BD9S400MUF-C [ROHM]

BD9S400MUF-C是内置低导通电阻的功率MOSFET的同步整流降压型DC/DC转换器。最大可输出4A的电流。凭借SLLM™控制,实现轻负载状态的良好效率特性,适用于降低设备的待机功耗。具有2.2MHz高速开关频率,适用于小型电感。具有基于电流模式控制的高速瞬态响应性能,可轻松设定相位补偿。还可与外部脉冲同步。8-channel power tree Reference DesignFor automotive ADAS and Info-Display;
BD9S400MUF-C
型号: BD9S400MUF-C
厂家: ROHM    ROHM
描述:

BD9S400MUF-C是内置低导通电阻的功率MOSFET的同步整流降压型DC/DC转换器。最大可输出4A的电流。凭借SLLM™控制,实现轻负载状态的良好效率特性,适用于降低设备的待机功耗。具有2.2MHz高速开关频率,适用于小型电感。具有基于电流模式控制的高速瞬态响应性能,可轻松设定相位补偿。还可与外部脉冲同步。8-channel power tree Reference DesignFor automotive ADAS and Info-Display

开关 脉冲 转换器
文件: 总45页 (文件大小:3428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
2.7V to 5.5V Input, 4A Integrated MOSFET  
Single Synchronous Buck DC/DC Converter  
For Automotive  
BD9S400MUF-C  
General Description  
Key Specifications  
BD9S400MUF-C is  
a
synchronous buck DC/DC  
Input Voltage:  
Output Voltage Setting:  
Output Current:  
Switching Frequency:  
High Side MOSFET ON Resistance: 35mΩ (Typ)  
Low Side MOSFET ON Resistance: 35mΩ (Typ)  
2.7V to 5.5V  
0.8V to VPVIN x 0.8V  
4A(Max)  
Converter with built-in low On Resistance power  
MOSFETs. It is capable of providing current up to 4A.  
The SLLMTM control provides excellent efficiency  
characteristics in light-load conditions which make the  
product ideal for reducing standby power consumption of  
equipment. Small inductor is applicable due to high  
switching frequency of 2.2MHz. It is a current mode  
control DC/DC Converter and features high-speed  
transient response. Phase compensation can also be set  
easily.  
2.2MHz(Typ)  
Shutdown Circuit Current:  
Operating Temperature:  
0μA (Typ)  
-40°C to +125°C  
Package  
W(Typ) x D(Typ) x H(Max)  
3.00mm x 3.00mm x 1.00mm  
VQFN16FV3030  
It can also be synchronized to external pulse.  
Features  
SLLMTM (Simple Light Load Mode) Control  
AEC-Q100 Qualified(Note 1)  
Single Synchronous Buck DC/DC Converter  
Adjustable Soft Start Function  
Power Good Output  
Enlarged View  
Input Under Voltage Lockout Protection  
Short Circuit Protection  
Output Over Voltage Protection  
Over Current Protection  
VQFN16FV3030  
Wettable Flank Package  
Thermal Shutdown Protection  
Wettable Flank QFN Package  
(Note 1) Grade 1  
Applications  
Automotive Equipment  
(Cluster Panel, Infotainment Systems)  
Other Electronic Equipment  
Typical Application Circuit  
VIN  
PVIN  
PGD  
AVIN  
BOOT  
VMODE/SYNC  
VEN  
C1  
L1  
CIN1  
CIN2  
MODE/SYNC  
VOUT  
EN  
SS  
ITH  
SW  
FB  
COUT  
R1  
R2  
PGND  
AGND  
R3  
C2  
C3  
Figure 1. Application Circuit  
SLLMTM is a trademark of ROHM Co., Ltd.  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0J1J0AL01350-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
1/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Pin Configuration  
16  
15  
14  
13  
PVIN  
PVIN  
1
2
3
4
12 SW  
11 SW  
10 SW  
EXP-PAD  
PGND  
PGND  
9
SS  
5
6
7
8
(TOP VIEW)  
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
Power supply pins for the DC/DC Converter.  
Connecting a 10µF ceramic capacitor is recommended.  
1, 2  
PVIN  
3, 4  
5
PGND  
AGND  
Ground pins for the DC/DC Converter.  
Ground pin.  
VOUT voltage feedback pin. An inverting input node for the gm error amplifier. Connect output  
voltage divider to this pin to set the output voltage. See page 17 on how to compute for the  
resistor values.  
An output pin of the gm error amplifier and the input of PWM comparator.  
Connect phase compensation components to this pin. See page 20 on calculate the  
resistance and capacitance of phase compensation.  
6
7
FB  
ITH  
Pin for selecting the SLLMTM control mode and the Forced PWM mode. Turning this pin  
signal Low forces the device to operate in the Forced PWM mode. Turning this pin signal  
High enables the SLLMTM control and the mode is automatically switched between the  
SLLMTM control and PWM mode according to the load current. In addition, external  
synchronization operation is started by inputting synchronous pulse signal to this pin.  
MODE  
/SYNC  
8
Pin for setting the soft start time. The rise time of the output voltage can be specified by  
connecting a capacitor to this pin. See page 19 on calculate the capacitance.  
9
10, 11, 12  
13  
SS  
SW  
Switch pin. These pins are connected to the source of the High Side MOSFET and drain of  
the Low Side MOSFET. Connect a bootstrap capacitor of 0.1µF between these pins and the  
BOOT pin.  
Connect a bootstrap capacitor of 0.1µF between this pin and the SW pins.  
The voltage of this capacitor is the gate drive voltage of the High Side MOSFET.  
BOOT  
PGD  
Power Good pin, an open drain output. Use of pull up resistor is needed. See page 12 on  
setting the resistance.  
14  
Pin for controlling the device. Turning this pin signal Low forces the device to enter the  
shutdown mode. Turning this pin signal High enables the device.  
15  
EN  
Power supply input pin of the analog circuitry. Connect this pin to PVIN. Connecting a 0.1µF  
ceramic capacitor is recommended.  
16  
AVIN  
A backside heat dissipation pad. Connecting to the internal PCB ground plane by using via  
provides excellent heat dissipation characteristics.  
-
EXP-PAD  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
2/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Block Diagram  
VIN  
VIN  
AVIN  
PVIN  
16  
1
2
Slope  
EN  
15  
6
PWM  
Comparator  
VREF  
Error  
Amplifier  
BOOT  
SW  
13  
Q
R
FB  
SS  
REF_OCP  
S
Driver  
Logic  
OSC  
Soft  
Start  
10  
11  
12  
3
VOUT  
9
PVIN  
AVIN  
UVLO  
SCP  
OVP  
TSD  
PGND  
ITH  
7
4
Power  
Good  
AGND  
5
14  
8
PGD  
MODE/  
SYNC  
Figure 3. Block Diagram  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
3/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Description of Blocks  
1. VREF  
The VREF block generates the internal reference voltage.  
2. UVLO (Under Voltage Lockout)  
The UVLO block is for under voltage lockout protection. It will shutdown the device when the VIN falls to 2.45V(Typ) or  
lower. The threshold voltage has a hysteresis of 100mV(Typ).  
3. SCP (Short Circuit Protection)  
This is the short circuit protection circuit. After soft start is judged to be completed, if the FB pin voltage falls to 0.56V(Typ)  
or less and remain in that state for 1ms(Typ), output MOSFET will turn OFF for 14ms(Typ) and then restart the operation.  
4. OVP (Over Voltage Protection)  
This is the output over voltage protection circuit. When the FB pin voltage becomes 0.880V(Typ) or more, it turns the  
output MOSFET OFF. After output voltage falls 0.856V(Typ) or less, the output MOSFET returns to normal operation.  
5. TSD (Thermal Shutdown)  
This is the thermal shutdown circuit. It will shutdown the device when the junction temperature (Tj) reaches to 175°C(Typ)  
or more. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation with  
hysteresis of 25°C(Typ).  
6. OCP (Over Current Protection)  
The Over Current Protection function operates by limiting the current that flows through High Side MOSFET at each cycle  
of the switching frequency.  
7. Soft Start  
The Soft Start circuit slows down the rise of output voltage during startup, which allows the prevention of output voltage  
overshoot. The soft start time of the output voltage can be specified by connecting a capacitor to the SS pin. See page 19  
on calculate the capacitance. A built-in soft start function is provided and a soft start is initiated in 1ms(Typ) when the SS  
pin is open.  
8. Error Amplifier  
The Error Amplifier block is an error amplifier and its inputs are the reference voltage 0.8V(Typ) and the FB pin voltage.  
Phase compensation can be set by connecting a resistor and a capacitor to the ITH pin. See page 20 on calculate the  
resistance and capacitance of phase compensation.  
9. PWM Comparator  
The PWM Comparator block compares the output voltage of the Error Amplifier and the Slope signal to determine the  
switching duty.  
10.OSC (Oscillator)  
This block generates the oscillating frequency.  
11.Driver Logic  
This block controls switching operation and various protection functions.  
12.Power Good  
When the FB pin voltage reaches 0.8V(Typ) within ±7%, the built-in Nch MOSFET turns OFF and the PGD output turns  
high. In addition, the PGD output turns low when the FB pin voltage reaches outside ±10% of 0.8V(Typ).  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
4/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
Rating  
Unit  
Input Voltage  
VPVIN, VAVIN  
VEN  
VMODE/SYNC  
VPGD  
-0.3 to +7  
-0.3 to VAVIN  
-0.3 to VAVIN  
-0.3 to +7  
-0.3 to +14  
-0.3 to +7  
-0.3 to VAVIN  
150  
V
V
EN Voltage  
MODE / SYNC Voltage  
PGD Voltage  
V
V
BOOT Voltage  
VBOOT  
V
Voltage from SW to BOOT  
FB ITH SS Voltage  
Maximum Junction Temperature  
Storage Temperature Range  
ΔVBOOT  
VFB, VITH, VSS  
Tjmax  
V
V
°C  
°C  
Tstg  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN16FV3030  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
189.0  
23  
57.5  
10  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air)  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Material  
Thermal Via(Note 5)  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20mm  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
70μm  
Copper Pattern  
Thickness  
35μm  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
74.2mm x 74.2mm  
74.2mm x 74.2mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Max  
Unit  
Input Voltage  
VPVIN, VAVIN  
Topr  
2.7  
5.5  
V
°C  
A
-40  
+125  
Operating Temperature  
Output Current  
IOUT  
-
4
VPVIN x 0.8  
95  
Output Voltage Setting  
SW Minimum ON Time  
External Clock Frequency  
Synchronous Operation Input Duty  
VOUT  
0.8(Note 1)  
V
tON_MIN  
fSYNC  
-
ns  
MHz  
%
1.8  
25  
2.4  
DSYNC  
75  
(Note 1) Although the output voltage is configurable at 0.8V and higher, it may be limited by the SW min ON pulse width. For the configurable range,  
please refer to the Output Voltage Setting in Selection of Components Externally Connected.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
5/42  
04.Dec.2017 Rev.002  
 
BD9S400MUF-C  
Electrical Characteristics (Unless otherwise specified Ta=-40°C to +125°C, AVIN=PVIN=5V, EN=5V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
AVIN  
Shutdown Circuit Current  
Circuit Current  
ISDN  
ICC  
-
0
10  
µA  
µA  
VEN=0V, Ta=25°C  
IOUT=0mA  
Non-switching, Ta=25°C  
400  
650  
900  
UVLO Detection Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
ENABLE  
VUVLO1  
VUVLO2  
2.30  
2.40  
50  
2.45  
2.55  
100  
2.60  
2.70  
125  
V
V
VAVIN Falling  
VAVIN Rising  
Ta=25°C  
VUVLO-HYS  
mV  
EN Threshold Voltage High  
EN Threshold Voltage Low  
EN Input Current  
VENH  
VENL  
IEN  
2.0  
GND  
2
-
-
VIN  
0.8  
8
V
V
5
µA  
VEN=5V, Ta=25°C  
MODE/SYNC  
MODE/SYNC Threshold Voltage High VMODESYNCH  
MODE/SYNC Threshold Voltage Low VMODESYNCL  
2.0  
-
VIN  
V
GND  
4
-
0.8  
16  
V
MODE/SYNC Input Current  
IMODESYNC  
10  
µA  
VMODESYNC=5V, Ta=25°C  
Reference Voltage, Error Amplifier  
FB Pin Voltage  
VFB  
IFB  
0.788  
-
0.8  
0
0.812  
0.2  
V
FB Input Current  
µA  
µA  
µA  
VFB=0.8V, Ta=25°C  
VFB=0.9V, Ta=25°C  
VFB=0.7V, Ta=25°C  
ITH Sink Current  
IITHSI  
IITHSO  
12  
19  
-19  
25  
ITH Source Current  
-25  
-12  
VAVIN=5V,  
The SS Pin OPEN  
0.5  
1.0  
2.0  
ms  
Soft Start Time  
tSS  
ISS  
fSW  
VAVIN=3.3V,  
The SS Pin OPEN  
0.6  
1.2  
2.4  
ms  
µA  
SS Charge Current  
Switching Frequency  
Switching Frequency  
Power Good  
-2.34  
-1.8  
-1.26  
2.0  
2.2  
2.4  
MHz  
VFB  
x 0.87  
VFB  
x 0.90  
VFB  
x 1.07  
VFB  
x 1.04  
VFB  
x 0.90  
VFB  
x 0.93  
VFB  
x 1.10  
VFB  
x 1.07  
VFB  
x 0.93  
VFB  
x 0.96  
VFB  
x 1.13  
VFB  
x 1.10  
PGD Falling (Fault) Voltage  
PGD Rising (Good) Voltage  
PGD Rising (Fault) Voltage  
PGD Falling (Good) Voltage  
VPGDTH_FF  
VPGDTH_RG  
VPGDTH_RF  
VPGDTH_FG  
V
V
V
V
VFB Falling  
VFB Rising  
VFB Rising  
VFB Falling  
PGD Output Leakage Current  
PGD FET ON Resistance  
PGD Output Low Level Voltage  
Switch MOSFET  
ILEAKPGD  
RPGD  
-
0
2
µA  
Ω
VPGD=5V, Ta=25°C  
10  
30  
60  
VPGDL  
0.01  
0.03  
0.06  
V
IPGD=1mA  
10  
15  
10  
15  
35  
38  
35  
38  
60  
65  
60  
65  
mΩ  
mΩ  
mΩ  
mΩ  
VPVIN=5V  
High Side FET ON Resistance  
Low Side FET ON Resistance  
RONH  
VPVIN=3.3V  
VPVIN=5V  
RONL  
VPVIN=3.3V  
VPVIN=5.5V, VSW=0V  
Ta=25˚C  
VPVIN=5.5V, VSW=5.5V  
Ta=25˚C  
High Side FET Leakage Current  
Low Side FET Leakage Current  
ILEAKSWH  
ILEAKSWL  
IOCP  
-
-
0
0
5
5
µA  
µA  
A
SW Current of Over Current  
Protection(Note1)  
4.6  
6.4  
8.2  
SCP, OVP  
Short Circuit Protection Detection  
Voltage  
Output Over Voltage Protection  
Detection Voltage  
VSCP  
VOVP  
0.45  
0.56  
0.67  
V
V
0.856  
0.880  
0.904  
(Note 1) This is design value. Not production tested.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
6/42  
04.Dec.2017 Rev.002  
 
BD9S400MUF-C  
Typical Performance Curves  
10  
9
8
7
6
5
4
3
2
1
0
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
VIN = 5.0V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 3.3V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 4. Shutdown Circuit Current vs Temperature  
Figure 5. Circuit Current vs Temperature  
2.40  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
VIN = 5.0V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 3.3V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 6. Switching Frequency vs Temperature  
Figure 7. FB Pin Voltage vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
7/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Typical Performance Curves – continued  
30  
28  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
26  
VIN = 2.7V  
VIN = 5.0V  
24  
22  
20  
18  
VIN = 5.0V  
VIN = 2.7V  
16  
14  
12  
10  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 8. ITH Sink Current vs Temperature  
Figure 9. ITH Source Current vs Temperature  
20  
2.0  
VIN = 5.0V  
18  
16  
14  
12  
10  
8
VMODESYNCH  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
VMODE/SYNC = 5.0V  
VMODESYNCL  
6
4
VMODE/SYNC = 3.3V  
2
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 10. MODE/SYNC Threshold Voltage vs Temperature  
Figure 11. MODE/SYNC Input Current vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
8/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Typical Performance Curves – continued  
-1.26  
-1.44  
-1.62  
-1.80  
-1.98  
-2.16  
-2.34  
2.0  
CSS = OPEN  
1.5  
1.0  
0.5  
0.0  
VIN = 3.3V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 5.0V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 12. Soft Start Time vs Temperature  
Figure 13. SS Charge Current vs Temperature  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VIN = 3.3V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 5.0V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 14. High Side FET ON Resistance vs Temperature  
Figure 15. Low Side FET ON Resistance vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
9/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Typical Performance Curves – continued  
0.90  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VIN = 5.0V  
VIN = 5.0V  
0.88  
0.86  
0.84  
Rising Fault  
Falling Good  
Falling Fault  
0.82  
0.80  
0.78  
0.76  
0.74  
0.72  
0.70  
Rising Good  
-50 -25  
0
25  
50  
75 100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature[°C]  
Temperature[°C]  
Figure 16. PGD Threshold Voltage vs Temperature  
Figure 17. PGD FET ON Resistance vs Temperature  
2.0  
2.70  
2.65  
VIN = 5.0V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
VUVLO2  
VENH  
2.60  
2.55  
2.50  
2.45  
2.40  
VENL  
VUVLO1  
2.35  
2.30  
-50 -25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature[°C]  
Temperature[°C]  
Figure 18. UVLO Voltage vs Temperature  
Figure 19. EN Threshold Voltage vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
10/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Typical Performance Curves – continued  
10  
9
7.6  
7.2  
6.8  
6.4  
6.0  
5.6  
5.2  
8
7
VEN = 5.0V  
6
5
4
3
2
VEN = 3.3V  
1
0
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[°C]  
Temperature[°C]  
Figure 20. EN Input Current vs Temperature  
Figure 21 SW Current of Over Current Protection  
vs Temperature  
0.670  
0.615  
0.560  
0.505  
0.450  
0.904  
0.896  
0.888  
0.88  
Release  
Detection  
0.872  
0.864  
0.856  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature[]  
Temperature[]  
Figure 22. Short Circuit Protection Detection Voltage  
vs Temperature  
Figure 23. Output Over Voltage Protection Detection Voltage  
vs Temperature  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
11/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Function Explanations  
1.  
Enable Control  
The device shutdown can be controlled by the voltage applied to the EN pin. When VEN becomes 2.0V or more, the  
internal circuit is activated and the device starts up with soft start. When VEN becomes 0.8V or less, the device will be  
shutdown.  
VIN  
0
t
t
t
VEN  
VENH  
VENL  
0
VOUT  
VOUT×0.93(Typ)  
0
tSS  
t_wait  
200µs(Typ)  
Figure 24. Enable ON/OFF Timing Chart  
2.  
Power Good Function  
When the FB pin voltage reaches 0.8V(Typ) within ±7%, the PGD pin open drain MOSFET turns OFF and the output  
turns high. In addition, when the FB pin voltage reaches outside ±10% of 0.8V(Typ), the PGD pin open drain MOSFET  
turns ON and the PGD pin is pulled down with impedance of 30Ω(Typ). It is recommended to use a pull-up resistor of  
about 10kΩ to 100kΩ for the power source.  
+10%(Typ)  
+7%(Typ)  
VOUT  
-7%(Typ)  
-10%(Typ)  
PGD  
Figure 25. Power Good Timing Chart  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
12/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Function Explanations – continued  
3.  
External Synchronization Function  
By inputting synchronous pulse signal to the MODE/SYNC pin, the switching frequency can be synchronized to  
external synchronous pulse signal. When pulse signal is applied at a frequency of 1.8MHz or higher, the external  
synchronization operation is started after the falls of the synchronous pulse are detected 7 times.  
