BD82065FVJ-E2 [ROHM]

1ch High Side Switch ICs for USB Devices and Memory Cards; 对USB设备和存储卡1路高边开关IC
BD82065FVJ-E2
型号: BD82065FVJ-E2
厂家: ROHM    ROHM
描述:

1ch High Side Switch ICs for USB Devices and Memory Cards
对USB设备和存储卡1路高边开关IC

外围驱动器 驱动程序和接口 存储 开关 接口集成电路 光电二极管
文件: 总17页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Power Management Switch ICs for PCs and Digital Consumer Products  
1ch High Side Switch ICs  
for USB Devices and Memory Cards  
BD82061FVJ,BD82065FVJ  
No.11029EBT21  
Description  
Single channel high side switch IC for USB port is a high side switch having over-current protection used in power supply  
line of universal serial bus (USB).  
N-channel power MOSFET of low on-resistance and low supply current are realized in this IC.  
And, over-current detection circuit, thermal shutdown circuit, under-voltage lockout and soft-start circuit are built in.  
Features  
1) Low On-Resistance 70mMOSFET Switch  
2) Current Limit Threshold 2.4A  
3) Control Input Logic  
Active “Low” Control Logic : BD82061FVJ  
Active “High” Control Logic : BD82065FVJ  
4) Soft-Start Circuit  
5) Over-Current Protection  
6) Thermal Shutdown  
7) Under-Voltage Lockout  
8) Open-Drain Error Flag Output  
9) Reverse Current Protection When Power Switch Off  
10) Power Supply Voltage Range 2.7V~5.5V  
11) TTL Enable Input  
12) 0.8ms Typical Rise Time  
13) 1μA Max Standby Current  
Applications  
PC, PC peripheral equipment, USB hub in consumer appliances, Car accessory, and so forth  
Line Up Matrix  
Parameter  
BD82061FVJ  
2.4  
BD82065FVJ  
2.4  
Current limit threshold (A)  
Control input logic  
Number of channnels  
Package  
Low  
High  
1ch  
1ch  
TSSOP-B8J  
TSSOP-B8J  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
1/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Absolute maximum ratings(Ta=25)  
Parameter  
Symbol  
Ratings  
-0.3 ~ 6.0  
-0.3 ~ 6.0  
-0.3 ~ 6.0  
~ 5  
Unit  
V
Supply voltage  
VIN  
VEN  
Enable input voltage  
/OC voltage  
V
V/OC  
IS/OC  
VOUT  
TSTG  
Pd  
V
/OC sink current  
OUT voltage  
mA  
V
-0.3 ~ 6.0  
-55 ~ 150  
587.5*1  
Storage temperature  
Power dissipation  
mW  
*1 Mounted on 70mm*70mm*1.6mm glass-epoxy PCB. Derating : 4.7mW/above Ta=25℃  
This product is not designed for protection against radioactive rays.  
*
Operating conditions  
Parameter  
Ratings  
Typ.  
Symbol  
VIN  
Unit  
V
Min.  
2.7  
Max.  
5.5  
Operating voltage  
-
-
Operating temperature  
TOPR  
-40  
85  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
2/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Electrical Characteristics  
BD82061FVJ (Unless otherwise specified VIN = 5.0V, Ta = 25)  
Limits  
Parameter  
Operating current  
Standby current  
Symbol  
IDD  
Unit  
μA  
Condition  
Min.  
-
Typ.  
Max.  
160  
110  
V/EN = 0V , OUT=OPEN  
V/EN = 5V , OUT=OPEN  
ISTB  
-
0.01  
1
μA  
V/EN  
V/EN  
2.0  
-
-
-
-
V
V
High input  
Low input  
/EN input voltage  
/EN input current  
/OC output low voltage  
/OC output leak current  
/OC delay time  
0.8  
I/EN  
V/OCL  
IL/OC  
T/OC  
RON  
-1.0  
0.01  
-
1.0  
0.5  
1
μA  
V
V/EN = 0V or V/EN = 5V  
I/OC = 0.5mA  
-
-
0.01  
15  
70  
-
μA  
ms  
mΩ  
μA  
μA  
A
V/OC = 5V  
10  
20  
On-resistance  
-
110  
1.0  
1.0  
3.0  
2.1  
10  
IOUT = 500mA  
Switch leak current  
Reverse leak current  
Current limit threshold  
Short circuit current  
Output rise time  
ILSW  
ILREV  
ITH  
-
V/EN = 5V, VOUT = 0V  
VOUT = 5.5V, VIN = 0V  
-
-
1.5  
2.4  
1.5  
0.8  
1.1  
5
VOUT = 0V  
CL = 47μF (RMS)  
ISC  
1.1  
A
TON1  
TON2  
TOFF1  
T OFF2  
-
-
-
-
ms  
ms  
μs  
μs  
RL = 10Ω  
RL = 10Ω  
RL = 10Ω  
RL = 10Ω  
Output turn-on time  
Output fall time  
20  
20  
Output turn-off time  
UVLO threshold  
10  
40  
VTUVH  
VTUVL  
2.1  
2.0  
2.3  
2.2  
2.5  
2.4  
V
V
Increasing VIN  
Decreasing VIN  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
3/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
BD82065FVJ (Unless otherwise specified VIN = 5.0V, Ta = 25)  
Limits  
Parameter  
Symbol  
IDD  
Unit  
μA  
Condition  
Min.  
-
Typ.  
Max.  
160  
Operating current  
110  
VEN = 5V , OUT=OPEN  
VEN = 0V , OUT=OPEN  
Standby current  
ISTB  
-
0.01  
1
μA  
VEN  
VEN  
2.0  
-
-
-
-
V
V
High input  
Low input  
EN input voltage  
0.8  
EN input current  
IEN  
V/OCL  
IL/OC  
T/OC  
RON  
-1.0  
0.01  
-
1.0  
0.5  
1
μA  
V
VEN = 0V or VEN = 5V  
I/OC = 0.5mA  
/OC output low voltage  
/OC output leak current  
/OC delay time  
-
-
0.01  
15  
70  
-
μA  
ms  
mΩ  
μA  
μA  
A
V/OC = 5V  
10  
20  
On-resistance  
-
110  
1.0  
1.0  
3.0  
2.1  
10  
IOUT = 500mA  
Switch leak current  
Reverse leak current  
Current limit threshold  
Short circuit current  
Output rise time  
ILSW  
ILREV  
ITH  
-
VEN = 0V, VOUT = 0V  
VOUT = 5.5V, VIN = 0V  
-
-
1.5  
2.4  
1.5  
0.8  
1.1  
5
VOUT = 0V  
CL = 47μF (RMS)  
ISC  
1.1  
A
TON1  
TON2  
TOFF1  
T OFF2  
-
-
-
-
ms  
ms  
μs  
μs  
RL = 10Ω  
RL = 10Ω  
RL = 10Ω  
RL = 10Ω  
Output turn-on time  
Output fall time  
20  
20  
Output turn-off time  
UVLO threshold  
10  
40  
VTUVH  
VTUVL  
2.1  
2.0  
2.3  
2.2  
2.5  
2.4  
V
V
Increasing VIN  
Decreasing VIN  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
4/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Measurement Circuit  
VIN  
A
VIN  
VIN  
A
10k  
1µF  
GND  
IN  
1µF  
OUT  
OUT  
OUT  
GND  
OUT  
OUT  
OUT  
IN  
IN  
IN  
RL  
CL  
EN(/EN) /OC  
EN(/EN) /OC  
VEN(V/EN  
)
VEN(V/EN)  
Operating current  
EN, /EN input voltage, Output rise, fall time  
Inrush current  
VIN  
VIN  
VIN  
VIN  
I/OC  
10k  
1µF  
1µF  
GND  
IN  
IN  
OUT  
OUT  
OUT  
GND  
OUT  
OUT  
OUT  
A
IN  
IN  
CL  
IOUT  
EN(/EN) /OC  
EN(/EN) /OC  
VEN(V/EN  
)
VEN(V/EN)  
On-resistance  
/OC output low voltage  
Over-current detection  
Fig.1 Measurement circuit  
Timing Diagram  
BD82061FVJ  
BD82065FVJ  
TOFF1  
TOFF1  
TON1  
TON1  
90%  
90%  
90%  
90%  
VOUT  
VOUT  
10%  
10%  
TOFF2  
TOFF2  
TON2  
TON2  
V/EN  
VEN  
50%  
50%  
50%  
50%  
Fig.2 Timing diagram  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
5/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Electrical Characteristic Curves (Reference Data)  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
140  
120  
100  
80  
Ta=25°  
C
Ta=25°C  
VIN=5.0V  
60  
60  
40  
40  
20  
20  
0
0
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Supply Voltage : VIN[V]  
Fig.3 Operating current  
EN,/EN enable  
Fig.4 Operating current  
EN,/EN enable  
Fig.5 Standby current  
EN,/EN disable  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=25°C  
VIN=5.0V  
VIN=5.0V  
Low to High  
Low to High  
High to Low  
High to Low  
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature : Ta[℃]  
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Fig.6 Standby current  
EN,/EN disable  
Fig.7 EN,/EN input voltage  
Fig.8 EN,/EN input voltage  
200  
150  
100  
50  
200  
150  
100  
50  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
Ta=25°C  
Ta=25°C  
VIN=5.0V  
0
0
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Supply Voltage : VIN[V]  
Fig.10 On-resistance  
Fig.11 Current limit threshold  
Fig.9 On-resistance  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
VIN=5.0V  
VIN=5.0V  
Ta=25°C  
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature : Ta[℃]  
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Fig.12 Current limit threshold  
Fig.13 Short circuit current  
Fig.14 Short circuit current  
2011.05 - Rev.B  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
6/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
100  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
100  
80  
60  
40  
20  
0
Ta=25°C  
VIN=5.0V  
80  
60  
40  
20  
0
VTUVH  
VTUVL  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
Supply Voltage : VIN[V]  
Ambient Temperature : Ta[℃]  
Ambient Temperature : Ta[℃]  
Fig.17 UVLO threshold voltage  
Fig.15 /OC output low voltage  
Fig.16 /OC output low voltage  
1.0  
5.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta=25°C  
VIN=5.0V  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
Supply Voltage : VIN[V]  
Ambient Temperature: Ta[℃]  
Ambient Temperature : Ta[  
]
Fig.19 Output rise time  
Fig.18 UVLO hysteresis voltage  
Fig.20 Output rise time  
5.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VIN=5.0V  
Ta=25°C  
Ta=25°C  
4.0  
3.0  
2.0  
1.0  
0.0  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage : VIN[V]  
Supply Voltage : VIN[V]  
Ambient Temperature : Ta[℃]  
Fig.21 Output turn-on time  
Fig.22 Output turn-on time  
Fig.23 Output fall time  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
5.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
VIN=5.0V  
VIN=5.0V  
Ta=25°C  
4.0  
3.0  
2.0  
1.0  
0.0  
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature : Ta[  
]
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Fig.26 Output turn-off time  
Fig.25 Output turn-off time  
Fig.24 Output fall time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
7/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
20  
20  
18  
16  
14  
12  
10  
VIN=5.0V  
Ta=25°C  
18  
16  
14  
12  
10  
-50  
0
50  
100  
2
3
4
5
6
Ambient Temperature : Ta[℃]  
Supply Voltage : VIN[V]  
Fig.27 /OC delay time  
Fig.28 /OC delay time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
8/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Waveform Data(BD82065FVJ)  
VEN  
VEN  
(5V/div.)  
(5V/div.)  
VEN  
(5V/div.)  
V/OC  
V/OC  
(5V/div.)  
(5V/div.)  
V/OC  
(5V/div.)  
CL=220µF  
CL=100µF  
VOUT  
VOUT  
(5V/div.)  
(5V/div.)  
CL=47µF  
VIN=5V  
RL=5  
CL=100μF  
IIN  
IIN  
IIN  
(1.0A/div.)  
(1.0A/div.)  
(1.0A/div.)  
VIN=5V  
VIN=5V  
RL=5Ω  
RL=5Ω  
CL=100μF  
TIME(1ms/div.)  
TIME(1ms/div.)  
TIME(1ms/div.)  
Fig.29 Output rise characteristic  
Fig.30 Output fall characteristic  
Fig.31. Inrush current response  
VOUT  
(5V/div.)  
VOUT  
(5V/div.)  
V/OC  
(5V/div.)  
V/OC  
(5V/div.)  
IOUT  
(1.0A/div.)  
IOUT  
(1.0A/div.)  
VIN=5V  
CL=100μF  
TIME(10ms/div.)  
Fig.32 Over-current response  
ramped load  
TIME(2ms/div.)  
Fig.33 Over-current response  
ramped load  
V/OC  
(5V/div.)  
VEN  
(5V/div.)  
V/OC  
(5V/div.)  
VOUT  
(5V/div.)  
V/OC  
(5V/div.)  
VOUT  
(5V/div.)  
VOUT  
(5V/div.)  
Thermal Shutdown  
IOUT  
(1.0A/div.)  
IOUT  
(1.0A/div.)  
IOUT  
(1.0A/div.)  
VIN=5V  
CL=100μF  
VIN=5V  
CL=100μF  
VIN=5V  
CL=100μF  
TIME(5ms/div.)  
TIME(5ms/div.)  
TIME(200ms/div.)  
Fig.34 Over-current response  
enable to shortcircuit  
Fig.35 Over-current response  
1Ωload connected at enable  
Fig.36 Thermal shutdown  
1Ωload connected at enable  
VIN  
(5V/div.)  
VIN  
(5V/div.)  
VOUT  
(5V/div.)  
VOUT  
(5V/div.)  
V/OC  
V/OC  
(5V/div.)  
(5V/div.)  
IOUT  
(1.0A/div.)  
IOUT  
(1.0A/div.)  
RL=5Ω  
CL=100μF  
RL=5Ω  
CL=100μF  
TIME(10ms/div.)  
Fig.37 UVLO response  
increasing VIN  
TIME(10ms/div.)  
Fig.38 UVLO response  
decreasing VIN  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
9/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Block Diagram  
GND  
OUT  
OUT  
OUT  
/OC  
OUT  
8
GND  
IN  
1
2
3
4
Charge  
Pump  
IN  
IN  
UVLO  
OCD  
OUT  
7
Top View  
Gate  
Logic  
IN  
OUT  
/OC  
6
5
EN  
/EN  
TSD  
EN(/EN)  
Fig.39 Block diagram  
I / O  
Fig.40 Pin configuration  
Pin Configuration  
Pin No.  
Symbol  
Pin function  
1
GND  
-
-
Ground.  
Power supply input.  
2, 3  
4
IN  
EN , /EN  
/OC  
Input terminal to the power switch and power supply input terminal of the internal circuit.  
At use, connect each pin outside.  
Enable input.  
Power switch on at Low level.(BD82061FVJ)  
Power switch on at High level.(BD82065FVJ)  
High level input > 2.0V, Low level input < 0.8V.  
I
Error flag output.  
Low at over-current, thermal shutdown.  
Open drain output.  
5
O
O
Power switch output.  
At use, connect each pin outside.  
6, 7, 8  
OUT  
I/O Circuit  
Symbol  
Pin No  
Equivalent circuit  
EN(/EN)  
4
5
/OC  
OUT  
6,7,8  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
10/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Functional Descriptions  
1. Switch operation  
IN terminal and OUT terminal are connected to the drain and the source of switch MOSFET respectively. And the IN  
terminalis used also as power source input to internal control circuit.  
When the switch is turned on from EN, /EN control input, IN terminal and OUT terminal are connected by a 70mswitch.  
In on status, the switch is bidirectional. Therefore, when the potential of OUT terminal is higher than that of IN terminal,  
current flows from OUT terminal to IN terminal.  
Since a parasitic diode between the drain and the source of switch MOSFET is canceled, in the off status, it is possible to  
prevent current from flowing reversely from OUT to IN.  
2. Thermal shutdown circuit (TSD)  
If over-current would continue, the temperature of the IC would increase drastically. If the junction temperature were  
beyond 170(typ.) in the condition of over-current detection, thermal shutdown circuit operates and makes power  
switch turn off and outputs error flag (/OC). Then, when the junction temperature decreases lower than 150(typ.),  
power switch is turned on and error flag (/OC) is cancelled. Unless the fact of the increasing chips temperature is  
removed or the output of power switch is turned off, this operation repeats.  
The thermal shutdown circuit operates when the switch is on (EN,/EN signal is active).  
3. Over-current detection (OCD)  
The over-current detection circuit limits current (ISC) and outputs error flag (/OC) when current flowing in each switch  
MOSFET exceeds a specified value. There are three types of response against over-current. The over-current detection  
circuit works when the switch is on (EN,/EN signal is active).  
3-1. When the switch is turned on while the output is in shortcircuit status  
When the switch is turned on while the output is in shortcircuit status or so, the switch gets in current limit status  
soon.  
3-2. When the output shortcircuits while the switch is on  
When the output shortcircuits or large capacity is connected while the switch is on, very large current flows until the  
over-current limit circuit reacts. When the current detection, limit circuit works, current limitation is carried out.  
3-3. When the output current increases gradually  
When the output current increases gradually, current limitation does not work until the output current exceeds the  
over-current detection value. When it exceeds the detection value, current limitation is carried out.  
4. Under-voltage lockout (UVLO)  
UVLO circuit prevents the switch from turning on until the VIN exceeds 2.3V(Typ.). If the VIN drops below 2.2V(Typ.) while  
the switch turns on, then UVLO shuts off the power switch. UVLO has hysteresis of a 100mV(Typ.).  
Under-voltage lockout circuit works when the switch is on (EN,/EN signal is active).  
5. Error flag (/OC) output  
Error flag output is N-MOS open drain output. At detection of over-current, thermal shutdown, low level is output.  
Over-current detection has delay filter. This delay filter prevents instantaneous current detection such as inrush current at  
switch on, hot plug from being informed to outside.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
11/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
V/EN  
Output shortcircuit  
Thermal shut down  
VOUT  
IOUT  
V/OC  
delay  
Fig.41 Over-current detection, thermal shutdown timing  
(BD82061FVJ)  
VEN  
Output shortcircuit  
Thermal shut down  
VOUT  
IOUT  
V/OC  
delay  
Fig.42 Over-current detection, thermal shutdown timing  
(BD82065FVJ)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
12/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Typical application Circuit  
5V(typ.)  
IN  
Regulator  
OUT  
Ferrite  
Beads  
VBUS  
GND  
IN  
OUT  
OUT  
10k~  
100kΩ  
D+  
USB  
Controller  
+
-
IN  
C
CL  
D-  
IN  
OUT  
/OC  
GND  
EN(/EN)  
Ferrite  
Beads  
Fig.43 Typical application circuit  
Application Information  
When excessive current flows owing to output shortcircuit or so, ringing occurs by inductance of power source line to IC,  
and may cause bad influences upon IC actions. In order to avoid this case, connect a bypath capacitor by IN terminal and  
GND terminal of IC. 1μF or higher is recommended.  
Pull up /OC output by resistance 10k~ 100k.  
Set up value which satisfies the application as CL and Ferrite Beads.  
This system connection diagram doesn’t guarantee operating as the application.  
The external circuit constant and so on is changed and it uses, in which there are adequate margins by taking into account  
external parts or dispersion of IC including not only static characteristics but also transient characteristics.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
13/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Power Dissipation Character  
(TSSOP-B8J)  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE: Ta [  
]
Fig.44 Power dissipation curve (Pd-Ta Curve)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
14/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Cautions On Use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the  
breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s  
power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard,  
for the digital block power supply and the analog block power supply, even though these power supplies has the same  
level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing  
the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns.  
For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At  
the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be  
used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between  
the terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set  
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the  
jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In  
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention  
to the transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals  
a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage  
to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is  
applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the  
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(12) Thermal shutdown circuit (TSD)  
When junction temperatures become detected temperatures or higher, the thermal shutdown circuit operates and turns a  
switch OFF. The thermal shutdown circuit is aimed at isolating the LSI from thermal runaway as much as possible. Do not  
continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(13) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the power dissipation (Pd) in actual  
states of use.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
15/16  
Technical Note  
BD82061FVJ,BD82065FVJ  
Ordering part number  
B D  
8
2
0
6
1
F
V
J
- E  
2
Part No.  
Part No.  
82061  
Package  
FVJ : TSSOP-B8J  
Packaging and forming specification  
E2: Embossed tape and reel  
82065  
TSSOP-B8J  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
2500pcs  
8
7
6
5
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.525  
0.145  
0.03  
S
0.08  
S
+0.05  
0.32  
0.04  
Direction of feed  
1pin  
M
0.08  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.05 - Rev.B  
16/16  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD82065FVJ-LB

本产品是面向工业设备市场的产品,保证长期稳定供货。 是适合这些用途的产品。USB端口用单路高边开关内置了1个通道的用于通用串行总线(USB)电源线的高边开关。电源开关部内置了1个电路的低导通电阻N沟道MOSFET。还内置了过电流检测、过温检测、欠压锁定、软启动等功能。
ROHM

BD82065FVJ-LBE2

Buffer/Inverter Based Peripheral Driver,
ROHM

BD820F50EFJ-C

BD820F50EFJ-C是45V高耐压稳压器,内置监视其输出的复位电路(RESET)及看门狗计时器(WDT)。输出电流能力为200mA,但待机电流很小,适合用来降低系统的消耗电流。稳压器输出低于4.2V(Typ)时输出复位信号。复位延迟时间、看门狗计时器监视时间可通过外置电容器进行调整。We recommend BD820F5UEFJ-C for your new development. It uses different production lines for the purpose of improving production efficiency. Electric characteristics noted in Datasheet does not differ between Production Line.
ROHM

BD820F5UEFJ-C

BD820F5UEFJ-C是一款45V高耐压稳压器,内置用来监控其输出的复位(RESET)功能和看门狗定时器(WDT)。输出电流能力为200mA,但静态电流却非常低,适合用来进一步降低系统的消耗电流。另外,当稳压器的输出低于4.2V(Typ)时,将会输出RESET信号。RESET延迟时间和WDT监控时间可以通过外置电容器进行调整。本系列产品中的BD820F50EFJ-C是为提高生产效率而变更生产线后的型号。在新项目选型时,建议选择该型号。另外,在技术规格书中的保证特性并没有差异。除非另有说明,否则我们还会披露文档和设计模型的 BD820F50EFJ-CE2 数据。
ROHM

BD82103GWL

Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD82103GWL-E2

Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD82103GWL_11

Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD8210EFV

Silicon Monolithic Integrated Circuit
ROHM

BD8215EFV

Silicon Monolithic Integrated Circuit
ROHM

BD8220EFV

Silicon Monolithic Integrated Circuit
ROHM

BD8222EFV

Silicon Monolithic Integrated Circuit
ROHM

BD8224EFV

Silicon Monolithic Integrated Circuit
ROHM