BD95602MUV-LB [ROHM]

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BD95602MUV-LB是可在宽输入电压范围(5.5~28V)内通过大电流输出低输出电压(1.0V~5.5V)的2ch开关稳压控制器。可通过使用N-MOSFET外接开关晶体管,实现高效率的同步整流开关稳压器。采用罗姆独创的恒定时间控制模式升级版H3Reg™,可实现很快的瞬态响应特性。此外,为改善轻负载时的效率,采用SLLM™(Simple Light Load Mode),可实现对大范围负载电流的高效率。具有2ch LDO(5V/3.3V (total 50mA))、软启动功能、频率可变功能、带计时锁存的短路保护电路功能、过电压保护功能、电源良好输出功能,适用于大电流用途。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7;
BD95602MUV-LB
型号: BD95602MUV-LB
厂家: ROHM    ROHM
描述:

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BD95602MUV-LB是可在宽输入电压范围(5.5~28V)内通过大电流输出低输出电压(1.0V~5.5V)的2ch开关稳压控制器。可通过使用N-MOSFET外接开关晶体管,实现高效率的同步整流开关稳压器。采用罗姆独创的恒定时间控制模式升级版H3Reg™,可实现很快的瞬态响应特性。此外,为改善轻负载时的效率,采用SLLM™(Simple Light Load Mode),可实现对大范围负载电流的高效率。具有2ch LDO(5V/3.3V (total 50mA))、软启动功能、频率可变功能、带计时锁存的短路保护电路功能、过电压保护功能、电源良好输出功能,适用于大电流用途。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7

开关 控制器 软启动 晶体管 稳压器
文件: 总42页 (文件大小:3332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
5.5V to 28V Input,  
2ch Synchronous Buck DC/DC Controller  
BD95602MUV-LB  
General Description  
Applications  
Industrial Equipment ,FPGA, POL Power Supply,  
This is the product guarantees long time support in  
Industrial market.  
Mobile PC, Desktop PC, LCD-TV,  
Digital Components, etc.  
BD95602MUV-LB is a dual buck regulator controller with  
adjustable output voltage from1.0V to 5.5V and an input  
voltage range of 5.5 to 28V. High efficiency is achieved  
Key Specifications  
Input Voltage Range:  
Output Voltage Range:  
Switching Frequency:  
5.5V to 28V  
1.0V to 5.5V  
150k to 500MHz(Typ)  
with an external synchronous Nch-MOSFET. H3RegTM  
,
Rohm’s advanced proprietary control method that uses  
constant on-time control to provide ultra high transient  
responses to load changes is used. SLLM(Simple Light  
Load Mode) technology is added to improve efficiency  
with light loads giving high efficiency over a wide load  
range. In addition to the dual buck regulator controllers,  
here are 2 LDO regulators included that are fixed output  
voltage of 3.3V and 5.0V. Other functions included are  
soft start, variable frequency, short circuit protection with  
timer latch, over voltage, and power good outputs. This  
buck regulator is optimal for high-current applications.  
Operating Temperature Range:  
-20°C to +85°C  
Package  
VQFN032V5050  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 5.00mm x 1.00mm  
Features  
Long Time Support Product for Industrial  
Applications.  
Adjustable Simple Light Load Mode (SLLM), Quiet  
light Load Mode (QLLM), Forced continuous Mode.  
Multifunctional Protection Circuit  
-Settable Over Current Protection (OCP)  
-Thermal Shut down (TSD)  
VQFN032V5050  
-Under Voltage Lock Out (UVLO)  
-Over Voltage Protection (OVP)  
-Short Circuit Protection with Timer-Latch (SCP)  
150kHz to 500kHz Switching frequency.  
Adjustable Soft Start.  
Power Good.  
Dual Linear Regulator (5V/3.3V (total 50mA)).  
Output Discharge.  
Reference voltage Circuit (0.7V).  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2012 ROHM Co., Ltd. All rights reserved.  
1/39  
TSZ22111 14 001  
BD95602MUV-LB  
Typical Application Circuit  
R15  
R25  
16  
15  
14  
13  
12  
11  
10  
9
R5  
R6  
ILIM1  
ILIM2  
VO2  
SS2  
17  
18  
19  
20  
21  
22  
23  
24  
8
7
6
5
4
3
2
1
MCTL1  
SS1  
C5  
C6  
PGOOD1  
EN1  
PGOOD2  
EN2  
U1  
BD95602MUV-LB  
EN_2.5  
EN_3.3  
BOOT1  
HG1  
BOOT2  
HG2  
L1  
L2  
2.5V  
3.3V  
SW1  
SW2  
25  
26  
27  
28  
29  
30  
31  
32  
GND PGND  
Figure 1. Application Circuit  
Pin Configuration  
24 23 22 21 20 19 18 17  
PGND1 25  
LG1 26  
16 MCTL2  
15  
14  
13  
12  
11  
10  
9
FS1  
27  
FB1  
Vo1  
REG2  
REG1  
28  
29  
AGND  
FIN  
REF  
FB2  
VIN 30  
LG2  
31  
32  
FS2  
CTL  
PGND2  
3
4
5
7
8
Figure 2. Pin Configuration  
2/39  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
BD95602MUV-LB  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
1
24  
SW2  
SW1  
Ground pin for High-side FET. The maximum voltage range of this pin is 30V.  
2
23  
HG2  
HG1  
High-side FET gate drive pin.  
This is the power supply pin for High-side FET driver. The maximum voltage range to  
ground is to 35V, to SW pin is to 7V. In switching operations, the voltage swings from  
(VIN+REG1) to REG1 by BOOT pin operation.  
3
22  
BOOT2  
BOOT1  
When EN pin voltage is at least 2.3V, the status of the switching regulator becomes active.  
Conversely, the status switches off when EN pin voltage goes lower than 0.8V.  
This pin is pulled down to AGND with 1MΩ resistor.  
4
21  
EN2  
EN1  
5
20  
PGOOD2  
PGOOD1  
If FB pin voltage is 15% or less of reference voltage, it will output low level.  
The output format is open drain, so please connect pull-up resistance.  
This is the setting pin for soft start. The rising time is determined by the capacitor connected  
between SS and ground, and the fixed current inside IC after it is the status of low in standby  
mode. It controls the output voltage till SS voltage catch up the REF pin to become the SS  
terminal voltage.  
6
19  
SS2  
SS1  
7
27  
VO2  
VO1  
This is the output discharge pin, and output voltage feedback pin for frequency setting.  
This is the coil current limit setting pin. Set the resistor which is connected in between ground.  
8
17  
ILIM2  
ILIM1  
When CTL pin voltage is at least 2.3V, the status of the linear regulator REG1 and REG2  
output becomes active. Conversely, the status switches off when CTL pin voltage goes lower  
than 0.8V. The switching regulator doesnt become active when the status of CTL pin is low, if  
the status of EN pin is high.  
9
CTL  
This pin is pulled up to VIN with 1MΩ resistor.  
10  
15  
FS2  
FS1  
Frequency input. A resistor to ground will set the switching frequency.  
Frequencies from 150kHz to 500kHz are possible.  
11  
14  
FB2  
FB1  
This is the output voltage feedback pin.  
The IC controls reference voltage and FB terminal voltage are almost same.  
This is the output voltage setting pin.  
The IC controls reference voltage and FB terminal voltage are almost same.  
12  
13  
REF  
AGND  
Ground input for control circuit.  
This is the operation mode setting pin. If terminal voltage reaches less than 0.8V, it will be Low  
Level.  
If terminal voltage reaches more than 2.3V, it will be High Level. This pin is pulled down to  
AGND with 300kΩ resistor.  
Input  
Control Mode  
16  
18  
MCTL2  
MCTL1  
MCTL1  
Low  
MCTL2  
Low  
SLLM  
Low  
High  
Low  
QLLM  
High  
High  
Continuous PWM Mode  
Continuous PWM Mode  
High  
25  
32  
PGND1  
PGND2  
This is the ground pin for Low-side FET drive.  
This is the Low-side FET gate drive pin. It is operated in switching between REG1 to PGND.  
ON resistance of output stage when High, it is 2and when Low, it is 0.5drive  
Low-side FET gate with the high pace.  
26  
31  
LG1  
LG2  
This is the output pin for 3.3V/50mA linear regulator (5V/3.3V (total 50mA)).  
Please connect 10µF capacitor which characteristic is more than X5R near the pin.  
28  
29  
REG2  
REG1  
This is the output pin for 5V/50mA linear regulator (5V/3.3V (total 50mA)).  
Please connect 10µF capacitor which characteristic is more than X5R near the pin.  
Supply pin of H3RegTM control circuit and linear regulator. Monitor input voltage and determine  
necessary on-time. As a result, this terminal voltage changes, and then the IC operation  
become unstable. Please connect 10µF capacitor which characteristic is more than X5R near  
the pin.  
30  
VIN  
FIN  
FIN  
This is the thermal PAD. Please connect to the ground.  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/39  
30.May.2017 Rev.003  
TSZ2211115001  
BD95602MUV-LB  
Output condition table  
Input  
EN1  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Output  
REG2(3.3V)  
CTL  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
EN2  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
REG1(5V)  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC2  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
*CTL pin is connected to VIN pin with 1MΩ resistor(pull up) internal IC.  
*EN pin is connected to AGND pin with 1MΩ resistor(pull down) internal IC.  
Block Diagram  
3
2
1
31  
REG1  
32  
22  
23  
24  
26  
25  
REG1  
AGND  
13  
CL2  
SCP2  
OVP2  
CL1  
SCP1  
OVP1  
Short through  
Protection  
Circuit  
Short through  
Protection  
Circuit  
FS1 RFS1  
PGOOD1  
FS2  
15  
20  
10  
5
SLLMTM  
Block  
SLLMTM  
Block  
MCTL  
FS2  
MCTL  
PGOOD2  
H3RegTM  
Controller  
Block  
H3RegTM  
Controller  
Block  
FS1  
EN2  
EN1  
FB2  
FB1  
Thermal  
Protection  
11  
6
14  
12  
19  
REF  
SS1  
SS2  
ILIM2  
ILIM1  
8
17  
Reference  
Block  
5V  
Reg  
3.3V  
Reg  
EN2  
EN1  
21  
4
30  
29  
9
27  
7
28  
18  
16  
Figure 3. Block Diagram  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/39  
TSZ2211115001  
BD95602MUV-LB  
Absolute Maximum Ratings(Ta = 25°C)  
Parameter  
Symbol  
Rating  
30  
Unit  
V
Conditions  
Note 1  
VIN, CTL, SW1, SW2  
EN1, EN2, PGOOD1, PGOOD2  
Vo1, Vo2, MCTL1, MCTL2  
Note 1, Note 2  
6
V
FS1, FS2, FB1, FB2, ILIM1, ILIM2  
,
Note 1  
REG1+0.3  
V
V
V
SS1, SS2, LG1, LG2, REF,REG2  
BOOT1, BOOT2  
BOOT1-SW1, BOOT2-SW2,  
HG1-SW1, HG2-SW2  
HG1  
Note 1, Note 2  
Note 1, Note 2  
35  
7
Terminal Voltage  
Note 1, Note 2  
Note 1, Note 2  
Note 1, Note 2  
Note 3  
BOOT1+0.3  
BOOT2+0.3  
AGND±0.3  
0.38  
V
HG2  
V
PGND1, PGND2  
V
Power Dissipation1  
Power Dissipation2  
Power Dissipation3  
Power Dissipation4  
Operating Temperature Range  
Storage Temperature Range  
Pd1  
Pd2  
W
W
W
W
°C  
°C  
°C  
Note 4  
0.88  
Note 5  
Pd3  
3.26  
Note 6  
Pd4  
4.56  
Topr  
Tstg  
Tjmax  
-20 to +85  
-55 to +150  
+150  
Junction Temperature  
(Note 1) Not to exceed Pd.  
(Note 2) Instantaneous surge voltage, back electromotive force and voltage under less than 10% duty cycle.  
(Note 3) Derating in done 3.0 mW/°C for operating above Ta 25°C (when don’t mounted on a heat radiation board).  
(Note 4) Derating in done 7.0 mW/°C for operating above Ta 25°C (Mount on 1-layer 74.2mm x 74.2mm x 1.6mm board).  
Surface heat dissipation copper foil:20.2mm2.  
(Note 5) Derating in done 26.1 mW/°C for operating above Ta 25°C (Mount on 4-layer 74.2mm x 74.2mm x 1.6mm board  
Two sides heat dissipation copperfoil:20.2mm2. 2 or 3-layer : heat dissipation copper foil : 5505mm2).  
(Note 6) Derating in done 36.5 mW/°C for operating above Ta 25°C (Mount on 4-layer 74.2mm x 74.2mm x 1.6mm board)  
All layers heat dissipation copper foil:5505mm2.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions (Ta=25°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
-
-
-
-
-
VIN  
CTL  
5.5  
-0.3  
-0.3  
4.5  
28  
28  
5.5  
33  
28  
V
V
V
V
V
EN1, EN2, MCTL1, MCTL2  
BOOT1, BOOT2  
SW1, SW2  
Terminal Voltage  
-0.3  
BOOT1-SW1, BOOT2-SW2,  
HG1-SW1, HG2-SW2  
-0.3  
-
5.5  
V
Vo1, Vo2, PGOOD1, PGOOD2  
-0.3  
-
-
-
5.5  
V
Minimum ON Time  
TONMIN  
150  
nsec  
This product should not be used in a radioactive environment.  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/39  
TSZ2211115001  
BD95602MUV-LB  
Electrical Characteristics (Unless otherwise noted, Ta=25°CVIN=12V, CTL=OPEN, EN1=EN2=5V, FS1=FS2=51kΩ)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VIN Standby Current  
VIN Bias Current  
ISTB  
IIN  
70  
60  
150  
250  
230  
18  
μA  
μA  
μA  
V
EN1= EN2= 0V, CTL= 5V  
Vo1= 5V  
130  
VIN Shut Down Mode Current  
CTL Low Voltage  
ISHD  
VCTLL  
VCTLH  
ICTL  
6
12  
CTL= 0V  
-0.3  
2.3  
-18  
-0.3  
2.3  
-
-
-
0.8  
28  
CTL High Voltage  
V
CTL Bias Current  
-12  
-
-6  
μA  
V
CTL= 0V  
EN= 3V  
EN Low Voltage  
VENL  
VENH  
IEN  
0.8  
5.5  
6
EN High Voltage  
-
V
EN Bias Current  
3
μA  
5V Linear Regulator -VIN  
REG1 Output Voltage  
Maximum Current  
VREG1  
IREG1  
4.90  
5.00  
-
5.10  
-
V
IREG1=1mA  
50  
-
mA  
mV  
mV  
IREG2= 0mA, (Note 7)  
VIN= 5.5 to 28V  
Line Regulation  
REG.I1  
REG.L1  
90  
30  
180  
50  
Load Regulation  
-
IREG1= 0 to 30mA  
3.3V Linear Regulator  
REG2 Output Voltage  
Maximum Current  
VREG2  
IREG2  
3.27  
3.30  
3.33  
-
V
IREG2= 1mA  
50  
-
-
-
-
mA  
mV  
mV  
IREG1= 0mA, (Note 7)  
VIN= 5.5 to 28V  
Line Regulation  
REG.I2  
REG.L2  
20  
30  
Load Regulation  
-
IREG2= 0 to 30mA  
5V Linear Regulator -Vo1  
Input Threshold Voltage  
Input Delay Time  
REG1th  
TREG1  
RREG1  
4.1  
1.5  
-
4.4  
3
4.7  
6
V
ms  
Vo1: Sweep up  
Switch Resistance  
1.0  
3.0  
Under Voltage Lock Out Block  
REG1 Threshold Voltage  
Hysteresis Voltage  
REG1  
_
3.9  
50  
4.2  
4.5  
V
REG1: Sweep up  
UVLO  
dV_ UVLO  
100  
200  
mV  
REG1: Sweep down  
Output Voltage Sense Block  
Feedback Voltage1  
FB1 Bias Current  
VFB1  
IFB1  
0.693  
0.700  
0
0.707  
1
V
μA  
-
50  
FB1= REF  
FB2= REF  
Output Discharge Resistance1  
Feedback Voltage2  
FB2 Bias Current  
RDISOUT1  
VFB2  
100  
0.700  
0
200  
0.707  
1
0.693  
-
V
IFB2  
μA  
Output Discharge Resistance2  
H3REGTM Control Block  
On Time1  
RDISOUT2  
50  
100  
200  
tON  
1
2
0.760  
0.470  
2.5  
0.910  
0.620  
5
1.060  
0.770  
10  
μs  
μs  
μs  
μs  
μs  
Vo1= 5V,FS1= 51kΩ  
Vo2= 3.3V ,FS2= 51kΩ  
Vo1= 5V  
On Time2  
tON  
Maximum On Time 1  
Maximum On Time 2  
Minimum Off Time  
tONMAX  
1
2
tONMAX  
1.65  
-
3.3  
6.6  
Vo2= 3.3V  
tOFFMIN  
0.2  
0.4  
FET Driver Block  
HG High Side ON Resistance  
HG Low Side ON Resistance  
LG High Side ON Resistance  
HGHON  
HGLON  
LGHON  
LGLON  
-
-
-
-
3.0  
2.0  
2.0  
0.5  
6.0  
4.0  
4.0  
1.0  
LG Low Side ON Resistance  
(Note 7) IREG1+IREG2 50mA.  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/39  
TSZ2211115001  
BD95602MUV-LB  
Electrical Characteristics (Unless otherwise noted, Ta=25°CVIN=12V, CTL=OPEN, EN1=EN2=5V, FS1=FS2=51kΩ)  
Over Voltage Protection Block  
0.77  
0.84  
0.91  
OVP Threshold Voltage  
VOVP  
V
(+10%) (+20%) (+30%)  
OVP Hysteresis  
dV_OVP  
50  
150  
300  
mV  
Output Short Protection Block  
0.42  
0.49  
0.56  
SCP Threshold Voltage  
VSCP  
TSCP  
V
(-40%) (-30%) (-20%)  
0.4  
Delay Time  
0.75  
1.5  
ms  
Over Current Protection Block  
Offset Voltage  
dVSMAX  
80  
100  
120  
mV  
ILIM= 100kΩ  
Power Good Block  
0.525  
(-25%) (-15%)  
0.595  
0.665  
(-5%)  
Power Good Low Threshold  
VPGTHL  
V
Power Good Low Voltage  
Delay Time  
VPGL  
-
0.1  
0.75  
0
0.2  
1.5  
2
V
IPGOOD= 1mA  
VPGOOD= 5V  
TPGOOD  
ILEAKPG  
0.4  
-2  
ms  
μA  
Power Good Leakage Current  
Soft Start Block  
Charge Current  
ISS  
1.5  
-
2.3  
-
3.1  
50  
μA  
Standby Voltage  
VSS_STB  
mV  
Mode Control Block  
MCTL Low Voltage  
VMCTL_L  
VMCTL_H  
IMCTL  
-0.3  
2.3  
8
-
-
0.3  
V
V
REG1  
+0.3  
MCTL High Voltage  
MCTL Bias Current  
16  
24  
μA  
MCTL= 5V  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves (Reference data)  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
2μs  
2μs  
Figure 4. Switching Waveform  
(Vo= 5V, Io= 0A, PWM)  
Figure 5. Switching Waveform  
(Vo= 5V, Io= 8A, PWM)  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
10μs  
10μs  
Figure 6. Switching Waveform  
(Vo= 5V, Io= 0A, QLLM)  
Figure 7. Switching Waveform  
(Vo= 5V, Io= 0A, SLLM)  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
8/39  
BD95602MUV-LB  
Typical Performance Curves - continued  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
2μs  
2μs  
Figure 8. Switching Waveform  
(Vo= 3.3V, Io= 0A, PWM)  
Figure 9. Switching Waveform  
(Vo= 3.3V, Io= 8A, PWM)  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
10μs  
10μs  
Figure 10. Switching Waveform  
(Vo= 3.3V, Io= 0A, QLLM)  
Figure 11. Switching Waveform  
(Vo= 3.3V, Io= 0A, SLLM)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
2μs  
2μs  
Figure 12. Switching Waveform  
(Vo= 1V, Io= 0A, PWM)  
Figure 13. Switching Waveform  
(Vo= 1V, Io= 8A, PWM)  
HG  
HG  
10V/div  
10V/div  
SW  
SW  
10V/div  
10V/div  
LG  
LG  
5V/div  
5V/div  
10μs  
10μs  
Figure 14. Switching Waveform  
(Vo= 1V, Io= 0A, QLLM)  
Figure 15. Switching Waveform  
(Vo= 1V, Io= 0A, SLLM)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
5V  
7V  
12V  
12V  
7V  
21V  
21V  
1
10  
100  
Io[mA]  
1000  
10000  
1
10  
100  
1000  
10000  
Io[mA]  
Figure 16. Efficiency  
(Vo= 5V, PWM)  
Figure 17. Efficiency  
(Vo= 5V, QLLM)  
100  
80  
60  
40  
20  
0
100  
7V  
80  
60  
40  
20  
0
12V  
7V  
21V  
12V  
21V  
1
10  
100  
1000 10000  
1
10  
100  
1000  
10000  
Io[mA]  
Io[mA]  
Figure 18. Efficiency  
(Vo= 5V, SLLM)  
Figure 19. Efficiency  
(Vo= 3.3V, PWM)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
100  
100  
80  
60  
40  
20  
0
7V  
80  
12V  
21V  
12V  
7V  
60  
40  
20  
0
21V  
1
10  
100  
Io[mA]  
1000  
10000  
1
10  
100  
Io[mA]  
1000  
10000  
Figure 21. Efficiency  
(Vo= 3.3V, SLLM)  
Figure 20. Efficiency  
(Vo= 3.3V, QLLM)  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
7V  
12V  
7V  
12V  
21V  
21V  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Io[mA]  
Io[mA]  
Figure 22. Efficiency  
(Vo= 1V, PWM)  
Figure 23. Efficiency  
(Vo= 1V, QLLM)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
100  
7V  
80  
Vo  
100mV/div  
60  
12V  
21V  
40  
IL  
5A/div  
IO  
5A/div  
20  
0
20μs  
1
10  
100  
1000  
10000  
Io[mA]  
Figure 24. Efficiency  
(Vo= 1V, SLLM)  
Figure 25. Transient Response  
(Vo= 5V, PWM, Io= 0A8A)  
Vo  
Vo  
100mV/div  
100mV/div  
IL  
IL  
5A/div  
IO  
5A/div  
5A/div  
IO  
5A/div  
20μs  
20μs  
Figure 26. Transient Response  
Figure 27. Transient Response  
(Vo= 5V, PWM, Io= 8A0A)  
(Vo= 3.3V, PWM, Io= 0A8A)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
Vo  
Vo  
100mV/div  
100mV/div  
IL  
IL  
5A/div  
IO  
5A/div  
IO  
5A/div  
5A/div  
20μs  
20μs  
Figure 28. Transient Response  
Figure 29. Transient Response  
(Vo= 3.3V, PWM, Io= 8A0A)  
(Vo= 1V, PWM, Io= 0A8A)  
Vo  
Vo  
100mV/div  
50mV/div  
IL  
5A/div  
IO  
5A/div  
2μs  
20μs  
Figure 30. Transient Response  
(Vo= 1V, PWM, Io= 8A0A)  
Figure 31. Output Voltage  
(Vo= 5V, PWM, Io= 0A)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
2μs  
10μs  
Figure 32. Output Voltage  
(Vo= 5V, PWM, Io= 8A)  
Figure 33. Output Voltage  
(Vo= 5V, QLLM, Io= 0A)  
Vo  
Vo  
50mV/div  
50mV/div  
2μs  
2μs  
Figure 34. Output Voltage  
(Vo= 5V, SLLM, Io= 0A)  
Figure 35. Output Voltage  
(Vo= 3.3V, PWM, Io= 0A)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
10μs  
2μs  
Figure 36. Output Voltage  
(Vo= 3.3V, PWM, Io= 8A)  
Figure 37. Output Voltage  
(Vo= 3.3V, QLLM, Io= 0A)  
Vo  
Vo  
50mV/div  
50mV/div  
2μs  
2μs  
Figure 38. Output Voltage  
(Vo= 3.3V, SLLM, Io= 0A)  
Figure 39. Output Voltage  
(Vo= 1V, PWM, Io= 0A)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
Vo  
Vo  
50mV/div  
50mV/div  
10μs  
2μs  
Figure 40. Output Voltage  
(Vo= 1V, PWM, Io= 8A)  
Figure 41. Output Voltage  
(Vo= 1V, QLLM, Io= 0A)  
EN1  
5V/div  
Vo1  
2V/div  
Vo  
50mV/div  
EN2  
5V/div  
Vo2  
2V/div  
400μs  
2μs  
Figure 42. Output Voltage  
(Vo= 1V, SLLM, Io= 0A)  
Figure 43. Start-up  
(EN1= EN2)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
EN1  
EN1  
5V/div  
5V/div  
Vo1  
Vo1  
2V/div  
2V/div  
EN2  
EN2  
5V/div  
5V/div  
Vo2  
Vo2  
2V/div  
2V/div  
40ms  
40ms  
Figure 44. Start-up  
Figure 45. Start-up  
(EN2EN1)  
(EN1EN2)  
500  
450  
400  
350  
300  
EN1  
5V/div  
PGOOD1  
2V/div  
VIN=7.5V  
VIN=12V  
VIN=18V  
EN2  
5V/div  
PGOOD2  
2V/div  
40ms  
0
1
2
3
4
5
6
7
IOUT [A]  
Figure 46. Start-up  
(EN1/2PGOOD1/2)  
Figure 47. Io-frequency  
(Vo= 5V, PWM, RFS= 68kΩ)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
2.5  
2
500  
VOUT=5V  
VOUT=3.3V  
450  
400  
1.5  
1
VIN=7.5V  
VIN=12V  
VIN=18V  
350  
0.5  
0
300  
0
50  
100  
150  
0
1
2
3
4
5
6
7
RFS [kΩ]  
IOUT [A]  
Figure 49. On time-RFS  
Figure 48. lo-frequency  
(Vo= 3.3V, PWM, RFS= 68kΩ)  
5.500  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
700  
600  
500  
400  
300  
200  
100  
0
VOUT=5V  
VIN=7.5V(-5℃)  
VIN=21V(-5℃)  
VIN=7.5V(75℃)  
VIN=21V(75℃)  
VOUT=3.3V  
0
2
4
6
8
10  
12  
14  
16  
0
50  
100  
150  
RFS [kΩ]  
IOUT [A]  
Figure 50. SW Frequency-RFS  
Figure 51. Current Limit  
(Vo= 5V)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/39  
TSZ2211115001  
BD95602MUV-LB  
Typical Performance Curves - continued  
3.500  
5.1  
5
3.000  
VIN=7.5V(-5℃)  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
VIN=21V(-5℃)  
VIN=7.5V(75℃)  
VIN=21V(75℃)  
4.9  
4.8  
4.7  
4.6  
4.5  
0
50  
100  
150  
200  
250  
0
2
4
6
8
10  
12  
14  
16  
IOUT [A]  
IOUT [mA]  
Figure 53. REG1 Load Regulation  
Figure 52. Current Limit  
(Vo= 3.3V)  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
0
50  
100  
150  
200  
250  
IOUT [mA]  
Figure 54. REG2 Load Regulation  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/39  
TSZ2211115001  
BD95602MUV-LB  
Description of Block  
BD95602MUV-LB is a dual channel synchronous buck regulator using H3RegTM, Rohm’s latest constant on-time controller  
technology. Fast load response is achieved by controlling the output voltage using a comparator without relying on the  
switching frequency.  
When VOUT drops due to a rapid load change, the system quickly restores VOUT by extending the tON time interval. Thus, it  
serves to improve the regulators transient response. Activation of the light load mode further increases efficiency by using  
VIN  
Simple Light Load Mode (SLLM) control.  
H3RegTM Control  
Comparator for  
Output voltage control  
VOUT/VIN  
Circuit  
HG  
FB  
VOUT  
A
SW  
LG  
Driver  
Internal  
Reference  
Voltage  
REF  
B
Transient  
Circuit  
(Normal operation)  
FB  
When FB falls to a reference voltage (REF),  
the drop is detected, activating the H3RegTM  
control system  
REF  
HG  
LG  
VOUT  
VIN  
1
f
tON  
=
x
[sec]・・・(1)  
HG output on-time is determined by the formula (1).  
When HG is off, LG is on until the output voltage becomes  
FB= REF.  
After the status of HG is off, LG go on outputting until  
output voltage become FB= REF.  
(VOUT drops due to a rapid load change)  
FB  
When VOUT drops due to a rapid load change, and  
the voltage remains below the output setting following the  
programmed tON time, the system quickly restores VOUT  
by extending the tON time, thus improving the transient  
response. Once VOUT is restored, the controller continues  
normal operation.  
REF  
Io  
tON +α  
HG  
LG  
(When VIN drops)  
V
IN  
ON  
ON  
tON4  
t
1
tON2  
t
3
tON 4+α  
H3RegTM  
HG  
tOFF  
1
tOFF2  
t OFF  
3
tOFF 4=tOFF  
3
tOFF4=tOFF3  
LG  
FB  
FB=REF  
REF  
Output voltage drops  
Based on the value of VIN, the on-time tON and off-time tOFF are determined by tON= VOUT / VIN x I/f and tOFF= (VIN- VOUT )/VIN.  
As the VIN voltage drops, in order to maintain the output voltage, tON becomes longer and tOFF is shorter. However, for  
normal operation, if VIN drops further, tON is longer and tOFF= tminoff (minimum off- time is defined internally), the output  
voltage will decrease because tOFF cannot be any shorter than the minimum off-time. With H3RegTM, if VIN goes even lower,  
the output voltage is maintained as the tON time is extended. (tON time is extended until FB>REF). In this case, the switching  
frequency is lowered so that the tON time can be extended.  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/39  
TSZ2211115001  
BD95602MUV-LB  
Description of Block - continued  
Light Load Control  
(SLLM)  
FB  
SLLM will activate when the LG pin is off and the coil current is  
near 0A (current flows from VOUT to SW).  
REF  
When the FB input is lower than the REF voltage again, HG will  
be enabled once again.  
HG  
LG  
0A  
(QLLM)  
FB  
QLLM will activate when the LG pin is off and the coil  
current is near 0A (current flows from VOUT to SW). In this  
case, the next HG is prevented. Then, when FB falls below  
the output programmed voltage within the programmed time  
(Typ= 40μs), HG will resume. In the case where FB doesnt  
fall in the programmed time, LG is forced on causing VOUT to  
fall. As a result, the next HG is on.  
REF  
HG  
LG  
0A  
The BD95602MUV-LB operates in PWM mode until the SS  
input reaches the clamp voltage (2.5V), regardless of the  
control mode setting, this assures stable operation while the  
during soft start.  
MCTL1  
MCTL2  
Control Mode  
SLLM  
Start-up  
PWM  
L
L
L
H
X
QLLM  
PWM  
H
PWM  
PWM  
*Attention: To effect the rapid transient response, the H3RegTM control  
monitors the current from the output capacitor to the load using  
the ESR of the output capacitor Do not use ceramic capacitors  
on COUT side of power supply. Ceramic bypass capacitors can  
be used near the individual loads if desired.  
COUT  
Load  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/39  
30.May.2017 Rev.003  
TSZ2211115001  
BD95602MUV-LB  
Timing Chart  
Soft Start Function  
Soft start is exercised with the EN pin set high. Current  
control takes effect at startup, enabling a moderate  
output voltage “ramping start.” Soft start timing and  
incoming current are calculated with formulas (2) and (3)  
below.  
EN  
tSS  
SS  
VOUT  
IIN  
Soft start time  
0.7(Typ) x CSS  
[sec]  
・・・(2)  
tSS  
=
2.3μA(Typ)  
CSS(pF)  
18000  
33000  
68000  
Soft start time(ms)  
5
10  
20  
Inrush current  
Co x VOUT  
tSS  
VOUT  
[A]  
・・・(3)  
x
Iin  
=
VIN  
(Css: Soft start capacitor Co: Output capacitor)  
www.rohm.co.jp  
TSZ02201-0J1JAZ00040-1-2  
30.May.2017 Rev.003  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/39  
TSZ2211115001  
BD95602MUV-LB  
Timing Chart - continued  
Notes when waking up with CTL pin or VIN pin  
If EN pin is high or short (or pull up resistor) to REG1 pin, IC starts up by switching CTL pin, the IC might fail to start  
up (SCP function) with the reason below, please be careful of SS pin and REF pin capacitor capacity.  
REG1 REG2  
FB  
VIN  
CTL  
REF  
BG  
Inner  
Reference  
Circuit  
SCP circuit  
Delay  
SCP  
SCP_REF  
1ms(Typ)  
SCP  
PWM  
(Switching control signal)  
SS  
CTL  
(Vin)  
REG1(5V)  
REG2(3.3V)  
SS  
SCP invalid for  
SS has not reached 1.5V.  
SCP becomes valid from  
the point SS reached 1.5V.  
about 1.5V  
SCP_REF  
FB  
FB  
SCP is effective at SCP_REF>FB condition.  
SCP protection (function) activates when output  
shorts and FB falls below the activation standard  
of SCP.  
FB  
SCP valid area  
REF  
FB  
SCP is valid here, SCP is valid here,but with FB exceeding  
Inclination of REF is  
because this is  
SCP valid area  
and also because  
FB fall below  
SCP_REF.  
SCP_REF it is normally activate-able  
area.  
influenced by the external  
condenserconnected to  
REF.  
SCP will be  
effective with  
EN=ON at this  
section.  
EN  
Start up NG  
SCP  
SW  
EN  
Start up OK  
SW  
?
To be accurate,Delay occurs after SCP activating.  
But this shows the relationship of each signals briefly  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/39  
TSZ2211115001  
BD95602MUV-LB  
Output Discharge  
It will be available to use if connecting VOUT pin to DC/DC output.  
(about 100) . Discharge function operates when <1> EN=’L’  
<2> UVLO= ON(If input voltage is low) <3> SCP latch  
<4> TSD= ON.  
VIN,CTL  
EN  
The function at output discharge time is shown as left.  
[1] When switch to low from high with EN pin.  
If EN pin voltage is below than EN threshold voltage, output  
discharge function is operated, and discharge output capacitor charge.  
VOUT  
VIN, CTL  
REG1  
[2] When switch to low from high with EN pin  
1) IC is in normal operation until REG1 voltage becomes lower than  
UVLO voltage. However, because VIN voltage also becomes low, output  
voltage will drop, too.  
2) If REG1 voltage reaches the UVLO voltage, output discharge function is  
operated, and discharge output capacitor charge.  
VOUT  
The efficiency of VIN voltage  
drop output discharge  
Output discharge  
3) In addition, if REG1 voltage drops, inner IC logic cannot operate, so that  
output discharge function does not work, and becomes output Hi-z.  
(In case, FB has resistor against ground, discharge at the resistor. )  
Output Hi-Z  
UVLO ON  
Timer Latch Type Output Short Circuit Protection  
FB  
Short protection is enabled when the output voltage  
falls to or below REF X 0.7.  
REF x 0.7  
Once the programmed time period has elapsed, the  
output is latched off to prevent destruction of the circuit.  
(HG= Low, LG= Low) Output voltage can be restored  
either by cycling the EN pin or disabling UVLO.  
0.75ms(Typ)  
SCP  
EN / UVLO  
Over Voltage Protection  
When the output voltage increases to or above REF x  
1.2(Typ), output over voltage protection is enabled, and  
the Low-side FET turns on to reduce the output.  
(LG= High, HG= Low).  
REF x 1.2  
FB  
When the output falls to within normal operation, the  
function is restored to normal operation.  
HG  
LG  
Switching  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/39  
26.Jun.2015 Rev.002  
TSZ2211115001  
BD95602MUV-LB  
Over current protection circuit  
t
ON  
t
ON  
t
ON  
t
ON  
During normal operation, if FB is less than REF, HG is  
high during the time tON, but when the coil current  
exceeds the ILIMIT threshold, HG is set to off. The next  
pulse returns to normal operation if the output voltage  
drops after the maximum on-time or IL becomes lower  
than ILIMIT.  
HG  
LG  
IL  
t
OFF1  
t
OFF1  
t
OFF1  
tOFFα  
Over current protection  
setting value  
OCP detection  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/39  
TSZ2211115001  
BD95602MUV-LB  
Selection of Components Externally Connected  
1.Inductor (L) selection  
The inductor value is a major influence on the output ripple current.  
As formula (4) below indicates, the greater the inductor or the switching  
frequency, the lower the ripple current.  
ΔIL  
(VI -VOUT) x VOUT  
IN  
ΔIL=  
[A]・・・(4)  
VIN  
L x VIN x f  
Generally, lower inductance values offer faster response times but  
also result in increased output ripple and lower efficiency.  
IL  
VOUT  
0.47µH to 2.2µH are recommended as appropriate setting value.  
L
Co  
The peak current rating of coil is approximated by formula (5).  
Please select inductor which is higher than this value.  
(VIN-VOUT) x VOUT  
ILPEAK= IOUTMAX  
+
[A]・・・(5)  
Output ripple current  
2 x L x VIN x f  
*Passing a current larger than inductor’s rated current will cause magnetic saturation in the inductor and decrease  
system efficiency. In selecting the inductor, be sure to allow enough margin to assure that peak current does not  
exceed the inductor rated current value.  
*To minimize possible inductor damage and maximize efficiency, choose an inductor with a low (DCR, ACR) resistance.  
2. Output Capacitor (CO) Selection  
VIN  
The output capacitor should be determined by equivalent series resistance  
and equivalent series inductance so that the output ripple voltage is 30mV  
or more.  
The rating of the capacitor is selected with sufficient margin given the  
output voltage.  
VOUT  
L
ESR  
Load  
ΔVOUT =ΔIL x ESR+ESL x ΔIL / tON・・・(6)  
CEXT  
ESL  
ΔIL: Output ripple current  
Co  
ESR: Equivalent series resistance,  
ESL: Equivalent series inductance  
Output Capacitor  
Please give due consideration to the conditions in formula (7) below for the output capacitor, bearing in mind that the  
output start-up time must be established within the soft start timeframe. Capacitors used as bypass capacitors are  
connected to the load side affect the overall output capacitance (CEXT, figure above). Please set the soft start time or  
over-current detection value, regarding these capacities.  
TSS : Soft start time  
Limit : Over current detection  
TSS x (Limit- IOUT  
VOUT  
)
Co+CEXT  
・・・(7)  
Note: If an inappropriate capacitor is used, OCP may be detected during activation and may cause startup malfunctions.  
3. Input Capacitor (Cin) Selection  
The input capacitor selected must have low enough ESR to fully support high output  
ripple so as to prevent extreme over current conditions. The formula for ripple current  
IRMS is given in (8) below.  
VIN  
Cin  
VOUT  
VOUT (VIN-VOUT  
)
IRMS= IOUT  
x
[A]・・・(8)  
L
VIN  
Co  
IOUT  
Where VIN= 2 x VOUT, IRMS=  
2
Input Capacitor  
A ceramic capacitor is recommended to reduce ESR loss and maximize efficiency.  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/39  
TSZ2211115001  
BD95602MUV-LB  
4.MOSFET Selection  
High-side driver and Low-side driver are designed to activate N channel MOSFET’s  
with low on-resistance.  
The chosen MOSFET may result in the loss described below, please select a proper  
FET for each considering the input-output and load current.  
VIN  
High-side MOSFET  
< Loss of High-side MOSFET >  
Pmain= PRON+PTRAN  
VOUT  
L
(Tr+Tf) x VIN x IOUT x f  
6
VOUT  
VIN  
Co  
2
x RON x IOUT  
+
・・・(9)  
=
PGND  
(Ron: On-resistance of FET  
f: Switching frequency  
PGND  
Low-side MONFET  
Tr: Rise time, Tf: Fall time)  
< Loss of Low-side MOSFET >  
Psyn= PRON  
VIN -VOUT  
2
x RON x IOUT  
=
・・・(10)  
VIN  
The High-side MOSFET generates loss when switching, along with the loss due to on-resistance.  
Good efficiency is achieved by selecting a MOSFET with low on-resistance and low Qg (gate total charge amount).  
Recommended MOSFETs for various current values are as follows:  
Output current  
to 5A  
High-side MOSFET  
RQ3E080GN  
Low-side MOSFET  
RQ3E100GN  
5 to 8A  
RQ3E120GN  
RQ3E150GN  
8 to 10A  
RQ3E150GN  
RQ3E180GN  
5. Output Voltage Set Point  
This IC operates such that output voltage is REF FB.  
<Output Voltage>  
(R1+R2)  
R2  
1
2
(ΔVOUT: Output ripple voltage)  
VOUT  
=
x REF(0.7V)+  
ΔVOUT  
(ΔIL: ripple current of coil)  
ΔVOUT =ΔIL x ESR  
ΔIL =( VIN - VOUT) x  
VOUT  
(L x VIN x f)  
L: inductance[H] f: switching frequency[Hz]  
*(Notice)Please set output ripple voltage more than 30mV to 50mV.  
(Example) VIN= 20V, VOUT= 5V, f= 300kHz, L= 2.5µH, ESR= 20mΩ, R1= 56kΩ, R2= 9.1kΩ  
5V  
ΔIL =(20V-5V) x  
=5(A)  
(2.5 x 10-6H x 20V x 300 x 103Hz)  
ΔVOUT =5A x 20 x 10-3Ω= 0.1(V)  
(51kΩ+ 9.1kΩ)  
VOUT = 0.7V x  
1
2
+
x 0.1V=5.057(V)  
9.1kΩ  
VIN  
VIN  
SLLM  
SLLM  
R
S
Q
Output  
voltage  
H3REG  
CONTROLLER  
Driver  
Circuit  
REF  
FB  
R1  
R2  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/39  
TSZ2211115001  
BD95602MUV-LB  
6. Setting over current protection  
VIN  
The on resistance (between SW and PGND) of the low side MOSFET is used  
to set the over current protection.  
Over current reference voltage (ILIM_ref) is determined as in formula(11) below.  
L
VOUT  
CO  
10k  
ILIM_ref =  
[A]・・・(11)  
SW  
RILIM[kΩ] x RON[mΩ]  
(RILIM: Resistance for setting of over current voltage protection value[kΩ]  
RON: Low-side on resistance value of FET[mΩ])  
PGND  
RILIM  
Over current protection is actually determined by the formula (12) below.  
1
ΔIL  
ILIM_ref +  
Iocp  
=
2
1
2
Coil current  
Vo  
VIN  
VIN - VO  
L
I
f
・・・(12)  
x
x
x
ILIM_ref +  
=
IOCP  
ΔIL:Coil ripple current[A]  
VIN:Input voltage[V]  
VO:Output voltage [V]  
f:Switching frequency [HZ]  
L:Inductance [H]  
ILIM_ref  
(Example)  
If a load current 5A is desired with VIN=6 to 19V, VOUT=5V, f=400kHZ, L=2.5µH, RON=20mΩ, the formula would be:  
10k  
1
2
VO  
VIN  
I
f
VIN VO  
x
x
> 5  
x
IOCP=  
+
RILIM[kΩ] ×RON[mΩ]  
L
When VIN= 6V, IOCP will be minimum(this is because the ripple current is also minimum) so that if each condition is  
input, the formula will be the following: RILIM<109.1[kΩ].  
*To design the actual board, please consider enough margin for FET on resistance variation, Inductance variation, IC  
over current reference value variation, and frequency variation.  
7. Relation between output voltage and tON time  
For BD95602MUV-LB, both channels, are high efficiency synchronous regulator controllers with variable frequency.  
tON time varies with Input voltage [VIN], output voltage [VOUT], and RFS of FS pin resistance.  
See Figure 52 and Figure 53 for tON time.  
3.5  
2.5  
VIN=7V  
VIN=12V  
VIN=21V  
VIN=7V  
VIN=12V  
VIN=21V  
3
2.5  
2
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
RFS[kΩ]  
RFS[kΩ]  
Figure55. RFS ontime(VOUT= 5V)  
From tON time, frequency on application condition is following:  
Figure56. RFS ontime(VOUT= 3.3V)  
VOUT  
VIN  
1
Frequency =  
[kHz]・・・(13)  
x
tON  
However, real-life considerations (such as the external MOSFET gate capacitor and switching speed) must be  
factored in as they affect the overall switching rise and fall time, so please confirm by experiment.  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/39  
TSZ2211115001  
BD95602MUV-LB  
Application Example (Vin= 12V, Vo1= 3.3V/8A, f1= 400kHz, Vo2= 2.5V/8A, f2= 400kHz)  
R15  
R25  
16  
15  
14  
13  
12  
11  
10  
9
R5  
R6  
ILIM1  
ILIM2  
VO2  
SS2  
17  
18  
19  
20  
21  
22  
23  
24  
8
7
6
5
4
3
2
1
MCTL1  
SS1  
C5  
C6  
PGOOD1  
EN1  
PGOOD2  
EN2  
U1  
BD95602MUV-LB  
EN_2.5  
EN_3.3  
BOOT1  
HG1  
BOOT2  
HG2  
L1  
L2  
2.5V  
3.3V  
SW1  
SW2  
25  
26  
27  
28  
29  
30  
31  
32  
GND PGND  
Figure 57. Application Example  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/39  
TSZ2211115001  
BD95602MUV-LB  
Reference  
Designator  
Manufacturer  
Part Number  
Configuration  
(mm)  
Type  
Value  
Description  
Manufacturer  
C1, C9, C10,  
C11, C12  
Ceramic  
Capacitor  
Ceramic  
Capacitor  
Ceramic  
Capacitor  
Ceramic  
Capacitor  
10µF  
10µF  
35V, X5R, ±10%  
16V, X5R, ±10%  
GRM32ER6YA106KA12  
GRM21BR61C106ME15  
GRM155R61C104KA88  
GRM188R61A474KA61  
6TPE330MIL  
MURATA  
MURATA  
MURATA  
MURATA  
SANYO  
ALPS  
3225  
2012  
1005  
1608  
7343  
6565  
3333  
3333  
C2, C3  
C4, C5, C6  
C7, C8  
0.1µF 16V, X5R, ±10%  
0.47µF 10V, X5R, ±10%  
C18, C19,  
C28, C29  
6.3V, ±20%, ESR  
330µF  
POSCAP  
Inductor  
18mΩmax  
±20%,10A(L=-30%),  
DCR=5.8mΩ±10%  
N-ch, Vdss 30V, Id 15A,  
Ron 4.7mΩ  
N-ch, Vdss 30V, Id 18A,  
Ron 3.3mΩ  
L1,L2  
1µH  
GLMC1R003A  
Q1, Q3  
Q2, Q4  
MOSFET  
MOSFET  
-
RQ3E150GN  
ROHM  
-
RQ3E180GN  
ROHM  
R5, R6  
R7, R8  
R15  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
IC  
62kΩ 1/16W, 50V, 5%  
51kΩ 1/16W, 50V, 5%  
16kΩ 1/16W, 50V, 0.5%  
4.3kΩ 1/16W, 50V, 0.5%  
100Ω 1/16W, 50V, 5%  
12kΩ 1/16W, 50V, 0.5%  
4.7kΩ 1/16W, 50V, 0.5%  
MCR01MZPJ623  
MCR01MZPJ513  
MCR01MZPD1602  
MCR01MZPD4301  
MCR01MZPJ101  
MCR01MZPD1202  
MCR01MZPD4701  
BD95602MUV-LB  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
1005  
1005  
1005  
R16  
1005  
R24  
1005  
R25  
1005  
R26  
1005  
U1  
-
Buck DC/DC Controller  
VQFN032V5050  
Without any ripple (about 10mV), there is a possibility that the FB signal is not stable due to the adoption of the comparator control method. Please ensure  
enough ripple voltage either by (1)reducing the L-value of inductor, or (2)using high ESR output capacitor. Ripple voltage can be generated in FB terminal by  
adding a capacitor in parallel to resistor (R17, R19) of the FB input, but the circuit will be sensitive to noise from the output (Vo1/Vo2) line and is not  
recommended. Stability of the circuit is influenced by the layout of the PCB, please pay careful attention to the layout.  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/39  
TSZ2211115001  
BD95602MUV-LB  
Power Dissipation  
[mW]  
1000  
74.2mm x 74.2mm x 1.6mm Glass-epoxy PCB  
880mW  
θj-a=142. °C /W  
800  
600  
IC Only θj-a=328.9°C/W  
380mW  
400  
200  
[°C]  
150  
0
25  
50  
75 85  
100  
125  
Ambient Temperature (Ta)  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
32/39  
TSZ2211115001  
BD95602MUV-LB  
I/O equivalence circuits  
1, 24pin (SW2, SW1)  
2, 23pin (HG2, HG1)  
3, 22pin (BOOT2, BOOT1)  
BOOT  
BOOT  
BOOT  
HG  
HG  
SW  
SW  
4, 21pin (EN2, EN1)  
5, 20pin (PGOOD2, PGOOD1)  
6, 19pin (SS2, SS1)  
REG1  
50Ω  
1MΩ  
12pin (REF)  
11, 14pin (FB2, FB1)  
10, 15pin (FS2, FS1)  
REG1  
16, 18pin (MCTL2, MCTL 1)  
9pin (CTL)  
26, 31pin (LG1, LG2)  
VIN  
REG1  
1MΩ  
100kΩ  
500kΩ  
300kΩ  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/39  
TSZ2211115001  
BD95602MUV-LB  
I/O equivalence circuit(s) - continued  
7, 27pin (Vo2, Vo1)  
28pin (REG2)  
29pin (REG1)  
REG1  
VIN  
VIN  
50Ω  
30pin (VIN)  
8, 17pin (ILIM2, ILIM1)  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/39  
TSZ2211115001  
BD95602MUV-LB  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/39  
TSZ2211115001  
BD95602MUV-LB  
Operational Notes continued  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 58. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/39  
TSZ2211115001  
BD95602MUV-LB  
Ordering Information  
B D 9  
5
6
0
2 M U V -  
L B E 2  
Part Number  
Package  
Product class  
Packaging and forming  
MUV: VQFN  
LB for Industrial specification  
applications  
E2: Embossed tape and reel  
(packing quantity 2500pcs)  
H2: Embossed tape and reel  
(packing quantity 250pcs)  
Marking Diagrams  
VQFN032V5050  
(TOP VIEW)  
Part Number Marking  
LOT Number  
9 5 6 0 2 L  
1PIN MARK  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
37/39  
TSZ2211115001  
BD95602MUV-LB  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN032V5050  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
38/39  
BD95602MUV-LB  
Revision History  
Date  
Revision  
Changes  
31.Oct.2014  
26.Jun.2015  
001  
002  
New Release  
P.31 Change ‘’the description’’ of L1,L2  
www.rohm.co.jp  
TSZ02201-0xxxxxxxxxx0-1-2  
26.Jun.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
39/39  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9560MUV

Step down DC/DC converter controller for mobile PC
ROHM

BD9560MUV-E2

Switching Regulator Controller for Graphic Chip Cores
ROHM

BD9560MUV_09

Switching Regulator Controller for Graphic Chip Cores
ROHM

BD9560MUV_10

Switching Regulator Controller for Graphic Chip Cores
ROHM

BD956F

isc Silicon PNP Power Transistor
ISC

BD95700MUV

2phase Switching Regulator Controllers for Graphic Card
ROHM

BD95700MUV-E2

2phase Switching Regulator Controllers for Graphic Card
ROHM

BD95710MUV

2Phase Switching Regulator Controllers for Graphic Card
ROHM

BD95710MUV-E2

2Phase Switching Regulator Controllers for Graphic Card
ROHM

BD9573MUF-M

BD9573MUF-M is a Power Management Integrated Circuit (PMIC) designed specifically for use on R-Car series processor for In-Vehicle Infotainment (IVI) systems and Instrument Cluster Panel.
ROHM

BD9575FV

Switching Regulators for DDR-SDRAM Cores
ROHM

BD9575FV-E2

Switching Regulators for DDR-SDRAM Cores
ROHM