Input the signal with the synchronization frequency range between 1.8MHz and 2.4MHz and the duty range between  
25% and 75%.  
Please note that the output voltage fluctuates by about 2% for a moment when switching between the synchronized  
operation to external signal and internal CLK frequency.  
MODE/SYNC  
1
2
3
4
5
6
7
SW  
Internal CLK operation  
Synchronizing operation  
Figure 26. External Synchronization Function Timing Chart  
When using the external synchronization function, connect a capacitor of 10pF in parallel to the phase compensation  
components (resistor and capacitor) connected to the ITH pin, as a countermeasure against the interference to the  
ITH pin of the Error Amplifier output.  
7
8
ITH  
MODE/  
SYNC  
RITH  
CITH  
10pF  
Figure 27. Recommended Circuit When Using External Synchronization Function  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
13/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Function Explanations – continued  
4.  
SLLMTM Control and Forced PWM Control  
SLLM TM(Simple Light Load Mode) is a technology that enables the OFF control of switching pulses while operating  
with Pulse Width Modulation(PWM) control loop under light load condition. Therefore, it allows the linear operation  
without excessive voltage drop or deterioration in transient response during the switching from light load to heavy load  
or vice versa.  
By utilizing this technology, BD9S400MUF-C operates in PWM mode switching under heavy load condition and  
automatically switches to SLLMTM control under light load condition in order to improve the efficiency. By keeping the  
MODE/SYNC pin voltage level 0.8V or less, it forces the device to operate with Forced PWM mode. And, by applying  
2.0V or more to MODE/SYNC pin, it allows the device to operate with SLLMTM control. As for the Forced PWM mode, it  
has lower efficiency compared to SLLMTM control under light load condition. However, since the device operates with a  
constant switching frequency under varying load conditions, the countermeasure against noise is relatively easier.  
Please note that SLLMTM does not operate adequately when the switching Duty is 50% or more.  
SLLMTM Control  
Forced PWM Control  
Output Current IOUT [A]  
Figure 28. Efficiency (SLLMTM Control and Forced PWM Control)  
SLLMTM Control  
Forced PWM Control  
VOUT =50mV/div  
VOUT =50mV/div  
Time=2µs/div  
Time=2µs/div  
SW=2V/div  
SW=2V/div  
Figure 29. SW Waveform (SLLMTM Control)  
(VIN=5.0V, VOUT=1.8V, IOUT=50mA)  
Figure 30. SW Waveform (Forced PWM Control)  
(VIN=5.0V, VOUT=1.8V, IOUT=1A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
14/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Protection  
1.  
Short Circuit Protection (SCP)  
The Short Circuit Protection block compares the FB pin voltage with the internal reference voltage VREF. When the  
FB pin voltage has fallen to 0.56V(Typ) or less and remained there for 1ms(Typ), SCP stops the operation for  
14ms(Typ) and subsequently initiates a restart. This protection circuit is effective in preventing damage due to sudden  
and unexpected incidents. However, the device should not be used in applications characterized by continuous  
operation of the protection circuit (e.g. when a load that significantly exceeds the output current capability of the chip is  
connected).  
Short Circuit  
Protection  
Short Circuit  
Protection Operation  
The EN Pin  
The FB Pin  
≤0.56V(Typ)  
≥0.60V(Typ)  
-
ON  
OFF  
OFF  
2.0V or higher  
0.8V or lower  
Enabled  
Disabled  
Soft Start  
VOUT  
SCP Delay Time  
1ms (Typ)  
SCP Delay Time  
1ms (Typ)  
0.8V  
VSCP : 0.56V(Typ)  
FB  
SCP OFF  
SW  
LOW  
IOCP  
Inductor Current  
(Output Load  
Current)  
Internal  
HICCUP  
Delay Signal  
14ms (Typ)  
SCP Reset  
Figure 31. Short Circuit Protection (SCP) Timing Chart  
2.  
Over Current Protection (OCP)  
The Over Current Protection function operates by limiting the current that flows through High Side MOSFET at each  
cycle of the switching frequency. This protection circuit is effective in preventing damage due to sudden and  
unexpected incidents. However, the device should not be used in applications characterized by continuous operation  
of the protection circuit (e.g. when a load that significantly exceeds the output current capability of the chip is  
connected).  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
15/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Protection – continued  
3.  
Under Voltage Lockout Protection (UVLO)  
It will shutdown the device when the AVIN pin falls to 2.45V(Typ) or lower.  
The threshold voltage has a hysteresis of 100mV(Typ).  
VIN  
VUVLO-HYS  
VUVLO2  
VUVLO1  
0V  
t_wait  
VOUT  
SoftSstart  
FB  
SW  
Normal operation  
UVLO  
Normal operation  
Figure 32. UVLO Timing Chart  
4.  
5.  
Thermal Shutdown  
This is the thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within  
the IC’s power dissipation rating. However, if the rating is exceeded for a continued period, the junction temperature  
(Tj) will rise which will activate the TSD circuit[Tj ≥175°C (Typ)] that will turn OFF output MOSFET. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit  
operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the  
TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.  
Over Voltage Protection (OVP)  
The device incorporates an over voltage protection circuit to minimize the output voltage overshoot when recovering  
from strong load transients or output fault conditions. If the FB pin voltage exceeds Output Over Voltage Protection  
Detection Voltage at 0.880V(Typ), the MOSFET on the output stage is turned OFF to prevent the increase in the  
output voltage. After the detection, the switching operation resumes if the output decreases and the over voltage state  
is released. Output Over Voltage Protection Detection Voltage and release voltage have a hysteresis of 3%.  
VOUT  
VOVP : 0.880V(Typ)  
hys  
OVP Release  
Threshold  
FB  
SW  
Internal OVP  
Signal  
Figure 33. OVP Timing Chart  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
16/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Selection of Components Externally Connected  
Contact us if not use the recommended constant in the application circuit.  
Necessary parameters in designing the power supply are as follows:  
Table 1. Application Specification  
Parameter  
Input Voltage  
Symbol  
VIN  
Example Value  
5.0V  
Output Voltage  
VOUT  
fSW  
ΔIL  
COUT  
tSS  
IOUTMAX  
1.2V  
2.2MHz(Typ)  
0.4A  
44μF  
4.5ms(Typ)  
4A  
Switching Frequency  
Inductor Ripple Current  
Output Capacitor  
Soft Start Time  
Maximum Output Current  
Application Example  
R4  
VIN  
PVIN  
PGD  
PGD  
AVIN  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
FB  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
R2  
PGND  
AGND  
R3  
C2  
C3  
Figure 34. Typical Application  
1. Switching Frequency  
The switching frequency fSW is fixed at 2.2MHz(Typ) inside the IC.  
2. Selection of Output Voltage Setting  
The output voltage value can be set by the feedback resistance ratio.  
푅 +푅  
1
2 × 0.8 [V]  
2
VOUT  
푂푈푇  
=
R1  
R2  
FB  
SW Minimum ON Time that BD9S400MUF-C can output  
stably in the entire load range is 95ns.  
Use this value to calculate the input and output conditions  
that satisfy the following equation  
0.8V(Typ)  
푂푈푇  
[ ]  
95 ns ≤  
푉 × 푓  
퐼푁  
푂푆퐶  
Figure 35. Feedback Resistor Circuit  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
17/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Selection of Components Externally Connected – continued  
3. Selection of Input Capacitor  
The input capacitor requires a large capacitor value for CIN1 and a small capacitor value for CIN2. Please use ceramic  
type capacitor for these capacitors. CIN1 is used to suppress the ripple noise, and CIN2 is used to suppress the switching  
noise. These ceramic capacitors are effective by being placed as close as possible to the PVIN pin and the AVIN pin.  
Capacitor with value 4.7μF or more for CIN1, and 0.06μF or more for CIN2 are necessary. In addition, the voltage rating for  
both capacitors has to be twice the typical input voltage. Set the capacitor value so that it does not fall to its minimum  
required value against the capacitor value variances, temperature characteristics, DC bias characteristics, aging  
characteristics, and etc. Please use components which are comparatively same with the components used in  
“Application Example” on page 22. Moreover, factors like the PCB layout and the position of the capacitor may lead to IC  
malfunction. Please refer to “Notes on the PCB layout Design” on page 34 and 35.  
4. Selection of Output LC Filter  
In order to supply a continuous current to the load, the DC/DC converter requires an LC filter for smoothing the output  
voltage. When an inductor with a higher inductance value is selected, the ripple current flowing through the inductor ΔIL  
and the ripple voltage generated in the output voltage are reduced. However, the load transient response characteristic  
becomes slow. If an inductor with a lower inductance value is selected, its transient response characteristic is faster.  
However, the ripple current flowing through the inductor becomes larger and the ripple voltage in the output voltage  
becomes larger, causing a trade-off between the response characteristic and the ripple current and voltage. Here, the  
inductance value is selected so that the ripple current component is in the range between 200mA and 1000mA.  
VIN  
IL  
Inductor Saturation Current > IOUTMAX + IL/2  
L1  
IL  
VOUT  
Driver  
Maximum Output Current IOUTMAX  
COUT  
t
Figure 36. Waveform of Current Through Inductor  
Figure 37. Output LC Filter Circuit  
Inductor ripple current ΔIL can be represented by the following equation.  
(
)
×
∆ꢀ= 푂푈푇 × 푉 푂푈푇  
= 4ꢇ4 [mA]  
퐼푁  
ꢃꢄ  
×ꢅ ×퐿  
ꢆ푊  
1
where  
퐼푁  
is the 5.0V  
푂푈푇 is the 1.2V  
ꢁ  
is the 1.0µH  
is the 2.2MHz (Switching Frequency)  
푆ꢉ  
The rated current of the inductor must be larger than the sum of the maximum output current and 1/2 of the inductor  
ripple current ΔIL. The output capacitor COUT affects the output ripple voltage characteristics. The output capacitor COUT  
must satisfy the required ripple voltage characteristics.  
The output ripple voltage can be represented by the following equation.  
푅푃퐿 = ∆ꢀ× ꢊꢋ퐸푆푅 ꢍ×퐶  
[V]  
ꢆ푊  
×ꢅ  
ꢎꢏꢐ  
Where  
퐸푆푅 is the Equivalent Series Resistance (ESR) of the output capacitor  
The output ripple voltage ΔVRPL can be represented by the following equation.  
푅푃퐿 = 0.4ꢇ4 × ꢊꢇ0 ꢌ ꢍ×ꢒꢒ×ꢓ.ꢓꢑ = 4.67 [mV]  
where  
푂푈푇 is the 44µF  
퐸푆푅 is the 10mΩ  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
18/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Selection of Components Externally Connected – continued  
In addition, for the total value of capacitance in the output line COUT(Max), choose a capacitance value less than the  
value obtained by the following equation:  
[
]
(푡  
ꢖꢓꢗꢗ µs )×(퐼  
ꢖ퐼  
)
(
)
ꢎꢘꢙ(ꢕ푖푛) ꢆ푊ꢆꢐ퐴ꢚꢐ  
ꢆꢆ ꢕ푖푛  
푂푈푇(푀푎푥)  
<
[F]  
ꢎꢏꢐ  
Where:  
푆ꢉ푆푇ꢛ푅푇 is the maximum output current during startup  
푂퐶푃(푀ꢜꢝ) is the minimum OCP operation SW current 4.6A  
푆푆(푀ꢜꢝ)  
푂푈푇  
is the minimum Soft Start Time  
is the output voltage  
Startup failure may happen if the limits from the above-mentioned are exceeded. Especially if the capacitance value is  
extremely large, over current protection may be activated by the inrush current at startup and prevented to turn on the  
output. Please confirm this on the actual application. Stable transient response and the loop is dependent to COUT  
Please select after confirming the setting of the phase compensation circuit.  
.
Also, in case of large changing input voltage and output current, select the capacitance accordingly by verifying that the  
actual application setup meets the required specification.  
5. Selection of Soft Start Capacitor  
Turning the EN pin signal high activates the soft start function. This causes the output voltage to rise gradually while the  
current at startup is placed under control. This allows the prevention of output voltage overshoot and inrush current. The  
rise time tSS_EXT depends on the value of the capacitor connected to the SS pin. The capacitance value should be set to  
0.22μF or less.  
VEN  
(
)
퐶 ×ꢂ  
3
퐹퐵  
VENH  
VENL  
푆푆_퐸푋푇  
=
[s]  
ꢆꢆ  
0
t
where  
푆푆_퐸푋푇 is the Soft Start Time  
VOUT  
ꢟ  
ꢠꢡ  
is the Capacitor connected to the SS pin  
is the FB pin Voltage 0.8V(Typ)  
푆푆  
is the SS Charge Current 1.8µA(Typ)  
0
t
tSS_EXT  
With C3=0.01μF  
t_wait  
200µs(Typ)  
(
)
ꢗ.ꢗꢁꢗ×ꢗ.ꢍ  
푆푆_  
=
= 4.44 [ms]  
Figure 38. Soft Start Timing chart  
ꢢꢣꢐ  
ꢁ.ꢍ  
Turning the EN pin High without connecting capacitor to the SS pin and keeping the SS pin either OPEN condition or  
about 10kΩ to 100kΩ pull up condition to power source, the output will rise in 1ms(Typ).  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
19/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Selection of Components Externally Connected – continued  
6. Selection of Phase Compensation Components  
A current mode control buck DC/DC converter is two-pole, one-zero system. Two poles are formed by an error amplifier  
and load, and the one zero point is added by phase compensation. The phase compensation resistor R3 determines the  
crossover frequency fCRS that the total loop gain of the DC/DC converter is 0dB.The crossover frequency should be set  
20kHz to 100kHz. A high value fCRS provides a good load transient response characteristic but instability. Conversely, a  
low value fCRS greatly stabilizes the characteristics but the load transient response characteristic is impaired.  
(1) Selection of Phase Compensation Resistor R3  
The Phase Compensation Resistance R3 can be determined by using the following equation.  
ꢓ휋×ꢂ  
×ꢅ  
×퐶  
ꢘꢚꢆ ꢎꢏꢐ  
ꢎꢏꢐ  
=  
[Ω]  
퐹퐵  
×퐺 ×퐺  
ꢕꢙ ꢕ퐴  
where  
푂푈푇  
is the Output Voltage  
푂푈푇  
ꢠꢡ  
푀푃  
푀ꢛ  
is the Crossover Frequency  
퐶푅푆  
is the Output Capacitance  
is the Feedback Reference Voltage 0.8V(Typ)  
is the Current Sense Gain 14.3A/V(Typ)  
is the Error Amplifier Trans conductance 260µA/V(Typ)  
(2) Selection of Phase Compensation Capacitance C2  
For stable operations of DC/DC converter, the zero point (phase lead) to cancel the phase lag formed by loads is  
determined with C2.  
C2 can be calculated with the following equation.  
=  
[F]  
1
ꢓ휋×ꢅ  
×
×ꢂ  
ꢘꢚꢆ  
ꢎꢏꢐ  
ꢥ.ꢥꢥ3  
(3) Loop Stability  
Actually, characteristics will vary depending on PCB layout, arrangement of wiring, kinds of parts used and use  
conditions (temperature, etc.). Be sure to check stability and responsiveness with actual apparatus. Phase margin of at  
least 45° in the worst conditions is recommended. Gain Phase Analyzer or Frequency Response Analyzer FRA is used  
to check frequency characteristics with actual apparatus. Contact the measurement apparatus manufacturer for  
measurement method. When these measurement apparatuses are not available, there is a method of assuming Phase  
margin by load response. Monitor variation of output when the apparatus shifts from no load state to maximum load. And  
it can be said that responsiveness is low if variation amount is large, and phase margin is small if ringing occurs  
frequently (twice or more as a guide) after variation.  
However, confirmation of quantitative phase margin is not possible.  
Maximum load  
Load  
IOUT  
Inadequate phase margin  
Adequate phase margin  
Output voltage  
VOUT  
0
t
Figure 39. Load Response  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
20/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Selection of Components Externally Connected – continued  
7. Input Voltage Startup  
VIN  
VIN ×0.8 VOUT  
VOUT  
UVLO release  
Figure 40. Input Voltage Startup Time  
The soft start function starts up the device according to the specified soft start time. After UVLO is released, the voltage  
range that can be outputted during the soft start operation is 80% or less of the input voltage. Note that the input voltage  
during the startup with soft start should satisfy the following expression  
ꢎꢏꢐ  
푉 ≥  
퐼푁  
[V]  
ꢗ.ꢍ  
8. Bootstrap Capacitor  
Bootstrap capacitor C1 shall be 0.1μF. Connect a bootstrap capacitor between the SW pin and the BOOT pin.  
For capacitance of bootstrap capacitor, take temperature characteristics, DC bias characteristics and etc. into  
consideration to set minimum value to no less than 0.047μF.  
Recommended Parts Manufacturer List  
Shown below is the list of the recommended parts manufacturers for reference.  
Table 2.  
Device  
Type  
Ceramic capacitors  
Ceramic capacitors  
Inductors  
Manufacturer  
Murata  
TDK  
URL  
www.murata.com  
product.tdk.com  
www.coilcraft.com  
www.cyntec.com  
www.murata.com  
www.sumida.com  
www.product.tdk.com  
www.rohm.com  
C
C
L
Coilcraft  
Cyntec  
Murata  
Sumida  
TDK  
L
Inductors  
L
Inductors  
L
Inductors  
L
Inductors  
R
Resisters  
ROHM  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
04.Dec.2017 Rev.002  
21/42  
BD9S400MUF-C  
Application Example 1  
Table 3. Specification Example 1  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
3.3V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
VOUT  
tSS  
IOUTMAX  
Topr  
1.0V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
R4  
VIN  
PVIN  
PGD  
PGD  
AVIN  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
C4  
PGND  
AGND  
R3  
C2  
FB  
R2  
C3  
Figure 41. Reference Circuit 1  
Table 4. Parts List 1  
No  
Package  
Parameters  
Part Name(Series)  
Type  
Manufacturer  
L1  
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
1.0μH  
CLF6045NIT-1R0N-D  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Inductor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
TDK  
Murata  
Murata  
Murata  
Murata  
-
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
1005  
1005  
1005  
1005  
1005  
1005  
-
7.5kΩ, 1%, 1/16W  
30kΩ, 1%, 1/16W  
8.2kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
4700pF, X7R, 50V  
-
MCR01MZPF7501  
MCR01MZPF3002  
MCR01MZPF8201  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H472K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
22/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 1)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1
10  
Frequency[kHz]  
100  
1000  
Output Current [A]  
Figure 42. Efficiency vs Output Current  
Figure 43. Frequency Characteristics  
(IOUT=2A)  
Time: 500ns/div  
VOUT: 20mV/div  
Time: 100μs/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 44. Load Transient Response  
Figure 45. Output Ripple Voltage  
(IOUT=2A)  
(IOUT=0A↔2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
23/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Application Example 2  
Table 5. Specification Example 2  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
3.3V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
Output Capacitor  
VOUT  
tSS  
IOUTMAX  
Topr  
COUT  
1.0V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
88μF  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
VOUT  
EN  
SS  
ITH  
SW  
L1  
R100  
R1  
COUT1  
COUT4  
COUT2 COUT3  
C4  
PGND  
AGND  
R3  
C2  
FB  
R2  
C3  
Figure 46. Reference Circuit 2  
Table 6. Parts List 2  
No  
L1  
Package  
Parameters  
0.47μH  
Part Name(Series)  
XEL4030-471ME  
GCM31CR70J226K  
GCM31CR70J226K  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Type  
Manufacturer  
Coilcraft  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
-
Inductor  
COUT1  
COUT2  
COUT3  
COUT4  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
1005  
1005  
1005  
1005  
1005  
1005  
-
7.5kΩ, 1%, 1/16W  
30kΩ, 1%, 1/16W  
30kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
1000pF, X7R, 50V  
-
MCR01MZPF7501  
MCR01MZPF3002  
MCR01MZPF3002  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H102K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
24/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 2)  
80  
60  
180  
135  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1
10  
Frequency[kHz]  
100  
1000  
Output Current [A]  
Figure 47. Efficiency vs Output Current  
Figure 48. Frequency Characteristic  
(IOUT=2A)  
Time: 500ns/div  
VOUT: 20mV/div  
Time: 100μs/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 49. Load Transient Response  
(IOUT=0A↔2A)  
Figure 50. Output Ripple Voltage  
(IOUT=2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
25/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Application Example 3  
Table 7. Specification Example 3  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
5.0V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
VOUT  
tSS  
IOUTMAX  
Topr  
1.2V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
C4  
PGND  
AGND  
R3  
C2  
FB  
R2  
C3  
Figure 51. Reference Circuit 3  
Table 8. Parts List 3  
No  
L1  
Package  
Parameters  
Part Name(Series)  
CLF6045NIT-1R0N-D  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Type  
Manufacturer  
TDK  
1.0μH  
Inductor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
Murata  
Murata  
Murata  
Murata  
-
1005  
1005  
1005  
1005  
1005  
1005  
-
10kΩ, 1%, 1/16W  
20kΩ, 1%, 1/16W  
8.2kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
4700pF, X7R, 50V  
-
MCR01MZPF1002  
MCR01MZPF2002  
MCR01MZPF8201  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H472K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
26/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 3)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
Output Current [A]  
Frequency[kHz]  
Figure 52. Efficiency vs Output Current  
Figure 53. Frequency Characteristics  
(IOUT=2A)  
Time: 500ns/div  
VOUT: 20mV/div  
Time: 100μs/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 54. Load Transient Response  
(IOUT=0A↔2A)  
Figure 55. Output Ripple Voltage  
(IOUT=2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
27/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Application Example 4  
Table 9. Specification Example 4  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
5.0V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
VOUT  
tSS  
IOUTMAX  
Topr  
1.5V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
C4  
PGND  
AGND  
R3  
C2  
FB  
R2  
C3  
Figure 56. Reference Circuit 4  
Table 10. Parts List 4  
No  
L1  
Package  
Parameters  
Part Name(Series)  
CLF6045NIT-1R0N-D  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Type  
Manufacturer  
TDK  
1.0μH  
Inductor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
Murata  
Murata  
Murata  
Murata  
-
1005  
1005  
1005  
1005  
1005  
1005  
-
16kΩ, 1%, 1/16W  
18kΩ, 1%, 1/16W  
12kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
3300pF, X7R, 50V  
-
MCR01MZPF1602  
MCR01MZPF1802  
MCR01MZPF1202  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H332K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
28/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 4)  
80  
60  
180  
135  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1
10  
Frequency[kHz]  
100  
1000  
Figure 57. Efficiency vs Output Current  
Figure 58. Frequency Characteristics  
(IOUT =2A)  
Time: 100μs/div  
Time: 500ns/div  
VOUT: 20mV/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 59. Load Transient Response  
(IOUT = 0A↔2A)  
Figure 60. Output Ripple Voltage  
(IOUT=2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
29/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Application Example 5  
Table 11. Specification Example 5  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
5.0V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
VOUT  
tSS  
IOUTMAX  
Topr  
1.8V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
R2  
C4  
PGND  
AGND  
R3  
C2  
FB  
C3  
Figure 61. Reference Circuit 5  
Table 12. Parts List 5  
No  
L1  
Package  
Parameters  
1.0μH  
Part Name(Series)  
CLF6045NIT-1R0N-D  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Type  
Manufacturer  
TDK  
Inductor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
Murata  
Murata  
Murata  
Murata  
-
1005  
1005  
1005  
1005  
1005  
1005  
-
30kΩ, 1%, 1/16W  
24kΩ, 1%, 1/16W  
13kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
3300pF, X7R, 50V  
-
MCR01MZPF3002  
MCR01MZPF2402  
MCR01MZPF1302  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H332K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
30/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 5)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1
10  
Frequency[kHz]  
100  
1000  
Output Current (A)  
Figure 62. Efficiency vs Output Current  
Figure 63. Frequency Characteristics  
(IOUT=2A)  
Time: 100μs/div  
Time: 500ns/div  
VOUT: 20mV/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 64. Load Transient Response  
(IOUT=0A↔2A)  
Figure 65. Output Ripple Voltage  
(IOUT=2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
31/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Application Example 6  
Table 13. Specification Example 6  
Parameter  
Product Name  
Symbol  
IC  
VIN  
Example Value  
BD9S400MUF-C  
5.0V  
Supply Voltage  
Output Voltage  
Soft Start Time  
Maximum Output Current  
Operation Temperature Range  
VOUT  
tSS  
IOUTMAX  
Topr  
3.3V  
1.0ms(Typ)  
4.0A  
-40°C to +125°C  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
BOOT  
MODE/SYNC  
C1  
CIN1  
CIN2  
Enable  
EN  
SS  
ITH  
SW  
VOUT  
L1  
R100  
COUT1  
COUT2  
R1  
C4  
PGND  
AGND  
R3  
C2  
FB  
R2  
C3  
Figure 66. Reference Circuit 6  
Table 14. Parts List 6  
No  
L1  
Package  
Parameters  
1.0μH  
Part Name(Series)  
CLF6045NIT-1R0N-D  
GCM31CR70J226K  
GCM31CR70J226K  
GCM21BR71A106K  
GCM155R71C104K  
-
Type  
Manufacturer  
TDK  
Inductor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
2012  
1005  
-
22μF, X7R, 6.3V  
22μF, X7R, 6.3V  
10μF, X7R, 10V  
0.1μF, X7R, 16V  
SHORT  
Murata  
Murata  
Murata  
Murata  
-
1005  
1005  
1005  
1005  
1005  
1005  
-
75kΩ, 1%, 1/16W  
24kΩ, 1%, 1/16W  
20kΩ, 1%, 1/16W  
100kΩ, 1%, 1/16W  
0.1μF, X7R, 16V  
2200pF, X7R, 50V  
-
MCR01MZPF7502  
MCR01MZPF2402  
MCR01MZPF2002  
MCR01MZPF1003  
GCM155R71C104K  
GCM155R71H222K  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Ceramic Capacitor  
Ceramic Capacitor  
-
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
-
R2  
R3  
R4  
C1  
C2  
C3  
C4  
-
-
-
-
-
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
32/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Characteristic Data (Application Examples 6)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
180  
135  
90  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Phase  
0.0  
1.0  
2.0  
3.0  
4.0  
0.1  
1
10  
Frequency[kHz]  
100  
1000  
Output Current [A]  
Figure 67. Efficiency vs Output Current  
Figure 68. Frequency Characteristics  
(IOUT=2A)  
Time: 100μs/div  
Time: 500ns/div  
VOUT: 20mV/div  
VOUT: 100mV/div  
IOUT: 500mA/div  
IOUT: 1A/div  
Figure 69. Load Transient Response  
(IOUT=0A↔2A)  
Figure 70. Output Ripple Voltage  
(IOUT=2A)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
33/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
PCB Layout Design  
PCB layout design for DC/DC converter is as important as the circuit design. Appropriate layout can avoid various problems  
concerning power supply circuit. Figure 71-a to 71-c show the current path in a buck DC/DC converter circuit. The Loop 1 in  
Figure 71-a is a current path when H-side switch is ON and L-side switch is OFF, the Loop 2 in Figure 71-b is when H-side  
switch is OFF and L-side switch is ON. The thick line in Figure 71-c shows the difference between Loop1 and Loop2. The  
current in thick line change sharply each time the switching element H-side and L-side switch change from OFF to ON, and  
vice versa. These sharp changes induce a waveform with harmonics in this loop. Therefore, the loop area of thick line that is  
consisted by input capacitor and IC should be as small as possible to minimize noise. For more details, refer to application  
note of switching regulator series “PCB Layout Techniques of Buck Converter”.  
Loop1  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
L-side Switch  
GND  
GND  
Figure 71-a. Current Path when H-side Switch = ON, L-side Switch = OFF  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
Loop2  
L-side Switch  
GND  
GND  
Figure 71-b. Current Path when H-side Switch = OFF, L-side Switch = ON  
VIN  
VOUT  
L
CIN  
COUT  
H-side FET  
L-side FET  
GND  
GND  
Figure 71-c. Difference of Current and Critical Area in Layout  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
34/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
PCB Layout Design – continued  
When designing the PCB layout, please pay extra attention to the following points:  
Connect the input capacitor as close as possible to the PVIN pin on the same plane as the IC.  
Switching nodes such as SW are susceptible to noise due to AC coupling with other nodes. Route the inductor pattern as  
thick and as short as possible.  
R1 and R2 shall be located as close as possible to the FB pin and the wiring between R1 and R2 to the FB pin shall be as  
short as possible.  
• Provide lines connected to FB and ITH far from the SW nodes.  
When using the external synchronization function, there is concern that the ITH node might be affected by noise.  
Therefore, place the ITH node as far as possible from the external clock input node.  
Influence from the switching noise can be minimized, by isolating Power (Input and Output Capacitor) GND and  
Reference (FB, ITH) GND.  
• R100 is provided for the measurement of feedback frequency characteristics (optional). By inserting a resistor into R100, it  
is possible to measure the frequency characteristics of feedback (phase margin) using FRA etc. R100 is short-circuited  
for normal use.  
C1  
L1  
CIN2  
CIN1  
IC  
C3  
COUT1  
R2  
COUT2  
R3  
C2  
R1  
C4  
R100  
Example of Evaluation Board Layout (Top View)  
Example of Evaluation Board Layout (Bottom View)  
Figure 72. Example of Evaluation Board Layout  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
35/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Power Dissipation  
For thermal design, be sure to operate the IC within the following conditions.  
(Since the temperatures described hereunder are all guaranteed temperatures, take margin into account.)  
1. The ambient temperature Ta is to be 125 °C or less.  
2. The chip junction temperature Tj is to be 150 °C or less.  
The chip junction temperature Tj can be considered in the following two patterns:  
1. To obtain Tj from the package surface center temperature Tt in actual use  
ꢦ푗 = ꢦꢞ ꢌ 휓퐽푇 × ꢧ [°C]  
2. To obtain Tj from the ambient temperature Ta  
ꢦ푗 = ꢦꢨ ꢌ 퐽ꢛ × ꢧ [°C]  
Where:  
퐽푇  
퐽ꢛ  
is junction to top characterization parameter (Refer to page 5)  
is junction to ambient (Refer to page 5)  
The heat loss W of the IC can be obtained by the formula shown below:  
푂푈푇  
푂푈푇  
ꢧ = ꢋ푂푁퐻 × ꢀ푂푈푇  
×
ꢌ ꢋ푂푁퐿 × ꢀ푂푈ꢩꢇ −  
퐼푁  
퐼푁  
(
)
ꢌ푉 × 퐶퐶 ꢌ × ꢞ푟 ꢌ ꢞ푓 × 푉 × ꢀ푂푈푇 × 푓  
[W]  
퐼푁  
퐼푁  
푆ꢉ  
Where:  
푂푁퐻  
is the High Side FET ON Resistance (Refer to page 6) [Ω]  
is the Low Side FET ON Resistance (Refer to page 6) [Ω]  
is the Output Current [A]  
푂푁퐿  
푂푈푇  
푂푈푇  
is the Output Voltage [V]  
퐼푁  
is the Input Voltage [V]  
퐶퐶  
ꢞ푟  
ꢞ푓  
is the Circuit Current (Refer to page 6) [A]  
is the Switching Rise Time [s] (Typ:6ns)  
is the Switching Fall Time [s] (Typ:6ns)  
is the Switching Frequency (Refer to page 6) [Hz]  
푆ꢉ  
1. 푂푁퐻 × ꢀ푂푈푇  
2. 푂푁퐿 × ꢀ푂푈푇  
3. × (ꢞ푟 ꢌ ꢞ푓) × 푉 × ꢀ× 푓  
퐼푁  
푆ꢉ  
Figure 73. SW Waveform  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
36/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
I/O Equivalent Circuits  
6. FB  
7. ITH  
20kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
FB  
AVIN  
AGND  
ITH  
40Ω  
AGND  
5kΩ  
AGND  
AGND  
AGND  
8. MODE/SYNC  
9. SS  
20kΩ  
AVIN  
150kΩ  
MODE/  
SYNC  
AGND  
SS  
1kΩ  
350kΩ  
80kΩ  
1kΩ  
40kΩ  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
10.11.12. SW, 13. BOOT  
14. PGD  
PVIN  
BOOT  
PVIN  
PGD  
25Ω  
SW  
PVIN  
AGND  
AGND  
PGND  
15. EN  
EN  
430kΩ  
10kΩ  
570kΩ  
AGND  
AGND  
AGND  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
37/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Operational Notes  
1.  
2.  
3.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
38/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 74. Example of monolithic IC structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
39/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Ordering Information  
B D 9 S 4 0 0 M U F  
-
C E 2  
Part Number  
Package  
VQFN16FV3030  
Product class  
C for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagrams  
VQFN16FV3030 (TOP VIEW)  
Part Number Marking  
D 9 S  
4 0 0  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
04.Dec.2017 Rev.002  
40/42  
BD9S400MUF-C  
Physical Dimension and Packing Information  
Package Name  
VQFN16FV3030  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
41/42  
04.Dec.2017 Rev.002  
BD9S400MUF-C  
Revision History  
Date  
Revision  
Changes  
05.Sep.2017  
04.Dec.2017  
001  
002  
New Release  
Update Operational Notes  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0J1J0AL01350-1-2  
42/42  
04.Dec.2017 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY