BD9F800MUX-Z [ROHM]

BD9F800MUX是内置低导通电阻的功率MOSFET的同步整流降压DC/DC转换器。最大可输出8A的电流。还是恒定时间控制DC/DC转换器,具有高速负载响应性能,无需外接的相位补偿电路。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7;
BD9F800MUX-Z
型号: BD9F800MUX-Z
厂家: ROHM    ROHM
描述:

BD9F800MUX是内置低导通电阻的功率MOSFET的同步整流降压DC/DC转换器。最大可输出8A的电流。还是恒定时间控制DC/DC转换器,具有高速负载响应性能,无需外接的相位补偿电路。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7

转换器
文件: 总50页 (文件大小:4157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
4.5V to 28V Input, 8.0A Integrated MOSFET  
Single Synchronous Buck DC/DC Converter  
BD9F800MUX-Z  
General Description  
Key Specifications  
BD9F800MUX-Z is a synchronous buck DC/DC converter  
with built-in low on-resistance power MOSFETs. It is  
capable of providing current of up to 8 A. External phase  
compensation circuit is not necessary for it is a constant  
on-time control DC/DC converter with high speed  
response.  
Input Voltage Range:  
Output Voltage Setting Range:  
Output Current:  
Switching Frequency:  
High Side MOSFET On-Resistance: 23 m Ω (Typ)  
Low Side MOSFET On-Resistance: 11 m Ω (Typ)  
4.5V to 28 V  
0.765V to 13.5V  
8 A (Max)  
300kHz or 600kHz (Typ)  
Shutdown Current:  
2 μA (Typ)  
Features  
Package  
VQFN11X3535A  
W (Typ) × D (Typ) × H (Max)  
3.50mm × 3.50mm × 0.60mm  
Synchronous Single DC/DC Converter  
Constant On-time Control  
Over Current Protection  
Short Circuit Protection  
Thermal Shutdown Protection  
Under Voltage Lockout Protection  
Power Good Output  
VQFN11X3535A Package  
Applications  
Step-down Power Supply for DSPs,  
Microprocessors, etc.  
Set-top Box  
LCD TVs  
DVD / Blu-ray Player / Recorder  
Entertainment Devices  
VQFN11X3535A  
Typical Application Circuit  
BD9F800MUX-Z  
VIN  
VIN  
BOOT  
SW  
CIN  
Enable  
EN  
CBOOT  
L
PGND  
VOUT  
FREQ  
VOUT  
FB  
R1  
R2  
RFREQ  
CVREG  
VREG  
PGD  
COUT  
GND  
Figure 1. Typical Application Circuit  
Product structure: Silicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
1/47  
TSZ22111 14 001  
BD9F800MUX-Z  
Pin Configuration  
(TOP VIEW)  
7. GND  
8. VIN  
11. EN  
9. SW  
10. PGND  
Figure 2. Pin Configuration  
Function  
Pin Descriptions  
Terminal  
Symbol  
No.  
Bootstrap terminal.  
Connect a ceramic capacitor of 0.1µF between BOOT and SW terminal.  
The voltage of this capacitor is the gate drive voltage of the High-Side MOSFET.  
1
BOOT  
PGD  
VOUT  
FREQ  
FB  
Power Good terminal. It is necessary to connect a pull-up resistor due to an open drain  
output. See page 19 for how to specify the resistance. When the FB terminal voltage is within  
±7% of 0.765V (Typ), the internal Nch MOSFET turns off and the output turns High.  
2
3
Output voltage sense terminal.  
Connect a 10Ω resistor in series when output voltage setting is more than 3.3V.  
Switching frequency setting terminal.  
Switching frequency is set to 300kHz when this terminal is set to Low (0.8V or lower). Setting  
this terminal to High (2.2V or higher) will make switching frequency set to 600kHz. This  
terminal needs to be pulled down to ground or pulled up to VREG by 10kΩ.  
4
An inverting input node for the error amplifier and main comparator.  
To calculate for the resistance value of the output voltage setting, refer to page 39.  
5
Internal power supply voltage terminal.  
6
VREG  
GND  
VIN  
A voltage of 5.25V (Typ) is outputted if there is more than 2.3V for EN terminal.  
Connect a ceramic capacitor of 2.2µF to ground.  
7
Ground terminal for the control circuit.  
Power supply terminal for the switching regulator.  
Connecting 20µF(10µF×2) and 0.1µF ceramic capacitor to ground is recommended.  
8
Switch terminal. The SW terminal is connected to the source of the High-Side MOSFET and  
drain of the Low-Side MOSFET. Connect a bootstrap capacitor of 0.1µF between BOOT and  
SW terminal. Also, connect an inductor considering the direct current superimposition  
characteristic.  
9
SW  
10  
11  
PGND  
EN  
Ground terminal for the output stage of the switching regulator.  
Enable terminal.  
Turning this terminal signal Low (0.7V or lower) forces the device to enter in shutdown mode.  
Turning this terminal signal High (2.3V or higher) enables the device. This terminal must be  
properly terminated.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
2/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Block Diagram  
EN  
11  
VREG  
6
VIN  
8
VIN  
VREG  
EN  
VREG  
SW  
EN  
VREG  
VREF  
REF  
VREF  
1
9
BOOT  
SW  
OCPH  
Q
R
On Time  
Controller  
Block  
FREQ  
VOUT  
4
3
Driver  
Circuit  
EN  
S
VREG  
Error  
Amplifier  
SW  
Main  
Comparator  
OCPL  
REF  
SS  
FB 5  
PGND  
PGD  
10  
UVLO  
UVLO  
UVLO  
TSD  
2
SCP  
SCP  
FB  
VREF  
Thermal  
Protection  
PGOOD  
TSD  
EN  
UVLO  
TSD  
SCP  
Soft  
Start  
SS  
7
GND  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Description of Blocks  
EN  
The device will shut down when EN falls to 0.7V (Max) or lower. When EN reaches 2.3V (Min), the internal circuit is  
activated and the device starts up.  
VREG  
The VREG block generates the internal power supply.  
VREF  
The VREF block generates the internal reference voltage.  
Error Amplifier  
Error Amplifier adjusts Main Comparator input to make internal reference voltage equal to FB terminal voltage.  
Main Comparator  
Main comparator compares Error Amplifier output and FB terminal voltage. When FB terminal voltage becomes low, it  
outputs High and reports to the On Time block that the output voltage has dropped below control voltage.  
ON Time Controller Block  
This block generates ON Time. The desired ON Time is generated when Main Comparator output becomes High. ON  
Time is adjusted to restrict frequency change even with Input / Output voltage change.  
Soft Start  
The Soft Start circuit slows down the rise of output voltage during start-up and controls the current, which allows the  
prevention of output voltage overshoot and inrush current. The internal soft start time is set to 1ms typically.  
PGOOD  
When the FB terminal voltage reaches within ±7% of 0.765V(Typ), the built-in open drain output Nch MOSFET turns  
off and the output goes high.  
Driver Circuit  
This block is a DC/DC driver. A signal from ON Time Controller Block is applied to drive the MOSFETs.  
UVLO  
UVLO is a protection circuit that prevents low voltage malfunction. It prevents malfunction of the internal circuit from  
sudden rise and fall of power supply voltage. When VIN voltage is higher than 4.2V (Typ), UVLO is released and the  
soft-start circuit will be started. This threshold voltage has a hysteresis of 400mV (Typ). When VIN voltage is less than  
3.8V (Typ), the device will shut down.  
TSD  
The TSD block is for thermal protection. The thermal protection circuit shuts down the device when the internal  
temperature of device rises to 175°C (Typ) or higher. Thermal protection circuit resets when the temperature falls. The  
circuit has a hysteresis of 25°C (Typ).  
SCP  
After the soft start is completed and when the FB terminal voltage has fallen below 0.38V (Typ) for 250μs (Typ), the  
SCP stops the operation for 8ms (Typ) and subsequently initiates restart.  
OCPH  
When inductor current exceeds the current limit threshold value while High-Side MOSFET is ON, the High-Side  
MOSFET will turn OFF.  
OCPL  
The OCP function limits the current flowing through the Low-Side MOSFET for every switching period. If the inductor  
current exceeds the source current limit threshold value IOCP while Low-Side MOSFET is ON, the Low-Side MOSFET  
remains ON even with FB voltage is lower than the REF voltage. The Low-Side MOSFET keeps ON until inductor  
current becomes lower than IOCP and High-Side MOSFET will turn ON. The Low-Side MOSFET will turn OFF when  
inductor current exceeds the sink current limit threshold value while Low-Side MOSFET is ON.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
4/47  
BD9F800MUX-Z  
Absolute Maximum Ratings (Ta = 25C)  
Parameter  
Symbol  
VIN  
Rating  
-0.3 to +30  
-0.3 to +35  
-0.3 to +7  
Unit  
V
Input Voltage  
Voltage from GND to BOOT  
Voltage from SW to BOOT  
SW Terminal Voltage  
VBOOT  
VBOOT - VSW  
VSW  
V
V
-0.3 to VIN + 0.3  
-0.3 to VVREG  
-0.3 to +6  
V
FB Terminal Voltage  
VFB  
V
VREG Terminal Voltage  
FREQ Terminal Voltage  
VVREG  
VFREQ  
VVOUT  
VPGD  
V
-0.3 to +7  
V
VOUT Terminal Voltage  
PGD Terminal Voltage  
-0.3 to +20  
-0.3 to +35  
-0.3 to +30  
150  
V
V
EN Terminal Voltage  
VEN  
V
Maximum Junction Temperature  
Storage Temperature Range  
Tjmax  
Tstg  
°C  
°C  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the maximum junction  
temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN11X3535A  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
232.1  
44.2  
48.0  
8.2  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note 4) Using a PCB board based on JESD51-7.  
Thermal Via(Note 5)  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20mm  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
5/47  
BD9F800MUX-Z  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
Typ  
Max  
28  
+85 (Note 1)  
Unit  
V
Input Voltage  
4.5  
12  
-
Operating Temperature Range  
Output Current  
Topr  
-40  
0
°C  
A
IOUT  
-
8
0.765 (Note 2)  
-
13.5 (Note 3)  
V
Output Voltage Range  
VRANGE  
(Note 1) Tj must be lower than 150°C under actual operating environment. Life time is derated at junction temperature greater than125°C.  
(Note 2) Please use under the condition of VOUTVIN×0.033 [V] (300kHz), VOUT ≥VIN×0.067 [V] (600kHz).  
(Note 3) Please use under the condition of VOUT≤VIN×0.87-0.12×IOUT [V](300kHz), VOUT ≤VIN×0.77-0.13×IOUT [V](600kHz).  
(Refer to the page 39 for how to calculate the output voltage setting.)  
Electrical Characteristics (Ta = 25°C, VIN = 12V, VEN = 3V, FREQ=L unless otherwise specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VEN=GND  
Shutdown Current  
ISD  
-
2
15  
µA  
IOUT=0mA  
when no switching  
Operating Circuit Current  
IVIN  
-
0.85  
1.6  
mA  
EN Low Voltage  
VENL  
VENH  
-
-
-
0.7  
VIN  
10  
V
V
EN High Voltage  
2.3  
EN Input Current  
IEN  
-
2.5  
-
µA  
V
VEN=3V  
FREQ Low Voltage  
FREQ High Voltage  
FREQ Input Current  
VREG Shutdown Voltage  
VREG Output Voltage  
VREG Output Current  
UVLO Threshold Voltage  
UVLO Hysteresis Voltage  
FB Terminal Voltage  
FB Input Bias Current  
Soft Start Time  
VFREQL  
VFREQH  
IFREQ  
-
0.8  
VVREG  
5
2.2  
-
V
-
1.5  
-
µA  
V
VFREQ=3V  
VEN=GND  
VVREG_SD  
VVREG  
IREG  
-
5
0.1  
5.5  
-
5.25  
10  
4.2  
400  
0.765  
-
V
-
mA  
V
VUVLO  
VUVLO_HYS  
VFB  
3.9  
200  
0.757  
-
4.5  
600  
0.773  
1
VIN:Sweep up  
mV  
V
VIN=12V, VOUT=1.0V  
IFB  
µA  
ms  
tSS  
0.5  
1
2
VIN=12V, VOUT=1.0V,  
FREQ=L  
VIN=12V, VOUT=1.0V,  
FREQ=H  
On Time1  
On Time2  
tON1  
-
-
277  
150  
-
-
ns  
ns  
tON2  
tMINOFF  
RONH  
Minimum Off Time  
-
250  
23  
-
-
ns  
mΩ  
mΩ  
A
High Side FET ON Resistance  
Low Side FET ON Resistance  
Current Limit Threshold  
-
-
RONL  
11  
-
(Note 4)  
IOCP  
-
11.5  
90  
-
Power Good Falling (Fault) Voltage  
Power Good Rising (Good) Voltage  
Power Good Rising (Fault) Voltage  
Power Good Falling (Good) Voltage  
Power Good Output Leakage Current  
Power Good ON Resistance  
Hiccup Threshold Voltage  
VPGDFF  
VPGDRG  
VPGDRF  
VPGDFG  
ILKPGD  
RPGD  
87  
90  
107  
104  
-
93  
96  
113  
110  
5
%
FB falling  
FB rising  
FB rising  
FB falling  
PGD= 5V  
93  
%
110  
107  
0
%
%
µA  
Ω
-
500  
0.38  
250  
1000  
0.5  
-
VHCP  
0.26  
-
V
FB Terminal  
Hiccup Delay Time  
tHCPDLY  
µs  
(Note 4) No tested on outgoing inspection.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
6/47  
BD9F800MUX-Z  
Typical Performance Curves  
15  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
14  
VIN=12V  
VIN=12V  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 5. Operating Supply Current vs Temperature  
Figure 4. Shutdown Current vs Temperature  
10  
8
2.2  
VIN=12V, VEN=3V  
2
1.8  
1.6  
1.4  
1.2  
1
Sweep Up  
6
Sweep Down  
4
0.8  
0.6  
0.4  
0.2  
0
2
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 6. EN Threshold Voltage vs Temperature  
Figure 7. EN Input Current vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
7/47  
BD9F800MUX-Z  
Typical Performance Curves - continued  
50  
40  
30  
20  
10  
0
2.2  
2
VIN=12V  
1.8  
1.6  
1.4  
1.2  
1
Sweep Up  
Sweep Down  
0.8  
-40  
-20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
30  
Temperature [°C]  
EN Voltage : VEN[V]  
Figure 9. FREQ Threshold Voltage vs Temperature  
Figure 8. EN Input Current vs EN Voltage  
5
4.5  
4
5.5  
VIN=12V, VFREQ=3V  
VIN=12V  
5.45  
5.4  
5.35  
5.3  
3.5  
3
5.25  
5.2  
2.5  
2
5.15  
5.1  
1.5  
1
5.05  
5
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 10. FREQ Input Current vs Temperature  
Figure 11. VREG Output Voltage vs Temperature  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
8/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
4.5  
4.4  
4.3  
4.2  
4.1  
4
600  
500  
400  
300  
200  
3.9  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 13. UVLO Hysteresis Voltage vs Temperature  
Figure 12. UVLO Threshold Voltage vs Temperature  
0.773  
1
0.8  
0.6  
0.4  
0.2  
0
VIN=12V  
VIN=12V  
0.771  
0.769  
0.767  
0.765  
0.763  
0.761  
0.759  
0.757  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 15. FB Input Current vs Temperature  
Figure 14. FB Terminal Voltage vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
9/47  
BD9F800MUX-Z  
Typical Performance Curves - continued  
2
320  
300  
280  
260  
240  
220  
VIN=12V  
VIN=12V, VOUT=1V  
