V ≤ Vo ≤ 15.0V  
(Reference data)  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
1.0V Vo < 1.5V  
1.5V Vo < 3.0V  
1.0V Vo < 3.0V  
-40ꢀC ≤ Ta +125°C  
5kΩ ≤ R1 ≤ 10kΩ (BD00C0AW)  
2.2µF Cin 100µF  
4.7µF Cout 100µF  
-40ꢀC ≤ Ta +125°C  
5kΩ ≤ R1 10kΩ (BD00C0AW)  
2.2µF Cin 100µF  
4.7µF Cout 100µF  
-40ꢀC ≤ Ta +125°C  
0A Io 1A  
5kΩ≤ R1 ≤ 10kΩ (BD00C0AW)  
100  
10  
100  
100  
Unstable operating region  
Stable operating region  
10  
1
Unstable operating region  
Stable operating region  
1
0.5  
Unstable  
Stable  
10  
operating region  
operating region  
0.1  
0.1  
0.01  
0.01  
2.2  
0.001  
0.001  
1
0
200  
400  
600  
Io(mA)  
800  
1000  
0
200  
400  
600  
Io(mA)  
800  
1000  
4.7  
1
10  
CoutμF)  
100  
Cout_ESR vs Io  
1.0V Vo < 3.0V  
(Reference data)  
Cin vs Cout  
1.0V Vo < 3.0V  
(Reference data)  
Vcc  
Vo  
Cin  
Cout  
(1µF or higher)  
R2  
(1µF or higher)  
VCC  
(4.0V to 26.5V)  
Io  
(Rout)  
CTL  
ADJ  
GND  
ESR  
(0.001Ω  
or higher)  
VCTL  
(5.0V)  
R1  
(5k to 10kΩ)  
Operation Note 15 Measurement circuit (BD00C0AW)  
34/43  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Operational Notes continued  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
1.0V Vo < 3.0V  
1.0V Vo < 3.0V  
(Cout and Ceramic capacitor 10µF is connected in parallel.)  
-40°C Ta +125°C  
0A Io 1A  
5kΩ≤ R1 ≤ 10kΩ (BD00C0AW)  
(Cout and Ceramic capacitor 10µF is connected in parallel.)  
-40°C Ta +125°C  
5kΩ ≤ R1 ≤ 10kΩ (BD00C0AW)  
2.2µF Cin 100µF  
1µF Cout 100µF  
100  
100  
発振領域  
10  
1
安定領域  
10  
安定領域  
0.1  
0.01  
2.2  
1
発振領域  
0.001  
1
10  
100  
0
200  
400  
600  
Io(mA)  
800  
1000  
CoutμF)  
Cin vs Cout  
1.0V Vo < 3.0V  
Cout and Ceramic capacitor 10µF is  
connected in parallel.  
Cout_ESR vs Io  
1.0V Vo < 3.0V  
Cout and Ceramic capacitor 10µF is  
connected in parallel.  
(Reference data)  
(Reference data)  
Vcc  
Vo  
VCC  
Cin  
R2  
(4.0V to 26.5V)  
(1µF or higher)  
Cout  
(1µF  
or higher)  
CTL  
ADJ  
出力負荷  
Io(Rout)  
10µF  
GND  
ESR  
(0.001Ω  
or higher)  
R1  
(5k to 10kΩ)  
VCTL  
(5.0V)  
Operation Note 15 Measurement circuit (BD00C0AW)  
16. CTL Pin  
Do not set the voltage level on the IC's enable pin in between VthH and VthL. Do not leave it floating or unconnected,  
otherwise, the output voltage would be unstable.  
17. Rapid variation in Vcc Voltage and load Current CTL Pin  
In case of a rapidly changing input voltage, transients in the output voltage might occur due to the use of a MOSFET as  
output transistor. Although the actual application might be the cause of the transients, the IC input voltage, output  
current and temperature are also possible causes. In case problems arise within the actual operating range, use  
countermeasures such as adjusting the output capacitance.  
18. Minute variation in output voltage  
In case of using an application susceptible to minute changes to the output voltage due to noise, changes in input and  
load current, etc., use countermeasures such as implementing filters.  
