BD9109FVM-TR [ROHM]

Switching Regulator, Current-mode, 0.8A, 1200kHz Switching Freq-Max, PDSO8, MSOP-8;
BD9109FVM-TR
型号: BD9109FVM-TR
厂家: ROHM    ROHM
描述:

Switching Regulator, Current-mode, 0.8A, 1200kHz Switching Freq-Max, PDSO8, MSOP-8

稳压器 开关
文件: 总29页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-chip built-in FET type Switching Regulator Series  
High-efficiency Step-down  
Switching Regulators  
with Built-in Power MOSFET  
No.09027EAT33  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Description  
ROHM’s high efficiency step-down switching regulators (BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN)  
are the power supply designed to produce a low voltage including 1 volts from 5/3.3 volts power supply line. Offers high  
efficiency with our original pulse skip control technology and synchronous rectifier. Employs a current mode control  
system to provide faster transient response to sudden change in load.  
Features  
1) Offers fast transient response with current mode PWM control system.  
2) Offers highly efficiency for all load range with synchronous rectifier (Nch/Pch FET)  
and SLLMTM (Simple Light Load Mode)  
3) Incorporates soft-start function.  
4) Incorporates thermal protection and ULVO functions.  
5) Incorporates short-current protection circuit with time delay function.  
6) Incorporates shutdown function  
7) Employs small surface mount package  
MSOP8 (BD9106FVM,BD9107FVM,BD9109FVM), HSON8 (BD9120HFN), SON008V5060 (BD9110NV)  
Use  
Power supply for LSI including DSP, Micro computer and ASIC  
Line up  
Parameter  
Input Voltage  
BD9106FVM  
BD9107FVM  
BD9109FVM  
BD9110NV  
BD9120HFN  
4.05.5V  
4.05.5V  
4.55.5V  
4.55.5V  
2.74.5V  
Adjustable  
(1.02.5V)  
Adjustable  
(1.01.8V)  
Adjustable  
(1.02.5V)  
Adjustable  
(1.01.5V)  
Output Voltage  
3.30±2%  
Output Current  
0.8A Max.  
3.4V Typ.  
1.2A Max.  
2.7V Typ.  
0.8A Max.  
3.8V Typ.  
2.0A Max.  
3.7V Typ.  
0.8A Max.  
2.5V Typ.  
UVLO threshold Voltage  
Short-current protection  
with time delay function  
built-in  
Soft start function  
Standby current  
built-in  
0μA Typ.  
Operating Temperature Range  
Package  
-25+85℃  
-25+85℃  
-25+85℃  
-25+105℃  
-25+85℃  
MSOP8  
SON008V5060  
HSON8  
Operating Conditions (Ta=25)  
BD9106FVM BD9107FVM BD9109FVM  
BD9110NV  
BD9120HFN  
Parameter  
Symbol  
Unit  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.  
*1  
VCC voltage  
VCC  
4.0  
4.0  
0
5.5  
5.5  
4.0  
4.0  
0
5.5  
5.5  
4.5  
4.5  
0
5.5  
5.5  
4.5  
4.5  
0
5.5  
5.5  
2.7  
2.7  
0
4.5  
4.5  
V
V
V
A
*1  
PVCC voltage  
EN voltage  
PVCC  
EN  
VCC  
0.8  
VCC  
1.2  
VCC  
0.8  
VCC  
2.0  
VCC  
0.8  
SW average output current  
Isw *1  
-
-
-
-
-
*1 Pd should not be exceeded.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
1/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Absolute Maximum Rating (Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
BD910FVM  
-0.3+7 *2  
-0.3+7 *2  
-0.3+7  
-0.3+7  
387.5*3  
BD9110NV  
-0.3+7 *2  
-0.3+7 *2  
-0.3+7  
-0.3+7  
900*5  
BD9120HFN  
VCC voltage  
PVCC voltage  
VCC  
PVCC  
EN  
SW,ITH  
Pd1  
Pd2  
Topr  
Tstg  
Tjmax  
-0.3+7 *2  
-0.3+7 *2  
-0.3+7  
-0.3+7  
1350*7  
V
V
V
EN voltage  
SW,ITH voltage  
V
Power dissipation 1  
Power dissipation 2  
Operating temperature range  
Storage temperature range  
Maximum junction temperature  
mW  
mW  
587.4*4  
3900*6  
-25+105  
-55+150  
+150  
1750*8  
-25+85  
-55+150  
+150  
-25+85  
-55+150  
+150  
*2  
*3  
*4  
*5  
Pd should not be exceeded.  
Derating in done 3.1mW/for temperatures above Ta=25.  
Derating in done 4.7mW/for temperatures above Ta=25, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB.  
Derating in done 7.2mW/for temperatures above Ta=25, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB  
which has 1 layer (3%) of copper on the back side).  
*6  
*7  
Derating in done 31.2mW/for temperatures above Ta=25, Mounted on a board according to JESD51-7.  
Derating in done 10.8mW/for temperatures above Ta=25, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB  
which has 1 layer (7%) of copper on the back side).  
*8  
Derating in done 14mW/for temperatures above Ta=25, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB  
which has 1 layer (65%) of copper on the back side).  
Electrical Characteristics  
BD9106FVM (Ta=25, VCC=5V, EN=VCC, R1=20k, R2=10kunless otherwise specified.)  
Parameter  
Standby current  
Bias current  
EN Low voltage  
EN High voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
FOSC  
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
TSS  
Min.  
-
-
Typ.  
0
250  
GND  
VCC  
1
Max.  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN input current  
10  
μA  
MHz  
V
Oscillation frequency  
Pch FET ON resistance *9  
Nch FET ON resistance *9  
ADJ Voltage  
Output voltage  
ITH SInk current  
ITH Source Current  
UVLO threshold voltage  
UVLO hysteresis voltage  
Soft start time  
1
1.2  
0.60  
0.50  
0.820  
-
0.35  
0.25  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
*9  
V
10  
10  
3.2  
50  
1.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
ADJ=H  
ADJ=L  
VCC=HL  
20  
3.4  
100  
3
3.6  
200  
6
Timer latch time  
TLATCH  
1
2
*9 Design GuaranteeOutgoing inspection is not done on all products)  
BD9107FVM (Ta=25, VCC=5V, EN=VCC, R1=20k, R2=10kunless otherwise specified.)  
Parameter  
Standby current  
Bias current  
EN Low voltage  
EN High voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
FOSC  
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
TSS  
Min.  
-
-
Typ.  
0
250  
GND  
VCC  
1
Max.  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN input current  
10  
μA  
MHz  
V
Oscillation frequency  
Pch FET ON resistance *9  
Nch FET ON resistance *9  
ADJ Voltage  
Output voltage  
ITH SInk current  
ITH Source Current  
UVLO threshold voltage  
UVLO hysteresis voltage  
Soft start time  
1
1.2  
0.60  
0.50  
0.820  
-
0.35  
0.25  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
*9  
V
10  
10  
2.6  
150  
0.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
VOUT =H  
VOUT =L  
VCC=HL  
20  
2.7  
300  
1
2.8  
600  
2
Timer latch time  
TLATCH  
1
2
*9 Design GuaranteeOutgoing inspection is not done on all products)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
2/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Electrical Characteristics  
BD9109FVM (Ta=25, VCC=PVCC=5V, EN= VCC unless otherwise specified.)  
Parameter  
Standby current  
Bias current  
EN Low voltage  
EN High voltage  
Symbol  
ISTB  
ICC  
Min.  
-
-
Typ.  
0
250  
GND  
VCC  
1
Max.  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
VENL  
VENH  
IEN  
FOSC  
RONP  
RONN  
VOUT  
ITHSI  
ITHSO  
VUVLO1  
VUVLO2  
TSS  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN input current  
10  
μA  
MHz  
V
μA  
μA  
V
V
ms  
ms  
Oscillation frequency  
Pch FET ON resistance *9  
Nch FET ON resistance *9  
Output voltage  
1
1.2  
0.60  
0.50  
3.366  
-
0.35  
0.25  
3.300  
20  
PVCC=5V  
PVCC=5V  
-
3.234  
10  
10  
3.6  
3.65  
0.5  
1
ITH SInk current  
VOUT =H  
VOUT =L  
VCC=HL  
VCC=LH  
ITH Source Current  
UVLO threshold voltage  
UVLO hysteresis voltage  
Soft start time  
20  
-
3.8  
3.9  
1
4.0  
4.2  
2
Timer latch time  
TLATCH  
2
3
SCP/TSD operated  
Output Short circuit  
Threshold Voltage  
VSCP  
-
2
2.7  
V
VOUT =HL  
*9 Design GuaranteeOutgoing inspection is not done on all products)  
BD9110NV (Ta=25, VCC=PVCC=5V, EN=VCC, R1=10k,R2=5kunless otherwise specified.)  
Parameter  
Standby current  
Bias current  
EN Low voltage  
EN High voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
FOSC  
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
TSS  
Min.  
-
-
Typ.  
0
250  
GND  
VCC  
1
Max.  
10  
350  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN input current  
10  
μA  
MHz  
mΩ  
mΩ  
V
Oscillation frequency  
Pch FET ON resistance *9  
Nch FET ON resistance *9  
ADJ Voltage  
Output voltage  
ITH SInk current  
ITH Source Current  
UVLO threshold voltage  
UVLO hysteresis voltage  
Soft start time  
1
1.2  
320  
270  
0.820  
-
200  
150  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
*9  
V
10  
10  
3.5  
50  
2.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
VOUT =H  
VOUT =L  
VCC=HL  
20  
3.7  
100  
5
3.9  
200  
10  
Timer latch time  
TLATCH  
1
2
*9 Design GuaranteeOutgoing inspection is not done on all products)  
BD9120HFN (Ta=25, VCC=PVCC=3.3V, EN=VCC, R1=20k, R2=10kunless otherwise specified.)  
Parameter  
Standby current  
Bias current  
EN Low voltage  
EN High voltage  
Symbol  
ISTB  
ICC  
Min.  
-
-
-
2.0  
-
0.8  
-
Typ.  
0
200  
GND  
VCC  
1
Max.  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
VENL  
VENH  
IEN  
FOSC  
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLO1  
VUVLO2  
TSS  
Standby mode  
Active mode  
VEN=3.3V  
V
EN input current  
10  
μA  
MHz  
V
Oscillation frequency  
Pch FET ON resistance *9  
Nch FET ON resistance *9  
ADJ Voltage  
Output voltage  
ITH SInk current  
ITH Source Current  
UVLO threshold voltage  
UVLO hysteresis voltage  
Soft start time  
1
1.2  
0.60  
0.50  
0.820  
-
0.35  
0.25  
0.800  
1.200  
20  
PVCC=3.3V  
PVCC=3.3V  
-
0.780  
-
10  
*9  
V
-
-
μA  
μA  
V
V
ms  
ms  
VOUT =H  
VOUT =L  
VCC=HL  
VCC=LH  
10  
20  
2.400  
2.425  
0.5  
1
2.500  
2.550  
1
2.600  
2.700  
2
Timer latch time  
TLATCH  
2
3
SCP/TSD operated  
Output Short circuit  
Threshold Voltage  
VSCP  
-
VOUT×0.5  
VOUT×0.7  
V
VOUT =HL  
*9 Design GuaranteeOutgoing inspection is not done on all products)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
3/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Characteristics dataBD9106FVM】  
2.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
VOUT=1.8V】  
VOUT=1.8V】  
VOUT=1.8V】  
Ta=25℃  
1.5  
1.0  
0.5  
0.0  
Io=0A  
1.5  
1.0  
0.5  
0.0  
VCC=5V  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
0
1
2
3
0
1
2
3
4
5
0
1
2
3
4
5
INPUT VOLTAGE:V [V]  
CC  
OUTPUT CURRENT:I  
[A]  
EN VOLTAGE:VEN[V]  
OUT  
Fig.1 Vcc-Vout  
Fig.2 Ven-Vout  
Fig.3 Iout-Vout  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
VOUT=1.8V】  
VOUT=1.8V】  
VCC=5V  
VCC=5V  
Io=0A  
VCC=5V  
Ta=25℃  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
1
10  
100  
1000  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE:Ta[  
]
OUTPUT CURRENT:IOUT[mA]  
TEMPERATURE:Ta[  
]
Fig.4 Ta-Vout  
Fig.5 Efficiency  
Fig.6 Ta-Fosc  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
350  
300  
250  
200  
150  
100  
50  
VCC=5V  
VCC=5V  
PMOS  
NMOS  
VCC=5V  
0
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[ ]  
Fig.7 Ta-Ronn, Ronp  
Fig.8 Ta-Ven  
Fig.9 Ta-Icc  
www.rohm.com  
2009.05 - Rev.A  
4/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
1.2  
VOUT=1.8V】  
SLLM control  
VOUT=1.8V】  
VCC=PVCC  
=EN  
1.1  
SW  
1
VOUT  
VOUT  
0.9  
0.8  
VCC=5V  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
4
4.5  
5
5.5  
INPUT VOLTAGE:VCC[V]  
Fig.10 Vcc-Fosc  
Fig.11 Soft start waveform  
Fig.12 SW waveform Io=10mA  
VOUT=1.8V】  
PWM control  
VOUT=1.8V】  
VOUT=1.8V】  
VOUT  
VOUT  
SW  
IOUT  
VOUT  
IOUT  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
Fig.13 SW waveform Io=200mA  
Fig. 14 Transient response  
Fig.15 Transient response  
Io=100600mA(10μs)  
Io=600100mA(10μs)  
www.rohm.com  
2009.05 - Rev.A  
5/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Characteristics dataBD9107FVM】  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC=5V  
VOUT=1.5V】  
VOUT=1.5V】  
VOUT=1.5V】  
Ta=25℃  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
Io=0A  
0
1
2
3
4
5
0
1
2
3
0
1
2
3
4
5
INPUT VOLTAGE:V [V]  
CC  
OUTPUT CURRENT:I  
[A]  
EN VOLTAGE:VEN[V]  
OUT  
Fig.16 Vcc-Vout  
Fig.17 Ven-Vout  
Fig.18 Iout-Vout  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
VOUT=1.5V】  
VOUT=1.5V】  
VCC=5V  
VCC=5V  
Io=0A  
VCC=5V  
Ta=25℃  
1
10  
100  
1000  
10000  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
OUTPUT CURRENT:IOUT[mA]  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
Fig.19 Ta-Vout  
Fig.20 Efficiency  
Fig.21 Ta-Fosc  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
350  
300  
250  
200  
150  
100  
50  
VCC=5V  
VCC=5V  
PMOS  
NMOS  
VCC=5V  
0
0.00  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE:Ta[]  
TEMPERATURE:Ta[]  
TEMPERATURE:Ta[]  
Fig.22 Ta-RONN, RONP  
Fig.23 Ta-VEN  
Fig.24 Ta-ICC  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
6/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
1.2  
VOUT=1.5V】  
SLLM control  
VOUT=1.5V】  
VCC=PVCC  
=EN  
1.1  
SW  
1
VOUT  
VOUT  
0.9  
VCC=5V  
VCC=5V  
Ta=25℃  
Ta=25℃  
Io=0A  
0.8  
4
4.5  
5
5.5  
INPUT VOLTAGE:VCC[V]  
Fig.25 Vcc-Fosc  
Fig.26 Soft start waveform  
Fig.27 SW waveform Io=10mA  
VOUT=1.5V】  
VOUT=1.5V】  
PWM control  
VOUT=1.5V】  
VOUT  
VOUT  
SW  
IOUT  
VOUT  
IOUT  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
Fig.28 SW waveform Io=500mA  
Fig. 29 Transient response  
Fig.30 Transient response  
Io=100600mA(10μs)  
Io=600100mA(10μs)  
www.rohm.com  
2009.05 - Rev.A  
7/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Characteristics dataBD9109FVM】  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta=25  
Io=0A  
VCC=5V  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
0
1
2
3
0
1
2
3
4
5
0
1
2
3
4
5
INPUT VOLTAGE:V [V]  
CC  
OUTPUT CURRENT:I [A]  
OUT  
EN VOLTAGE:VEN[V]  
Fig.31 Vcc-Vout  
Fig.32 Ven-Vout  
Fig.33 Iout-Vout  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
VCC=5V  
Io=0A  
VCC=5V  
VCC=5V  
Ta=25℃  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
1
10  
100  
1000  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[ ]  
OUTPUT CURRENT:IOUT[mA]  
Fig. 34 Ta-Vout  
Fig.35 Efficiency  
Fig.36 Ta-Fosc  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VCC=5V  
VCC=5V  
PMOS  
VCC=5V  
NMOS  
0
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE:Ta[]  
TEMPERATURE:Ta[]  
TEMPERATURE:Ta[]  
Fig.37 Ta-Ronn, Ronp  
Fig.38 Ta-Ven  
Fig.39 Ta-Icc  
www.rohm.com  
2009.05 - Rev.A  
8/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
1.2  
SLLM control】  
VCC=PVCC  
=EN  
1.1  
SW  
1
VOUT  
VOUT  
0.9  
VCC=5V  
Ta=25℃  
0.8  
4
4.5  
5
5.5  
INPUT VOLTAGE:VCC[V]  
Fig.40 Vcc-Fosc  
Fig.41 Soft start waveform  
Fig.42 SW waveform Io=10mA  
PWM control】  
VOUT  
VOUT  
SW  
IOUT  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
VOUT  
VCC=5V  
Ta=25℃  
IOUT  
Fig.43 SW waveform Io=500mA  
Fig. 44 Transient response  
Fig.45 Transient response  
Io=100600mA(10μs)  
Io=600100mA(10μs)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
9/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Characteristics dataBD9110NV】  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT=1.4V】  
VOUT=1.4V】  
VOUT=1.4V】  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
[A]  
4
INPUT VOLTAGE:V [V]  
CC  
EN VOLTAGE:VEN[V]  
OUTPUT CURRENT:I  
OUT  
Fig.46 Vcc-Vout  
Fig.47 Ven-Vout  
Fig.48 Iout-Vout  
1.45  
1.44  
1.43  
1.42  
1.41  
1.40  
1.39  
1.38  
1.37  
1.36  
1.35  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
VOUT=1.4V】  
VOUT=1.4V】  
VCC=5V  
VCC=5V  
Ta=25℃  
VCC=5V  
Io=0A  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
10  
100  
1000  
10000  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
OUTPUT CURRENT:IOUT[mA]  
Fig. 49 Ta-Vout  
Fig.50 Efficiency  
Fig.51 Ta-Fosc  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
400  
350  
300  
250  
200  
150  
100  
50  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VCC=5V  
VCC=5V  
VCC=5V  
PMOS  
NMOS  
0
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE:Ta[ ]  
TEMPERATURE:Ta[ ]  
TEMPERATURE:Ta[  
]
Fig.52 Ta-Ronn, Ronp  
Fig.53 Ta-Ven  
Fig.54 Ta-Icc  
www.rohm.com  
2009.05 - Rev.A  
10/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
1.2  
VOUT=1.4V】  
Ta=25℃  
SLLM control  
VOUT=1.4V】  
VCC=PVCC  
=EN  
1.1  
1
SW  
VOUT  
VOUT  
0.9  
0.8  
VCC=5V  
Ta=25℃  
Io=0A  
VCC=5V  
Ta=25℃  
4.5  
5
5.5  
INPUT VOLTAGE:VCC[V]  
Fig.55 Vcc-Fosc  
Fig.56 Soft start waveform  
Fig.57 SW waveform Io=10mA  
VOUT=1.4V】  
VOUT=1.4V】  
PWM control  
VOUT=1.4V】  
VOUT  
VOUT  
SW  
IOUT  
IOUT  
VCC=5V  
Ta=25℃  
VOUT  
VCC=5V  
Ta=25℃  
VCC=5V  
Ta=25℃  
Fig.58 SW waveform Io=500mA  
Fig. 59 Transient response  
Fig.60 Transient response  
Io=100600mA(10μs)  
Io=600100mA(10μs)  
www.rohm.com  
2009.05 - Rev.A  
11/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Characteristics dataBD9120HFN】  
2.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
VOUT=1.5V】  
VOUT=1.5V】  
VOUT=1.5V】  
Ta=25℃  
Io=0A  
1.5  
1.0  
0.5  
0.0  
1.5  
1.0  
0.5  
0.0  
VCC=3.3V  
Ta=25  
Io=0A  
VCC=3.3V  
Ta=25℃  
0
1
2
3
0
1
2
3
4
5
0
1
2
3
4
5
INPUT VOLTAGE:V [V]  
OUTPUT CURRENT:I  
OUT  
[A]  
CC  
EN VOLTAGE:VEN[V]  
Fig.61 Vcc-Vout  
Fig.62 Ven-Vout  
Fig.63 Iout-Vout  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=1.5V】  
VCC=3.3V  
Io=0A  
VOUT=1.5V】  
VCC=3.3V  
VCC=3.3V  
Ta=25℃  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
1
10  
100  
1000  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
OUTPUT CURRENT:IOUT[mA]  
Fig. 64 Ta-Vout  
Fig.65 Efficiency  
Fig.66 Ta-Fosc  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
300  
270  
240  
210  
180  
150  
120  
90  
VCC=3.3V  
VCC=3.3V  
VCC=3.3V  
PMOS  
NMOS  
60  
30  
0
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
-25 -15 -5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
TEMPERATURE:Ta[  
]
Fig.67 Ta-Ronn, Ronp  
Fig.68 Ta-Ven  
Fig.69 Ta-Icc  
www.rohm.com  
2009.05 - Rev.A  
12/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
1.2  
VOUT=1.5V】  
SLLM control  
VOUT=1.5V】  
Ta=25℃  
VCC=PVCC  
=EN  
1.1  
SW  
1
VOUT  
0.9  
0.8  
VOUT  
VCC=3.3V  
Ta=25℃  
Io=0A  
VCC=3.3V  
Ta=25℃  
2.7  
3.6  
4.5  
INPUT VOLTAGE:VCC[V]  
Fig.70 Vcc-Fosc  
Fig.71 Soft start waveform  
Fig.72 SW waveform Io=10mA  
VOUT=1.5V】  
PWM control  
VOUT=1.5V】  
VOUT=1.5V】  
VOUT  
SW  
VOU
IOUT  
IOU
VOUT  
VCC=3.3V  
Ta=25℃  
VCC=3.3V  
Ta=25℃  
VCC=3.3V  
Ta=25℃  
Fig.73 SW waveform Io=200mA  
Fig. 74 Transient response  
Fig.75 Transient response  
Io=100600mA(10μs)  
Io=600100mA(10µs)  
www.rohm.com  
2009.05 - Rev.A  
13/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Block Diagram, Application Circuit  
BD9106FVM, BD9107FVM】  
VCC  
EN  
3
VCC  
8
VREF  
5V  
Input  
7
PVCC  
Current  
Comp.  
ADJ  
ITH  
VCC  
PVCC  
SW  
1
2
8
7
6
10µF  
Current  
Sense/  
Protect  
Q
R
Gm Amp.  
S
4.7µH  
Output  
+
SLOPE  
CLK  
6
EN  
3
4
OSC  
UVLO  
TSD  
VCC  
SW  
10µF  
Driver  
Logic  
GND  
PGND  
5
Soft  
Start  
5
4
PGND  
GND  
TOP View  
1
2
ADJ  
ITH  
Fig.76 BD9106FVM,BD9107FVM TOP View  
Fig.77 BD9106FVM,BD9107FVM Block Diagram  
VCC  
BD9109FVM】  
EN  
3
VCC  
8
7
VREF  
5V  
Input  
VOUT  
ITH  
VCC  
PVCC  
SW  
1
2
8
7
6
PVCC  
Current  
Comp.  
10µF  
Current  
Sense/  
Protect  
R
Q
Gm Amp.  
S
4.7µH  
Output  
EN  
3
4
SLOPE  
CLK  
+
6
OSC  
VCC  
SW  
10µF  
Driver  
Logic  
GND  
PGND  
5
UVLO  
Soft  
Start  
5
4
TSD  
SCP  
PGND  
GND  
TOP View  
1
2
VOUT  
ITH  
Fig.78 BD9109FVM TOP View  
Fig.79. BD9109FVM Block Diagram  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
14/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
BD9110NV】  
VCC  
EN  
8
VCC  
ADJ 1  
8
EN  
2
VREF  
5V  
Input  
VCC 2  
ITH 3  
7
6
PVCC  
SW  
7
10µF  
PVCC  
Current  
Comp  
Current  
Sense/  
Protect  
R
S
Q
+
GND 4  
5
PGND  
+
2.2µH  
Output  
SLOPE  
Gm Amp.  
CLK  
Driver  
Logic  
6
TOP View  
OSC  
+
SW  
22µF  
VCC  
UVLO  
TSD  
Soft  
Start  
5
PGND  
4
GND  
1
3
ITH  
ADJ  
R1  
CITH  
RITH  
R2  
Fig.80 BD9110NV TOP View  
Fig.81 BD9110NV Block Diagram  
BD9120HFN】  
VCC  
EN  
3
VCC  
8
VREF  
3.3V  
Input  
1
2
3
ADJ  
ITH  
VCC  
PVCC  
SW  
8
7
6
PVCC  
7
10µF  
Current  
Comp  
EN  
4
GND  
PGND  
5
Current  
Sense/  
Protect  
Q
R
S
+
TOP View  
4.7µH  
Output  
6
+
Gm Amp.  
SLOPE  
VCC  
CLK  
OSC  
Driver  
Logic  
+
SW  
10µF  
UVLO  
TSD  
Soft  
Start  
5
PGND  
SCP  
4
GND  
1
2
ADJ  
R1  
ITH  
CITH  
RITH  
R2  
Fig.82 BD9120HFN TOP View  
Fig.83 BD9120HFN Block Diagram  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
15/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Pin number and function  
BD9106FVM, BD9107FVM, BD9109FVM】  
Pin No.  
Pin name  
ADJ/VOUT  
ITH  
EN  
GND  
PGND  
SW  
PVCC  
VCC  
PIN function  
1
2
3
4
5
6
7
8
Output voltage detect pin/ ADJ for BD910607FVM  
GmAmp output pin/Connected phase compensation capacitor  
Enable pin(Active High)  
Ground  
Nch FET source pin  
Pch/Nch FET drain output pin  
Pch FET source pin  
VCC power supply input pin  
BD9110NV】  
Pin No.  
Pin name  
ADJ  
PIN function  
Output voltage adjust pin  
VCC power supply input pin  
GmAmp output pin/Connected phase compensation capacitor  
Ground  
Nch FET source pin  
Pch/Nch FET drain output pin  
Pch FET source pin  
1
2
3
4
5
6
7
8
VCC  
ITH  
GND  
PGND  
SW  
PVCC  
EN  
Enable pin(Active High)  
BD9120HFN】  
Pin No.  
Pin name  
ADJ  
PIN function  
Output voltage adjust pin  
GmAmp output pin/Connected phase compensation capacitor  
Enable pin(Active High)  
Ground  
Nch FET source pin  
Pch/Nch FET drain output pin  
Pch FET source pin  
VCC power supply input pin  
1
2
3
4
5
6
7
8
ITH  
EN  
GND  
PGND  
SW  
PVCC  
VCC  
www.rohm.com  
2009.05 - Rev.A  
16/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Information on advantages  
Advantage 1Offers fast transient response with current mode control system.  
Conventional product (VOUT of which is 3.3 volts)  
BD9109FVM (Load response IO=100mA600mA)  
VOUT  
VOUT  
228mV  
140mV  
IOUT  
IOUT  
Voltage drop due to sudden change in load was reduced by about 40%.  
Fig.84 Comparison of transient response  
Advantage 2Offers high efficiency for all load range.  
For lighter load:  
Utilizes the current mode control mode called SLLMTM for lighter load, which reduces various dissipation such as  
switching dissipation (PSW), gate charge/discharge dissipation, ESR dissipation of output capacitor (PESR) and  
on-resistance dissipation (PRON) that may otherwise cause degradation in efficiency for lighter load.  
Achieves efficiency improvement for lighter load.  
For heavier load:  
100  
SLLMTM  
Utilizes the synchronous rectifying mode and the low on-resistance  
MOS FETs incorporated as power transistor.  
50  
0
PWM  
inprovement by SLLM system  
improvement by synchronous rectifier  
ON resistance of P-channel MOS FET: 0.20.35 (Typ.)  
ON resistance of N-channel MOS FET: 0.150.25 (Typ.)  
0.001  
0.01  
0.1  
1
Output current Io[A]  
Fig.85 Efficiency  
Achieves efficiency improvement for heavier load.  
Offers high efficiency for all load range with the improvements mentioned above.  
Advantage 3:・Supplied in smaller package due to small-sized power MOS FET incorporated.  
(3 package like MOSP8, HSON8, SON008V5060)  
Allows reduction in size of application products  
Output capacitor Co required for current mode control: 10 μF ceramic capacitor  
Inductance L required for the operating frequency of 1 MHz: 4.7 μH inductor  
(BD9110NV:Co=22µF, L=2.2µH)  
Reduces a mounting area required.  
VCC  
15mm  
CIN  
Cin  
RITH  
L
DC/DC  
Convertor  
Controller  
L
VOUT  
10mm  
CITH  
RITH  
CITH  
Co  
CO  
Fig.86 Example application  
www.rohm.com  
2009.05 - Rev.A  
17/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Operation  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN are a synchronous rectifying step-down switching  
regulator that achieves faster transient response by employing current mode PWM control system. It utilizes switching  
operation in PWM (Pulse Width Modulation) mode for heavier load, while it utilizes SLLMTM (Simple Light Load Mode)  
operation for lighter load to improve efficiency.  
Synchronous rectifier  
It does not require the power to be dissipated by a rectifier externally connected to a conventional DC/DC converter IC,  
and its P.N junction shoot-through protection circuit limits the shoot-through current during operation, by which the  
power dissipation of the set is reduced.  
Current mode PWM control  
Synthesizes a PWM control signal with a inductor current feedback loop added to the voltage feedback.  
PWM (Pulse Width Modulation) control  
The oscillation frequency for PWM is 1 MHz. SET signal form OSC turns ON a P-channel MOS FET (while a  
N-channel MOS FET is turned OFF), and an inductor current IL increases. The current comparator (Current Comp)  
receives two signals, a current feedback control signal (SENSE: Voltage converted from IL) and a voltage feedback  
control signal (FB), and issues a RESET signal if both input signals are identical to each other, and turns OFF the  
P-channel MOS FET (while a N-channel MOS FET is turned ON) for the rest of the fixed period. The PWM control  
repeat this operation.  
SLLMTM (Simple Light Load Mode) control  
When the control mode is shifted from PWM for heavier load to the one for lighter load or vise versa, the switching  
pulse is designed to turn OFF with the device held operated in normal PWM control loop, which allows linear  
operation without voltage drop or deterioration in transient response during the mode switching from light load to  
heavy load or vise versa.  
Although the PWM control loop continues to operate with a SET signal from OSC and a RESET signal from Current  
Comp, it is so designed that the RESET signal is held issued if shifted to the light load mode, with which the switching  
is tuned OFF and the switching pulses are thinned out under control. Activating the switching intermittently reduces  
the switching dissipation and improves the efficiency.  
SENSE  
Current  
Comp  
VOUT  
RESET  
FB  
R
S
Q
IL  
Level  
Shift  
SET  
Driver  
Logic  
VOUT  
Gm Amp.  
SW  
Load  
OSC  
ITH  
Fig.87 Diagram of current mode PWM control  
PVCC  
SENSE  
PVCC  
Current  
Comp  
Current  
Comp  
SENSE  
FB  
FB  
SET  
SET  
GND  
GND  
GND  
GND  
RESET  
SW  
RESET  
GND  
SW  
GND  
IL  
IL(AVE)  
IL  
0A  
VOUT  
VOUT  
VOUT(AVE)  
VOUT(AVE)  
Not switching  
Fig.88 PWM switching timing chart  
Fig.89 SLLM switching timing chart  
www.rohm.com  
2009.05 - Rev.A  
18/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Description of operations  
Soft-start function  
EN terminal shifted to “High” activates a soft-starter to gradually establish the output voltage with the current limited  
during startup, by which it is possible to prevent an overshoot of output voltage and an inrush current.  
Shutdown function  
With EN terminal shifted to “Low”, the device turns to Standby Mode, and all the function blocks including reference  
voltage circuit, internal oscillator and drivers are turned to OFF. Circuit current during standby is 0 μF (Typ.).  
UVLO function  
Detects whether the input voltage sufficient to secure the output voltage of this IC is supplied. And the hysteresis width  
of 50300 mV (Typ.) is provided to prevent output chattering.  
Hysteresis 50300mV  
VCC  
EN  
VOUT  
Tss  
Tss  
Tss  
Soft start  
Standby  
mode  
Standby  
mode  
Standby mode  
Operating mode  
Operating mode  
Operating mode  
Standby mode  
UVLO  
EN  
UVLO  
UVLO  
*Soft Start time(typ.)  
Fig.90 Soft start, Shutdown, UVLO timing chart  
BD9106FVM  
3
BD9107FVM BD9109FVM  
BD9110NV  
5
BD9120HFN  
1
Unit  
msec  
Tss  
1
1
Short-current protection circuit with time delay function  
Turns OFF the output to protect the IC from breakdown when the incorporated current limiter is activated continuously for the  
fixed time(TLATCH) or more. The output thus held tuned OFF may be recovered by restarting EN or by re-unlocking UVLO.  
EN  
Output OFF  
latch  
VOUT  
Limit  
IL  
1msec  
Standby  
mode  
Standby  
mode  
Operating mode  
Operating mode  
EN  
Timer latch  
EN  
*Timer Latch time (typ.)  
Fig.91 Short-current protection circuit with time delay timing chart  
BD9106FVM  
1
BD9107FVM  
1
BD9109FVM  
2
BD9110NV  
1
BD9120HFN  
2
Unit  
msec  
TLATCH  
In addition to current limit circuit, output short detect circuit is built in on BD9109FVM and BD9120HFN. If output voltage fall below  
2V(typ, BD9109FVM) or Vout×0.5(typ,BD9120HFN), output voltage will hold turned OFF.  
www.rohm.com  
2009.05 - Rev.A  
19/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Switching regulator efficiency  
Efficiency ŋ may be expressed by the equation shown below:  
VOUT×IOUT  
Vin×Iin  
POUT  
Pin  
POUT  
η=  
×100[%]=  
×100[%]=  
×100[%]  
POUT+PDα  
Efficiency may be improved by reducing the switching regulator power dissipation factors PDα as follows:  
Dissipation factors:  
1) ON resistance dissipation of inductor and FETPD(I2R)  
2) Gate charge/discharge dissipationPD(Gate)  
3) Switching dissipationPD(SW)  
4) ESR dissipation of capacitorPD(ESR)  
5) Operating current dissipation of ICPD(IC)  
2
1)PD(I2R)=IOUT ×(RCOIL+RON) (RCOIL[]DC resistance of inductor, RON[]ON resistance of FETIOUT[A]Output current.)  
2)PD(Gate)=Cgs×f×V (Cgs[F]Gate capacitance of FET,f[H]Switching frequency,V[V]Gate driving voltage of FET)  
Vin2×CRSS×IOUT×f  
3)PD(SW)=  
(CRSS[F]Reverse transfer capacitance of FETIDRIVE[A]Peak current of gate.)  
IDRIVE  
2
4)PD(ESR)=IRMS ×ESR (IRMS[A]Ripple current of capacitor,ESR[]Equivalent series resistance.)  
5)PD(IC)=Vin×ICC (ICC[A]Circuit current.)  
Consideration on permissible dissipation and heat generation  
As this IC functions with high efficiency without significant heat generation in most applications, no special consideration is  
needed on permissible dissipation or heat generation. In case of extreme conditions, however, including lower input  
voltage, higher output voltage, heavier load, and/or higher temperature, the permissible dissipation and/or heat generation  
must be carefully considered.  
For dissipation, only conduction losses due to DC resistance of inductor and ON resistance of FET are considered.  
Because the conduction losses are considered to play the leading role among other dissipation mentioned above including  
gate charge/discharge dissipation and switching dissipation.  
1000  
800  
1.5  
1.5  
mounted on glass epoxy PCB  
θj-a=212.8/W  
Using an IC alone  
θj-a=322.6/W  
mounted on glass epoxy PCB  
θj-a=133.0/W  
Using an IC alone  
θj-a=195.3/W  
for SON008V5060  
ROHM standard 1layer board  
θj-a=138.9/W  
Using an IC alone  
θj-a=195.3/W  
1.15W  
0.63W  
0.90W  
0.64W  
1.0  
1.0  
587.4mW  
387.5mW  
600  
400  
200  
0
0.5  
0
0.5  
0
85  
105  
100  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
125  
150  
Ambient temperature:Ta []  
Fig.92 Thermal derating curve  
(MSOP8)  
Ambient temperature:Ta []  
Ambient temperature:Ta []  
Fig.93 Thermal derating curve  
(HSON8)  
Fig.94 Thermal derating curve  
(SON008V5060)  
2
P=IOUT ×(RCOIL+RON)  
If VCC=5V, VOUT=3.3V, RCOIL=0.15, RONP=0.35, RONN=0.25ꢀ  
IOUT=0.8A, for example,  
RON=D×RONP+(1-D)×RONN  
D=VOUT/VCC=3.3/5=0.66  
RON=0.66×0.35+(1-0.66)×0.25  
=0.231+0.085  
DON duty (=VOUT/VCC)  
RCOILDC resistance of coil  
RONPON resistance of P-channel MOS FET  
RONNON resistance of N-channel MOS FET  
IOUTOutput current  
=0.316[]  
P=0.82×(0.15+0.316)  
298[mV]  
As RONP is greater than RONN in this IC, the dissipation increases as the ON duty becomes greater. With the  
consideration on the dissipation as above, thermal design must be carried out with sufficient margin allowed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
20/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Selection of components externally connected  
1. Selection of inductor (L)  
The inductance significantly depends on output ripple current.  
As seen in the equation (1), the ripple current decreases as the  
inductor and/or switching frequency increases.  
IL  
ΔIL  
(VCC-VOUT)×VOUT  
VCC  
ΔIL=  
[A]・・・(1)  
L×VCC×f  
Appropriate ripple current at output should be 30% more or less of the  
maximum output current.  
IL  
VOUT  
ΔIL=0.3×IOUTmax. [A]・・・(2)  
L
(VCC-VOUT)×VOUT  
Co  
L=  
[H]・・・(3)  
ΔIL×VCC×f  
(ΔIL: Output ripple current, and f: Switching frequency)  
Fig.95 Output ripple current  
* Current exceeding the current rating of the inductor results in magnetic saturation of the inductor, which decreases efficiency.  
The inductor must be selected allowing sufficient margin with which the peak current may not exceed its current rating.  
If VCC=5V, VOUT=3.3V, f=1MHz, ΔIL=0.3×0.8A=0.24A, for example,(BD9109FVM)  
(5-3.3)×3.3  
L=  
=4.675μ → 4.7[μH]  
0.24×5×1M  
* Select the inductor of low resistance component (such as DCR and ACR) to minimize dissipation in the inductor for  
better efficiency.  
2. Selection of output capacitor (CO)  
VCC  
Output capacitor should be selected with the consideration on the stability region  
and the equivalent series resistance required to smooth ripple voltage.  
Output ripple voltage is determined by the equation (4):  
VOUT  
ΔVOUT=ΔIL×ESR [V]・・・(4)  
L
ESR  
Co  
(ΔIL: Output ripple current, ESR: Equivalent series resistance of output capacitor)  
*Rating of the capacitor should be determined allowing sufficient margin  
against output voltage. Less ESR allows reduction in output ripple voltage.  
Fig.96 Output capacitor  
As the output rise time must be designed to fall within the soft-start time, the capacitance of output capacitor should be  
determined with consideration on the requirements of equation (5):  
TSS×(Ilimit-IOUT)  
Tss: Soft-start time  
Ilimit: Over current detection level, 2A(Typ)  
Co≦  
・・・(5)  
VOUT  
In case of BD9109FVM, for instance, and if VOUT=3.3V, IOUT=0.8A, and TSS=1ms,  
1m×(2-0.8)  
Co≦  
364 [μF]  
3.3  
Inappropriate capacitance may cause problem in startup. A 10 μF to 100 μF ceramic capacitor is recommended.  
3. Selection of input capacitor (Cin)  
Input capacitor to select must be a low ESR capacitor of the capacitance  
sufficient to cope with high ripple current to prevent high transient voltage. The  
ripple current IRMS is given by the equation (6):  
VCC  
Cin  
VOUT(VCC-VOUT)  
IRMS=IOUT×  
[A]・・・(6)  
VOUT  
VCC  
L
Co  
< Worst case > IRMS(max.)  
IOUT  
2
When VCC is twice the Vout, IRMS=  
If VCC=5V, VOUT=3.3V, and IOUTmax.=0.8A, (BD9109FVM)  
Fig.97 Input capacitor  
3.3(5-3.3)  
IRMS=0.8×  
=0.38[ARMS]  
5
A low ESR 10μF/10V ceramic capacitor is recommended to reduce ESR dissipation of input capacitor for better efficiency.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
21/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
4. Determination of RITH, CITH that works as a phase compensator  
As the Current Mode Control is designed to limit a inductor current, a pole (phase lag) appears in the low frequency  
area due to a CR filter consisting of a output capacitor and a load resistance, while a zero (phase lead) appears in the  
high frequency area due to the output capacitor and its ESR. So, the phases are easily compensated by adding a zero  
to the power amplifier output with C and R as described below to cancel a pole at the power amplifier.  
fp(Min.)  
A
1
fp=  
fp(Max.)  
2π×RO×CO  
Gain  
[dB]  
0
1
fz(ESR)  
fz(ESR)=  
2π×ESR×CO  
IOUTMin.  
IOUTMax.  
Pole at power amplifier  
0
When the output current decreases, the load resistance Ro  
increases and the pole frequency lowers.  
Phase  
[deg]  
-90  
1
fp(Min.)=  
[Hz]with lighter load  
[Hz]with heavier load  
2π×ROMax.×CO  
Fig.98 Open loop gain characteristics  
1
fp(Max.)=  
A
2π×ROMin.×CO  
fz(Amp.)  
Gain  
[dB]  
Zero at power amplifier  
Increasing capacitance of the output capacitor lowers the pole  
frequency while the zero frequency does not change. (This  
is because when the capacitance is doubled, the capacitor  
ESR reduces to half.)  
0
0
Phase  
[deg]  
1
fz(Amp.)=  
-90  
2π×RITH.×CITH  
Fig.99 Error amp phase compensation characteristics  
Cin  
L
VCC  
VCC,PVCC  
EN  
SW  
VOUT  
RO  
VOUT  
VOUT  
ITH  
ESR  
CO  
GND,PGND  
RITH  
CITH  
Fig.100 Typical application  
Stable feedback loop may be achieved by canceling the pole fp (Min.) produced by the output capacitor and the load  
resistance with CR zero correction by the error amplifier.  
fz(Amp.)= fp(Min.)  
1
1
=
2π×RITH×CITH  
2π×ROMax.×CO  
5. Determination of output voltage  
The output voltage VOUT is determined by the equation (7):  
L
VOUT=(R2/R1+1)×VADJ・・・(7) VADJ: Voltage at ADJ terminal (0.8V Typ.)  
With R1 and R2 adjusted, the output voltage may be determined as required.  
Adjustable output voltage range1.0V1.5V/ BD9107FVM, BD9120HFN  
1.0V2.5V/BD106FVM, BD9110NV  
6
1
Output  
SW  
Co  
R2  
R1  
Use 1 k100 kresistor for R1. If a resistor of the resistance higher than  
100 kis used, check the assembled set carefully for ripple voltage etc.  
ADJ  
Fig.101 Determination of output voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
22/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
BD9106FVM, BD9107FVM, BD9109FVM, BD9120HFN Cautions on PC Board layout  
VOUT/ADJ  
ITH  
VCC  
PVCC  
SW  
1
2
3
4
8
7
6
5
VCC  
RITH  
CIN  
L
EN  
EN  
VOUT  
CITH  
CO  
GND  
PGND  
GND  
Fig.102 Layout diagram  
BD9110NV Cautions on PC Board layout  
VCC  
EN  
R2  
1
8
7
ADJ  
EN  
PVCC  
SW  
2
R1  
VCC  
ITH  
L
3
4
6
5
VOUT  
GND  
RITH  
CIN  
Co  
GND  
PGND  
CITH  
Fig.103 Layout diagram  
For the sections drawn with heavy line, use thick conductor pattern as short as possible.  
Lay out the input ceramic capacitor CIN closer to the pins PVCC and PGND, and the output capacitor Co closer to  
the pin PGND.  
Lay out CITH and RITH between the pins ITH and GND as neat as possible with least necessary wiring.  
The package of HSON8 (BD9120HFN) and SON008V5050 (BD9110NV) has thermal FIN on the reverse of the package.  
The package thermal performance may be enhanced by bonding the FIN to GND plane which take a large area of PCB.  
Table1. [BD9106FVM]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
CIN  
CO  
10μF  
10μF  
Kyocera  
Kyocera  
murata  
ROHM  
CITH  
750pF  
VOUT=1.0V  
18kꢀ  
22kꢀ  
22kꢀ  
27kꢀ  
36kꢀ  
MCR10 1802  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
VOUT=2.5V  
ROHM  
MCR10 2202  
RITH  
Resistance  
ROHM  
MCR10 2202  
ROHM  
MCR10 2702  
ROHM  
MCR10 3602  
www.rohm.com  
2009.05 - Rev.A  
23/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Table2. [BD9107FVM]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
L
Coil  
4.7μH  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
CIN  
CO  
10μF  
10μF  
Kyocera  
Kyocera  
murata  
ROHM  
CITH  
1000pF  
VOUT=1.0V  
4.3kꢀ  
6.8kꢀ  
9.1kꢀ  
12kꢀ  
MCR10 4301  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
ROHM  
MCR10 6801  
RITH  
Resistance  
ROHM  
MCR10 9101  
ROHM  
MCR10 1202  
Table3. [BD9109VM]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Resistance  
CIN  
CO  
10μF  
10μF  
330pF  
30kꢀ  
Kyocera  
Kyocera  
murata  
CITH  
RITH  
ROHM  
MCR10 3002  
Table4. [BD9110NV]  
Symbol  
L
Part  
Coil  
Value  
2.2μH  
10μF  
Manufacturer  
TDK  
Series  
LTF5022T-2R2N3R2  
CM316X5R106K10A  
CM316B226K06A  
GRM18series  
CIN  
CO  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Kyocera  
Kyocera  
murata  
22μF  
CITH  
1000pF  
VOUT=1.0V  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
VOUT=2.5V  
RITH  
Resistance  
12kꢀ  
ROHM  
MCR10 1202  
Table5. [BD9120HFN]  
Symbol  
Part  
Coil  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
CIN  
CO  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
10μF  
10μF  
Kyocera  
Kyocera  
murata  
CITH  
680pF  
VOUT=1.0V  
8.2kꢀ  
8.2kꢀ  
4.7kꢀ  
ROHM  
MCR10 8201  
RITH  
Resistance  
VOUT=1.2V  
VOUT=1.5V  
ROHM  
MCR10 8201  
ROHM  
MCR10 4701  
*The parts list presented above is an example of recommended parts. Although the parts are sound, actual circuit characteristics should be checked on  
your application carefully before use. Be sure to allow sufficient margins to accommodate variations between external devices and this IC when employing  
the depicted circuit with other circuit constants modified. Both static and transient characteristics should be considered in establishing these margins. When  
switching noise is substantial and may impact the system, a low pass filter should be inserted between the VCC and PVCC pins, and a schottky barrier  
diode established between the SW and PGND pins.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
24/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
I/O equivalence circuit  
BD9106FVM, BD9107FVM, BD9109FVM】  
PVCC  
PVCC  
PVCC  
SW pin  
EN pin  
VCC  
10kΩ  
SW  
EN  
VOUT pin (BD9109FVM)  
ADJ pin (BD9106FVM, BD9107FVM)  
VCC  
VCC  
10kΩ  
10kΩ  
VOUT  
ADJ  
ITH pin  
VCC  
VCC  
ITH  
BD9110NV, BD9120HFN】  
EN pin  
PVCC  
PVCC  
PVCC  
SW pin  
10kΩ  
EN  
SW  
ITH pin (BD9120HFN)  
ITH pin (BD9110NV)  
VCC  
VCC  
ITH  
ITH  
ADJ pin  
10kΩ  
ADJ  
Fig.104 I/O equivalence circuit  
25/28  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Notes for use  
1. Absolute Maximum Ratings  
While utmost care is taken to quality control of this product, any application that may exceed some of the absolute  
maximum ratings including the voltage applied and the operating temperature range may result in breakage. If broken,  
short-mode or open-mode may not be identified. So if it is expected to encounter with special mode that may exceed  
the absolute maximum ratings, it is requested to take necessary safety measures physically including insertion of  
fuses.  
2. Electrical potential at GND  
GND must be designed to have the lowest electrical potential In any operating conditions.  
3. Short-circuiting between terminals, and mismounting  
When mounting to pc board, care must be taken to avoid mistake in its orientation and alignment. Failure to do so may  
result in IC breakdown. Short-circuiting due to foreign matters entered between output terminals, or between output  
and power supply or GND may also cause breakdown.  
4.Operation in Strong electromagnetic field}  
Be noted that using the IC in the strong electromagnetic radiation can cause operation failures.  
5. Thermal shutdown protection circuit  
Thermal shutdown protection circuit is the circuit designed to isolate the IC from thermal runaway, and not intended to  
protect and guarantee the IC. So, the IC the thermal shutdown protection circuit of which is once activated should not  
be used thereafter for any operation originally intended.  
6. Inspection with the IC set to a pc board  
If a capacitor must be connected to the pin of lower impedance during inspection with the IC set to a pc board, the  
capacitor must be discharged after each process to avoid stress to the IC. For electrostatic protection, provide proper  
grounding to assembling processes with special care taken in handling and storage. When connecting to jigs in the  
inspection process, be sure to turn OFF the power supply before it is connected and removed.  
7. Input to IC terminals  
This is a monolithic IC with P+ isolation between P-substrate and each element as illustrated below. This P-layer and  
the N-layer of each element form a P-N junction, and various parasitic element are formed.  
If a resistor is joined to a transistor terminal as shown in Fig 59:  
P-N junction works as a parasitic diode if the following relationship is satisfied; GND>Terminal A (at resistor side), or  
GND>Terminal B (at transistor side); and  
if GND>Terminal B (at NPN transistor side),  
a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode.  
The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among  
circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in  
such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in  
(Pin A)  
activation of parasitic elements.  
Resistance  
Transistor (NPN)  
B
(Pin A)  
(Pin B)  
Parasitic diode  
E
C
GND  
GND  
N
P
N
(Pin B)  
P+  
P+  
P
N
P+  
P+  
C
N
N
P substrate  
N
N
B
E
Parasitic diode  
GND  
P substrate  
GND  
GND  
Parasitic diode or transistor  
Parasitic diode or transistor  
Fig.105 Simplified structure of monorisic IC  
8. Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of  
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
26/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
Ordering part number  
B
D
9
1
1
0
N
V
-
E
2
Part No.  
BD  
Part No.  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SON008V5060,)  
9110  
9120  
9106 ,9107,9109  
NV : SON008V5060  
HFN:MSOP8  
TR: Embossed tape and reel  
(MSOP8, HSON8)  
FVM:HSON8  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
3000pcs  
+
6°  
4°  
Quantity  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
0.145  
–0.03  
0.475  
S
0.22  
–0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
HSON8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.1 include BURR)  
(0.05)  
(2.2)  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
0.475  
8 7 6 5  
TR  
5 6 7 8  
4 3 2 1  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
+0.1  
–0.05  
0.13  
1 2 3 4  
1pin  
1PIN MARK  
S
0.1  
S
0.65  
0.32 0.1  
M
0.08  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
(Unit : mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
27/28  
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN  
Technical Note  
SON008V5060  
<Tape and Reel information>  
5.0 0.15  
Tape  
Embossed carrier tape  
2000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
1PIN MARK  
S
(
)
0.08  
S
4.2 0.1  
1.27  
3 4  
C0.25  
1
2
+0.05  
8
7
6
5
Direction of feed  
1pin  
0.4  
-
0.04  
0.59  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
28/28  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

BD9109HFN-E2

Synchronous Buck Converter with Integrated FET
ROHM

BD9109HFN-TR

Synchronous Buck Converter with Integrated FET
ROHM

BD9109NV-E2

Synchronous Buck Converter with Integrated FET
ROHM

BD9109NV-TR

Synchronous Buck Converter with Integrated FET
ROHM

BD910_15

Silicon PNP Power Transistors
JMNIC

BD910_2015

Silicon PNP Power Transistors
JMNIC

BD911

COMPLEMENTARY SILICON POWER TRANSISTORS
STMICROELECTR

BD911

POWER TRANSISTORS(15A,90W)
MOSPEC

BD911

COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS
BOCA

BD911

Silicon NPN Power Transistors
ISC

BD911

Silicon NPN Power Transistors
SAVANTIC

BD911

TO-220 - Power Transistors and Darlingtons
RECTRON