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 17. On Time 1 vs Temperature  
Figure 16. Soft Start Time vs Temperature  
180  
400  
300  
200  
100  
0
VIN=12V, VOUT=1V  
VIN=12V  
170  
160  
150  
140  
130  
120  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature [°C]  
Figure 18. On Time 2 vs Temperature  
Figure 19. Minimum Off Time vs Temperature  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
10/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
25  
20  
15  
10  
5
50  
VIN=12V  
VIN=12V  
40  
30  
20  
10  
0
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature[°C]  
Temperature [°C]  
Figure 21. Low Side FET ON Resistance vs Temperature  
Figure 20. High Side FET ON Resistance vs Temperature  
96  
113  
VIN=12V  
95  
VIN=12V  
112  
111  
94  
Rising Good  
93  
Rising Fault  
110  
92  
91  
90  
109  
108  
107  
Falling Good  
106  
Falling Fault  
89  
88  
105  
87  
104  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature[°C]  
Temperature [°C]  
Figure 22. Power Good Threshold Voltage vs Temperature  
Figure 23. Power Good Threshold Voltage vs Temperature  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
11/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
1
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN=12V, VPGD=5V  
VIN=12V  
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [°C]  
Temperature[°C]  
Figure 24. Power Good Output Leakage Current vs Temperature  
Figure 25. Power Good ON Resistance vs Temperature  
0.5  
500  
VIN=12V  
VIN=12V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.46  
0.42  
0.38  
0.34  
0.3  
0.26  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature[°C]  
Temperature [°C]  
Figure 27. Hiccup Delay Time vs Temperature  
Figure 26. Hiccup Threshold Voltage vs Temperature  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
12/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
VOUT=1V, 3.3V, 5V  
VOUT=3.3V, 5V  
8
7
6
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
Temperature[°C]  
Figure 29. Operational Range  
VIN=24V, FREQ=L(300kHz), (Tj<150°C)  
(Measured on FR-4 board 85 mm x 85 mm,  
Figure 28. Operational Range  
VIN=12V, FREQ=L(300kHz), (Tj<150°C)  
(Measured on FR-4 board 85 mm x 85 mm,  
Copper Thickness: Top and Bottom 70μm, 2 Internal Layers 35μm)  
Copper Thickness: Top and Bottom 70μm, 2 Internal Layers 35μm)  
10  
10  
VOUT=3.3V  
9
9
VOUT=1V, 3.3V, 5V  
8
7
6
5
4
3
2
1
0
8
7
6
VOUT=5V  
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
Temperature[°C]  
Figure 30. Operational Range  
VIN=12V, FREQ=H(600kHz), (Tj<150°C)  
(Measured on FR-4 board 85 mm x 85 mm,  
Figure 31. Operational Range  
VIN=24V, FREQ=H(600kHz), (Tj<150°C)  
(Measured on FR-4 board 85 mm x 85 mm,  
Copper Thickness: Top and Bottom 70μm, 2 Internal Layers 35μm)  
Copper Thickness: Top and Bottom 70μm, 2 Internal Layers 35μm)  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
13/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
VIN=10V/div  
VSW=10V/div  
VIN=10V/div  
VSW=10V/div  
VOUT=500mV/div  
VPGD=5V/div  
VOUT=500mV/div  
VPGD=5V/div  
Time=1ms/div  
Time=1ms/div  
Figure 33. Shutdown WaveformVIN=VEN  
Figure 32. Start-up WaveformVIN=VEN  
(VIN=12V, VOUT=1V, FREQ=L(300kHz), RLOAD=0.125Ω)  
(VIN=12V, VOUT=1V, FREQ=L(300kHz), RLOAD=0.125Ω)  
VEN=5V/div  
VEN=5V/div  
VSW=10V/div  
VSW=10V/div  
VOUT=500mV/div  
VOUT=500mV/div  
VPGD=5V/div  
VPGD=5V/div  
Time=1ms/div  
Time=1ms/div  
Figure 34. Start-up WaveformVEN=0V to 5V)  
(VIN=12V, VOUT=1V, FREQ=L(300kHz), RLOAD=0.125Ω)  
Figure 35. Shutdown WaveformVEN=5V to 0V)  
(VIN=12V, VOUT=1V, FREQ=L(300kHz), RLOAD=0.125Ω)  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
14/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
2
4
6
8
10  
0
2
4
6
8
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 37. Load Regulation  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
Figure 36. Load Regulation  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
IOUT= 0A  
IOUT= 0A  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
IOUT= 8A  
IOUT= 8A  
4
8
12  
16  
20  
24  
28  
4
8
12  
16  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 38. Line Regulation  
Figure 39. Line Regulation  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
15/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Typical Performance Curves - continued  
360  
340  
320  
300  
280  
720  
690  
660  
630  
600  
570  
540  
510  
480  
IOUT= 8A  
IOUT= 8A  
IOUT= 4A  
IOUT= 4A  
260  
IOUT= 0A  
IOUT= 0A  
24  
240  
4
8
12  
16  
20  
28  
4
8
12  
16  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 41. Switching Frequency vs Input Voltage  
(VOUT=1V, FREQ=H(600kHz))  
Figure 40. Switching Frequency vs Input Voltage  
(VOUT=1V, FREQ=L(300kHz))  
360  
720  
690  
660  
630  
600  
570  
540  
510  
480  
340  
320  
300  
280  
260  
240  
IOUT= 8A  
IOUT= 8A  
IOUT= 4A  
IOUT= 4A  
IOUT= 0A  
IOUT= 0A  
4
8
12  
16  
20  
24  
28  
4
8
12  
16  
20  
24  
28  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 42. Switching Frequency vs Input Voltage  
(VOUT=3.3V, FREQ=L(300kHz))  
Figure 43. Switching Frequency vs Input Voltage  
(VOUT=3.3V, FREQ=H(600kHz))  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
16/47  
BD9F800MUX-Z  
Typical Performance Curves - continued  
360  
720  
690  
660  
630  
600  
570  
540  
510  
480  
340  
IOUT= 4A  
IOUT= 4A  
IOUT= 8A  
320  
300  
280  
260  
240  
IOUT= 8A  
IOUT= 0A  
IOUT= 0A  
4
8
12  
16  
20  
24  
28  
4
8
12  
16  
20  
24  
28  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 45. Switching Frequency vs Input Voltage  
(VOUT=5V, FREQ=H(600kHz))  
Figure 44. Switching Frequency vs Input Voltage  
(VOUT=5V, FREQ=L(300kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Function Explanations  
1. Basic Operation  
(1) Constant On Time Control  
BD9F800MUX-Z is a single synchronous buck switching regulator employing a constant on-time control system.  
It controls the on-time by using the duty ratio of VOUT /VIN inside device so that a switching frequency becomes 300  
kHz or 600 kHz. Therefore it runs with the frequency of 300 kHz or 600 kHz under the constant on-time decided with  
VOUT / VIN.  
(2) Enable Control  
The device shutdown can be controlled by the voltage applied to the EN terminal. When VEN reaches 2.3 V(Min), the  
internal circuit is activated and the device starts up. To enable shutdown control with the EN terminal, the shutdown  
interval (Low level interval of EN) must be set to 100 µs or longer. Startup by EN must be at the same time or after the  
input of power supply voltage.  
VEN  
VENH  
VENL  
0
t
VOUT  
0
t
Figure 46. Start Up and Shut Down with Enable  
(3) Soft Start  