19. In some applications, the Vcc and pin potential might be reversed, possibly resulting in circuit internal damage or  
damage to the elements. For example, while the external capacitor is charged, the Vcc shorts to the GND. Use a  
capacitor with a capacitance with less than 1000μF. We also recommend using reverse polarity diodes in series or a  
bypass between all pins and the Vcc pin.  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
35/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Physical Dimension, Tape and Reel Information  
Package Name  
TO252-3  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
36/43  
BDxxC0A-C series BDxxC0AW-C series  
Physical Dimension, Tape and Reel Information  
Package Name  
TO252-5  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
37/43  
BDxxC0A-C series BDxxC0AW-C series  
Physical Dimension, Tape and Reel Information  
Package Name  
HRP5  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
38/43  
BDxxC0A-C series BDxxC0AW-C series  
Physical Dimension, Tape and Reel Information  
Package Name  
TO263-3(F)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
39/43  
BDxxC0A-C series BDxxC0AW-C series  
Physical Dimension, Tape and Reel Information  
Package Name  
TO263-5  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
40/43  
BDxxC0A-C series BDxxC0AW-C series  
Marking Diagrams (TOP VIEW)  
TO252-3  
TO252-3  
(TOP VIEW)  
Part Number Marking  
Output  
Voltage(V)  
Part Number  
Marking  
3.3  
5.0  
8.0  
9.0  
33C0AC  
50C0AC  
80C0AC  
90C0AC  
LOT Number  
TO252-5  
TO252-5  
(TOP VIEW)  
Output  
Voltage(V)  
Part Number  
Marking  
Part Number Marking  
Variable  
3.3  
00C0AWC  
33C0AWC  
50C0AWC  
80C0AWC  
90C0AWC  
5.0  
8.0  
9.0  
LOT Number  
HRP5  
HRP5 (TOP VIEW)  
Output  
Voltage(V)  
Part Number  
Marking  
Output Control Pin  
Part Number Marking  
Variable  
3.3  
With SW  
With SW  
00C0AWHFPC  
33C0AWHFPC  
33C0AHFPC  
50C0AWHFPC  
50C0AHFPC  
80C0AWHFPC  
80C0AHFPC  
90C0AWHFPC  
90C0AHFPC  
LOT Number  
Without SW  
With SW  
5.0  
8.0  
9.0  
Without SW  
With SW  
Without SW  
With SW  
1PIN MARK  
Without SW  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
41/43  
BDxxC0A-C series BDxxC0AW-C series  
TO263-3(F)  
TO263-3(F) (TOP VIEW)  
Part Number Marking  
LOT Number  
Output  
Voltage(V)  
Part Number  
Marking  
3.3  
5.0  
8.0  
9.0  
33C0AC  
50C0AC  
80C0AC  
90C0AC  
1PIN  
TO263-5  
TO263-5 (TOP VIEW)  
Part Number Marking  
LOT Number  
Output  
Voltage(V)  
Part Number  
Marking  
Variable  
3.3  
00C0AWC  
33C0AWC  
50C0AWC  
80C0AWC  
90C0AWC  
5.0  
8.0  
9.0  
1PIN  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
27.Jan.2017 Rev.005  
© 2017 ROHM Co., Ltd. All rights reserved.  
42/43  
TSZ2211115001  
BDxxC0A-C series BDxxC0AW-C series  
Revision History  
Date  
Revision  
001  
Changes  
16.Nov.2012  
New Release  
The condition of output pin is changed on Operational Note 11.  
The mention of Status of this documentis removed.  
07.Mar.2013  
2.Sep.2013  
002  
Error in writing were corrected  
New release TO263-3F, TO263-5F, packages.  
Thermal Resistance and Power Dissipation are changed to be compliant with JEDEC  
standard.  
All characters were conformed to the Chicago manual.  
The sign in the annotation part was changed from n” into “(Note n).”  
NOTE under the absolute maximum rating of P.2 was deleted because it had  
overlapped with P.1.  
003  
Sentences of "Power consumption Pc of IC when short-circuited" that exists in P.30 are  
deleted.  
Operational Noteswere updated.  
Page. 31 Error in writing were corrected  
11.Oct.2013  
27.Jan.2017  
004  
005  
TO263-3 and TO263-5 were added.  
The description method of thermal Resistance was changed to unify.  
AEC-Q100 (Note1:Grade1) was appended.  
Drop voltage figure was corrected. (P.12, 25)  
Figure 78 I/O equivalent was corrected. (P.31)  
Error in direction of feed was corrected. (P.39, 40)  
www.rohm.com  
TSZ02201-G1G0AN00640-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
43/43  
TSZ2211115001  
27.Jan.2017 Rev.005  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY