BD83070GWL [ROHM]

“BD83070GWL”是面向小型电池驱动的电子设备,以“低功耗环保元器件的标杆版”为目标开发而成的超低功耗升降压型电源IC。产品内置低损耗的MOSFET,并配置低耗电消耗电流电路,在各种电池驱动设备(电动牙刷以及剃须刀等)工作时(负载电流200mA时),功率转换效率高达97%,而且,消耗电流仅为2.8µA,在升降压型电源IC领域中也达到极高水平。因此,相比普通产品效率大大提升的应用在待机时(负载电流100µA时),电池续航时间可延长1.53倍(ROHM调查数据),非常有助于延长小型电池驱动的各种电子设备的续航时间。;
BD83070GWL
型号: BD83070GWL
厂家: ROHM    ROHM
描述:

“BD83070GWL”是面向小型电池驱动的电子设备,以“低功耗环保元器件的标杆版”为目标开发而成的超低功耗升降压型电源IC。产品内置低损耗的MOSFET,并配置低耗电消耗电流电路,在各种电池驱动设备(电动牙刷以及剃须刀等)工作时(负载电流200mA时),功率转换效率高达97%,而且,消耗电流仅为2.8µA,在升降压型电源IC领域中也达到极高水平。因此,相比普通产品效率大大提升的应用在待机时(负载电流100µA时),电池续航时间可延长1.53倍(ROHM调查数据),非常有助于延长小型电池驱动的各种电子设备的续航时间。

电子 电池 驱动
文件: 总24页 (文件大小:2278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Synchronous Buck-Boost DC/DC Converter  
with 2 A Switches (VIN = 2.0 V to 5.5 V, 1ch)  
BD83070GWL  
General Description  
Key Specifications  
Input Voltage Range:  
Output Voltage:  
The BD83070GWL is a synchronous buck-boost DC/DC  
convertor providing 3.3 V or 2.5 V output from single-cell  
Li-ion battery or other input between 2.0 V and 5.5 V. It  
has the capability to support up to 1 A output over input  
voltage range of 2.7 V to 5.5 V. It seamlessly changes  
between buck and boost operations depending on the  
input voltage.  
2.0 V to 5.5 V  
2.5 V or 3.3 V  
1 A(Max)  
1.5 MHz(Typ)  
2.8 μA(Typ)  
Output Current:  
Switching Frequency:  
Quiescent VIN Current:  
Operating Temperature Range: -40 °C to +85 °C  
It is based on pulse width modulation (PWM) and  
provides high efficiency for heavy load. While in PWM  
operation, internal FETs switch at fixed frequency 1.5  
MHz typical. It automatically changes over control  
system to hysteresis pulse frequency modulation (PFM)  
to suppress switching loss and current consumption  
during light load. Battery drain fall down to only 2.8 μA  
typical at no load current. It is possible to disable  
auto-PFM/PWM mode by the MODE pin for suppressing  
output ripple and fixed frequency switching.  
Package  
W(Typ) x D(Typ) x H(Max)  
UCSP50L1C (12Pin) 1.20 mm × 1.60 mm × 0.57 mm  
The device is packaged in a 1.2 mm x 1.6 mm WLCSP  
package.  
Applications  
Single Cell Li-ion or 3 Cell NiMH Battery-Powered  
Portable Products  
Tablet Terminal Device  
Features  
Synchronous Buck-Boost DC/DC Converter  
Automatic PFM/PWM Transition  
Output Current: Up To 1 A (VIN > 2.7 V, VOUT = 3.3 V)  
Selectable Output Voltage: 2.5 V or 3.3 V  
Efficiency: Up To 95 %  
Smartphone  
UVLO Detection: 1.61 V(Max)  
Built-in Thermal, Over Voltage, And Over Current  
Protection  
Typical Application Circuit  
L1: 1.5 μH  
VIN  
VOUT  
3.3 V (up to 1 A)  
LX1  
LX2  
2.0 V to 5.5 V  
PVIN  
VIN  
VOUT  
C1: 10 μF  
C2: 22 μF  
FB  
ON  
OFF  
EN  
VSEL  
Forced-PWM  
MODE  
REF  
Auto-PFM/PWM  
GND PGND  
C3: 0.47 μF  
Figure 1. Typical Application Circuit  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/21  
TSZ22111 14 001  
 
 
 
 
 
 
BD83070GWL  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................5  
Recommended Operating Conditions.............................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................5  
Detailed Descriptions......................................................................................................................................................................7  
Typical Performance Curves...........................................................................................................................................................8  
Application Examples ...................................................................................................................................................................15  
I/O Equivalence Circuits................................................................................................................................................................16  
Operational Notes.........................................................................................................................................................................17  
Ordering Information.....................................................................................................................................................................19  
Marking Diagram ..........................................................................................................................................................................19  
Physical Dimension and Packing Information...............................................................................................................................20  
Revision History............................................................................................................................................................................21  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/21  
TSZ22111 15 001  
 
BD83070GWL  
Pin Configuration  
1
2
3
EN  
GND  
REF  
FB  
VOUT  
LX2  
MODE  
VIN  
PVIN  
LX1  
VSEL  
C
D
PGND  
Top View  
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
Enable pin of the DC/DC converter. Inputting high (≥ 1.2 V) the EN pin turns on the regulator.  
Inputting low (≤ 0.4 V) or open the EN pin turns off the regulator.  
Ground for sensing  
Linear regulator output for power supply of internal circuits. Connect ceramic capacitor (0.47  
μF) between this pin and the GND pin for output stability. Do not connect the other devices.  
Voltage feedback pin. Connect this pin to the VOUT pin.  
A1  
EN  
GND  
REF  
FB  
A2  
A3  
B1  
Mode selection pin. Low (≤ 0.4 V): Auto-PFM/PWM mode. High (≥ 1.2 V): Forced-PWM mode.  
Do not leave this pin floating.  
Power supply input of controller. Connect this pin to the PVIN pin.  
Output pin of the DC/DC converter. Connect ceramic capacitor (22 μF recommended) between  
this pin and the PGND pin for output stability.  
B2  
MODE  
VIN  
B3  
C1  
VOUT  
Output voltage selection pin. High (VIN): 3.3 V. Low (GND): 2.5 V. Connect this pin to either the  
VIN pin or the GND pin.  
Power supply input of the DC/DC converter and LX1 side gate drivers. Connect ceramic  
capacitor (≥ 10 μF) between this pin and the PGND pin for power supply noise reduction.  
Inductor connection pin. Connect inductor (1.5 μH) between this pin and the LX1 pin.  
Ground of power FET, discharge, and gate drivers.  
C2  
C3  
VSEL  
PVIN  
D1  
D2  
D3  
LX2  
PGND  
LX1  
Inductor connection pin. Connect inductor (1.5 μH) between this pin and the LX2 pin.  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/21  
TSZ22111 15 001  
BD83070GWL  
Block Diagram  
LX1  
D3  
LX2  
D1  
PVIN C3  
C1 VOUT  
Gate  
Driver  
Gate  
Driver  
Current  
Sense Amp.  
PGND  
PGND  
PGND  
Zero Cross  
Comparator  
Control  
Logic  
OVP  
DCDC_EN  
H: VREF + 1.5 %  
L: VREF + 0.5 %  
-
+
+
-
+
-
B1 FB  
VIN B3  
+
-
VREF  
-
+
C2 VSEL  
VREF  
Current Limit  
IMIN Clamper  
UVLO  
TSD  
Ramp  
Generator  
UVLO  
GND  
DCDC_EN  
EN A1  
LDO  
Thermal  
Shutdown  
A3 REF  
REFOK  
MODE B2  
GND  
PGND  
A2  
D2  
PGND  
GND  
Figure 3. Block Diagram  
Absolute Maximum Ratings (Ta=25 °C)  
Parameter  
Symbol  
Ratings  
Unit  
V
Voltage Range in Pins:  
VIN, PVIN, VOUT, FB, EN, MODE  
VMAXVIN, VMAXPVIN, VMAXVOUT  
VMAXFB, VMAXEN, VMAXMODE  
,
-0.3 to +6.0  
-1.0 to +7.0  
-0.3 to +2.1  
-0.3 to +0.3  
150  
Voltage Range in Pins: LX1, LX2 (Note 1)  
VMAXLX1, VMAXLX2  
VMAXREF  
V
Voltage Range in Pin: REF  
V
Voltage Range in Pin: PGND  
Maximum Junction Temperature  
Storage Temperature Range  
VMAXPGND  
Tjmax  
V
°C  
°C  
Tstg  
-55 to +125  
(Note 1) Voltage transients on the LX1 or the LX2 pins beyond the DC limits specified in the absolute maximum ratings are non-disruptive to normal operation  
when using good layout practices as described elsewhere in the data sheet and application notes and as seen on the product demo board.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/21  
TSZ22111 15 001  
BD83070GWL  
Thermal Resistance(Note 2)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 3)  
UCSP50L1C  
Junction to Ambient  
θJA  
-
186.6  
°C/W  
(Note 2) Based on JESD51-2A(Still-Air).  
(Note 3) Using a PCB board based on JESD51-9.  
Layer Number of  
Material  
Board Size  
114.5 mm x 101.5 mm x 1.6 mmt  
Measurement Board  
Single  
FR-4  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
4 Layers  
114.5 mm x 101.5 mm x 1.6 mmt  
2 Internal Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
99.5 mm x 99.5 mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
99.5 mm x 99.5 mm  
35 μm  
70 μm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Voltage  
VIN  
2.0  
-40  
3.6  
+25  
0.47  
5.5  
+85  
1.00  
V
Operating Temperature  
REF Connection Capacitor (Note 1)  
Topr  
°C  
CREF  
0.22  
μF  
(Note 1) The minimum value capacitance must be met this specification over full operating condition. Ceramic capacitors are recommended for input/output  
capacitors.  
Electrical Characteristics (Unless otherwise specified VIN=PVIN=EN=VSEL=3.6 V, CREF=0.47 μF, Ta=25 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
DC/DC Converter  
Switching Frequency  
during PWM  
fSW  
1.35  
1.50  
87  
1.65  
MHz MODE=VIN  
Maximum Duty  
DMAX  
RON1H  
RON1L  
RON2H  
RON2L  
IOCP  
80  
95  
%
mΩ  
mΩ  
mΩ  
mΩ  
A
MODE=VIN  
LX1 High Side FET  
ON Resistance  
LX1 Low Side FET  
ON Resistance  
LX2 High Side FET  
ON Resistance  
LX2 Low Side FET  
ON Resistance  
-
50  
-
-
60  
-
-
-
55  
-
VOUT=3.3 V  
VOUT=3.3 V  
65  
-
Over Current Protection  
Output Voltage 1  
Output Voltage 2  
Load Regulation  
2.0  
3.267  
2.468  
-
-
-
PVIN=3.6 V  
MODE=VIN, VSEL=VIN,  
No Load  
VOUT1  
VOUT2  
VLR  
3.300  
2.500  
0.5  
3.333  
2.532  
-
V
MODE=VIN, VSEL=0 V,  
No Load  
V
MODE=VIN, VSEL=VIN  
IOUT=0 mA to 1000 mA  
mV  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/21  
TSZ22111 15 001  
BD83070GWL  
Electrical Characteristics - continued (Unless otherwise specified VIN=PVIN=EN=VSEL=3.6 V, CREF=0.47 μF,  
Ta=25 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
DC/DC Converter - continued  
Detect  
VOVPDET  
VOVPRST  
tST  
5.3  
5.2  
-
5.5  
5.4  
4.9  
5.0  
85  
5.7  
5.6  
-
V
V
VOUT voltage increasing  
Over Voltage  
Threshold  
Release  
VOUT voltage decreasing  
From EN=High to VOUT=100 mV  
Startup Delay Time  
Startup Slew Rate  
Discharge Resistance  
ms  
mV/μs  
Ω
SRST  
2.5  
40  
10.0  
200  
1.5  
1.71  
RDCG  
EN=0 V  
Detect  
VSCPDET  
VSCPRST  
1.3  
1.51  
1.4  
1.61  
V
FB voltage decreasing  
FB voltage increasing  
Short Circuit  
Threshold  
Release  
V
Main Controller  
Up  
VUVLOUP  
VUVLODN  
VENH  
-
1.51  
1.2  
1.740  
1.990  
1.61  
5.5  
V
V
VIN voltage increasing  
VIN voltage decreasing  
Under Voltage  
Lockout Threshold  
Down  
1.56  
ON  
-
V
EN Pin Control  
Voltage  
OFF  
VENL  
-0.3  
-
-
+0.4  
500  
V
EN Pin Input Current  
IEN  
200  
nA  
V
High  
VMODEH  
VMODEL  
VVSELH  
VVSELL  
VREF  
1.2  
-
5.5  
MODE Pin Control  
Voltage  
Low  
-0.3  
VIN-0.3  
-0.3  
1.45  
-
+0.4  
VIN+0.3  
+0.3  
1.55  
V
High  
-
-
V
VSEL Pin Control  
Voltage  
Low  
V
REF Output Voltage  
Whole Device  
1.50  
V
IREF=-100 μA  
Quiescent VIN Current  
Quiescent FB Current  
Shutdown VIN Current  
IVIN  
IFB  
-
-
-
2.8  
0.2  
0.1  
5.6  
0.4  
1.0  
μA  
μA  
μA  
MODE=0 V, FB=3.5 V  
MODE=0 V, FB=3.5 V  
EN=0 V  
ISHD  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/21  
TSZ22111 15 001  
BD83070GWL  
Detailed Descriptions  
1. Startup and Shutdown Control  
When the EN pin goes from low (input under 0.4 V or open) to high (input over 1.2 V), the BD83070GWL turns on  
internal LDO, REF, and the DC/DC converter. There is typically 4.9 ms delay from the EN high edge to startup of DC/DC  
converter (tST). It has a soft-start structure and ramps up the output voltage in 5 mV/μs typically (SRST). On the other  
hand, when the EN pin goes from high to low, it disables the internal LDO and DC/DC immediately. While in shutdown, it  
turns discharge switch on to pull VOUT to ground through 85 Ω typically. If the EN pin goes again from low to high during  
discharge sequence, the output voltage is ramped up from remaining voltage to target voltage in 5 mV/μs(Typ).  
EN  
tST  
tST  
SRST  
VOUT  
Figure 4. Startup Sequence  
2. MODE Pin  
In the case of the MODE pin is pulled high (over 1.2 V), the BD83070GWL operates in forced PWM mode and uses fixed  
frequency 1.5 MHz regardless its loads. If the MODE pin is pulled low (under 0.4 V), it operates in automatic PFM-PWM  
mode and automatically changes over form PWM to hysteresis PFM operation depending on its loads. Do not leave this  
pin floating because it is neither pulled down nor up, internally.  
3. Output Voltage Setting  
The BD83070GWL has internal feedback resistors. It is possible to select target output voltage from either 2.5 V or 3.3 V  
by the VSEL pin. If the VSEL pin is connected to ground, the nominal output voltage is 2.5 V. On the other hand when  
the VSEL is connected to VIN, the nominal output voltage is 3.3 V. It is not recommended to change while in EN is logic  
high.  
4. Maximum Load Current  
The maximum load current varies depending on PVIN voltage and output voltage setting. When using the  
recommended application, the maximum load current becomes as follows.  
VOUT = 3.3 V Setting  
VOUT = 2.5 V Setting  
1000 mA  
1000 mA  
800 mA  
600 mA  
400 mA  
300 mA  
1.8 V 2.3 V 2.7 V  
5.5 V  
1.8 V 2.3 V 2.7 V  
5.5 V  
PVIN voltage [V]  
PVIN voltage [V]  
Figure 5. Maximum Load Current  
5. Current Limit Protection  
The BD83070GWL has a current limit protection circuit to prevent excessive electric stress on itself and external  
inductor at overload condition.  
6. Short Circuit Protection  
If FB voltage drops less than 1.4 V(Typ), the current limit value is reduced to about half of the normal that. The current  
limit value returns to the normal that when the FB voltage exceeds 1.61 V(Typ).  
7. Over Voltage Protection  
The BD83070GWL has an over voltage comparator. When the FB pin becomes open, the output voltage rises beyond  
target voltage. If the VOUT pin reaches 5.5 V(Typ), it stops switching to prevent over voltage stress on its power FETs. If  
the VOUT pin voltage falls lower than 5.4 V(Typ), it restarts switching.  
8. Under Voltage Lockout (UVLO)  
The BD83070GWL has a UVLO comparator to turn the device off and prevent malfunction when the input voltage is too  
low. As same as UVLO, it has a REFOK comparator to monitor REF voltage, internal LDO output, and turns the device  
off when the REF voltage is too low.  
9. Thermal Shutdown  
The BD83070GWL has a Thermal Shutdown Circuit (TSD Circuit). When the temperature of its chip is higher than  
175 °C typical, the TSD circuit turns off the DC/DC converter. There is the hysteresis width of 20 °C between the  
detection point and release point to prevent malfunctions from temperature fluctuations. Because TSD Circuit is only  
designed for protecting the device from thermal over load, it is not recommended to design the application as TSD  
working in normal condition.  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/21  
TSZ22111 15 001  
BD83070GWL  
Typical Performance Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=4.2 V  
VIN=3.8 V  
VIN=3.6 V  
VIN=3.0 V  
VIN=2.4 V  
VIN=1.8 V  
VIN=4.2 V  
VIN=3.8 V  
VIN=3.6 V  
VIN=3.0 V  
VIN=2.4 V  
VIN=1.8 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT [mA]  
Output Current:IOUT [mA]  
Figure 6. Efficiency vs Output Current  
Figure 7. Efficiency vs Output Current  
(VSEL=High, MODE=Low: Auto-PFM/PWM)  
(VSEL=High, MODE=High: Forced-PWM)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN=4.2 V  
VIN=3.8 V  
VIN=3.6 V  
VIN=3.0 V  
VIN=2.4 V  
VIN=1.8 V  
VIN=4.2 V  
VIN=3.8 V  
VIN=3.6 V  
VIN=3.0 V  
VIN=2.4 V  
VIN=1.8 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT [mA]  
Output Current:IOUT [mA]  
Figure 8. Efficiency vs Output Current  
(VSEL=Low, MODE=Low: Auto-PFM/PWM)  
Figure 9. Efficiency vs Output Current  
(VSEL=Low, MODE=High: Forced-PWM)  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/21  
TSZ22111 15 001  
BD83070GWL  
Typical Performance Curves - continued  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
VIN=4.2 V  
VIN=3.6 V  
VIN=2.4 V  
VIN=1.8 V  
VIN=4.2 V  
VIN=3.6 V  
VIN=2.4 V  
VIN=1.8 V  
2.25  
2.20  
2.15  
2.10  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Output Current:IOUT [mA]  
Output Current:IOUT [mA]  
Figure 10. Output Voltage 2 vs Output Current  
Figure 11. Output Voltage 1 vs Output Current  
(“Load Regulation”, VSEL=Low, MODE=High: Forced-PWM)  
(“Load Regulation”, VSEL=High, MODE=High: Forced-PWM)  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
VIN=4.2 V  
VIN=3.6 V  
VIN=2.4 V  
VIN=1.8 V  
VIN=4.2 V  
VIN=3.6 V  
VIN=2.4 V  
VIN=1.8 V  
2.25  
2.20  
2.15  
2.10  
3.05  
3.00  
2.95  
2.90  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Output Current:IOUT [mA]  
Output Current:IOUT [mA]  
Figure 12. Output Voltage 2 vs Output Current  
(“Load Regulation”, VSEL=Low, MODE=Low:  
Auto-PFM/PWM)  
Figure 13. Output Voltage 1 vs Output Current  
(“Load Regulation”, VSEL=High, MODE=Low:  
Auto-PFM/PWM)  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/21  
TSZ22111 15 001  
BD83070GWL  
Typical Performance Curves - continued  
2000  
1800  
1600  
1400  
1200  
1000  
800  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
600  
400  
VSEL=Low  
VSEL=High  
200  
0
0
1
2
3
4
5
6
1.5  
2.0  
2.5  
3.0  
3.5  
Power Supply Voltage:VIN [V]  
Power Supply Voltage:VIN [V]  
Figure 14. Output Voltage 1 vs Power Supply Voltage  
(“Line Regulation”, EN=VSEL=High, MODE=Low:  
Auto-PFM/PWM, 3.3 kΩ resistive load)  
Figure 15. Maximum Output Current vs Power Supply Voltage  
2.0  
7
VSEL=Low  
Ta=-50 ˚C  
Ta=+25 ˚C  
VSEL=High  
6
Ta=+125 ˚C  
1.5  
5
4
3
2
1
1.0  
0.5  
0.0  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage:VIN [V]  
Power Supply Voltage:VIN [V]  
Figure 16. Shutdown VIN Current vs Power Supply Voltage  
(EN=MODE=Low, No load)  
Figure 17. Quiescent VIN Current vs Power Supply Voltage  
(MODE=Low: Auto-PFM/PWM, FB=3.5 V, No load)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0A900570-1-2  
10/21  
09.Oct.2018 Rev.001  
BD83070GWL  
Typical Performance Curves - continued  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
200  
180  
160  
140  
120  
100  
80  
MODE=Low: Auto-PFM/PWM  
MODE=High: Forced-PWM  
60  
40  
VSEL=Low  
1.1  
1.0  
20  
VSEL=High  
0
0.01  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.1  
1
10  
100  
1000  
Power Supply Voltage:VIN [V]  
Output Current:IOUT [mA]  
Figure 18. Switching Frequency vs Power Supply Voltage  
(MODE=High: Forced-PWM, No load)  
Figure 19. Ripple Voltage vs Output Current  
(VIN=3.6 V, VSEL=High)  
ch1:MODE [2 V/div]  
ch1:VSEL [2 V/div]  
ch2:VOUT [100 mV/div, offset=3.3 V]  
ch3:Icoil [200 mA/div]  
ch2:VOUT [500 mV/div, offset=2.9 V]  
ch3:Icoil [200 mA/div]  
Time[500 μs/div]  
Time[500 μs/div]  
Figure 20. Transient Response  
(“Mode Change”, VIN=3.6 V, VSEL=High,  
MODE=Low<->High, Output current 50 mA)  
Figure 21. Transient Response  
(“Output Voltage Change”, VIN=2.9 V, VSEL=Low<->High,  
MODE=Low: Auto-PFM/PWM, Output current 50 mA)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
11/21  
BD83070GWL  
Typical Performance Curves - continued  
ch4:IOUT [200 mA/div]  
ch4:IOUT [200 mA/div]  
ch1:VOUT [200 mV/div, offset=3.31 V]  
ch1:VOUT [200 mV/div, offset=3.31 V]  
ch3:PVIN [1 V/div, offset=2.3 V]  
Time[50 μs/div]  
ch3:PVIN [1 V/div, offset=2.3 V]  
Time[50 μs/div]  
Figure 22. Transient Response  
(VIN=2.3 V, VSEL=High, MODE=Low: Auto-PFM/PWM,  
Output current 20 mA->600 mA)  
Figure 23. Transient Response  
(VIN=2.3 V, VSEL=High, MODE=Low: Auto-PFM/PWM,  
Output current 600 mA->20 mA)  
ch4:IOUT [300 mA/div]  
ch4:IOUT [300 mA/div]  
ch1:VOUT [300 mV/div, offset=3.31 V]  
ch1:VOUT [300 mV/div, offset=3.31 V]  
ch3:PVIN [1 V/div, offset=3.6 V]  
Time[50 μs/div]  
ch3:PVIN [1 V/div, offset=3.6 V]  
Time[50 μs/div]  
Figure 24. Transient Response  
(VIN=3.6 V, VSEL=High, MODE=Low: Auto-PFM/PWM,  
Output current 50 mA->1000 mA)  
Figure 25. Transient Response  
(VIN=3.6 V, VSEL=High, MODE=Low: Auto-PFM/PWM,  
Output current 1000 mA->50 mA)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
12/21  
BD83070GWL  
Typical Performance Curves - continued  
ch1:VIN [1 V/div]  
ch1:VIN [1 V/div]  
ch2:VOUT [100 mV/div, offset=3.3 V]  
Time[100 μs/div]  
ch2:VOUT [100 mV/div, offset=3.3 V]  
Time[100 μs/div]  
Figure 26. Transient Response  
(VIN=2.7 V->5.5 V, VSEL=High, MODE=Low:  
Auto-PFM/PWM, Output current 300 mA)  
Figure 27. Transient Response  
(VIN=5.5 V->2.7 V, VSEL=High, MODE=Low:  
Auto-PFM/PWM, Output current 300 mA)  
ch1:EN [3 V/div]  
ch1:EN [3 V/div]  
ch2:VOUT [1 V/div]  
ch2:VOUT [1 V/div]  
ch3:IPVIN+IVIN [500 mA/div]  
ch3:IPVIN+IVIN [500 mA/div]  
Time[1 ms/div]  
Time[2 ms/div]  
Figure 28. Startup Waveform  
(VIN=2.4 V, VSEL=High, MODE=High: Forced-PWM,  
5.5 Ω resistive load)  
Figure 29. Startup Waveform  
(VIN=3.6 V, VSEL=High, MODE=High: Forced-PWM,  
3.3 Ω resistive load)  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/21  
TSZ22111 15 001  
BD83070GWL  
Typical Performance Curves - continued  
ch1:EN [2 V/div]  
ch1:EN [2 V/div]  
ch2:VOUT [1 V/div]  
Time[2 ms/div]  
ch2:VOUT [1 V/div]  
Time[2 ms/div]  
Figure 30. Shutdown Waveform  
(VIN=3.6 V, VSEL=Low, MODE=Low: Auto-PFM/PWM, No  
load)  
Figure 31. Shutdown Waveform  
(VIN=3.6 V, VSEL=High, MODE=Low: Auto-PFM/PWM, No  
load)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
14/21  
BD83070GWL  
Application Examples  
VSEL = VIN (VOUT = 3.3 V setting)  
L1  
VOUT  
3.3 V  
LX1  
LX2  
VIN  
C1  
PVIN  
VIN  
VOUT  
FB  
C2  
ON  
EN  
VSEL  
REF  
OFF  
Forced-PWM  
MODE  
Auto-PFM/PWM  
GND PGND  
C3  
Figure 32. 3.3V Output Application Circuit  
VSEL = GND (VOUT = 2.5 V setting)  
L1  
VOUT  
2.5 V  
LX1  
LX2  
VIN  
C1  
PVIN  
VIN  
VOUT  
FB  
C2  
ON  
EN  
VSEL  
REF  
OFF  
Forced-PWM  
MODE  
Auto-PFM/PWM  
GND PGND  
C3  
Figure 33. 2.5 V Output Application Circuit  
Parts Number  
Description  
Supplier  
1239AS-H-1R5M  
(1.5 μH, 2.5 mm x 2.0 mm x 1.2 mm)  
L1  
muRata  
C1  
C2(Note 1)  
C3  
EMK212ABJ106KD (10 μF, 16 V, X5R, 0805)  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
JMK107BBJ226MA (22 μF, 6.3 V, X5R, 0603)  
EMK105ABJ474KV-F (0.47 μF, 16 V, X5R, 0402)  
(Note 1) The effective load capacitance value considering accuracy, temperature characteristic and DC bias characteristic of output capacitors should not be less than  
22 μF. The amount of output capacitance will have a significant effect on the output ripple voltage.  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/21  
TSZ22111 15 001  
BD83070GWL  
I/O Equivalence Circuits  
Pin  
Name  
Pin  
Name  
Equivalence circuit  
Equivalence circuit  
LX2  
VIN  
EN  
VOUT  
RDCG  
GND  
GND  
VIN  
GND  
GND  
GND  
REF  
PVIN  
PGND  
GND  
GND  
VOUT  
FB  
LX2  
PGND  
LX1  
GND  
GND  
PGND  
PVIN  
VOUT  
VIN  
MODE  
VSEL  
GND  
GND  
GND GND  
PVIN  
VIN  
GND  
PGND  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/21  
TSZ22111 15 001  
BD83070GWL  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
17/21  
BD83070GWL  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 34. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/21  
TSZ22111 15 001  
BD83070GWL  
Ordering Information  
G W L  
B D 8 3 0 7 0  
E 2  
Package  
GWL: UCSP50L1C  
Packaging and forming specification  
E2: Embossed tape and reel  
Part Number  
Marking Diagram  
TOP VIEW  
UCSP50L1C (BD83070GWL)  
Pin 1 Mark  
ADQ  
Part Number Marking  
LOT Number  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/21  
TSZ22111 15 001  
BD83070GWL  
Physical Dimension and Packing Information  
Package Name  
UCSP50L1C(BD83070GWL)  
< Tape and Reel Information >  
Tape  
Embossed carrier tape  
Quantity  
3,000pcs  
Direction of feed  
E2  
The direction is the pin 1 of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
1234  
1234  
1234  
1234  
1234  
1234  
Direction of feed  
1pin  
Reel  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/21  
TSZ22111 15 001  
BD83070GWL  
Revision History  
Date  
Revision  
001  
Changes  
09.Oct.2018  
New Release  
www.rohm.com  
TSZ02201-0Q3Q0A900570-1-2  
09.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/21  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD8311NUV

High-efficiency Step-up Switching Regulator with Built-in Power MOSFET
ROHM

BD8311NUV-E2

High-efficiency Step-up Switching Regulator with Built-in Power MOSFET
ROHM

BD8311NUV_10

High-efficiency Step-up Switching Regulator with Built-in Power MOSFET
ROHM

BD8312HFN

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8312HFN-TR

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8312HFN_10

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8312HFN_11

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8313HFN

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8313HFN-TR

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8313HFN_10

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8313HFN_11

Output 1.5A or Less High-efficiency Step-down Switching Regulator with Built-in Power MOSFET
ROHM

BD8313HFN_15

1ch Synchronous Buck Converter Integrated MOSFET
ROHM