BD8LD650EFV-C (新产品) [ROHM]

BD8LD650EFV-C是一款适用于车载和工业设备的SPI输入8通道低边开关。该产品内置负载开路检测功能、输出接地故障检测功能、过电流保护功能、过热保护功能、有源钳位功能。;
BD8LD650EFV-C (新产品)
型号: BD8LD650EFV-C (新产品)
厂家: ROHM    ROHM
描述:

BD8LD650EFV-C是一款适用于车载和工业设备的SPI输入8通道低边开关。该产品内置负载开路检测功能、输出接地故障检测功能、过电流保护功能、过热保护功能、有源钳位功能。

开关 过电流保护
文件: 总51页 (文件大小:1946K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive IPD Series  
8ch Low Side Switch  
BD8LD650EFV-C  
General Description  
Key Specifications  
BD8LD650EFV-C is an 8-channel SPI-input low side  
switch for automotive and industrial application. It has  
built-in open load detection function, short ground  
detection function, over current protection function,  
thermal shutdown function, and active clamp function.  
Input Voltage Range VDD:  
Input Voltage Range VDDIO:  
On State Resistance:  
Over Current Threshold Value:  
Active Clamp Energy:  
4.0 V to 5.5 V  
3.0 V to 5.5 V  
650 mΩ (Typ)  
0.5 A/1.0 A (Min)  
125 mJ  
Operating Temperature Range Tj:-40 °C to +150 °C  
Features  
AEC-Q100 Qualified(Note 1)  
Package  
W (Typ) x D (Typ) x H (Max)  
6.5 mm x 6.4 mm x 1.0 mm  
Monolithic Power Management IC with Control Block  
(CMOS) and a Power MOSFET Mounted on a Single  
Chip  
HTSSOP-B20  
Channel Control/error can be Detected by 16 bit SPI  
Commands.  
Built-in Open Load Detection Function (OLD)  
Built-in Short Ground Detection Function (SGD)  
Built-in Over Current Protection Function (OCP)  
Built-in Thermal Shutdown Function(TSD)  
Built-in Active Clamp Function  
Built-in Synchro Mode  
Built-in Limp Home Mode  
Surface-mount HTSSOP-B20 Packaging  
(Note 1) Grade1  
HTSSOP-B20  
Application  
Driving Resistive and Inductive Load  
Typical Application Circuit  
VDDIO  
VDD  
VBAT  
CVDDIO  
CVDD  
VDDIO  
VDD  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
I/O  
Control Logic  
RIDLE  
RIN21  
RIN43  
RIN65  
IDLE  
IN21  
IN43  
IN65  
UVLO  
I/O  
(IDLE, IN,  
Limp Home)  
Mode  
Control  
Control,  
Diagnostic  
and  
protective  
Functions  
Limp  
Home  
OCP  
TSD  
MCU  
Input  
Register  
RCSB  
RSCLK  
RSI  
CSB  
SCLK  
SI  
UVLO  
OLD  
OFD  
SGD  
SPI  
Control  
Active  
Clamp  
I/O  
(SPI)  
Gate  
Driver  
Diagnosis  
Register  
RSO  
SO  
COUT1 COUT2  
COUT3  
COUT4  
COUT5  
COUT6  
COUT7  
COUT8  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
1/48  
 
 
 
 
 
 
BD8LD650EFV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Application ......................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Definition.........................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................5  
Thermal Resistance........................................................................................................................................................................6  
Recommended Operating Conditions...........................................................................................................................................10  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................12  
Measurement Circuit.....................................................................................................................................................................23  
Timing Chart .................................................................................................................................................................................25  
Synchro Mode...............................................................................................................................................................................27  
Limp Home Mode .........................................................................................................................................................................28  
SPI Specification...........................................................................................................................................................................29  
Register Map ................................................................................................................................................................................33  
Over Current Protection Function .................................................................................................................................................35  
Thermal Shutdown Function.........................................................................................................................................................36  
Open Load Detection (OLD) .........................................................................................................................................................37  
Output Overhead Fault Detection Function (OFD)........................................................................................................................38  
Short Ground Detection (SGD).....................................................................................................................................................39  
Application Example .....................................................................................................................................................................41  
Selection of Components Externally Connected...........................................................................................................................41  
I/O Equivalence Circuits................................................................................................................................................................42  
Operational Notes.........................................................................................................................................................................43  
Ordering Information.....................................................................................................................................................................46  
Marking Diagram ..........................................................................................................................................................................46  
Physical Dimension and Packing Information...............................................................................................................................47  
Revision History............................................................................................................................................................................48  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
2/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
 
BD8LD650EFV-C  
Pin Configuration  
(TOP VIEW)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IDLE  
CSB  
VDDIO  
VDD  
2
3
SCLK  
SI  
IN21  
4
IN43  
5
SO  
IN65  
EXP-PAD  
6
GND  
OUT1  
OUT2  
OUT5  
OUT6  
GND  
7
OUT3  
OUT4  
OUT7  
OUT8  
8
9
10  
Pin Descriptions  
Pin No.  
Pin Name  
IDLE  
Function  
Limp home mode control  
1
2
3
4
This pin is connected to GND via an internal pull-down resistor.  
SPI enable  
CSB  
SCLK  
SI  
This pin is connected to VDDIO via an internal pull-up resistor.  
Serial clock input  
This pin is connected to GND via an internal pull-down resistor.  
Serial data input  
This pin is connected to GND via an internal pull-down resistor.  
5
6
SO  
Serial data output  
GND  
GND  
7
OUT1  
OUT2  
OUT5  
OUT6  
OUT8  
OUT7  
OUT4  
OUT3  
GND  
ch1 output  
ch2 output  
ch5 output  
ch6 output  
ch8 output  
ch7 output  
ch4 output  
ch3 output  
GND  
8
9
10  
11  
12  
13  
14  
15  
ch5, ch6 control(Note 1)  
16  
17  
18  
IN65  
IN43  
IN21  
This pin is connected to GND via an internal pull-down resistor.  
ch3, ch4 control(Note 1)  
This pin is connected to GND via an internal pull-down resistor.  
ch1, ch2 control(Note 1)  
This pin is connected to GND via an internal pull-down resistor.  
19  
20  
-
VDD  
Analog power supply  
VDDIO  
Digital power supply  
EXP-PAD  
Be sure to connect EXP-PAD to GND.  
(Note 1) Controlled channels can be changed by accessing DIRCTRL register from the SPI.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
3/48  
BD8LD650EFV-C  
Definition  
IVDDIO  
IVDD  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
VDDIO  
VDD  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
VDDIO  
VOUT1  
VDD  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
VOUT6  
IIDLE  
ICSB  
ISCLK  
ISI  
IDLE  
CSB  
SCLK  
SI  
VIDLE  
VCSB  
VSCLK  
VSI  
ISO  
SO  
VOUT7  
VSO  
IOUT8  
IIN21  
IIN43  
IIN65  
VOUT8  
IN21  
IN43  
IN65  
VIN21  
VIN43  
VIN65  
GND  
Block Diagram  
VDDIO  
VDD  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
I/O  
Control Logic  
IN21  
IN43  
UVLO  
I/O  
(IDLE, IN,  
IN65  
IDLE  
Mode  
Control  
Limp Home)  
Control,  
Diagnostic  
and  
protective  
Functions  
Limp  
Home  
OCD  
Input  
Register  
TSD  
OLD  
UVLO  
CSB  
SCLK  
SI  
SPI  
Control  
Active  
Clamp  
I/O  
(SPI)  
Gate  
Driver  
Diagnosis  
Register  
SO  
GND  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
4/48  
BD8LD650EFV-C  
Absolute Maximum Ratings (Tj = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
VDDIO, VDD Power Supply Voltage  
Output Voltage (Power MOS Output)  
Output Current (Power MOS Output)  
Output Voltage (SPI)  
VDDIO, VDD  
VOUT1-8  
-0.3 to +7  
-0.3 to (Internal Limit)(Note 1)  
(Internal Limit)(Note 2)  
-0.3 to +7  
V
V
IOUT1-8  
A
VSO  
V
Input Voltage (IDLE)  
VIDLE  
-0.3 to +7  
V
Input Voltage (SPI)  
VCSB, VSCLK, VSI  
VIN65, VIN43, VIN21  
Tstg  
-0.3 to +7  
V
Input Voltage (IN65, IN43, IN21)  
Storage Temperature Range  
Maximum Junction Temperature  
-0.3 to +7  
V
-55 to +150  
°C  
°C  
Tjmax  
150  
Active Clamp Energy (Single Pulse)  
EAS1-8(25 °C)  
EAS1-8(150 °C)  
ES, AS1-8(25 °C)  
ES, AS1-8(150 °C)  
EAR(125 °C)  
125  
25  
57  
19  
12  
9
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
Tj(START) = 25 °C, IOUT1-8(START) = 0.4 A  
Active Clamp Energy (Single Pulse)(Note 3)  
Tj(START) = 150 °C, IOUT1-8(START) = 0.4 A  
Active Clamp Energy (Single Pulse)  
Tj(START) = 25 °C, IOUT1-8(START) = 0.8 A, Synchro Mode  
Active Clamp Energy (Single Pulse)(Note 3)  
Tj(START) = 150 °C, IOUT1-8(START) = 0.8 A, Synchro Mode  
Active Clamp Energy (Repetitive)(Note 3)(Note 4)  
Tj(START) = 125 °C, IOUT(START) = 0.2 A  
Active Clamp Energy (Repetitive)(Note 3)(Note 4)  
Tj(START) = 125 °C, IOUT(START) = 0.4 A, Synchro Mode  
(Note 1) Limited by the active clamp function.  
ES, AR(125 °C)  
(Note 2) Limited by the over current protection function. The over current detection value can be adjusted in two levels.  
(Note 3) Not 100 % are tested.  
(Note 4) 2M cycles, All channel input.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Caution 3: When IC is turned off with an inductive load, reverse energy has to be dissipated in the IC. This energy can be calculated by the following equation:  
1
퐵퐴푇  
= ꢀ퐼푂푈푇(푆푇퐴푅푇)× ꢂ1 −  
2
퐵퐴푇 푂푈푇(퐶퐿)  
Where:  
L is the inductance of the inductive load.  
IOUT(START) is the output current at the time of turning off.  
VOUT(CL) is the output clamp voltage.  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the inductive load is turned off.  
When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the reverse energy EL is active clamp  
energy EAS (Figure 1.), ES,AS (Figure 2.) or under when inductive load is used.  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
Tj = 25 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = 150 °C  
1
1
0.2  
0.3  
0.4  
0.5  
0.6  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
Output Current (Start): IOUT(START) [A]  
Output Current (Start): IOUT(START) [A]  
Figure 1. Active Clamp Energy (Single Pulse) vs  
Output Current  
Figure 2. Active Clamp Energy (Single Pulse)  
Synchro Mode vs Output Current  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
5/48  
BD8LD650EFV-C  
Thermal Resistance (Note 1)  
Parameter  
Symbol  
Typ  
Unit  
Condition  
HTSSOP-B20  
96.6  
35.1  
24.5  
°C/W  
°C/W  
°C/W  
1s(Note 2)  
2s(Note 3)  
2s2p(Note 4)  
Between Junction and Surroundings Temperature  
Thermal Resistance  
θJA  
(Note 1) The thermal impedance is based on JESD51-2A(Still-Air) standard.  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure, 2 oz. copper. )  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layers (2s).  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm, copper (top & reverse side) 2 oz )  
(Note 4) JESD51-5/-7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm, copper (top & reverse side/inner layers) 2 oz./1 oz.)  
PCB Layout 1 layer (1s)  
100 mm2  
Figure 3. PCB Layout 1 Layer (1s)  
600 mm2  
1200 mm2  
Footprint  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.57 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top Layer)  
Copper Foil Area Dimension  
0.070 mm (Cu: 2 oz)  
Footprint/100 mm2/600 mm2/1200 mm2  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
6/48  
BD8LD650EFV-C  
Thermal Resistance – continued  
PCB Layout 2 layers (2s)  
Top Layer  
Bottom Layer  
Top Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥0.6 mm  
Cross Section  
Figure 4. PCB-layout 2-layer (2s)  
Dimension  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Finish Thickness  
Board Dimension  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
1.2 mm/0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
7/48  
BD8LD650EFV-C  
Thermal Resistance – continued  
PCB Layout 4 layers (2s2p)  
TOP Layer  
Top Layer  
2nd/Bottom Layers  
3rd Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥0.6 mm  
Cross Section  
Figure 5. PCB-layout 4-layer (2s2p)  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Copper Thickness (Inner Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
0.035 mm  
1.2 mm/0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
8/48  
BD8LD650EFV-C  
Thermal Resistance – continued  
Transient Thermal Resistance (Single Pulse)  
1000  
100  
10  
1
1s footprint  
2s  
2s2p  
0.1  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Pulse Time [s]  
Figure 6. Transient Thermal Resistance  
Thermal Resistance (θJA vs Copper Foil area 1s)  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
Copper Fiol Area 1s [mm2]  
Figure 7. Thermal Resistance  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
9/48  
BD8LD650EFV-C  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VDD Power Supply Voltage  
VDDIO Power Supply Voltage  
Operating Temperature  
VDD  
VDDIO  
Topr  
4.0  
3.0  
-40  
5.0  
5.0  
5.5  
5.5  
V
V
+25  
+150  
°C  
Electrical Characteristics  
(Unless otherwise specified VDD = 4.0 V to 5.5 V, VDDIO = 3.0 V to 5.5 V, Tj = -40 °C to +150 °C)  
Parameter  
[Power Supply]  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VIDLE = 0 V  
VIN21, VIN43, VIN65 = 0 V  
VIDLE = 0 V  
VIN21, VIN43, VIN65 = 0 V  
VDD Standby Current  
IVDDS  
-
-
0
0
20  
20  
µA  
µA  
VDDIO Standby Current  
IVDDIOS  
VIDLE = 5 V  
VDD Operating Current  
IVDD  
-
-
1.2  
30  
2.4  
mA  
µA  
VIN21, VIN43, VIN65 = 5 V  
OUTCTRLn[7:0] = FF(Note 1)  
VIDLE = 5 V  
VDDIO Operating Current  
IVDDIO  
150  
VIN21, VIN43, VIN65 = 5 V  
OUTCTRLn[7:0] = FF(Note 1)  
VDD Power On Reset Voltage  
VDDIO Power On Reset Voltage  
VPORA  
VPORD  
-
-
-
-
4.0  
2.7  
V
V
[Input (IDLE, CSB, SCLK, SI, IN21, IN43, IN65)]  
VDDIO  
× 0.2  
Low Level Input Voltage  
VIL  
0
-
V
VDDIO  
× 0.7  
0.25  
High Level Input Voltage  
Input Hysteresis Voltage  
VIH  
-
VDDIO  
0.65  
V
V
VHYS  
0.45  
VIDLE, VSCLK, VSI, VIN21, VIN43  
VIN65 = 0 V  
,
,
Low Level Input Current 1  
(except CSB)  
IIL1  
-10  
0
+10  
µA  
Low Level Input Current 2 (CSB)  
High Level Input Current 1  
(except CSB)  
High Level Input Current 2 (CSB)  
[Output (SO)]  
IIL2  
IIH1  
IIH2  
-100  
25  
-50  
50  
0
-25  
100  
+10  
µA  
µA  
µA  
VCSB = 0 V  
VIDLE, VSCLK, VSI, VIN21, VIN43  
VIN65 = 5 V  
-10  
VCSB = 5 V  
Low Level Output Voltage  
VOL  
VOH  
ISO  
0
0.15  
0.45  
-
V
V
ISO = 1 mA  
VDDIO  
0.45  
VDDIO  
0.15  
High Level Output Voltage  
ISO = -1 mA  
Serial Out Output Leakage Current  
[Power MOS Output]  
-5  
0
+5  
µA  
VSO = 0 V / 5.5 V  
VDD = 5 V  
IOUT = 0.2 A, Tj = 25 °C  
VDD = 5 V  
IOUT = 0.2 A, Tj = 150 °C  
-
-
650  
800  
mΩ  
mΩ  
Output On Resistance  
RDS(ON)  
1200  
1500  
-
-
0
1
µA  
µA  
V
VOUT = 30 V, Tj = 25 °C  
VOUT = 30 V, Tj = 150 °C  
IOUT = 1 mA, Output Off  
Output Leakage Current  
Output Clamp Voltage  
IOUT(L)  
VCL  
0.15  
41  
2.00  
45  
37  
(Note 1) Set by SPI control. Details are given in "Register Map". n represents the channel number.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
10/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
Electrical Characteristics – continued  
(Unless otherwise specified, VDD = 4.0 V to 5.5 V, VDDIO = 3.0 V to 5.5 V, Tj = -40 °C to +150 °C)  
Parameter  
[Power MOS Output]  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Turn-On Time 1  
Turn-Off Time 1  
Turn-On Time 2  
Turn-Off Time 2  
Turn-On Time 3  
Turn-Off Time 3  
Slew Rate (On) 1  
Slew Rate (Off) 1  
Slew Rate (On) 2  
Slew Rate (Off) 2  
Slew Rate (On) 3  
Slew Rate (Off) 3  
tON1  
tOFF1  
-
-
-
-
50  
50  
µs  
µs  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 00(Note 1)  
tON2  
-
-
200  
200  
25  
µs  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 10(Note 1)  
tOFF2  
-
-
µs  
tON3  
-
-
µs  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 01(Note 1)  
tOFF3  
-
-
25  
µs  
SRON1  
SROFF1  
SRON2  
SROFF2  
SRON3  
SROFF3  
0.50  
0.50  
0.10  
0.10  
1.35  
1.35  
1.00  
1.00  
0.30  
0.30  
2.25  
2.25  
1.50  
1.50  
0.50  
0.50  
3.15  
3.15  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 00(Note 1)  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 10(Note 1)  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
12 V, SRCTRLn[1:0] = 01(Note 1)  
RL = 60 Ω, VIDLE = 5 V, VBAT  
=
PWM Output Range  
fPWM  
-
-
5
kHz  
12 V, SRCTRLn[1:0] = 00(Note 1)  
[Over Current Protection Function]  
Over Current Threshold Value 1  
Over Current Threshold Value 2  
Output Stop Time at OCP Detection  
[Open Load Detection Function]  
Open Load Detect Voltage  
IOCP1  
IOCP2  
0.50  
1.00  
0.4  
0.85  
1.70  
1.0  
1.30  
2.40  
1.9  
A
A
OCPCTRLn = '0'(Note 1)  
OCPCTRLn = '1'(Note 1)  
OCPCTRLn = '0' / '1'(Note 1)  
tOCP_OFF  
ms  
DIAG_OLD/OFDn = '1'(Note 1)  
Output Off  
VOLD_DET  
VOLD_REL  
IOLD  
1.2  
1.6  
15  
2.2  
2.6  
40  
3.2  
3.6  
90  
V
V
Open Load Release Voltage  
Output Sink Current  
µA  
VOUT = 12 V  
[Output Overhead Fault Detection Function]  
DIAG_OLD/OFDn = '1'(Note 1)  
Output On  
Output Overhead Detect Voltage  
Output Overhead Release Voltage  
[Short Ground Detection Function]  
Short Ground Detect Voltage  
Short Ground Release Voltage  
Output Source Current  
VOFD_DET  
1.6  
1.2  
2.6  
2.2  
3.6  
3.2  
V
V
VOFD_REL  
DIAG_SGDn = '1'(Note 1)  
Output Off  
VSGD_DET  
VSGD_REL  
ISGD  
0.3  
0.5  
-40  
1.0  
1.4  
-25  
1.5  
1.9  
-10  
V
V
µA  
VOUT = 0 V  
[Thermal Shutdown Function]  
Detect Temperature(Note 2)  
Hysteresis Temperature(Note 2)  
TTSD_DET  
TTSD_HYS  
150  
-
175  
15  
200  
-
°C  
°C  
(Note 1) Set by SPI control. Details are given in "Register Map". n represents the channel number.  
(Note 2) Not 100 % are tested.  
Switching Time Measurement Waveform  
Control by SPI  
Control by IN21 / IN43/ IN65  
SRON = (VBAT * 0.8) / TFALL  
SROFF = (VBAT * 0.8) / TRISE  
[V]  
[V]  
IN21 / IN43  
IN65  
CSB  
for SPI  
[t]  
[t]  
0
0
[V]  
[V]  
tONn  
tOFFn  
tONn  
tOFFn  
VBAT  
VBAT*0.9  
OUTn  
VBAT  
VBAT*0.9  
OUTn  
VBAT*0.1  
VBAT*0.1  
[t]  
[t]  
0
0
tFALLn  
tRISEn  
tFALLn  
tRISEn  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
11/48  
BD8LD650EFV-C  
Typical Performance Curves  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
20  
15  
10  
5
20  
15  
10  
5
0
0
0
1
2
3
4
5
6
7
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 8. VDD Standby Current vs Power Supply Voltage  
Figure 9. VDD Standby Current vs Junction Temperature  
20  
15  
10  
5
20  
15  
10  
5
0
0
0
1
2
3
4
5
6
7
-50  
0
50  
100  
150  
Power Supply Voltage: VDDIO [V]  
Junction Temperature: Tj [ºC]  
Figure 10. VDDIO Standby Current vs Power Supply Voltage  
Figure 11. VDDIO Standby Current vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
12/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
Sweep  
0
1
2
3
4
5
6
7
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 12. VDD Operating Current vs Power Supply Voltage  
Figure 13. VDD Operating Current vs Junction Temperature  
150  
150  
120  
90  
60  
30  
0
120  
Sweep  
90  
60  
30  
0
0
1
2
3
4
5
6
7
-50  
0
50  
100  
150  
Power Supply Voltage: VDDIO [V]  
Junction Temperature: Tj [ºC]  
Figure 14. VDDIO Operating Current vs Power Supply  
Voltage  
Figure 15. VDDIO Operating Current vs Junction  
Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
13/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
VPORA  
VIH  
VIL  
VPORD  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 16. VDD/VDDIO Power On Reset Voltage vs Junction  
Temperature  
Figure 17. High/Low Level Input Voltage vs Junction  
Temperature  
0
100  
80  
IIH2  
-20  
-40  
-60  
60  
IIH1  
IIL2  
40  
20  
-80  
IIL1  
-100  
0
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 18. High/Low Level Input Current 1 vs Junction  
Temperature  
Figure 19. High/Low Level Input Current 2 vs Junction  
Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
14/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 20. SO Low Level Output Voltage vs Junction  
Temperature  
Figure 21. SO High Level Output Voltage vs Junction  
Temperature  
5
4
1.4  
Tj = 25 °C  
Tj = 150 °C  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-50  
0
50  
100  
150  
3
4
5
6
Junction Temperature: Tj [ºC]  
Power Supply Voltage: VDD [V]  
Figure 22. Serial Out Output Leakage Current vs Junction  
Temperature  
Figure 23. Output On Resistance vs Power Supply Voltage  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
15/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Tj = 25 ºC  
Tj = 150 ºC  
0
4
8
12 16 20 24 28 32 36  
Output Voltage: VOUT [V]  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Figure 24. Output On Resistance vs Junction Temperature  
Figure 25. Output Leakage Current vs Output Voltage  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
45  
43  
41  
39  
37  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 26. Output Leakage Current vs Junction Temperature  
Figure 27. Output Clamp Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
16/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
tOFF1  
tOFF1  
tON1  
tON1  
3
4
5
6
-50  
0
50  
100  
150  
Power Supplay Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 28. Turn-On/Off Time 1 vs Power Supply Voltage  
Figure 29. Turn-On/Off Time 1 vs Junction Temperature  
1.5  
1.3  
1.5  
1.3  
SROFF1  
SROFF1  
SRON1  
1.1  
1.1  
SRON1  
0.9  
0.9  
0.7  
0.5  
0.7  
0.5  
3
4
5
6
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 30. Slew Rate (On/Off) 1 vs Power Supply Voltage  
Figure 31. Slew Rate (On/Off) 1 vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
17/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
200  
160  
120  
80  
200  
160  
120  
80  
tOFF2  
tON2  
tOFF2  
tON2  
40  
40  
0
0
3
4
5
6
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 32. Turn-On/Off Time 2 vs Power Supply Voltage  
Figure 33. Turn-On/Off Time 2 vs Junction Temperature  
0.5  
0.5  
0.4  
0.4  
SROFF2  
SROFF2  
0.3  
0.3  
SRON2  
SRON2  
0.2  
0.1  
0.2  
0.1  
3
4
5
6
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 34. Slew Rate (On/Off) 2 vs Power Supply Voltage  
Figure 35. Slew Rate (On/Off) 2 vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
18/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
tOFF3  
tOFF3  
tON3  
tON3  
0
0
3
4
5
6
-50  
0
50  
100  
150  
Power Supply Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 36. Turn-On/Off Time 3 vs Power Supply Voltage  
Figure 37. Turn-On/Off Time 3 vs Junction Temperature  
3.2  
2.8  
3.2  
2.8  
2.4  
2.4  
SROFF3  
SROFF3  
SRON3  
SRON3  
2.0  
2
1.6  
1.2  
1.6  
1.2  
3
4
5
6
-50  
0
50  
100  
150  
Power Suppy Voltage: VDD [V]  
Junction Temperature: Tj [ºC]  
Figure 38. Slew Rate (On/Off) 3 vs Power Supply Voltage  
Figure 39. Slew Rate (On/Off) 3 vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
19/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1.9  
1.6  
1.3  
1
IOCP2  
IOCP1  
0.7  
0.4  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 40. Over Current Threshold Value 1,2 vs Junction  
Temperature  
Figure 41. Output Stop Time at OCP Detection vs Junction  
Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 42. Open Load Detect Voltage vs Junction  
Temperature  
Figure 43. Open Load Release Voltage vs Junction  
Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
20/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
90  
75  
60  
45  
30  
15  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 44. Output Sink Current vs Junction Temperature  
Figure 45. Output Overhead Detect Voltage vs Junction  
Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 46. Output Overhead Release Voltage vs Junction  
Temperature  
Figure 47. Short Ground Detect Voltage vs Junction  
Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
21/48  
BD8LD650EFV-C  
Typical Performance Curves – continued  
(Reference data) (Unless otherwise specified, VDD = 5 V, VDDIO = 5 V, Tj = 25 °C)  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 48. Short Ground Release Voltage vs Junction  
Temperature  
Figure 49. Output Source Current vs Junction Temperature  
200  
190  
180  
170  
160  
150  
3
4
5
6
Power Supply Voltage: VDD [V]  
Figure 50. Thermal Shutdown Detect Temperature vs Power  
Supply Voltage  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
22/48  
BD8LD650EFV-C  
Measurement Circuit  
VBAT  
VDD  
VDD  
RL  
VDD VDDIO OUTn  
VDD VDDIO OUTn  
IDLE  
INxx  
CSB  
SCLK  
SI  
IDLE  
INxx  
0 V  
VOUT  
VDD  
CSB  
SCLK  
SI  
MCU  
SO  
SO  
GND  
GND  
*ALL ch On  
VSO  
Figure 51. VDD Standby Current  
VDDIO Standby Current  
Figure 52. VDD Operating Current  
VDDIO Operating Current  
Low Level Input Current 1, 2  
Output Leakage Current  
VDD Power On Reset Voltage  
VDDIO Power On Reset Voltage  
Serial Out Output Leakage Current  
Thermal Shutdown Detect Temperature  
Thermal Shutdown Hysteresis Temperature  
VDD  
VDD  
VDD VDDIO OUTn  
VDD VDDIO OUTn  
IDLE  
INxx  
IDLE  
INxx  
VDD  
VDD  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
MCU  
SO  
SO  
GND  
GND  
*ALL ch On/Off  
Figure 53. Output On Resistance  
Output Clamp Voltage  
Figure 54. SO High/Low Level Output Voltage  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
23/48  
BD8LD650EFV-C  
Measurement Circuit – continued  
VBAT  
VDD  
VDD  
RL  
VDD VDDIO OUTn  
VDD VDDIO OUTn  
IDLE  
INxx  
IDLE  
INxx  
Monitor  
VDD  
VDD  
CSB  
SCLK  
SI  
CSB  
SCLK  
SI  
MCU  
MCU  
SO  
SO  
GND  
GND  
*ALL ch On / Off  
*ALL ch On / Off  
Figure 55. Slew Rate (On/Off) 1, 2, 3  
Turn-On/Off Time 1, 2, 3  
Figure 56. Open Load Detect/Release Voltage  
Output Sink Current  
Output Overhead Detect/Release Voltage  
Short Ground Detect/Release Voltage  
Output Source Current  
Over Current Threshold Value 1, 2  
Output Stop Time at OCP Detection  
VBAT  
VDD  
RL  
VDD VDDIO OUTn  
IDLE  
INxx  
CSB  
SCLK  
SI  
VDD  
SO  
GND  
Figure 57. Low Level Input Voltage  
High Level Input Voltage  
Input Hysteresis Voltage  
High Level Input Current 1, 2  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
24/48  
BD8LD650EFV-C  
Timing Chart  
The following shows the sequence when H is input to the IDLE pin after the power is supplied.  
“xx” denotes each input (21, 43, 65), and n denotes the channel number.  
[V]  
3.0 V (Max)  
VDDIO  
VDD  
IDLE  
CSB  
[t]  
0
[V]  
4.0 V (Max)  
[t]  
[t]  
0
[V]  
tSETUP 0.1 µs  
tSHUTDOWN 0.1 µs  
When IDLE is set High, you can send command by SPI.  
0
[V]  
tSPI_START 10 µs  
tSPI_END 0.1 µs  
[t]  
[t]  
[t]  
0
[V]  
tINxx_ON 10 µs  
tIDLE_OFF tOFFn_Max  
INxx  
0
[V]  
tONn  
tOFFn  
VBAT  
VBAT*0.9  
OUTn  
VBAT*0.1  
0
(Supplement) About Each Symbol  
tSETUP: Time from VDDIO and VDD reaches operating voltage until H can be input to IDLE.  
tSPI_START: Time from H is input to IDLE until SPI communication is available.  
tINxx_ON: Time from H is input to IDLE until control by INxx is available.  
tSPI_END: Time from completion of SPI communication until L is input L to IDLE(Note 1)  
tIDLE_OFF: Time from end of control by INxx until input L to IDLE.  
.
tONn: Turn-On time  
tOFFn: Turn-Off time  
tOFFn_Max: Turn-Off Time (Max)  
tSHUTDOWN: Time from input L to IDLE until VDDIO and VDD are turned off.  
(Note 1) If using SPI control to turn off low side SW, wait tIDLE_OFF before inputting L to IDLE.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
25/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
Timing Chart – continued  
The following shows the sequence when the VDDIO and IDLE pins are simultaneously turned on/off.  
“xx” denotes each input (21, 43, 65), and n denotes the channel number.  
[V]  
3.0 V (Max)  
VDDIO  
VDD  
[t]  
0
[V]  
4.0 V (Max)  
[t]  
[t]  
0
[V]  
IDLE  
*short to  
VDDIO  
0
[V]  
tSPI_START 10 µs  
tSPI_END 0.1 µs  
CSB  
INxx  
[t]  
[t]  
[t]  
0
[V]  
tINxx_ON 10 µs  
tVDD_OFF tOFFn_Max  
0
[V]  
tONn  
tOFFn  
VBAT  
VBAT*0.9  
OUTn  
VBAT*0.1  
0
(Supplement) About Each Symbol  
tSPI_START: Time from H is input to IDLE until SPI communication is available.  
tINxx_ON: Time from VDD reaches operating voltage until control by INxx is available.  
tSPI_END: Time from completion of SPI communication until lowering VDD(Note 1)  
tVDD_OFF: Time from end of control by INxx until lowering VDD.  
.
tONn: Turn-On time  
tOFFn: Turn-Off time  
tOFFn_Max: Turn-Off time (Max)  
(Note 1) If using SPI control to turn off low side SW, wait tVDD_OFF before lowering VDD.  
Inductive Load Operation  
[V]  
INxx  
0
[t]  
VCL  
[V]  
VOUT  
VBAT  
IOUT x RDS(ON)  
[t]  
[t]  
0
[A]  
VBAT  
RL + RDS(ON)  
IOUT  
0
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
26/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
Synchro Mode  
Two adjacent output pins can be connected in parallel. Parallel connection is available by combining OUT1/OUT2, OUT3/OUT4,  
OUT5/OUT6, OUT7/OUT8. The synchro mode can be set by SPI. For details, refer to "Register Map".  
When controlling by IN21/IN43/IN65, channels connected in parallel are driven simultaneously.  
All control by SPI is set from the odd number channel, and the even number channel setting is ignored. For example, to turn on  
OUT1/OUT2, write "1" to OUTCTRL1 bit of OUTCTRL register. Writing to OUTCTRL2 bit is ignored.  
Over current protection and thermal shutdown is active on each channel connected in parallel, and both channels are turned off  
when protection is detected in either channel.  
The detection of protection can be read from SPI by accessing DIAG_OUT4321 or DIAG_OUT8765 registers.  
The error flag is output from the odd number channel and the error flag of the even number channel is fixed to "0". For example,  
if over current protection is detected in OUT1/OUT2, "1" is output from DIAG_OCP1 bit of DIAG_OUT4321 register, and  
DIAG_OCP2 bit outputs "0".  
VDDIO  
VDD  
VBAT  
CVDDIO  
CVDD  
VDDIO  
VDD  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
I/O  
Control Logic  
RIDLE  
RIN21  
RIN43  
RIN65  
IDLE  
IN21  
IN43  
IN65  
UVLO  
I/O  
(IDLE, IN,  
Limp Home)  
Mode  
Control  
Control,  
Diagnostic  
and  
protective  
Functions  
Limp  
Home  
OCD  
TSD  
MCU  
Input  
Register  
RCSB  
RSCLK  
RSI  
CSB  
SCLK  
SI  
UVLO  
OLD  
OFD  
SGD  
SPI  
Control  
Active  
Clamp  
I/O  
(SPI)  
Gate  
Driver  
Diagnosis  
Register  
RSO  
SO  
COUT1  
COUT2  
COUT3  
COUT4  
GND  
Caution: Differences in wire impedance between two neighboring outputs may affect characteristics such as turn-On/Off, slew rate, over current threshold value, and  
active clamp energy. To avoid this, it is recommended to short output pin with near the IC as possible.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
27/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Limp Home Mode  
When IDLE is set to L, the IC enters Limp Home mode. This mode enables operation with low current consumption. Control by  
SPI is not possible in this mode, but on/off control by IN21/IN43/IN65 is available. Controllable channels are limited to odd  
number channels (1ch, 3ch, 5ch). When IDLE becomes L, the register is cleared and returns to the default setting.  
The timing chart in Limp Home mode is shown below.  
[V]  
VDDIO  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
VDD  
IDLE  
INxx  
0
[V]  
0
[V]  
tSETUP(Limp) 10 µs  
tSHUTDOWN(Limp) tOFF_Max1,3.5  
0
[V]  
tON1,3,5  
tOFF1,3,5  
VBAT  
VBAT*0.9  
OUT1  
OUT3  
OUT5  
VBAT*0.1  
0
(Supplement) About Each Symbol  
tSETUP(Limp): Time from VDDIO and VDD reaches operating voltage until control by INxx is available.  
tON1,3,5: Turn-On time  
tOFF1,3,5: Turn-Off time  
tOFF_Max1,3,5: Turn-Off time (Max)  
tSHUTDOWN(Limp): Time from all INxx is set to L until VDDIO and VDD are turned off.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
28/48  
BD8LD650EFV-C  
SPI Specification  
SPI overview  
When CSB = H  
SO is High-Z.  
When CSB = L  
Outputs to SO at the rising edge of SCLK.  
SI is loaded into the register at the falling edge of SCLK.  
MSB  
LSB  
LSB  
X
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
SO  
SI  
MSB  
CSB  
SCLK  
SPI protocol  
The SO response to SPI access is returned at the next SPI access as shown in the following figure.  
SI  
frame A  
frame B  
frame C  
(previous  
response)  
response to  
frame A  
response to  
frame B  
SO  
·Response when accessing with RE = 0 and with RE = 1  
When accessing with RE = 0, respond “Standard diagnostic”.  
When accessing with RE = 1, respond the value of the specified register.  
SI  
RE = 0  
RE = 1 (register A)  
(new command)  
(previous  
response)  
Standard  
diagnostic  
register A  
content  
SO  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
29/48  
BD8LD650EFV-C  
SPI Specification – continued  
Serial Daisy Chain  
Multiple devices can be connected in series as shown below.  
For CSB signal and SCLK signal, connect a common signal. About SI / SO line, SO of Device 1 can be connected to SI of Device 2 as  
shown below.  
Device 1  
SPI  
Device 2  
SPI  
Device 7  
SPI  
Device 8  
SPI  
SI  
SO  
SI  
SO  
MO  
CSB  
SCLK  
CSB  
SCLK  
CSB  
SCLK  
CSB  
SCLK  
MI  
MCSB  
MCLK  
The timing chart when eight devices are connected is shown below.  
X SO Device 8  
SO Device 7  
SO Device 2  
SI Device 2  
SO Device 1  
SI Device 1  
MI  
MO  
X SI Device 8  
SI Device 7  
MCSB  
MCLK  
OUTn  
Parallel Connection  
Multiple devices can be connected in parallel as shown below.  
For SI signal, SCLK signal, and SO signal, connect a common signal. Separate signals are required for the CSB signal for each  
device.  
Device 1  
SI  
SCLK  
CSB  
SO  
SPI  
MCSB1  
Device 2  
SPI  
SI  
SCLK  
CSB  
SO  
MO  
MCLK  
MCSB2  
MI  
The timing chart when two devices are connected is shown below.  
SO Device 1  
SO Device 2  
SI Device 2  
MI  
SI Device 1  
MO  
MCSB1  
MCSB2  
MCLK  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
30/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
SPI Specification – continued  
SPI Timing chart  
tCSB(lead)  
tCSB(lag)  
tCSB(td)  
0.7VDD  
0.2VDD  
tSCLK(P)  
CSB  
tSCLK(su)  
tSCLK(hd)  
tSCLK(H)  
tSCLK(L)  
0.7VDD  
0.2VDD  
SCLK  
tSI(su)  
tSI(hd)  
0.7VDD  
0.2VDD  
SI  
Don't care  
Hi-Z  
SI  
MSB  
14  
1
LSB  
Don't care  
tSO(td)  
tSO(en)  
tSO(dd)  
tSO(dis)  
0.7VDD  
0.2VDD  
Hi-Z  
SO  
x
SI  
MSB  
14  
1
LSB  
x
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK Frequency  
SCLK Period  
fSCLK  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
tSCLK(su)  
tSCLK(hd)  
tCSB(lead)  
tCSB(lag)  
tCSB(td)  
tSI(su)  
0
200  
50  
50  
50  
50  
250  
250  
250  
20  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
SCLK High Time  
SCLK Low Time  
SCLK Setup Time  
SCLK Hold Time  
CSB Lead Time  
CSB Lag Time  
-
-
-
-
-
-
Transfer Delay Time  
Data Setup Time  
Data Hold Time  
SPI Output Enable Time(Note 1)  
SPI Output Disable Time(Note 1)  
-
-
tSI(hd)  
-
tSO(en)  
200  
250  
100  
200  
tSO(dis)  
tSO(dd)  
-
SPI Output Data Delay Time(Note 1)(Note 2)  
ERR Output Through Delay Time(Note 1)  
-
tSO(td)  
-
(Note 1) Not 100 % tested.  
(Note 2) SO capacitance = 20 pF  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
31/48  
BD8LD650EFV-C  
SPI Specification – continued  
SI data structure  
Bit[15]  
RE  
Bit[14]  
WE  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
Bit[7]  
Data  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Address  
TEST  
RE  
0: SO outputs "Standard diagnostic" at the next SPI access.  
1: SO outputs the register specified by Address at the next SPI access.  
WE  
0: Not Write.  
1: Write.  
TEST  
Be sure to set 0.  
Data  
When WE = 1, various settings are enabled by writing '0' or '1' to Data.  
For details, refer to "Register Map".  
"Standard diagnostic" (when RE = 0 in the previous SPI access)  
Initial Value 0x4000  
Bit[15]  
0
Bit[14]  
INIT  
Bit[13]  
0
Bit[12]  
0
Bit[11]  
0
Bit[10]  
TER  
Bit[9]  
0
Bit[8]  
0
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
ERR8  
ERR7  
ERR6  
ERR5  
ERR4  
ERR3  
ERR2  
ERR1  
INIT  
0: Normal (after power on or IDLE = 'L'->'H', from the second time SPI access).  
1: After power on or IDLE = 'L'->'H', first time SPI access.  
TER  
0: Normal  
1: SPI communication error  
When High pulse input of SCLK is other than (16 times + 8 x m, m is an integer 0 or above) in the low level section of CSB, a  
communication error is judged.  
ERRn (n is the channel number)  
0: Normal  
1: The value is latched and output when over current protection or thermal shutdown of the corresponding channel is detected.  
This bit is cleared by reading DIAG register (DIAG_OUT4321 or DIAG_OUT8765) of the channel on which protection is detected.  
SO output data structure (when RE = 1 in the previous SPI access)  
Bit[15]  
1
Bit[14]  
WE  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
Bit[7]  
Data  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Address  
ERRALL  
WE, Address  
Outputs WE and Address values that were set during the previous SPI access.  
ERRALL  
Outputs 1 when either over current protection or thermal shutdown of OUT is detected on at least one channel.  
Data  
Outputs the register value of Address that were set during the previous SPI access.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
32/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
Register Map  
Address TEST  
Bit[13:9] Bit[8]  
Data  
Register  
Access  
Register Name  
Initial  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
OUTCTRL  
SRCTRL0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x1E  
0
0
0
0
0
0
0
0
0
0
0
0
1
OUTCTRL8  
OUTCTRL7  
OUTCTRL6  
OUTCTRL5  
OUTCTRL4  
OUTCTRL3  
OUTCTRL2  
OUTCTRL1  
0x00  
0x00  
0x00  
0x00  
0x55  
0x00  
0x00  
SRCTRL4[1:0]  
SRCTRL8[1:0]  
SRCTRL3[1:0]  
SRCTRL7[1:0]  
SRCTRL2[1:0]  
SRCTRL6[1:0]  
SRCTRL1[1:0]  
SRCTRL5[1:0]  
OCPCTRL2  
SRCTRL1  
OCPCTRL  
OCPCTRL8  
OCPCTRL7  
OCPCTRL6  
OCPCTRL5  
OCPCTRL4  
OCPCTRL3  
DIRCTRL3  
SYNC65  
OCPCTRL1  
DIRCTRL1  
SYNC21  
DIRCTRL  
0
0
0
1
0
0
DIRCTRL6  
DIRCTRL5  
DIRCTRL4  
SYNC87  
0
DIRCTRL2  
SYNC43  
SYNC  
0
0
0
0
STATUS_IN  
DIAG_OLD/OFD  
DIAG_SGD  
DIAG_OUT4321  
DIAG_OUT8765  
HWCR  
STATUS_IN65  
STATUS_IN43  
STATUS_IN21  
R/W  
R/W  
RO  
DIAG_OLD/OFD8 DIAG_OLD/OFD7 DIAG_OLD/OFD6 DIAG_OLD/OFD5 DIAG_OLD/OFD4 DIAG_OLD/OFD3 DIAG_OLD/OFD2 DIAG_OLD/OFD1 0x00  
DIAG_SGD8  
DIAG_SGD7  
DIAG_TSD4  
DIAG_TSD8  
RST  
DIAG_SGD6  
DIAG_SGD5  
DIAG_SGD4  
DIAG_SGD3  
DIAG_SGD2  
DIAG_SGD1  
DIAG_TSD1  
DIAG_TSD5  
0
0x00  
0x00  
0x00  
0x00  
0x00  
DIAG_OCP4  
DIAG_OCP3  
DIAG_TSD3  
DIAG_OCP2  
DIAG_TSD2  
DIAG_OCP1  
RO  
DIAG_OCP8  
DIAG_OCP7  
DIAG_TSD7  
DIAG_OCP6  
DIAG_TSD6  
DIAG_OCP5  
WO  
WO  
0
0
0
0
0
0
0
0
0
0
0
0
T_TESTMODE  
0
TESTMODE  
Register Name  
OUTCTRL  
Register Access  
Read / Write  
Address  
0x00h  
Explanation of Data  
OUTCTRLn bit (n represents the channel number)  
'0': OUTn off setting  
'1': OUTn on setting  
SRCTRLn[1:0] bit  
'00': Slew Rate Setting 1.0 V/μs (Typ)  
'01': Slew Rate Setting 2.25 V/μs (Typ)  
'10': Slew Rate Setting 0.30 V/μs (Typ)  
'11': Same setting as '00'  
SRCTRL0  
SRCTRL1  
0x01h  
0x02h  
Read / Write  
OCPCTRLn bit  
OCPCTRL  
DIRCTRL  
SYNC  
Read / Write  
Read / Write  
Read / Write  
Read Only  
0x03h  
0x04h  
0x05h  
0x06h  
'0': Over Current Threshold Value 1 0.85 A (Typ)  
'1': Over Current Threshold Value 2 1.7 A (Typ)  
DIRCTRLn bit  
'0': IN control disabled  
'1': IN control enabled  
SYNC21/SYNC43/SYNC65/SYNC87 bit  
'0': Synchro mode disabled  
'1': Synchro mode enabled  
STATUS_IN65/STATUS_IN43/STATUS_IN21 bit  
'0': IN87/IN65/IN43/IN21 L input  
'1': IN87/IN65/IN43/IN21 H input  
DIAG_OLD/OFDn bit  
STATUS_IN  
'0': OLD/OFD disabled  
'1': OLD/OFD enabled  
OLD is enabled when OUTn is off. OFD is enabled when OUTn is  
on. When SPI access is performed again, it automatically returns  
to '0' (disabled).  
Read OLD/OFD result by read access (RE = 1).  
When OLD is active, the judgement is made as below.  
'0': OLD detection  
DIAG_OLD/OFD  
Read / Write  
0x08h  
'1': Normal  
When OFD is active, the judgement is made as below.  
'0': Normal  
'1': OFD detection  
For details, refer to "Open Load Detection" and "Output Overhead  
Fault Detection Function".  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
33/48  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Register Map – continued  
Register Name  
Register Access  
Address  
0x09h  
Explanation of Data  
DIAG_SGDn bit  
'0': SGD disabled  
'1': SGD enabled  
This function is used when OUTn is off. When SPI access is  
performed again, it automatically returns to '0' (disabled).  
DIAG_SGD  
Read / Write  
Read SGD result by read access (RE = 1).  
'0': SGD detection  
'1': Normal  
For details, refer to " Short Ground Detection".  
Read the error flag of ch1/ch2/ch3/ch4.  
DIAG_TSDn bit  
'0': Normal  
'1': TSD detection  
DIAG_OUT4321  
Read Only  
0x0Ah  
DIAG_OCPn bit  
'0': Normal  
'1': OCP detection  
It automatically returns to '0' when DIAG_OUT4321 is accessed.  
Read the error flag of ch5/ch6/ch7/ch8.  
DIAG_TSDn bit  
'0': Normal  
'1': TSD detection  
DIAG_OUT8765  
Read Only  
0x0Bh  
DIAG_OCPn bit  
'0': Normal  
'1': OCP detection  
It automatically returns to '0' when DIAG_OUT8765 is accessed.  
RST  
HWCR  
Write Only  
Write Only  
0x0Ch  
0x1Eh  
'0': Normal  
'1': Hardware reset (auto clear)  
TESTMODE  
'0': Normal  
'1': Test Mode  
T_TESTMODE  
If IDLE is 5.6 V (Min) or more and "1" is written to this register, IC  
enters test mode. For this reason, do not access to this register.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
34/48  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Over Current Protection Function  
Turns off the output when an over current error occurs in the output (A in the figure). The output returns to on when the output  
stop time of 1 ms (Typ) has passed. However, if an over current error still continue at this time, the output will be turned off again  
(B in the figure). When an over current error is improved, the output recovers after the output stop time from over current error is  
lastly detected has passed (C in the figure).  
If an over current error is detected, the internal over current detection flag outputs '1' (A' in the figure). This flag can be read from  
SPI read access or from Standard diagnostic. When the flag is read by SPI read access, it is cleared by the next SPI access after  
read access (D in the figure).  
*n shows ch number [V]  
OUT Enable(Note 1)  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
A
C
VBAT  
OUTn  
0
[A]  
B
IOCP1  
IOCP2  
IOUTn  
1 ms (Typ)  
1 ms (Typ)  
0
D
A'  
DIAG_OCPn  
'0'  
'1'  
'0'  
in DIAG_OUT Register  
DIAG_OUT  
Read Access  
Return  
Response  
[V]  
CSB  
for SPI  
0
(Note 1) Output on/off control signal. This signal is controlled by IN65, IN43, IN21 or OUT_CTRL register.  
When an over current error is detected in multiple channels, the output off time is measured starting from the channel that over  
current error was detected lastly.  
For example, if an over current error is detected in ch2 after an over current error is detected in ch1 before the output off time of  
ch1 passes, the time tSHORT from ch1 detects an error until an error is detected in ch2 will be added to the output off time of ch1.  
[A]  
tSHORT  
< 1 ms (Typ)  
IOUT1  
1 ms (Typ)  
1 ms (Typ)  
1 ms (Typ)  
1 ms (Typ)  
1 ms (Typ)  
[t]  
[t]  
0
[A]  
IOUT2  
1 ms (Typ)  
0
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
35/48  
BD8LD650EFV-C  
Thermal Shutdown Function  
Turns off the output when the junction temperature rises 175 °C (Typ) or above (A in the figure). After that, the output automatically  
returns to on when the junction temperature falls 160 °C (Typ) or below (B in the figure).  
When thermal shutdown is detected, the internal thermal shutdown flag outputs '1' (A in the figure). This flag can be read from SPI  
read access or Standard diagnostic. When the flag is read by SPI read access, it is cleared by the next SPI access after read  
access (C in the figure).  
*n shows ch number [V]  
OUT Enable(Note 1)  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
A
B
VBAT  
OUTn  
0
[°C]  
TTSD_DET  
TTSD_HYS  
Tj  
0
C
DIAG_TSDn  
'0'  
'1'  
'0'  
in DIAG_OUT Register  
DIAG_TSD  
Read Access  
Return  
Response  
[V]  
CSB  
for SPI  
0
(Note 1) Output on/off control signal. This signal is controlled by IN65, IN43, IN21 or OUT_CTRL register.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
© 2022 ROHM Co., Ltd. All rights reserved.  
36/48  
TSZ22111 • 15 • 001  
BD8LD650EFV-C  
Open Load Detection (OLD)  
VBAT  
RL  
OUT  
Power  
MOS  
DIAG_  
OLD/OFDn  
IOLD  
SO  
GND  
When OLD is enabled, output sink current IOLD flows from OUT. The output voltage VOUT drops when the load RL increases, and  
it is detected as OLD when it becomes VOLD_DET or less.  
RL for detecting OLDs is given by the following equation:  
퐵퐴푇 푂퐿퐷_퐷ꢅ푇  
≥  
푂퐿퐷  
VBAT: Battery voltage  
VOLD_DET: Open load detection voltage 3.2 V (Max)  
IOLD: Output sink current when OLD function is active 90 μA (Max)  
When the output is off, OLD can be enabled and diagnosed by one SPI access of write and read access (RE = 1, WE = 1) to  
DIAG_OLD/OFD register (B, F in the figure). Diagnostic is output to SO at the next SPI access (D, H in the figure).  
At this time, OLD returns to inactive (D, H in the figure). When OUTn voltage is VOLD_DET or less, OLD is diagnosed as detected  
and the error flag inside the IC outputs "0" (C in the figure). If OUTn voltage is VOLD_REL or more, OLD is diagnosed as undetected  
and the error flag output '1' (G in the figure).  
*n shows ch number  
[V]  
OUT Enable(Note 1)  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
DIAG_OLD/OFD  
R/W Access  
Return  
Response  
DIAG_OLD/OFD  
R/W Access  
Return  
Response  
CSB  
for SPI  
0
B
D
F
H
OLD Enable(Note 2)  
'0'  
'1'  
'0'  
'1'  
'0'  
A. Occur  
E. Improve  
"Open Load"  
[V]  
"Open Load"  
VBAT  
VOLD_REL  
OUTn  
Hi-Z  
Hi-Z  
VOLD_DET  
0
C
G
OLD Error(Note 3)  
'0'  
(Detect)  
'1'  
'1'  
'1'  
'1'  
(No Detect)  
(Note 1) Output on/off control signal. This signal is controlled by IN65, IN43, IN21 or OUT_CTRL register.  
(Note 2) Internal enable signal. High and Low indicates enabled and disabled, respectively. This signal is controlled by write access to DIAG_OLD/OFD register.  
(Note 3) Internal error flag. High and Low indicates error undetected and detected, respectively. Also the flag outputs High during disable. This signal can be retrieved  
to SO by read access to DIAG_OLD/OFD register.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
37/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Output Overhead Fault Detection Function (OFD)  
VBAT  
RL  
OUT  
Power  
MOS  
DIAG_  
OLD/OFDn  
SO  
GND  
When the output is on, OFD can be enabled and diagnosed by one SPI access by write and read access (RE = 1, WE = 1) to  
DIAG_OLD/OFD register (B, F in the figure). Diagnostic is output to SO at the next SPI access (D, H in the figure).  
At this time, OFD returns to be inactive (D, H in the figure). When OUTn voltage is VOFD_DET or more, OFD is diagnosed as detected  
and the error flag inside the IC outputs "1" (C in the figure). If OUTn voltage is VOFD_REL or less, OFD is diagnosed as undetected  
and the error flag output '0' (G in the figure).  
*n shows ch number  
[V]  
OUT Enable(Note 1)  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
DIAG_OLD/OFD  
R/W Access  
Return  
Response  
DIAG_OLD/OFD  
R/W Access  
Return  
Response  
CSB  
for SPI  
0
B
D
F
H
OFD Enable(Note 2)  
'0'  
'1'  
'0'  
'1'  
'0'  
A. Occur  
E. Improve  
[V]  
"VDD Short"  
"VDD Short"  
VBAT  
OUTn  
VOFD_DET  
VOFD_REL  
0
C
G
OFD Error(Note 3)  
'1'  
(Detect)  
'0'  
'1'  
'1'  
'1'  
(No Detect)  
(Note 1) Output on/off control signal. High and Low indicates on and off, respectively. This signal is controlled by IN65, IN43, IN21 or OUT_CTRL register.  
(Note 2) Internal enable signal. High and Low indicates enabled and disabled, respectively. This signal is controlled by write access to DIAG_OLD/OFD register.  
(Note 3) Internal error flag. High and Low indicates error detected and undetected, respectively. Also the flag outputs High during disable. This signal can be retrieved  
to SO by read access to DIAG_OLD/OFD register.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
38/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Short Ground Detection (SGD)  
VBAT  
RL  
ISGD  
SW1  
OUT  
Power  
MOS  
RG  
DIAG_  
OLD/OFDn  
SO  
GND  
·When normal load is connected (SW1 is on)  
The output voltage VOUT is determined by the divided voltage between RL (normal load) and RG (OUT-GND impedance) and it is  
detected as SGD when VOUT is VSGD_DET or less.  
RG for detecting SGD is given roughly by the following equation.  
푆퐺퐷_퐷ꢅ푇  
≤  
∗ ꢄ퐿  
퐵퐴푇 − 푉  
푆퐺퐷_퐷ꢅ푇  
VBAT: Battery voltage  
VSGD_DET: Short ground detection voltage 0.3 V (Min)  
·When the load is open (SW1 is off)  
The output voltage VOUT is obtained from output source current ISGD that flows into RG and it is detected as SGD when VOUT is  
VSGD_DET or less.  
RG for detecting SGD is given by the following equation.  
푆퐺퐷_퐷ꢅ푇  
≤  
푆퐺퐷  
VSGD_DET: Short ground detection voltage 0.3 V (Min)  
ISGD: Output source current when SGD function is active 40 μA (Max)  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
39/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Short Ground Detection (SGD) – continued  
When the output is off, SGD can be enabled and diagnosed by one SPI access of write and read access (RE = 1, WE = 1) to  
DIAG_SGD register (B, F in the figure). Diagnostic is output to SO at the next SPI access. At this time, SGD returns to be inactive  
(D, H in the figure). When OUTn voltage is VSGD_DET or less, SGD is diagnosed as detected and the error flag inside the IC outputs  
"0" (C in the figure). If OUTn voltage is VSGD_REL or more, SGD is diagnosed as undetected and the error flag output '1' (G in the  
figure).  
*n shows ch number  
[V]  
OUT Enable(Note 1)  
[t]  
[t]  
[t]  
[t]  
[t]  
0
[V]  
DIAG_SGD  
R/W Access  
Return  
Response  
DIAG_SGD  
R/W Access  
Return  
Response  
CSB  
for SPI  
0
B
D
F
H
SGD Enable(Note 2)  
'0'  
'1'  
'0'  
'1'  
'0'  
A. Occur  
"GND Short"  
E. Improve  
"GND Short"  
[V]  
VBAT  
OUTn  
VSGD_REL  
VSGD_DET  
0
C
G
SGD Error(Note 3)  
'0'  
(Detect)  
'1'  
'1'  
'1'  
'1'  
(No Detect)  
(Note 1) Output on/off control signal. This signal is controlled by IN65, IN43, IN21 or OUT_CTRL register.  
(Note 2) Internal enable signal. High and Low indicates enabled and disabled, respectively. This signal is controlled by write access to DIAG_SGD register.  
(Note 3) Internal error flag. High and Low indicates error undetected and detected, respectively. Also the flag outputs High during disable. This signal can be retrieved  
to SO by read access to DIAG_SGD register.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
40/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Application Example  
VDDIO  
VDD  
VBAT  
CVDDIO  
CVDD  
VDDIO  
VDD  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
I/O  
Control Logic  
RIDLE  
RIN21  
RIN43  
IDLE  
IN21  
IN43  
UVLO  
I/O  
(IDLE, IN,  
Limp Home)  
Mode  
Control  
Control,  
Diagnostic  
and  
protective  
Functions  
Limp  
Home  
OCD  
TSD  
MCU  
Input  
Register  
RCSB  
RSCLK  
RSI  
CSB  
SCLK  
SI  
UVLO  
OLD  
OFD  
SGD  
SPI  
Control  
Active  
Clamp  
I/O  
(SPI)  
Gate  
Driver  
Diagnosis  
Register  
RSO  
SO  
COUT1 COUT2  
COUT3  
COUT4  
COUT5  
COUT6  
COUT7  
COUT8  
GND  
Selection of Components Externally Connected  
Symbol  
RIDLE  
Value  
1 kΩ  
Purpose  
Register for microcontroller protection against negative voltage surge  
Register for microcontroller protection against negative voltage surge  
Register for microcontroller protection against negative voltage surge  
Capacitor for noise removal on the power supply line  
RIN21, RIN43, RIN65  
RCSB, RSCLK, RSI, RSO  
CVDDIO, CVDD  
COUT1 to COUT8  
1 kΩ  
1 kΩ  
0.1 μF  
0.1 μF  
Capacitor for ESD surge and BCI protection  
As a precaution in selecting a COUT, current flows from the capacitor when the switch is turned on. Depending on the capacitance,  
over current protection may be detected. This current depends on the slew rate setting, over current protection setting, and VBAT  
voltage. As a reference, capacitance that can be used with VBAT = 18 V without over current protection when the switch is turned  
on is shown in the below table.  
VBAT = 18 V  
Over Current Protection Capacitance value that over current protection  
Slew Rate setting  
setting  
is not detected (Max)  
0.22 μF  
OCPCTRLn = 0  
OCPCTRLn = 1  
OCPCTRLn = 0  
OCPCTRLn = 1  
OCPCTRLn = 0  
OCPCTRLn = 1  
SRCTRLn[1:0] = 00  
SRCTRLn[1:0] = 01  
SRCTRLn[1:0] = 10  
0.22 μF  
0.47 μF  
0.83 μF  
0.68 μF  
1.5 μF  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
41/48  
BD8LD650EFV-C  
I/O Equivalence Circuits  
Pin No.  
Pin Name  
I/O Equivalence Circuit  
VDDIO  
100 kΩ  
100 kΩ  
IDLE  
1
IDLE  
GND  
VDDIO  
100 kΩ  
1 kΩ  
CSB  
2
CSB  
GND  
VDDIO  
SCLK  
SI  
IN65  
IN43  
IN21  
SCLK  
SI  
IN65  
IN43  
IN21  
1 kΩ  
3, 4  
16 to 18  
100 kΩ  
GND  
VDDIO  
50 Ω  
SO  
5
SO  
GND  
6, 15  
GND  
-
OUT1 to OUT8  
7 to 14  
OUT1 to OUT8  
GND  
19  
20  
VDD  
-
-
VDDIO  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
42/48  
BD8LD650EFV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0G5G1G400140-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
43/48  
TSZ22111 • 15 • 001  
26.Aug.2022 Rev.001  
BD8LD650EFV-C  
Operational Notes – continued  
10. Regarding the Input and Output Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 58. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the  
Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This  
protection function is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection function.  
14. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the  
inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a  
load so that the reverse energy EL is active clamp tolerance EAS (refer to Figure 1.), ES,AS (refer to Figure 2.) or under  
when inductive load is used.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
44/48  
BD8LD650EFV-C  
Operational Notes – continued  
15. Power Supply Steep Fluctuation  
If the voltage of the power supply pin (VDD) falls sharply, the output pin (OUT) may temporarily turn off as shown in  
Figure 55. If the power supply pin is expected to fall sharply, take measures such as inserting a capacitor between  
the power supply pin and the ground pin so that it falls within the recommended usage range shown in Figure 56.  
2.5  
VDD[V]  
2.0  
Deprecated use range  
VDD(FALL)  
VDD  
1.5  
1.0  
0.5  
0.0  
tVDD(FALL)  
0
t
VOUT[V]  
Recommended use range  
VBAT  
VOUT  
0 V  
0
t
0
10  
20  
30  
tVDD(FALL) [μs]  
Figure 59. Output OFF operation when power supply  
fluctuates sharply  
Figure 60. Recommended use range  
16. GND Pin Connection  
Connect all ground pins to ground.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
45/48  
BD8LD650EFV-C  
Ordering Information  
B D 8 L D 6  
5
0 E F V  
-
CE 2  
8: 8ch  
Package  
Product Rank  
L: low side switch  
EFV: HTSSOP-B20  
C: For Automotive  
Packaging Specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
8 L D 6 5 0  
Pin 1 Mark  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
46/48  
BD8LD650EFV-C  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
47/48  
BD8LD650EFV-C  
Revision History  
Date  
Revision  
001  
Changes  
26.Aug.2022  
New Release  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400140-1-2  
26.Aug.2022 Rev.001  
48/48  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD8P250MUF-C

BD8P250MUF-C是具备升压控制功能的同步整流降压DC/DC转换器。可根据各种要求实现通用设计的DC/DC转换器,在冷启动等输入电压下降时允许输出电压下降的情况下,可用作降压DC/DC转换器,在需要保持输出电压的情况下,可连接专用的升压FET用作升降压DC/DC转换器。凭借Quick Buck Booster技术升降压工作时也可实现高速响应,能够降低输出电容器的容量值。
ROHM

BD900

PNP SILICON POWER DARLINGTONS
TRSYS

BD900

PNP SILICON POWER DARLINGTONS
POINN

BD900

PNP SILICON POWER DARLINGTONS
BOURNS

BD900

Silicon PNP Power Transistors
ISC

BD900

SILICON DARLINGTON POWER TRANSISTORS
COMSET

BD90016

8A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BD90016A

Power Bipolar Transistor, 8A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BD9001F

Flexible Step-Down Switching Regulator
ROHM

BD9002HFP

Flexible Step-Down Switching Regulator
ROHM

BD9002HFP-TR

Switching Regulator, 2.5A, 122kHz Switching Freq-Max, PSSO7, HRP-7
ROHM

BD9006F

Flexible Step-down Switching Regulators with Built-in Power MOSFET
ROHM