When EN terminal is turned High, Soft Start operates and output voltage gradually rises. With the Soft Start Function,  
over shoot of output voltage and rush current can be prevented. Rising time of output voltage is 1ms(Typ).  
VEN  
0
t
VOUT  
0.7ms(Typ)  
VOUT×0.9  
0
t
Soft Start Time  
1ms(Typ)  
Figure 47. Soft Start Timing Chart  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
18/47  
TSZ22111 15 001  
BD9F800MUX-Z  
(4) Power Good Output  
When the output voltage reaches within ±7% (Typ) of the set voltage, the open drain Nch MOSFET internally  
connected to the PGD terminal turns off and the PGD terminal goes into Hi-Z state. When the output voltage goes  
beyond ±10% (Typ) of the set voltage, the open drain Nch MOSFET turns on and PGD terminal turns Low by a 500Ω  
(Typ) pull-down resistor. Connecting a pull up resistor of about 20kΩ to 100kΩ is recommended.  
+10%  
+7%  
VOUT  
-7%  
-10%  
PGD  
Figure 48. PGD Timing Chart  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/47  
TSZ22111 15 001  
BD9F800MUX-Z  
2. Protective Functions  
The protective circuits are intended for prevention of damage caused by unexpected accidents. Do not use them  
for continuous protective operation.  
(1) Over Current Protection, Short Circuit Protection (OCPL, SCP)  
Over current protection function limits the current flowing through the Low-Side MOSFET for every switching period. If  
the inductor current exceeds the source current limit threshold value IOCP 11.5A(Typ) while Low-Side MOSFET is ON,  
the Low-Side MOSFET remains ON even with FB voltage is lower than the REF voltage. The Low-Side MOSFET  
keeps ON until inductor current becomes lower than IOCP and High-Side MOSFET will turn ON. As a result both  
frequency and duty fluctuates and output voltage may decrease.  
In a case where output decreases because of OCP, output may rise after OCP is released due to the action at high  
speed load response.  
When the FB voltage falls below 0.38V(Typ) and its state continues for 250µs(Typ), the operation stops and restart in  
hiccup mode after 8 ms(Typ).  
Soft Start  
8ms(Typ)  
VOUT  
Hiccup Delay  
Hiccup Delay  
Hiccup  
Threshold  
FB  
Release Detect  
High Side  
MOSFET Gate  
(HG)  
Low Side  
MOSFET Gate  
(LG)  
Current Limit Threshold(IOCP  
)
Inductor Current  
Internal  
OCP Signal  
Over  
Current  
Over  
Current  
Output Current  
Normal  
Normal  
Normal  
Figure 49. Over current protection timing chart  
(2) Low Side Sink Over Current Protection (RCP)  
When inductor current exceeds the sink current limit threshold value of 3.5A(Typ) while Low-Side MOSFET is ON, the  
Low-Side MOSFET will turn OFF.  
(3) High Side Over Current Protection (OCPH)  
When inductor current exceeds the current limit threshold value of 15.5A(Typ) while High-Side MOSFET is ON, the  
High-Side MOSFET will turn OFF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
20/47  
TSZ22111 15 001  
BD9F800MUX-Z  
(4) Under Voltage Lockout Protection (UVLO)  
The operation enters standby when the VIN terminal voltage is 3.8 V (Typ) or lower.  
The operation starts when the VIN terminal voltage is 4.2 V (Typ) or higher.  
VIN  
UVLO  
ON  
UVLO  
OFF  
hys  
0V  
Soft Start  
VOUT  
FB  
High Side  
MOSFET Gate  
Low Side  
MOSFET Gate  
Normal operation  
UVLO  
Normal operation  
Figure 50. UVLO Timing Chart  
(5) Thermal Shutdown Function  
When the chip temperature exceeds Tj=175°C(Typ), the DC/DC converter output is stopped. Thermal protection circuit  
resets when the temperature falls. The circuit has a hysteresis of 25°C (Typ). The thermal shutdown circuit is intended  
for shutting down the device from thermal runaway in an abnormal state with the temperature exceeding Tjmax=150°C.  
It is not meant to protect or guarantee the soundness of the application. Do not use the function of this circuit for  
application protection design.  
When thermal shut down circuit operates, the device will shut down and re-start in hiccup mode after 8ms(Typ).  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
21/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=1V, FOSC=300kHz)  
Parameter  
Input Voltage  
Symbol  
VIN  
Value  
12 V  
Output Voltage  
VOUT  
FOSC  
IOMAX  
1 V  
Switching Frequency  
Maximum Output Current  
300kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 51. Application Circuit  
Table 1. Recommended Component Values  
Part No.  
R1A  
Value  
0 Ω  
Company  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPJ000  
MCR01MZPD6801  
MCR01MZPD2202  
MCR01MZPJ104  
-
R1B  
6.8 kΩ  
22 kΩ  
100 kΩ  
-
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
10 kΩ  
0 Ω  
ROHM  
ROHM  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
MCR01MZPJ103  
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μF  
47 μF  
22 μF  
0.1 μF  
2.2 μF  
2.2μH  
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM31CR60J476ME19  
GRM21BR60J226ME39  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-2R2M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 10μF(300kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
22/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
Gain  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
57.7deg  
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 53. Loop Response IOUT=8A  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
Figure 52. Efficiency vs Output Current  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
VOUT=50mV/div  
VOUT=50mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=5μs/div  
Time=500μs/div  
Figure 54. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
Figure 55. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=1V, FREQ=L(300kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
23/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=1V, FOSC=600kHz)  
Parameter  
Input Voltage  
Symbol  
VIN  
Value  
12 V  
Output Voltage  
VOUT  
FOSC  
IOMAX  
1 V  
Switching Frequency  
Maximum Output Current  
600kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 56. Application Circuit  
Table 2. Recommended Component Values  
Part No.  
R1A  
Value  
0 Ω  
Company  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPJ000  
MCR01MZPD6801  
MCR01MZPD2202  
MCR01MZPJ104  
MCR01MZPJ103  
-
R1B  
6.8 kΩ  
22 kΩ  
100 kΩ  
10 kΩ  
-
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
0 Ω  
ROHM  
Murata  
Murata  
Murata  
Murata  
-
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μF  
47 μF  
-
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM31CR60J476ME19  
-
0.1 μF  
2.2 μF  
1.0μH  
Murata  
Murata  
Murata  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDUE1040D-H-1R0M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 6μF(600kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
24/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
Gain  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
63.4deg  
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 57. Efficiency vs Output Current  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
Figure 58. Loop Response IOUT=8A  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
VOUT=50mV/div  
VOUT=50mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 59. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
Figure 60. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=1V, FREQ=H(600kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
25/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=1.2V, FOSC=300kHz)  
Parameter  
Input Voltage  
Symbol  
Value  
12 V  
VIN  
Output Voltage  
VOUT  
FOSC  
IOMAX  
1.2 V  
Switching Frequency  
Maximum Output Current  
300kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 61. Application Circuit  
Table 3. Recommended Component Values  
Part No.  
R1A  
Value  
0 Ω  
Company  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPJ000  
MCR01MZPD6801  
MCR01MZPD1202  
MCR01MZPJ104  
-
R1B  
6.8 kΩ  
12 kΩ  
100 kΩ  
-
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
10 kΩ  
0 Ω  
ROHM  
ROHM  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
MCR01MZPJ103  
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μF  
47 μF  
22 μF  
0.1 μF  
2.2 μF  
2.2μH  
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM31CR60J476ME19  
GRM21BR60J226ME39  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-2R2M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 10μF(300kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
26/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
80  
180  
135  
90  
Phase  
60  
40  
45  
20  
0
0
Gain  
-45  
-90  
-135  
-180  
-20  
-40  
-60  
-80  
Phase Margin  
60.3deg  
0
0
0.1  
1.0  
10.0  
Frequency : [kHz]  
100.0  
1000.0  
2
4
6
8
Output Current : IOUT [A]  
Figure 63. Loop Response IOUT=8A  
(VIN=12V, VOUT=1.2V, FREQ=L(300kHz))  
Figure 62. Efficiency vs Output Current  
(VIN=12V, VOUT=1.2V, FREQ=L(300kHz))  
VOUT=100mV/div  
VOUT=50mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 64. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=1.2V, FREQ=L(300kHz))  
Figure 65. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=1.2V, FREQ=L(300kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
27/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=1.2V, FOSC=600kHz)  
Parameter  
Input Voltage  
Symbol  
Value  
12 V  
VIN  
Output Voltage  
VOUT  
FOSC  
IOMAX  
1.2 V  
Switching Frequency  
Maximum Output Current  
600kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 66. Application Circuit  
Table 4. Recommended Component Values  
Part No.  
R1A  
Value  
0 Ω  
Company  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPJ000  
MCR01MZPD6801  
MCR01MZPD1202  
MCR01MZPJ104  
MCR01MZPJ103  
-
R1B  
6.8 kΩ  
12 kΩ  
100 kΩ  
10 kΩ  
-
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
0 Ω  
ROHM  
Murata  
Murata  
Murata  
Murata  
-
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μF  
47 μF  
-
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM31CR60J476ME19  
-
0.1 μF  
2.2 μF  
1.0μH  
Murata  
Murata  
Murata  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDUE1040D-H-1R0M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 6μF(600kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
28/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
Gain  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
66.9deg  
0
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
Figure 68. Loop Response IOUT=8A  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 67. Efficiency vs Output Current  
(VIN=12V, VOUT=1.2V, FREQ=H(600kHz))  
(VIN=12V, VOUT=1.2V, FREQ=H(600kHz))  
VOUT=100mV/div  
VOUT=50mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 69. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=1.2V, FREQ=H(600kHz))  
Figure 70. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=1.2V, FREQ=H(600kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
29/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=3.3V, FOSC=300kHz)  
Parameter  
Input Voltage  
Symbol  
Value  
12 V  
VIN  
Output Voltage  
VOUT  
FOSC  
IOMAX  
3.3 V  
Switching Frequency  
Maximum Output Current  
300kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 71. Application Circuit  
Table 5. Recommended Component Values  
Part No.  
R1A  
Value  
5.1 kΩ  
68 kΩ  
22 kΩ  
100 kΩ  
-
Company  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPD5101  
MCR01MZPD6802  
MCR01MZPD2202  
MCR01MZPJ104  
-
R1B  
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
10 kΩ  
0 Ω  
ROHM  
ROHM  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
MCR01MZPJ103  
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μFV  
47 μF  
22 μF  
0.1 μF  
2.2 μF  
3.3μH  
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM32ER61A476ME20  
GRM31CR61A226ME19  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-3R3M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 10μF(300kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
30/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
Gain  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
76.8deg  
0
0
2
4
6
8
0
1
10  
100  
1000  
Output Current : IOUT [A]  
Frequency [kHz]  
Figure 73. Loop Response IOUT=8A  
(VIN=12V, VOUT=3.3V, FREQ=L(300kHz))  
Figure 72. Efficiency vs Output Current  
(VIN=12V, VOUT=3.3V, FREQ=L(300kHz))  
VOUT=100mV/div  
VOUT=50mV/div  
SW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 74. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=3.3V, FREQ=L(300kHz))  
Figure 75. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=3.3V, FREQ=L(300kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
31/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=3.3V, FOSC=600kHz)  
Parameter  
Input Voltage  
Symbol  
Value  
12 V  
VIN  
Output Voltage  
VOUT  
FOSC  
IOMAX  
3.3 V  
Switching Frequency  
Maximum Output Current  
600kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 76. Application Circuit  
Table 6. Recommended Component Values  
Part No.  
R1A  
Value  
5.1 kΩ  
68 kΩ  
22 kΩ  
100 kΩ  
10 kΩ  
-
Company  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPD5101  
MCR01MZPD6802  
MCR01MZPD2202  
MCR01MZPJ104  
MCR01MZPJ103  
-
R1B  
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
0 Ω  
ROHM  
Murata  
Murata  
Murata  
Murata  
-
MCR01MZPJ000  
0.1 μF  
10 μF  
10 μF  
47 μF  
-
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM32ER61A476ME20  
-
0.1 μF  
2.2 μF  
1.5μH  
Murata  
Murata  
Murata  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-1R5M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 6μF(600kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
32/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
Gain  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
79.1deg  
0
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
Figure 78. Loop Response IOUT=8A  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 77. Efficiency vs Output Current  
(VIN=12V, VOUT=3.3V, FREQ=H(600kHz))  
(VIN=12V, VOUT=3.3V, FREQ=H(600kHz))  
VOUT=100mV/div  
VSW=5V/div  
VOUT=200mV/div  
IOUT=2A/div  
Time=5μs/div  
Time=500μs/div  
Figure 79. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=3.3V, FREQ=H(600kHz))  
Figure 80. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=3.3V, FREQ=H(600kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
33/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=5V, FOSC=300kHz)  
Parameter  
Input Voltage  
Symbol  
VIN  
Value  
12 V  
Output Voltage  
VOUT  
FOSC  
IOMAX  
5 V  
Switching Frequency  
Maximum Output Current  
300kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 81. Application Circuit  
Table 7. Recommended Component Values  
Part No.  
R1A  
Value  
8.2k Ω  
47 kΩ  
10 kΩ  
100 kΩ  
-
Company  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPD8201  
MCR01MZPD4702  
MCR01MZPD1002  
MCR01MZPJ104  
-
R1B  
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
10 kΩ  
10 Ω  
ROHM  
ROHM  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
MCR01MZPJ103  
MCR01MZPJ100  
0.1 μF  
10 μF  
10 μF  
47 μF  
22 μF  
0.1 μF  
2.2 μF  
4.7μH  
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM32ER61A476ME20  
GRM31CR61A226ME19  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-4R7M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 10μF(300kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
34/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
Gain  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Phase Margin  
77.5deg  
0
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
Figure 83. Loop Response IOUT=8A  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 82. Efficiency vs Output Current  
(VIN=12V, VOUT=5V, FREQ=L(300kHz))  
(VIN=12V, VOUT=5V, FREQ=L(300kHz))  
VOUT=200mV/div  
VOUT=100mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 84. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=5V, FREQ=L(300kHz))  
Figure 85. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=5V, FREQ=L(300kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
35/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Application Example (VOUT=5V, FOSC=600kHz)  
s
Parameter  
Input Voltage  
Symbol  
VIN  
Value  
12 V  
Output Voltage  
VOUT  
FOSC  
IOMAX  
5 V  
Switching Frequency  
Maximum Output Current  
600kHz(Typ)  
8A  
Caution: Tj must be lower than 150°C under actual operating environment.  
VIN  
BD9F800MUX-Z  
VIN  
BOOT  
EN  
CIN3  
CIN2  
CIN1  
CBOOT  
VOUT  
SW  
L
VREG  
FREQ  
RFREQU  
RFREQD  
R1A  
R1B  
VOUT  
RPGD  
RVOUT  
COUT1  
COUT2  
CVREG  
FB  
PGOOD  
PGD  
GND  
R2  
PGND  
Figure 86. Application Circuit  
Table 8. Recommended Component Values  
Part No.  
R1A  
Value  
8.2k Ω  
47 kΩ  
10 kΩ  
100 kΩ  
10 kΩ  
-
Company  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Part Name  
MCR01MZPD8201  
MCR01MZPD4702  
MCR01MZPD1002  
MCR01MZPJ104  
MCR01MZPJ103  
-
R1B  
R2  
RPGD  
RFREQU  
RFREQD  
RVOUT  
CIN1(Note 1)  
CIN2(Note 2)  
CIN3(Note 2)  
COUT1(Note 3)  
COUT2(Note 3)  
CBOOT(Note 4)  
CVREG(Note 5)  
L
10 Ω  
ROHM  
Murata  
Murata  
Murata  
Murata  
-
MCR01MZPJ100  
0.1 μF  
10 μF  
10 μF  
47 μF  
-
GRM155R61H104ME14  
GRM32ER61H106MA12  
GRM32ER61H106MA12  
GRM32ER61A476ME20  
-
0.1 μF  
2.2 μF  
2.2μH  
Murata  
Murata  
Murata  
GRM152R61A104ME19  
GRM188R61A225KE34  
FDVE1040-H-2R2M  
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1μF ceramic capacitor as close as possible to the VIN pin and the PGND  
pin if needed.  
(Note 2) For the capacitance of input capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set to a minimum  
value of no less than 6μF(600kHz).  
(Note 3) In case capacitance value fluctuates due to temperature characteristics, DC bias characteristics, etc. of the output capacitor, loop response  
characteristics may change. Please confirm on the actual equipment. When selecting a capacitor, confirm the characteristics of the capacitor  
in its datasheet. A ceramic capacitor is recommended for the output capacitor.  
(Note 4) For the capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 0.047μF.  
(Note 5) For the capacitance of CVREG capacitor, take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum  
value to no less than 1μF.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
36/47  
TSZ22111 15 001  
BD9F800MUX-Z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
180  
135  
90  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase Margin  
80.9deg  
0
0
2
4
6
8
0.1  
1.0  
10.0  
Frequency [kHz]  
Figure 88. Loop Response IOUT=8A  
100.0  
1000.0  
Output Current : IOUT [A]  
Figure 87. Efficiency vs Output Current  
(VIN=12V, VOUT=5V, FREQ=H(600kHz))  
(VIN=12V, VOUT=5V, FREQ=H(600kHz))  
VOUT=200mV/div  
VOUT=100mV/div  
VSW=5V/div  
IOUT=2A/div  
Time=500μs/div  
Time=5μs/div  
Figure 89. Load Transient Response IOUT=2A - 6A  
(VIN=12V, VOUT=5V, FREQ=H(600kHz))  
Figure 90. VOUT Ripple IOUT=8A  
(VIN=12V, VOUT=5V, FREQ=H(600kHz))  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
37/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Selection of Components Externally Connected  
About the application except the recommendation, please contact us.  
1. Output LC Filter  
In order to supply a continuous current to the load, the DC/DC converter requires an LC filter for smoothing the output  
voltage. The recommended inductance value is listed in Table 9.  
PVIN  
IL  
Inductor saturation current > IOUTMAX + ΔIL /2  
VOUT  
L
IOUT  
ΔIL  
Driver  
Average inductor current  
COUT  
t
Figure 91. Waveform of current through inductor  
Figure 92. Output LC filter circuit  
Inductor ripple current ΔIL can be represented by the following equation.  
1
ΔIL =VOUT × (VIN -VOUT ) ×  
= 1528  
mA  
VIN × fSW × L  
Where:  
VIN = 12V  
VOUT = 1.0V  
L = 1.0µH  
fsw = 600kHz  
The saturation current of the inductor must be larger than the sum of the maximum output current and 1/2 of the inductor  
ripple current ∆IL.  
Table 9. Recommended inductance value  
Output Voltage  
Frequency  
1.0V  
2.2μH  
1.0μH  
1.2V  
2.2μH  
1.0μH  
3.3V  
3.3μH  
1.5μH  
5.0V  
4.7μH  
2.2μH  
12V  
300kHz  
600kHz  
5.6μH  
3.3μH  
The output capacitor COUT affects the output ripple voltage characteristics. The output capacitor COUT must satisfy the  
required ripple voltage characteristics.  
The output ripple voltage can be represented by the following equation.  
1
ΔVRPL = ΔIL × (RESR  
+
)
V
   
8 × COUT × fSW  
Where:  
RESR is the Equivalent Series Resistance (ESR) of the output capacitor.  
* The capacitor rating must allow a sufficient margin with respect to the output voltage.  
The output ripple voltage is decreased with a smaller RESR  
.
Considering temperature and DC bias characteristics, please use ceramic capacitor of about 66µF to 100µF(300kHz), or  
44µF to 100µF(600kHz).  
* Be careful of total capacitance value, when additional capacitor CLOAD is connected in addition to output capacitor COUT  
Use maximum additional capacitor CLOAD (Max) which satisfies the following condition.  
.
Maximumstarting inductor bottom ripple current ILSTART < Current Limit Threshold 8.5 [A](Min)  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
38/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Maximum starting inductor bottom ripple current ILSTART can be expressed using the following equation.  
ΔIL  
2
ILSTART = Maximum starting output current(IOSS )+Chargecurrent to output capacitor(ICAP )-  
Charge current to output capacitor ICAP can be expressed using the following equation.  
(COUT +C LOAD ) ×VOUT  
ICAP  
=
A
   
t SS  
* CLOAD has an effect on the stability of the DC/DC converter.  
To ensure the stability of the DC/DC converter, make sure that a sufficient phase margin is provided.  
2. Output Voltage Setting  
The output voltage value can be set by the feedback resistance ratio. Please use resisters of about 1kΩ to 100kΩ.  
R1 + R2  
V
OUT  
=
× 0.765  
× R1  
   
V
VOUT  
R2  
0.765  
R2 =  
Ω
   
VOUT -0.765  
R1  
Error Amplifier  
0.765  
V
VOUT 13.5  
   
V
FB  
0.765V  
R2  
BD9F800MUX-Z operates under the condition which satisfies the  
following equation.  
V
IN 0.033[V]VOUT VIN 0.87 -0.12 IOUT  
IN 0.067 [V]VOUT VIN 0.77 -0.13 IOUT  
V
(300kHZ)  
V
   
V
(600kHZ)  
Figure 93. Feedback Resistor Circuit  
3. Input Capacitor  
Use a ceramic capacitor. It is more effective by placing it near VIN and PGND terminals. In using capacitor, please  
consider temperature and DC bias characteristics. For normal setting, it is recommended to connect two 10μF and 0.1μF  
capacitors. Input ripple voltage can be reduced further by using larger values. Also, considering temperature and DC bias  
characteristics, do not use capacity less than 10μF(300kHz), 6μF(600kHz). In order to reduce the influence of high  
frequency noise, place 0.1μF ceramic capacitor close to VIN terminal and PGND terminal as much as possible.  
4. VREG Capacitor  
Connect a 2.2µF ceramic capacitor between VREG terminal and GND terminal. For the capacitance of VREG capacitor,  
take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum value to no less than 1μF.  
Place VREG capacitor close to VREG terminal and GND terminal as much as possible.  
5. Bootstrap Capacitor  
Connect a 0.1µF ceramic capacitor between SW terminal and BOOT terminal. For the capacitance of bootstrap capacitor,  
take temperature characteristics, DC bias characteristics, etc. into consideration to set minimum value to no less than  
0.047μF. Place bootstrap capacitor close to BOOT terminal and SW terminal as much as possible.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
39/47  
TSZ22111 15 001  
BD9F800MUX-Z  
PCB Layout Design  
PCB layout design for DC/DC converter power supply IC is as important as the circuit design. Appropriate layout can avoid  
various problems caused by power supply circuit. Figure 94-a to 94-c show the current path in a buck converter circuit. The  
Loop1 in Figure 94-a is a current path when H-side Switch is ON and L-side Switch is OFF, the Loop2 in Figure 94-b is when  
H-side Switch is OFF and L-side Switch is ON. The thick line in Figure 94-c shows the difference between Loop1 and Loop2.  
The current in thick line changes sharply each time the switching element H-side and L-side Switch change from OFF to ON,  
and vice versa. These sharp changes induce several harmonics in the waveform. Therefore, the loop area of thick line that is  
consisted by input capacitor and IC should be as small as possible to minimize noise. For more detail, refer to application  
note of switching regulator series “PCB Layout Techniques of Buck Converter”.  
Loop1  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
L-side Switch  
GND  
GND  
Figure 94-a. Current path when H-side Switch = ON, L-side switch = OFF  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
Loop2  
L-side Switch  
GND  
VIN  
GND  
Figure 94-b. Current path when H-side Switch = OFF, L-side switch = ON  
VOUT  
L
H-side FET  
CIN  
COUT  
L-side FET  
GND  
GND  
Figure 94-c. Difference of current and critical area in layout  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
40/47  
TSZ22111 15 001  
BD9F800MUX-Z  
PCB Layout Design - continued  
When designing the PCB layout, please pay extra attention to the following points:  
- Place input capacitor on the same PCB surface as the IC and as close as possible to the ICs VIN terminal and PGND  
terminal.  
- If there is any unused area on the PCB, provide a copper foil plane for the ground node to assist heat dissipation from  
the IC and the surrounding components.  
- Switching nodes should be traced as thick and short as possible to the inductor, because they may induce the noise to  
the other nodes due to AC coupling.  
- Please keep the lines connected to FB away from the SW node as far as possible.  
- Please place output capacitor away from input capacitor to avoid harmonics noise from the input.  
- Please connect GND to PGND that are close to the output capacitor. It can avoid harmonic noise.  
Input Bypass  
Capasitor  
Output  
Capacitor  
PGND  
SW  
VIN  
Input Bulk  
Capasitor  
Output  
Inductor  
Enable  
Control  
EN  
GND  
VREG  
Capacitor  
BOOT Capacitor  
PGOOD Output  
Frequency Control  
Thermal VIA  
Figure 95. Example of PCB Layout (TOP VIEW)  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
41/47  
TSZ22111 15 001  
BD9F800MUX-Z  
I/O Equivalent Circuit  
1. BOOT  
2. PGD  
VREG  
VIN  
PGD  
450Ω  
BOOT  
SW  
3. VOUT  
4. FREQ  
20kΩ  
100Ω  
FREQ  
VOUT  
858kΩ  
250kΩ  
10kΩ  
863kΩ  
280kΩ  
50kΩ  
5. FB  
6. VREG  
VIN  
VREG  
5kΩ  
FB  
405kΩ  
2kΩ  
15kΩ  
1MΩ  
10kΩ  
1pF  
120kΩ  
9. SW  
11. EN  
VIN  
BOOT  
EN  
414kΩ  
2MΩ  
555kΩ  
965kΩ  
SW  
VREG  
20Ω  
621kΩ  
Figure 96. I/O equivalence circuit  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
42/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
43/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 97. Example of monolithic IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within  
the Area of Safe Operation (ASO).  
14. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
15. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
16. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
44/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Ordering Information  
B D 9  
F
8
0
0 M U X  
-
Z E 2  
Part Number  
Package  
MUX: VQFN11X3535A  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN11X3535A (TOP VIEW)  
Part Number Marking  
B D 9 F 8  
0 0 M U X  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
45/47  
TSZ22111 15 001  
BD9F800MUX-Z  
Physical Dimension and Packing Information  
Package Name  
VQFN11X3535A  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
46/47  
BD9F800MUX-Z  
Revision History  
Date  
Revision  
Changes  
31.Jul.2017  
19.Mar.2018  
27.Dec.2018  
001  
002  
003  
Created  
Revised Tape Quantity  
Revised Part Number  
www.rohm.com  
TSZ02201-0F3F0AC00090-1-2  
27.Dec.2018 Rev.003  
© 2017 ROHM Co., Ltd. All rights reserved.  
47/47  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9G101G

Simple Step-down Switching Regulators with Built-in Power MOSFET
ROHM

BD9G101G-TR

Simple Step-down Switching Regulators with Built-in Power MOSFET
ROHM

BD9G102G-LB

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BD9G102G-LB是内置支持42V、0.5A电流输出功率MOSFET的非同步降压DC/DC转换器。根据内部电路,工作频率为1.0MHz。还通过内置斜率补偿的电流模式控制方式,实现了简便的相位补偿设定。作为保护功能,内置了过流保护电路、温度保护电路、低电压误动作防止电路等保护电路。
ROHM

BD9G201EFJ-LB

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM

BD9G201EFJ-M

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM

BD9G201UEFJ-LB

本IC是内置高边FET的二极管整流式降压型开关稳压器,支持在4.5V~42V的电源电压范围内工作。该产品通过电流模式控制实现了高速负载响应和简单的相位补偿设置。例如在小型二次侧电源应用中,可以将12V、24V等电源降压后输出3.3V、5V等电压。另外,该产品还具有与外部CLK同步的功能,可以进行噪声管理。本IC是为提高生产效率而对本系列产品中的BD9G201EFJ-LB变更生产线后形成的型号,在新项目选型时,建议选择该型号,在技术规格书中的保证特性并没有差异。此外,由于文档和设计模型等也没有差异,因此除非另有说明,ROHM将公开BD9G201EFJ-LBE2的数据。
ROHM

BD9G201UEFJ-M

BD9G201UEFJ-M is a buck converter with built-in high side MOSFET. It has an input voltage range of
ROHM

BD9G341AEFJ

BD9G341AEFJ是内置对应76V高输入电压的功率MOSFET的降压1ch开关稳压器。内置80V耐压3.5A额定、导通电阻150mΩ的功率MOSFET。还通过电流模式控制方式,实现了高速瞬态响应和简便的相位补偿设定。频率在50kHz ~ 750kHz的范围内可变,内置低电压误动作防止电路、过电流保护电路等保护功能。此外,可通过高精度的EN引脚阈值进行低电压锁定,及使用外接电阻设定滞后。
ROHM

BD9G341AEFJ-LB

1ch Buck Converter Integrated FET
ROHM

BD9G341AEFJ-LBE2

1ch Buck Converter Integrated FET
ROHM

BD9G401EFJ-M

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次测电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM

BD9G401UEFJ-M

本IC是内置高边FET的二极管整流式降压型开关稳压器,支持在4.5V~42V的电源电压范围内工作。该产品通过电流模式控制实现了高速负载响应和简单的相位补偿设置。例如在小型二次侧电源应用中,可以将12V、24V等电源降压后输出3.3V、5V等电压。另外,该产品还具有与外部CLK同步的功能,可以进行噪声管理。本IC是为提高生产效率而对本系列产品中的BD9G401EFJ-M变更生产线后形成的型号,在新项目选型时,建议选择该型号,在技术规格书中的保证特性并没有差异。此外,由于文档和设计模型等也没有差异,因此除非另有说明,ROHM将公开BD9G401EFJ-ME2的数据。
ROHM