BD9109HFN-TR [ROHM]

Synchronous Buck Converter with Integrated FET;
BD9109HFN-TR
型号: BD9109HFN-TR
厂家: ROHM    ROHM
描述:

Synchronous Buck Converter with Integrated FET

文件: 总50页 (文件大小:3886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Synchronous Buck Converter with  
Integrated FET  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
General Description  
Key Specifications  
Input Voltage Range  
BD9120HFN:  
The  
(BD9106FVM,  
BD9107FVM,  
BD9109FVM,  
BD9110NV, and BD9120HFN) are ROHM’s high  
efficiency step-down switching regulators designed to  
produce a voltage as low as 1V from a supply voltage of  
3.3V or 5.0V. It offers high efficiency by using  
synchronous switches and provides fast transient  
response to sudden load changes by implementing  
current mode control.  
2.7V to 4.5V  
4.0V to 5.5V  
4.5V to 5.5V  
BD9106FVM, BD9107FVM:  
BD9109FVM, BD9110NV:  
Output Voltage Range  
BD9109FVM:  
3.30V ± 2%  
1.0V to 1.5V  
1.0V to 1.8V  
1.0V to 2.5V  
BD9120HFN:  
BD9107FVM:  
BD9106FVM, BD9110NV:  
Output Current  
BD9106FVM, BD9109FVM,  
BD9120HFN:  
BD9107FVM:  
BD9110NV:  
Switching Frequency:  
FET ON-Resistance  
Features  
Fast Transient Response because of Current Mode  
Control System  
High Efficiency for All Load Ranges because of  
Synchronous Switches (Nch and Pch FET) and  
SLLMTM (Simple Light Load Mode)  
0.8A(Max)  
1.2A(Max)  
2.0A(Max)  
1MHz(Typ)  
Soft-Start Function  
Pch(Typ)/Nch(Typ)  
200mΩ / 150mΩ  
350mΩ / 250mΩ  
350mΩ / 250mΩ  
0μA(Typ)  
Thermal Shutdown and ULVO Functions  
Short-Circuit Protection with Time Delay Function  
Shutdown Function  
BD9110NV:  
BD9106FVM, BD9107FVM:  
BD9120HFN, BD9109FVM:  
Standby Current:  
Operating Temperature Range  
BD9110NV:  
Application  
Power Supply for LSI including DSP, Microcomputer  
and ASIC  
-25°C to +105°C  
-25°C to +85°C  
-25°C to +85°C  
BD9120HFN, BD9106FVM:  
BD9107FVM, BD9109FVM:  
Packages  
W(Typ) x D(Typ) x H(Max)  
Typical Application Circuit  
CIN  
L
VCC  
VCC,PVCC  
GND,PGND  
EN  
SW  
VOUT  
VOUT  
ITH  
CO  
R2  
R1  
HSON8  
2.90mm x 3.00mm x 0.60mm  
MSOP8  
2.90mm x 4.00mm x 0.90mm  
RITH  
CITH  
Figure 1. Typical Application Circuit  
SON008V5060  
5.00mm x 6.00mm x 1.00mm  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
1/46  
TSZ2211114001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Pin Configuration  
(Top View)  
(Top View)  
ADJ  
ITH  
VCC  
1
2
8
7
6
1
2
VOUT  
ITH  
VCC  
PVCC  
SW  
8
7
6
PVCC  
SW  
EN  
3
4
EN  
3
4
GND  
PGND  
5
GND  
PGND  
5
Figure 3. BD9109FVM  
(Top View)  
Figure 2. BD9106FVM, BD9107FVM  
(Top View)  
1
2
3
ADJ  
VCC  
8
7
6
ADJ 1  
8
EN  
PVCC  
ITH  
EN  
VCC 2  
ITH 3  
7
6
PVCC  
SW  
SW  
GND  
4
PGND  
5
GND 4  
5
PGND  
Figure 5. BD9120HFN  
Figure 4. BD9110NV  
Pin Description  
BD9106FVM, BD9107FVM, BD9109FVM】  
Pin No.  
Pin Name  
ADJ/VOUT  
ITH  
Function  
1
2
3
Output voltage detection pin / ADJ for BD910607FVM  
GmAmp output pin/connected to phase compensation capacitor  
Enable pin(active high)  
EN  
4
GND  
Ground pin  
5
6
PGND  
SW  
Power switch ground pin  
Power switch node  
7
8
PVCC  
VCC  
Power switch supply pin  
Power supply input pin  
BD9110NV】  
Pin No.  
Pin Name  
ADJ  
Function  
Output voltage detection pin  
Power supply input pin  
1
2
VCC  
3
4
5
6
ITH  
GmAmp output pin/connected to phase compensation capacitor  
Ground pin  
Power switch ground pin  
GND  
PGND  
SW  
Power switch node  
7
8
PVCC  
EN  
Power switch supply pin  
Enable pin(active high)  
BD9120HFN】  
Pin No.  
Pin Name  
ADJ  
Function  
Output voltage detection pin  
GmAmp output pin/connected to phase compensation capacitor  
Enable pin(active high)  
Ground pin  
Power switch ground pin  
Power switch node  
Power switch supply pin  
Power supply input pin  
1
2
3
4
5
6
7
8
ITH  
EN  
GND  
PGND  
SW  
PVCC  
VCC  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
2/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Lineup  
UVLO  
Threshold  
Voltage  
Output  
Current  
Max)  
Operating  
Temperature  
Range  
Input  
Voltage  
Range  
Output  
Voltage  
Range  
Available  
Part Number  
Package  
Typ)  
Adjustable  
(1.0V to 2.5V)  
Adjustable  
0.8A  
3.4V  
MSOP8 Reel of 3000 BD9106FVM-TR  
4.0V to 5.5V  
1.2A  
0.8A  
0.8A  
2.7V  
3.8V  
2.5V  
MSOP8 Reel of 3000 BD9107FVM-TR  
MSOP8 Reel of 3000 BD9109FVM-TR  
HSON8 Reel of 3000 BD9120HFN-TR  
-25°C to +85°C  
(1.0V to 1.8V)  
4.5V to 5.5V  
2.7V to 4.5V  
3.30±2%  
Adjustable  
(1.0V to 1.5V)  
Adjustable  
SON00  
-25°C to +105°C 4.5V to 5.5V  
2.0A  
3.7V  
Reel of 2000 BD9110NV-E2  
8V5060  
(1.0V to 2.5V)  
Absolute Maximum Ratings (Ta=25°C)  
Limit  
Parameter  
Symbol  
Unit  
BD910xFVM  
BD9110NV  
BD9120HFN  
-0.3 to +7 (Note 1)  
-0.3 to +7 (Note 1)  
-0.3 to +7  
VCC Voltage  
PVCC Voltage  
EN Voltage  
VCC  
PVCC  
VEN  
-0.3 to +7 (Note 1)  
-0.3 to +7 (Note 1)  
-0.3 to +7  
-0.3 to +7 (Note 1)  
-0.3 to +7 (Note 1)  
-0.3 to +7  
V
V
V
SW , ITH Voltage  
VSW,VITH  
Pd1  
Pd2  
Topr  
Tstg  
-0.3 to +7  
-0.3 to +7  
-0.3 to +7  
V
Power Dissipation 1  
Power Dissipation 2  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
(Note 1) Pd should not be exceeded.  
(Note 2) IC only  
0.38 (Note 2)  
0.58 (Note 3)  
-25 to +85  
-55 to +150  
+150  
0.64 (Note 4)  
5.29 (Note 5)  
-25 to +105  
-55 to +150  
+150  
0.63 (Note 6)  
1.75 (Note 7)  
-25 to +85  
-55 to +150  
+150  
W
W
°C  
°C  
°C  
Tjmax  
(Note 3) 1-layer. mounted on a 70mm x 70mm x 1.6mm glass-epoxy board  
(Note 4) IC only  
(Note 5) 4-layer. mounted on a 74.2mm x 74.2mm x 1.6mm glass-epoxy board, area of copper foil in 1st layer : 5505mm2  
(Note 6) 1-layer. mounted on a 74.2mm x 74.2mm x 1.6mm glass-epoxy board, area of copper foil : 0.2%  
(Note 7) 1-layer. mounted on a 74.2mm x 74.2mm x 1.6mm glass-epoxy board, area of copper foil : 65%  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions (Ta=25°C)  
BD9106FVM BD9107FVM BD9109FVM  
BD9110NV  
BD9120HFN  
Parameter  
Symbol  
Unit  
Min  
4.0  
4.0  
0
Max  
5.5  
Min  
4.0  
4.0  
0
Max  
5.5  
Min  
4.5  
4.5  
0
Max  
5.5  
Min  
4.5  
4.5  
0
Max  
5.5  
Min  
2.7  
2.7  
0
Max  
4.5  
(Note 8)  
VCC Voltage  
VCC  
V
V
V
(Note 8)  
PVCC Voltage  
EN Voltage  
PVCC  
VEN  
5.5  
5.5  
5.5  
5.5  
4.5  
VCC  
VCC  
VCC  
VCC  
VCC  
SW Average  
Output Current  
(Note 8)  
ISW  
-
0.8  
-
1.2  
-
0.8  
-
2.0  
-
0.8  
A
(Note 8) Pd should not be exceeded.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
3/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Electrical Characteristics  
BD9106FVM (Ta=25°C, VCC=5V, VEN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)  
Parameter  
Standby Current  
Bias Current  
EN Low Voltage  
EN High Voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
Min  
-
-
Typ  
0
250  
GND  
VCC  
1
Max  
10  
400  
0.8  
-
10  
1.2  
0.60  
0.50  
0.820  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN Input Current  
μA  
MHz  
Ω
Ω
V
Oscillation Frequency  
Pch FET ON-Resistance (Note 9)  
Nch FET ON-Resistance (Note 9)  
ADJ Voltage  
Output Voltage (Note 9)  
ITH Sink Current  
ITH Source Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
Soft Start Time  
fOSC  
1
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
tSS  
0.35  
0.25  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
V
10  
10  
3.2  
50  
1.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
ADJ=H  
ADJ=L  
VCC=H to L  
20  
3.4  
100  
3
3.6  
200  
6
Timer Latch Time  
tLATCH  
1
2
(Note 9) Design GuaranteeOutgoing inspection is not done on all products)  
BD9107FVM (Ta=25°C, VCC=5V, VEN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)  
Parameter  
Standby Current  
Bias Current  
EN Low Voltage  
EN High Voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
Min  
-
-
Typ  
0
250  
GND  
VCC  
1
Max  
10  
400  
0.8  
-
10  
1.2  
0.60  
0.50  
0.820  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN Input Current  
μA  
MHz  
Ω
Ω
V
Oscillation Frequency  
Pch FET ON-Resistance (Note 9)  
Nch FET ON-Resistance (Note 9)  
ADJ Voltage  
Output Voltage (Note 9)  
ITH Sink Current  
ITH Source Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
Soft Start Time  
fOSC  
1
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
tSS  
0.35  
0.25  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
V
10  
10  
2.6  
150  
0.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
VOUT=H  
VOUT=L  
VCC=H to L  
20  
2.7  
300  
1
2.8  
600  
2
Timer Latch Time  
tLATCH  
1
2
(Note 9) Design GuaranteeOutgoing inspection is not done on all products)  
BD9109FVM (Ta=25°C, VCC=PVCC=5V, VEN= VCC unless otherwise specified.)  
Parameter  
Standby Current  
Bias Current  
EN Low Voltage  
EN High Voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
Min  
-
-
Typ  
0
250  
GND  
VCC  
1
Max  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN Input Current  
10  
μA  
MHz  
Ω
Ω
V
μA  
μA  
V
V
ms  
ms  
Oscillation Frequency  
Pch FET ON-Resistance (Note 9)  
Nch FET ON-Resistance (Note 9)  
Output Voltage (Note 9)  
ITH Sink Current  
ITH Source Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
Soft Start Time  
fOSC  
1
1.2  
0.60  
0.50  
3.366  
-
RONP  
RONN  
VOUT  
ITHSI  
ITHSO  
VUVLO1  
VUVLO2  
tSS  
0.35  
0.25  
3.300  
20  
PVCC=5V  
PVCC=5V  
-
3.234  
10  
10  
3.6  
3.65  
0.5  
1
VOUT=H  
VOUT=L  
VCC=H to L  
VCC=L to H  
20  
-
3.8  
3.9  
1
4.0  
4.2  
2
Timer Latch Time  
Output Short Circuit  
Threshold Voltage  
tLATCH  
2
3
SCP/TSD operated  
VOUT=H to L  
VSCP  
-
2
2.7  
V
(Note 9) Design GuaranteeOutgoing inspection is not done on all products)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
4/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Electrical Characteristics – continued  
BD9110NV (Ta=25°C, VCC=PVCC=5V, VEN=VCC, R1=10kΩ,R2=5kΩ unless otherwise specified.)  
Parameter  
Standby Current  
Bias Current  
EN Low Voltage  
EN High Voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
Min  
-
-
Typ  
0
250  
GND  
VCC  
1
Max  
10  
350  
0.8  
-
10  
1.2  
320  
270  
0.820  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
-
Standby mode  
Active mode  
VEN=5V  
2.0  
-
0.8  
-
V
EN Input Current  
μA  
MHz  
mΩ  
mΩ  
V
Oscillation Frequency  
Pch FET ON-Resistance (Note 9)  
Nch FET ON-Resistance (Note 9)  
ADJ Voltage  
Output Voltage (Note 9)  
ITH Sink Current  
ITH Source Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
Soft Start Time  
fOSC  
1
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLOTh  
VUVLOHys  
tSS  
200  
150  
0.800  
1.200  
20  
PVCC=5V  
PVCC=5V  
-
0.780  
-
V
10  
10  
3.5  
50  
2.5  
0.5  
-
-
μA  
μA  
V
mV  
ms  
ms  
VOUT=H  
VOUT=L  
VCC=H to L  
20  
3.7  
100  
5
3.9  
200  
10  
2
Timer Latch Time  
tLATCH  
1
(Note 9) Design GuaranteeOutgoing inspection is not done on all products)  
BD9120HFN (Ta=25°C, VCC=PVCC=3.3V, VEN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)  
Parameter  
Standby Current  
Bias Current  
EN Low Voltage  
EN High Voltage  
Symbol  
ISTB  
ICC  
VENL  
VENH  
IEN  
Min  
-
-
-
2.0  
-
0.8  
-
Typ  
0
200  
GND  
VCC  
1
Max  
10  
400  
0.8  
-
Unit  
μA  
μA  
V
Conditions  
EN=GND  
Standby mode  
Active mode  
VEN=3.3V  
V
EN Input Current  
10  
μA  
MHz  
Ω
Ω
V
Oscillation Frequency  
Pch FET ON-Resistance (Note 9)  
Nch FET ON-Resistance (Note 9)  
ADJ Voltage  
Output Voltage(Note 9)  
ITH Sink Current  
ITH Source Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
Soft Start Time  
fOSC  
1
1.2  
0.60  
0.50  
0.820  
-
RONP  
RONN  
VADJ  
VOUT  
ITHSI  
ITHSO  
VUVLO1  
VUVLO2  
tSS  
0.35  
0.25  
0.800  
1.200  
20  
PVCC=3.3V  
PVCC=3.3V  
-
0.780  
-
10  
V
-
-
μA  
μA  
V
V
ms  
ms  
VOUT=H  
VOUT=L  
VCC=H to L  
VCC=L to H  
10  
20  
2.400  
2.425  
0.5  
1
2.500  
2.550  
1
2.600  
2.700  
2
Timer Latch Time  
Output Short Circuit  
Threshold Voltage  
tLATCH  
2
3
SCP/TSD operated  
VOUT=H to L  
VSCP  
-
VOUTx0.5  
VOUTx0.7  
V
(Note 9) Design GuaranteeOutgoing inspection is not done on all products)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
5/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Block Diagram  
BD9106FVM, BD9107FVM】  
VCC  
VREF  
PVCC  
VCC  
Figure 6. BD9106FVM, BD9107FVM Block Diagram  
BD9109FVM】  
VCC  
VREF  
PVCC  
VCC  
VOUT  
Figure 7. BD9109FVM Block Diagram  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
6/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
BD9110NV】  
VCC  
PVCC  
VCC  
Figure 8. BD9110NV Block Diagram  
BD9120HFN】  
VCC  
VREF  
PVCC  
VCC  
Figure 9. BD9120HFN Block Diagram  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
7/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves  
BD9106FVM】  
[VOUT=1.8V]  
[VOUT=1.8V]  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
IO=0A  
Input Voltage: VCC [V]  
EN Voltage: VEN [V]  
Figure 11. Output Voltage vs EN Voltage  
Figure 10. Output Voltage vs Input Voltage  
[VOUT=1.8V]  
[VOUT=1.8V]  
VCC=5V  
IO=0A  
VCC=5V  
Ta=25°C  
Temperature: Ta [°C]  
Output Current: IOUT [A]  
Figure 12. Output Voltage vs Output Current  
Figure 13. Output Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
8/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
[VOUT=1.8V]  
VCC=5V  
VCC=5V  
Ta=25°C  
Temperature: Ta [°C]  
Figure 15. Frequency vs Temperature  
Output Current: IOUT [mA]  
Figure 14. Efficiency vs Output Current  
VCC=5V  
PMOS  
NMOS  
VCC=5V  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 16. ON-Resistance vs Temperature  
Figure 17. EN Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
9/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=5V  
Temperature: Ta [°C]  
Input Voltage: VCC [V]  
Figure 19. Frequency vs Input Voltage  
Figure 18. Circuit Current vs Temperature  
Typical Waveforms  
[SLLM control  
VOUT=1.8V]  
[VOUT=1.8V]  
VCC=PVCC  
=EN  
SW  
VOUT  
VOUT  
VCC=5V  
Ta=25°C  
VCC=5V  
Ta=25°C  
IO=0A  
Figure 20. Soft Start Waveform  
Figure 21. SW Waveform  
( IO=10mA)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
10/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Waveforms – continued  
[PWM control  
VOUT=1.8V]  
[VOUT=1.8V]  
VOUT  
SW  
VOUT  
IOUT  
VCC=5V  
VCC=5V  
Ta=25°C  
Ta=25°C  
Figure 22. SW Waveform  
(IO=200mA)  
Figure 23. Transient Response  
(IO=100mA to 600mA, 10μs)  
[VOUT=1.8V]  
VOUT  
VOUT  
IOUT  
IOUT  
VCC=5V  
Ta=25°C  
Figure 24. Transient response  
(Io=600mA to100mA, 10μs)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
11/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves  
BD9107FVM】  
[VOUT=1.5V]  
[VOUT=1.5V]  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
IO=0A  
Input Voltage: VCC [V]  
Figure 25. Output Voltage vs Input Voltage  
EN Voltage: VEN [V]  
Figure 26. Output Voltage vs EN Voltage  
VCC=5V  
Ta=25°C  
[VOUT=1.5V]  
[VOUT=1.5V]  
VCC=5V  
IO=0A  
Output Current: IOUT [A]  
Temperature: Ta [°C]  
Figure 28. Output Voltage vs Temperature  
Figure 27. Output Voltage vs Output Current  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
12/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
[VOUT=1.5V]  
VCC=5V  
VCC=5V  
Ta=25°C  
Output Current: IOUT [mA]  
Figure 29. Efficiency vs Output Current  
Temperature: Ta [°C]  
Figure 30. Frequency vs Temperature  
VCC=5V  
PMOS  
NMOS  
VCC=5V  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 32. EN Voltage vs Temperature  
Figure 31. ON-Resistance vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
13/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=5V  
Temperature: Ta [°C]  
Input Voltage: VCC [V]  
Figure 34. Frequency vs Input Voltage  
Figure 33. Circuit Current vs Temperature  
Typical Waveforms  
VOUT=1.5V]  
[VOUT=1.5V]  
[SLLM control  
VCC=PVCC  
=EN  
SW  
VOUT  
VOUT  
VCC=5V  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
Figure 35. Soft Start Waveform  
Figure 36. SW Waveform  
( IO=10mA)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
14/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Waveforms – continued  
[VOUT=1.5V]  
VOUT=1.5V]  
[PWM control  
VOUT  
SW  
VOUT  
IOUT  
VCC=5V  
Ta=25°C  
VCC=5V  
Ta=25°C  
Figure 37. SW Waveform  
(IO=500mA)  
Figure 38. Transient Response  
(IO=100mA to 600mA, 10μs)  
[VOUT=1.5V]  
VOUT  
IOUT  
VCC=5V  
Ta=25°C  
Figure 39. Transient Response  
(IO=600mA to 100mA, 10μs)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
15/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves  
BD9109FVM】  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
IO=0A  
Input Voltage: VCC [V]  
EN Voltage: VEN [V]  
Figure 40. Output Voltage vs Input Voltage  
Figure 41. Output Voltage vs EN Voltage  
VCC=5V  
IO=0A  
VCC=5V  
Ta=25°C  
Temperature: Ta [°C]  
Figure 43. Output Voltage vs Temperature  
Output Current: IOUT [A]  
Figure 42. Output Voltage vs Output Current  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
16/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=5V  
VCC=5V  
Ta=25°C  
Temperature: Ta [°C]  
Figure 45. Frequency vs Temperature  
Output Current: IOUT [mA]  
Figure 44. Efficiency vs Output Current  
VCC=5V  
VCC=5V  
PMOS  
NMOS  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 46. ON-Resistance vs Temperature  
Figure 47. EN Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
17/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=5V  
Temperature: Ta [°C]  
Input Voltage: VCC [V]  
Figure 49. Frequency vs Input Voltage  
Figure 48. Circuit Current vs Temperature  
Typical Waveforms  
[SLLM control]  
VCC=PVCC  
=EN  
SW  
VOUT  
VOUT  
VCC=5V  
Ta=25°C  
Figure 50. Soft Start Waveform  
Figure 51. SW Waveform  
( IO=10mA)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
18/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Waveforms – continued  
[PWM control]  
VOUT  
SW  
VCC=5V  
Ta=25°C  
VCC=5V  
Ta=25°C  
VOUT  
IOUT  
Figure 53. Transient Response  
(IO=100mA to 600mA, 10μs)  
Figure 52. SW Waveform  
(IO=500mA)  
VOUT  
IOUT  
VCC=5V  
Ta=25°C  
Figure 54. Transient Response  
(IO=600mA to 100mA, 10μs)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
19/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves  
BD9110NV】  
[VOUT=1.4V]  
[VOUT=1.4V]  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
IO=0A  
Input Voltage: VCC [V]  
Figure 55. Output Voltage vs Input Voltage  
EN Voltage: VEN [V]  
Figure 56. Output Voltage vs EN Voltage  
[VOUT=1.4V]  
[VOUT=1.4V]  
VCC=5V  
IO=0A  
VCC=5V  
Ta=25°C  
Output Current: IOUT [A]  
Temperature: Ta [°C]  
Figure 57. Output Voltage vs Output Current  
Figure 58. Output Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
20/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
[VOUT=1.4V]  
VCC=5V  
VCC=5V  
Ta=25°C  
Temperature: Ta [°C]  
Figure 60. Frequency vs Temperature  
Output Current: IOUT [mA]  
Figure 59. Efficiency vs Output Current  
VCC=5V  
VCC=5V  
PMOS  
NMOS  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 62. EN Voltage vs Temperature  
Figure 61. ON-Resistance vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
21/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=5V  
Ta=25°C  
Input Voltage: VCC [V]  
Figure 64. Frequency vs Input Voltage  
Temperature: Ta [°C]  
Figure 63. Circuit Current vs Temperature  
Typical Waveforms  
[VOUT=1.4V]  
[SLLM control  
VOUT=1.4V]  
VCC=PVCC  
=EN  
SW  
VOUT  
VOUT  
VCC=5V  
Ta=25°C  
IO=0A  
VCC=5V  
Ta=25°C  
Figure 65. Soft Start Waveform  
Figure 66. SW Waveform  
( IO=10mA)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
22/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Waveforms – continued  
[PWM control  
VOUT=1.4V]  
[VOUT=1.4V]  
SW  
VOUT  
IOUT  
VOUT  
VCC=5V  
Ta=25°C  
VCC=5V  
Ta=25°C  
Figure 67. SW Waveform  
( IO=500mA)  
Figure 68. Transient Response  
(IO=100mA to 600mA, 10μs)  
[VOUT=1.4V]  
VOUT  
IOUT  
VCC=5V  
Ta=25°C  
Figure 69. Transient Response  
(IO=600mA to 100mA, 10μs)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
23/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves  
BD9120HFN】  
[VOUT=1.5V]  
Ta=25°C  
IO=0A  
[VOUT=1.5V]  
VCC=3.3V  
Ta=25°C  
IO=0A  
Input Voltage: VCC [V]  
Figure 70. Output Voltage vs Input Voltage  
EN Voltage: VEN [V]  
Figure 71. Output Voltage vs EN Voltage  
[VOUT=1.5V]  
[VOUT=1.5V]  
VCC=3.3V  
IO=0A  
VCC=3.3V  
Ta=25°C  
Output Current: IOUT [A]  
Temperature: Ta [°C]  
Figure 72. Output Voltage vs Output Current  
Figure 73. Output Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
24/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
[VOUT=1.5V]  
VCC=3.3V  
VCC=3.3V  
Ta=25°C  
Output Current: IOUT [mA]  
Temperature: Ta [°C]  
Figure 75. Frequency vs Temperature  
Figure 74. Efficiency vs Output Current  
VCC=3.3V  
VCC=3.3V  
PMOS  
NMOS  
Temperature: Ta [°C]  
Figure 76. ON-Resistance vs Temperature  
Temperature: Ta [°C]  
Figure 77. EN Voltage vs Temperature  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
25/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Performance Curves – continued  
VCC=3.3V  
Ta=25°C  
Temperature: Ta [°C]  
Input Voltage: VCC [V]  
Figure 79. Frequency vs Input Voltage  
Figure 78. Circuit Current vs Temperature  
Typical Waveforms  
[VOUT=1.5V]  
[SLLM control  
VOUT=1.5V]  
VCC=PVCC  
=EN  
SW  
VOUT  
VOUT  
V =3.3V  
CC  
Ta=25°C  
VCC=3.3V  
Ta=25°C  
I =0A  
O  
Figure 80. Soft Start Waveform  
Figure 81. SW Waveform  
( IO=10mA)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
26/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Typical Waveforms – continued  
VOUT=1.5V]  
[PWM control  
[VOUT=1.5V]  
VOUT  
SW  
IOUT  
VOUT  
VCC=3.3V  
Ta=25°C  
VCC=3.3V  
Ta=25°C  
Figure 82. SW Waveform  
( IO=200mA)  
Figure 83. Transient Response  
(IO=100mA to 600mA, 10μs)  
[VOUT=1.5V]  
VOUT  
IOUT  
VCC=3.3V  
Ta=25°C  
Figure 84. Transient Response  
(IO=600mA to 100mA, 10μs)  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
27/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Application Information  
1. Operation  
BD9106FVM, BD9107FVM, BD9109FVM, BD9110NV, and BD9120HFN are synchronous step-down switching regulators  
that achieve fast transient response by employing current mode PWM control system. They utilize switching operation  
either in PWM (Pulse Width Modulation) mode for heavier load, or SLLMTM (Simple Light Load Mode) operation for  
lighter load to improve efficiency.  
(1) Synchronous Rectifier  
Integrated synchronous rectification using two MOSFETS reduces power dissipation and increases efficiency when  
compared to converters using external diodes. Internal shoot-through current limiting circuit further reduces power  
dissipation.  
(2) Current Mode PWM Control  
The PWM control signal of this IC depends on two feedback loops, the voltage feedback and the inductor current  
feedback.  
(a) PWM (Pulse Width Modulation) Control  
The clock signal coming from OSC has a frequency of 1Mhz. When OSC sets the RS latch, the P-Channel  
MOSFET is turned on and the N-Channel MOSFET is turned off. The opposite happens when the current  
comparator (Current Comp) resets the RS latch i.e. the P-Channel MOSFET is turned off and the N-Channel  
MOSFET is turned on. Current Comp’s output is a comparison of two signals, the current feedback control signal  
“SENSE” which is a voltage proportional to the current IL, and the voltage feedback control signal, FB.  
(b) SLLMTM (Simple Light Load Mode) control  
When the control mode is shifted by PWM from heavier load to lighter load or vice versa, the switching pulse is  
designed to turn OFF with the device held operating in normal PWM control loop. This allows linear operation  
without voltage drop or deterioration in transient response during the sudden load changes. Although the PWM  
control loop continues to operate with a SET signal from OSC and a RESET signal from Current Comp, it is so  
designed such that the RESET signal is continuously sent even if the load is changed to light mode where the  
switching is tuned OFF and the switching pulses disappear. Activating the switching discontinuously reduces the  
switching dissipation and improves the efficiency.  
SENSE  
Current  
Comp  
VOUT  
RESET  
FB  
R
S
Q
IL  
Level  
Shift  
SET  
Driver  
Logic  
VOUT  
Gm Amp  
SW  
Load  
OSC  
RITH  
Figure 85. Diagram of Current Mode PWM Control  
PVCC  
SENSE  
PVCC  
Current  
Comp  
Current  
SENSE  
Comp  
FB  
FB  
SET  
SET  
GND  
GND  
GND  
GND  
RESET  
SW  
RESET  
GND  
SW  
GND  
IL  
IL (AVE)  
IL  
0A  
VOUT  
VOUT  
VOUT(AVE)  
VOUT(AVE)  
Not switching  
Figure 86. PWM Switching Timing Chart  
Figure 87. SLLM Switching Timing Chart  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
28/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
2. Description of Functions  
(1) Soft-Start Function  
During start-up, the soft-start circuit gradually establishes the output voltage to limit the input current. This prevents the  
overshoot in the output voltage and inrush current.  
(2) Shutdown Function  
When the EN terminal is “low”, the device operates in Standby Mode and all functional blocks, including reference  
voltage circuit, internal oscillator and drivers, are turned OFF. Circuit current during standby is A (Typ).  
(3) UVLO Function  
The UVLO circuit detects whether the supplied input voltage is sufficient to obtain the output voltage of this IC. The  
UVLO threshold, which has a hysteresis of 50mV to 300mV (Typ), prevents output bouncing.  
Hysteresis 50 to 300mV  
VCC  
EN  
VOUT  
tSS  
tSS  
tSS  
Soft start  
Standby  
mode  
Standby  
mode  
Standby mode  
Operating mode  
Operating mode  
Operating mode  
Standby mode  
UVLO  
EN  
UVLO  
UVLO  
Soft Start Time(typ)  
Figure 88. Soft Start, Shutdown, UVLO Timing Chart  
BD9106FVM  
3
BD9107FVM BD9109FVM  
BD9110NV  
5
BD9120HFN  
1
Unit  
msec  
tSS  
1
1
(4) Short-circuit Protection with Time Delay Function  
To protect the IC from breakdown, the short-circuit protection turns the output off when the internal current limiter is  
activated continuously for a fixed time (tLATCH) or more. The output that is kept off may be turned on again by restarting  
EN or by resetting UVLO.  
EN  
Output OFF  
latch  
VOUT  
Limit  
IL  
1msec  
Standby  
mode  
Standby  
mode  
Operating mode  
Operating mode  
EN  
Timer latch  
EN  
Timer Latch time (typ)  
Figure 89. Short-circuit Protection with Time Delay Diagram  
BD9106FVM  
1
BD9107FVM  
1
BD9109FVM  
2
BD9110NV  
1
BD9120HFN  
2
Unit  
msec  
tLATCH  
Note: In addition to current limit circuit, output short detect circuit is built-in on BD9109FVM and BD9120HFN. If output voltage falls below  
2V(typ, BD9109FVM) or VOUTx0.5(typ,BD9120HFN), output voltage will hold turned OFF.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
29/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
3. Information on Advantages  
Advantage 1Offers fast transient response by using current mode control system  
Conventional product (VOUT of which is 3.3 volts)  
BD9109FVM (Load response IO=100mA to 600mA)  
VOUT  
VOUT  
228mV  
110mV  
IOUT  
IOUT  
Voltage drop due to sudden change in load was reduced by about 50%.  
Figure 90. Comparison of Transient Response  
Advantage 2Offers high efficiency for all load ranges.  
(1) For lighter load:  
This IC utilizes the current mode control called SLLMTM, which reduces various dissipations such as switching  
dissipation (PSW), gate charge/discharge dissipation, ESR dissipation of output capacitor (PESR) and ON-Resistance  
dissipation (PRON) that may otherwise cause reduction in efficiency.  
Achieves efficiency improvement for lighter load.  
(2) For heavier load:  
This IC utilizes the synchronous rectifying mode and uses low ON-Resistance MOSFET power transistors.  
ON-Resistance of High side MOSFET: 200mΩ to 350mΩ (Typ)  
100  
ON-Resistance of Low side MOSFET: 150mΩ to 250mΩ (Typ)  
SLLMTM  
50  
0
PWM  
improvement by SLLM system  
improvement by synchronous rectifier  
Achieves efficiency improvement for heavier load.  
Offers high efficiency for all load ranges with the improvements mentioned above.  
0.001  
0.01  
0.1  
1
Output current :IOUT[A]  
Figure 91. Efficiency  
Advantage 3:・Supplied in smaller package due to small-sized power MOSFETs.  
(3 packages are MOSP8, HSON8, SON008V5060)  
Allows reduction in size of application products  
Output capacitor CO required for current mode control: 10 μF ceramic capacitor  
Inductance L required for the operating frequency of 1 MHz: 4.7 μH inductor  
(BD9110NV: Co=22µF, L=2.2µH)  
Reduces mounting area required.  
VCC  
15mm  
CIN  
CIN  
RITH  
L
DC/DC  
Convertor  
Controller  
L
VOUT  
10mm  
CITH  
RITH  
CITH  
CO  
CO  
Figure 92. Example Application  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
30/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
4. Switching Regulator Efficiency  
Efficiency η may be expressed by the equation shown below:  
VOUT IOUT  
VIN IIN  
P
P
OUT  
OUT  
  
100  
100  
100  
%
   
P
P
Pd  
IN  
OUT  
Efficiency may be improved by reducing the switching regulator power dissipation factors Pdα as follows:  
Dissipation factors:  
(1) ON-Resistance Dissipation of Inductor and FETPd(I2R)  
Pd  
I2R  
IOUT 2   
RCOIL RON  
Where:  
RCOIL is the DC resistance of inductor  
RON is the ON-Resistance of FET  
IOUT is the output current  
(2) Gate Charge/Discharge DissipationPd(Gate)  
Pd  
GATE  
Cgs f V 2  
Where:  
Cgs is the gate capacitance of FET  
f is the switching frequency  
V is the gate driving voltage of FET  
(3) Switching DissipationPd(SW)  
VIN 2 CRSS IOUT f  
Pd  
SW   
IDRIVE  
Where:  
CRSS is the reverse transfer capacitance of FET  
IDRIVE is the peak current of gate  
(4) ESR Dissipation of CapacitorPd(ESR)  
Pd  
ESR  
IRMS 2 ESR  
Where:  
IRMS is the ripple current of capacitor  
ESR is the equivalent series resistance  
(5) Operating Current Dissipation of ICPd(IC)  
Pd  
IC VIN ICC  
Where:  
ICC is the circuit current  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
31/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
5. Consideration on Permissible Dissipation and Heat Generation  
Since these ICs function with high efficiency without significant heat generation in most applications, no special  
consideration is needed on permissible dissipation or heat generation. In case of extreme conditions, however, including  
lower input voltage, higher output voltage, heavier load, and/or higher temperature, the permissible dissipation and/or heat  
generation must be carefully considered.  
For dissipation, only conduction losses due to DC resistance of inductor and ON-Resistance of FET are considered. This  
is because conduction losses are the most significant among other dissipations mentioned above, such as gate  
charge/discharge dissipation and switching dissipation.  
4layer74.2mm x 74.2mm x 1.6mmt,  
area of cupper foil in Top layer 5505mm2)  
θja=23.6°C/W  
4layer74.2mm x 74.2mm x 1.6mmt  
area of cupper foil in Top layer 6.28mm2)  
θja=31.4°C/W  
1 layer74.2mm x 74.2mm x 1.6mmt  
area of cupper foil in Top layer 0mm2)  
θja=137.4°C/W  
1layer70mm x 70mm x 1.6mmt  
area of cupper foil 65%) θja=71.4°C/W  
1 layer70mm x 70mm x 1.6mmt  
area of cupper foil 7%) θja=92.4°C/W  
1 layer70mm x 70mm x 1.6mmt  
area of cupper foil 0.2%) θja=198.4°C/W  
1layer70mm x 70mm x 1.6mmt)  
θja=212.8°C/W  
IC only  
IC onlyθja=195.3°C/W  
θja=322.6°C/W  
6
1000  
800  
2.0  
1.6  
5.297W  
3.981W  
1.75W  
1.33W  
0.63W  
4
587.4mW  
600  
1.2  
0.8  
387.5mW  
400  
200  
0
2
0.910W  
0.640W  
0.4  
0
0
0
25  
50  
75 85 100  
125  
150  
105  
100  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75  
125  
150  
Ambient Temperature: Ta [°C]  
Ambient Temperature:Ta [°C]  
Ambient Temperature: Ta [°C]  
Figure 93. Thermal Derating Curve  
(MSOP8)  
Figure 94. Thermal Derating Curve  
(HSON8)  
Figure 95. Thermal Derating Curve  
(SON008V5060)  
P IOUT 2   
RCOIL RON  
If VCC=5V, VOUT=3.3V, RCOIL=0.15Ω, RONP=0.35Ω, RONN=0.25Ω  
IOUT=0.8A, for example,  
RON D RONP  
1D  
RONN  
D=VOUT/VCC=3.3/5=0.66  
RON=0.66x0.35+(1-0.66)x0.25  
=0.231+0.085  
Where:  
D is the ON duty (=VOUT/VCC  
RCOIL is the DC resistance of coil  
)
=0.316[Ω]  
RONP is the ON-Resistance of P-channel MOS FET  
RONN is the ON-Resistance of N-channel MOS FET  
IOUT is the Output current  
P 0.82   
298mV  
0.150.316  
Since RONP is greater than RONN in these ICs, the dissipation increases as the ON duty becomes greater. Taking into  
consideration the dissipation shown above, thermal design must be carried out with allowable sufficient margin.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
32/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
6. Selection of Components Externally Connected  
(1) Selection of inductor (L)  
The inductance significantly depends on output ripple current.  
As seen in equation (1), the ripple current decreases as the  
inductor and/or switching frequency increases.  
IL  
ΔIL  
VCC VOUT  
VOUT  
VCC  
IL  
A
   
・・・(1)  
L VCC f  
Appropriate ripple current at output should be +/-30% of the  
maximum output current.  
IL  
L
VOUT  
・・・(2)  
IL 0.3IOUTMax  
A
   
CO  
VCC VOUT  
VOUT  
L   
H
・・・(3)  
IL VCC f  
Figure 96. Output Ripple Current  
Where:  
ΔIL is the Output ripple current, and  
f is the Switching frequency  
Note: Current exceeding the current rating of the inductor results in magnetic saturation of the inductor, which decreases  
efficiency.  
The inductor must be selected allowing sufficient margin with which the peak current may not exceed its current rating.  
If VCC=5V, VOUT=3.3V, f=1MHz, ΔIL=0.3x0.8A=0.24A, for example, (BD9109FVM)  
(5 3.3)3.3  
0.2451M  
L   
4.6754.7  
H  
Note: Select the inductor of low resistance component (such as DCR and ACR) to minimize dissipation in the inductor  
for better efficiency.  
(2) Selection of Output Capacitor (CO)  
Output capacitor should be selected with the consideration of the stability region  
and the equivalent series resistance required to minimize ripple voltage.  
VCC  
Output ripple voltage is determined by the equation (4):  
VOUT  
VOUT  IL ESR [V]  
・・・(4)  
L
ESR  
CO  
Where:  
ΔIL is the Output ripple current, and  
ESR is the Equivalent series resistance of output capacitor  
Figure 97. Output Capacitor  
Note: Rating of the capacitor should be determined allowing sufficient margin  
against output voltage.  
Less ESR allows reduction in output ripple voltage.  
The output rise time must be designed to fall within the soft-start time, and the capacitance of output capacitor should  
be determined with consideration on the requirements of equation (5):  
tSS  
ILIMIT IOUT  
VOUT  
・・・(5)  
CO  
Where:  
tSS: Soft-Start time  
ILIMIT: Over current detection level, 2A(Typ)  
In case of BD9109FVM, for instance, and if VOUT=3.3V, IOUT=0.8A, and tSS=1ms,  
1m  
2 0.8  
3.3  
CO  
364  
F  
Inappropriate capacitance may cause problem in startup. A 10μF to 100μF ceramic capacitor is recommended.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
33/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
(3) Selection of Input Capacitor (CIN)  
Input capacitor must be a low ESR capacitor with a capacitance sufficient to  
cope with high ripple current to prevent high transient voltage. The ripple current  
IRMS is given by the equation (6):  
VCC  
CIN  
VOUT  
VCC VOUT  
[A]・・・(6)  
VOUT  
IRMS IOUT   
VCC  
L
Co  
< Worst case > IRMSMax  
IOUT  
When VCC is twice the VOUT  
,
IRMS  
2
Figure 98. Input Capacitor  
If VCC=5V, VOUT=3.3V, and IOUTMax=0.8A, (BD9109FVM)  
3.3(53.3)  
IRMS 0.8  
0.38  
ARMS  
5
A low ESR 10μF/10V ceramic capacitor is recommended to reduce ESR dissipation of input capacitor for better efficiency.  
(4) Determination of RITH, CITH for Phase Compensation  
As the Current Mode Control is designed to limit the inductor current, a pole (phase lag) appears in the low frequency  
area due to a CR filter consisting of an output capacitor and a load resistance, while a zero (phase lead) appears in the  
high frequency area due to the output capacitor and its ESR. So, the phases are easily compensated by adding a zero  
to the power amplifier output with C and R as described below to cancel a pole at the power amplifier.  
fp(Min)  
1
fp   
A
2  
RO CO  
fp(Max)  
Gain  
[dB]  
1
0
fZ  
ESR  
fZ(ESR)  
2ESRCO  
IOUTMin  
IOUTMax  
Pole at power amplifier  
0
Phase  
[deg]  
When the output current decreases, the load resistance  
Ro increases and the pole frequency decreases.  
-90  
1
fp Min   
[Hz] withlighterload  
[Hz] with heavierload  
Figure 99. Open Loop Gain Characteristics  
2
ROMax CO  
1
fp Max   
2  
ROMin CO  
A
Zero at power amplifier  
fZ(Amp)  
Gain  
[dB]  
Increasing capacitance of the output capacitor lowers the  
pole frequency while the zero frequency does not change.  
(This is because when the capacitance is doubled, the  
capacitor ESR is reduced to half.)  
0
0
Phase  
[deg]  
1
fZ Amp   
-90  
2RITH CITH  
Figure 100. Error Amp Phase Compensation Characteristics  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
34/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
CIN  
L
VCC  
VCC,PVCC  
GND,PGND  
EN  
SW  
VOUT  
VOUT  
VOUT  
ITH  
ESR  
CO  
RO  
RITH  
CITH  
Figure 101. Typical Application  
Stable feedback loop may be achieved by canceling the pole fp (Min) produced by the output capacitor and the load  
resistance with CR zero correction by the error amplifier.  
fzAmp fp Min  
1
1
  
2  
RITH CITH  
2  
ROMax CO  
(5) Setting the Output Voltage (except for BD9109FVM)  
The output voltage VOUT is determined by the equation (7):  
L
VOUT  
R2 / R 1 VADJ ・・・(7)  
1
6
1
Output  
SW  
CO  
R2  
R1  
Where:  
VADJ is the Voltage at ADJ terminal (0.8V Typ)  
ADJ  
The required output voltage may be determined by adjusting R1 and R2.  
Figure 102. Determination of Output Voltage  
Adjustable output voltage range : 1.0V to 1.5V/ BD9107FVM, BD9120HFN  
1.0V to 2.5V/BD106FVM, BD9110NV  
Use 1 kΩ to 100 kΩ resistor for R1. If a resistor with resistance higher than 100 kΩ is used, check the assembled set  
carefully for ripple voltage, etc.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
35/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
7. Cautions on PC Board Layout  
BD9106FVM, BD9107FVM, BD9109FVM, BD9120HFN  
VOUT/ADJ  
ITH  
VCC  
PVCC  
SW  
1
2
3
4
8
7
6
5
VCC  
RITH  
CIN  
L
EN  
EN  
VOUT  
CITH  
CO  
GND  
PGND  
GND  
Figure 103. Layout Diagram  
BD9110NV  
VCC  
EN  
R2  
R1  
1
2
8
7
EN  
ADJ  
VCC  
ITH  
PVCC  
SW  
L
3
4
6
5
VOUT  
GND  
RITH  
CIN  
Co  
GND  
PGND  
CITH  
Figure 104. Layout Diagram  
For the sections drawn with heavy line, use thick conductor pattern as short as possible.  
Lay out the input ceramic capacitor CIN closer to the pins PVCC and PGND, and the output capacitor CO closer to  
the pin PGND.  
Lay out CITH and RITH between the pins ITH and GND as neat as possible with least necessary wiring.  
Note: The package of HSON8 (BD9120HFN) and SON008V5050 (BD9110NV) has thermal FIN on the reverse of the package.  
The package thermal performance may be enhanced by bonding the FIN to GND plane which take a large area of PCB.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
36/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
8. Recommended Components Lists On Above Application  
Table1. [BD9106FVM]  
Symbol  
L
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
CIN  
CO  
10μF  
10μF  
Kyocera  
Kyocera  
Murata  
ROHM  
CITH  
750pF  
VOUT=1.0V  
18kΩ  
22kΩ  
22kΩ  
27kΩ  
36kΩ  
MCR10 1802  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
VOUT=2.5V  
ROHM  
MCR10 2202  
RITH  
Resistance  
ROHM  
MCR10 2202  
ROHM  
MCR10 2702  
ROHM  
MCR10 3602  
Table2. [BD9107FVM]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
CIN  
CO  
10μF  
10μF  
Kyocera  
Kyocera  
Murata  
ROHM  
CITH  
1000pF  
VOUT=1.0V  
4.3kΩ  
6.8kΩ  
9.1kΩ  
12kΩ  
MCR10 4301  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
ROHM  
MCR10 6801  
RITH  
Resistance  
ROHM  
MCR10 9101  
ROHM  
MCR10 1202  
Table3. [BD9109VM]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
CIN  
CO  
10μF  
10μF  
330pF  
30kΩ  
Kyocera  
Kyocera  
Murata  
CITH  
RITH  
Resistance  
ROHM  
MCR10 3002  
Table4. [BD9110NV]  
Symbol  
Part  
Value  
2.2μH  
10μF  
Manufacturer  
TDK  
Series  
L
Coil  
LTF5022T-2R2N3R2  
CM316X5R106K10A  
CM316B226K06A  
GRM18series  
CIN  
CO  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Kyocera  
Kyocera  
Murata  
22μF  
CITH  
1000pF  
VOUT=1.0V  
VOUT=1.2V  
VOUT=1.5V  
VOUT=1.8V  
VOUT=2.5V  
RITH  
Resistance  
12kΩ  
ROHM  
MCR10 1202  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
37/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Table5. [BD9120HFN]  
Symbol  
Part  
Value  
Manufacturer  
Sumida  
TDK  
Series  
CMD6D11B  
L
Coil  
4.7μH  
VLF5014AT-4R7M1R1  
CM316X5R106K10A  
CM316X5R106K10A  
GRM18series  
CIN  
CO  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
10μF  
10μF  
Kyocera  
Kyocera  
Murata  
CITH  
680pF  
VOUT=1.0V  
8.2kΩ  
8.2kΩ  
4.7kΩ  
ROHM  
MCR10 8201  
RITH  
Resistance  
VOUT=1.2V  
VOUT=1.5V  
ROHM  
MCR10 8201  
ROHM  
MCR10 4701  
Note:The parts list presented above is an example of recommended parts. Although the parts are the same, actual circuit characteristics should be checked on  
your application carefully before use. Be sure to allow sufficient margins to accommodate variations between external devices and this IC when employing  
the depicted circuit with other circuit constants modified. Both static and transient characteristics should be considered in establishing these margins. When  
switching noise is substantial and may impact the system, a low pass filter should be inserted between the VCC and PVCC pins, and a schottky barrier diode  
established between the SW and PGND pins.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
38/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
I/O Equivalent Circuit  
BD9106FVM, BD9107FVM, BD9109FVM】  
PVCC  
PVCC  
PVCC  
SW pin  
EN pin  
VCC  
10kΩ  
SW  
EN  
VOUT pin (BD9109FVM)  
ADJ pin (BD9106FVM, BD9107FVM)  
VCC  
VCC  
10kΩ  
10kΩ  
VOUT  
ADJ  
ITH pin  
VCC  
VCC  
ITH  
BD9110NV, BD9120HFN】  
EN pin  
SW pin  
PVCC  
PVCC  
PVCC  
10kΩ  
EN  
SW  
ITH pin (BD9120HFN)  
ITH pin (BD9110NV)  
VCC  
VCC  
ITH  
ITH  
ADJ pin  
10kΩ  
ADJ  
Figure 105. I/O Equivalent Circuit  
39/46  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
40/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Operational Notes – continued  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 106. Example of monolithic IC structure  
13. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
41/46  
TSZ2211115001  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Ordering Information  
x x  
B D  
9
1
x
x
x
x
x
-
Part Number  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SON008V5060,)  
NV : SON008V5060  
HFN:MSOP8  
TR: Embossed tape and reel  
(MSOP8, HSON8)  
FVM:HSON8  
Marking Diagrams  
BD9106FVM  
BD9107FVM  
MSOP8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
D 9 1  
D 9 1  
LOT Number  
0
6
0
7
1PIN MARK  
1PIN MARK  
BD9109FVM  
MSOP8(TOP VIEW)  
BD9110NV  
SON008V5060 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
D 9 1  
B D 9 11 0  
LOT Number  
0
9
1PIN MARK  
1PIN MARK  
BD9120HFN  
HSON8 (TOP VIEW)  
Part Number Marking  
LOT Number  
D 9 1  
2 0  
1PIN MARK  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
42/46  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Physical Dimension Tape and Reel information  
Package Name  
MSOP8  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
43/46  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Physical Dimension Tape and Reel information - continued  
Package Name  
HSON8  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
44/46  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Physical Dimension Tape and Reel information - continued  
Package Name  
SON008V5060  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
45/46  
Datasheet  
BD9106FVM BD9107FVM BD9109FVM BD9110NV BD9120HFN  
Revision History  
Date  
Revision  
Changes  
17.Jan.2012  
20.Sep.2013  
02.Oct.2014  
001  
002  
003  
New Release  
Revise the items about Power dissipation  
Applied the ROHM Standard Style and improved understandability.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J3J0AJ00090-1-2  
02.Oct.2014 Rev.003  
46/46  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice GE  
Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice GE  
Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BD9106FVM - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BD9106FVM  
MSOP8  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY